
Noname manuscript No.
(will be inserted by the editor)

A Distributed Architecture for
Efficient Web Service Discovery

Luciano Baresi · Matteo Miraz · Pierluigi Plebani

the date of receipt and acceptance should be inserted later

Abstract Although the definition of Service

Oriented Architecture (SOA) included the pres-

ence of a service registry from the beginning,

the first implementations (e.g., UDDI) did not

really succeed mainly because of security and

governance issues. This article tackles the prob-

lem by introducing DREAM (Distributed Reg-

istry by ExAMple): a publish / subscribe based

solution to integrate existing, different registries,

along with a match-making approach to ease

the publication and retrieval of services.

DREAM fosters the interoperability among

registry technologies and supports UDDI,

ebXML Registry, and other registries. The pu-

blish / subscribe paradigm allows service provi-
ders to decide the services they want to publish,

and requestors to be informed of the services

that satisfy their interests. As for the match-

making, DREAM supports different ways to

evaluate the matching between published and

required services. Besides presenting the archi-

tecture of DREAM and the different match

making opportunities, the article also describes

the experiments conducted to evaluate proposed

solutions.

Keywords Distributed Service Registries ·
Service Discovery · Service Matchmaking ·
Similarity measure

Luciano Baresi, Matteo Miraz, and Pierluigi Plebani
Dipartimento di Elettronica, Informazione e
Bioingegneria - Politecnico di Milano
Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy
E-mail: [luciano.baresi, pierluigi.plebani]@polimi.it

1 Introduction

The development of software systems more and

more often relies on the principles of Service

Oriented Computing to improve the flexibility

and interoperability of resulting solutions [1].

These systems open their boundaries by pro-

viding accessible programmatic interfaces (ser-

vices) that ease the integration with other sys-

tems. In some cases, this openness is limited to

a well-defined set of possible users (usually in

business-to-business scenarios); in some other

cases, these services can be used by anyone. As

a result of this process, lots of services are avail-

able on the Internet:for instance, Programmable

Web1 has more than 12,000 registered APIs,

and we have no figures about all those services

that are not publicly available.

This considerable amount of services imposes

suitable discovery and selection capabilities to

allow for the identification of the services of in-

terest. During the early days of SOA (Service

Oriented Architectures), UDDI (Universal De-

scription Discovery and Integration) was con-

ceived to support the discovery of services, and

some public UDDI repositories were created to

host their descriptions [2]. These public reg-

istries did not work. Besides some security is-

sues, the high amount of information required

to register a service, and the absence of control

led to incomplete and buggy service descrip-

tions. The management of these registries was

not easy because of the number of involved par-

ties and the distributed ownership of services.

The result was that nobody checked the sta-

1 http://www.programmableweb.com

2 Luciano Baresi et al.

tus of these services, and when these registries

were closed, they were full of non-working ser-

vices and incomplete information [3]. Public ini-

tiatives were substituted by private UDDI reg-

istries and domain-specific ebXML (e-business

XML) registries [4], implemented in closed envi-

ronments where the number of involved actors

is limited and suitable governance can be ap-

plied.

As evidenced by the continuous effort done

to offer private registry implementations in com-

mercial platforms (e.g., Oracle and BEA

AquaLogic Service Registries) and to standard-

ize the implementation and the access to such

registries (e.g., ebXML RegRep 4.0 specifica-

tion has been approved as OASIS standard 2),

more and more private service registries are and

will be made available soon.

The increasing number of available services,

the evolution towards more private, controlled

solutions, and the advent of cloud infrastruc-

tures let us foresee a service ecosystem where

service descriptions are hosted on a set of di-

verse registries: some of them will be freely ac-

cessible while others will be more controlled.

DREAM (Distributed Registry by ExAMple)

is the contribution of this article to the ecosys-

tem. DREAM is a solution for interconnect-

ing heterogeneous registries and for easing the

discovery of services. This solution originates

from previous work by the authors: DiRe (DIs-

tributed REgistry, [5]) and Urbe (UDDI Reg-

istry By Example [6]). The former contributes

the communication framework among registries

and the facet-based [7] description of services;

the latter provides the match-making capabil-

ities and semantic awareness. The integration of

the two proposals defines a semantically-enabled

replication infrastructure that supports differ-

ent registry technologies (UDDI, ebXML, and

others 3).

A shared service description model provides

the basis for the homogenous distribution and

retrieval of information about services. A publi-

sh / subscribe middleware allows DREAM to

let different parties share services and, at the

same time, be informed about new, useful ser-

vices. Each registry can decide the services it

wants to publish, that is, the services it wants

to share with others. Similarly, it can declare its

2 https://lists.oasis-open.org/archives/

regrep/201201/msg00011.html
3 http://www.secse-project.eu/

interests —the services it would like to be aware

of— by means of special-purpose subscriptions.

The infrastructure ensures that, as soon as a

registry publishes the information about one of

its services, this same information is propagated

to (and replicated on) all the registries that had

declared their interest. Subscriptions (and un-

subscriptions) can be issued dynamically and

thus each party can accommodate and tailor

its interests (i.e., those of its users) while in op-

eration. The approach introduced in this paper

improves and validates the solution discussed

in [8].

The discovery mechanisms implemented in

DREAM support different granularities: ser-

vice requestors can express their interests by

referring to any element from complete facets to

single attributes. In addition, the match-maker

exploits reference ontologies to evaluate the sim-

ilarity between the terms used in the requests

and in available service descriptions and return

service that match requests at different degrees

of precision.

To summarize, the key and novel contribu-

tion of this paper is a distributed framework en-

abling the interoperability among different ser-

vice registries and different service description

models. This allows the service requestor to ex-

press his/her preferences using the preferred ser-

vice description model, as the interoperability

among the different service registries is ensured

by an abstract service model composed of facets.
As demonstrated by a series of experiment, this

integration, along with the possibility of inte-

grating semantic-enabled service discovery mech-

anisms, increases the effectiveness of the service

retrieval in terms of precision and recall.

Moreover, the proposed approach contribu-

tes to make service publication and retrieval

easier and more flexible as DREAM does not

rely on a single standard for describing provided

services and for defining queries. Currently, from

the service provider perspective, DREAM is

able to support any kind of service description,

i.e., WSDL, SAWSDL, OWL-S, with the only

limitation that the language has to be XML-

based. From the service requestor perspective,

the service retrieval supports queries expressed

using XPath, XPath with an additional opera-

tor (proposed in this work), and WSDL docu-

ments used to specify the requestor needs. Al-

though DREAM is open to be extended with

additional query languages, developers of such

A Distributed Architecture for Efficient Web Service Discovery 3

extensions are in charge of implementing the

related match-making algorithms.

The rest of the paper is organized as fol-

lows. Section 2 discusses the motivations be-

hind a distributed architecture for service reg-

istries and how semantic analysis can improve

the precision and recall of service retrieval. Sec-

tion 3 introduces the proposed architecture and

explains how it can be used by both service

providers and requestors. Section 4 presents the

different match-making capabilities offered by

DREAM. Section 5 describes the experiments

conducted to evaluate the performance of

DREAM in terms of response time, precision,

and recall. Section 6 surveys related approaches

and Section 7 concludes the paper.

2 Motivations

As discussed in the introduction, the idea of

having a worldwide service registry failed after

a while as the governance of this kind of solu-

tions is hard to manage. To overcome this prob-

lem, the SOA community developed alterna-

tive approaches. On the one side, they proposed

a more agile publication process. For instance,

Web sites like XMethods4 or ProgrammableWeb

index services by only considering a description

and tags freely assigned by the developers. The

resulting tag-based retrieval, as usually occurs

with keyword-based information retrieval mech-

anisms, is not effective. On the other side, the

classical solutions, like UDDI and ebXML Reg-

istry, are still used but either in a more con-

trolled context, for example, inside a company,

or by focusing on a specific type of services (e.g.,

geospatial services, healthcare).

Although these new approaches eased the

publication, they had a negative impact on the

retrieval. Indeed, reducing the information re-

quired when a new service is made available

also means reducing the information that can

be used to retrieve it. The use of a private ser-

vice registry implies that all the indexed ser-

vices can only be viewed by a limited set of

users. For this reason, companies maintain two

registries: (i) a public one, which is freely acces-

sible and contains all the services that can be

invoked externally, and (ii) a private one, with

control policies that restrict the access to the

services that are only available internally.

4 http://www.xmethods.net

Finally, despite the initial intention of hav-

ing a standard registry technology, that is,

UDDI, interoperability is now an issue. Differ-

ent registries, with different communication pro-

tocols are available and can be required to ex-

change information and cooperate.

The lack of a winning solution pushed us

to concentrate on the distributed publication of

services as a means to improve both exposition

and retrieval. These are the resulting require-

ments for a service registry architecture:

– Distribution: services can be published on

different registries managed by different sub-

jects.

– Interoperability: service registries can be ba-

sed on different technologies and communi-

cate using different protocols.

– Controlled publication: the service provider

can decide the visibility of the published ser-

vices (e.g., private and public) no matter the

registry on which they are published.

– Customized retrieval: the service request can

be formalized in different ways and all the

service registries must be queried against

such a request.

– Scalability: services are continuously pub-

lished and removed and the number of ser-

vices to be stored can be significantly high

and not foreseen at design-time.

Figure 1 shows our vision with respect to the

publication of services (on the left) and their

retrieval (on the right). When a provider de-

velops a service, this is published on the in-

ternal (proprietary) registry, and it can be de-

clared as either a private or public service. In

the former case, the service description is only

stored in the internal registry and it is not ac-

cessible outside. In the latter case, the service

is automatically published on the external reg-

istries that manifested interest on it. For in-

stance, a repository that hosts services related

to books can be interested in services that pro-

vide information on books, reviews, and stores.

Any service about this topic would be stored in

the registry. The communication infrastructure

provided by DREAM ensures a seamless inte-

gration between the internal registry and the

public ones is provided even if they are based

on different technologies.

As for service retrieval, we assume the pres-

ence of two types of service requestors: the typ-

ical user, who browses a service directory look-

ing for a particular service, and the registry

4 Luciano Baresi et al.

Generic
Public service

registry
(e.g. programmableWeb)

Thematic Public
service registry
(e.g., Book Store)

Service
provider

Internal service
registry

publish

publish
if the service
is declared
to be public

publish
if the service
is declared
to be public and
about books

Service
requester

Internal service
registry

Generic
Public service

registry
(e.g. programmableWeb)

Thematic Public
service registry
(e.g., Book Store)

express an interest on
a class of services by
using keywords or WSDL

notify if a new and
interesting book-related
service has been published

notify if a new and
interesting service

 has been published

Fig. 1 Example scenario.

maintainer, who wants to be aware of as many

services as possible. These two types of users

might have different skills and thus require dif-

ferent methods to define their interests. For ex-

ample, a non tech-savvy requestor can express

an interest by means of keywords (e.g., “book

price”), while a more skilled user may submit

a WSDL to specify the interface that the re-

quested service has to expose. The advantage

of DREAM is that it supports both types of

service requestors. As DREAM enables the in-

tegration of different service description models

and different service retrieval mechanisms, it is

open to support different types of queries. Ser-

vice requestors can express their query accord-

ing to their skills, without adopting any new

standard.

Finally, the communication between the ser-

vice registries and the service requestor is mainly

based on a publish / subscribe middleware: a so-

lution that can ensure good performance even

in case of a high number of published services

and service requests.

3 DREAM Architecture

To satisfy the architectural requirements intro-

duced in the previous section, this paper pro-

poses a distributed service registry based on a

common service description model and a publish-

subscribe middleware. Each node of the infras-

tructure can be used by both providers to pub-

lish their services, and by users who want to

find the services able to match their needs. As

a consequence, the goal of the middleware is

twofold: it collects the requests and finds the

services able to satisfy them. When a new ser-

vice is published, its description must be sent

to all the nodes interested in it.

From a technical standpoint, Figure 2 shows

that DREAM provides a communication in-

frastructure (composed of delivery managers

and dispatchers) and a similarity engine. Each

delivery manager collects the information about

new requests and new available services in a

node and the dispatcher distributes that infor-

mation to the interested parties. Since such in-

formation should only be exchanged if a party

is interested in that particular new service, the

similarity engine is used to match the published

service description to the different requests.

3.1 Service Description Model

A user can choose the implementation of the

Registry that fits best its requirements. These

implementations mainly adhere to two main spe-

cifications: UDDI [9] and ebXML [4], but they

could also be proprietary solutions. Sadly, they

have a different data model, and thus they are

not compatible. The heterogeneity of registries

and the need for a flexible approach that fits

most of the user scenarios suggested us to de-

velop a new, lightweight model to describe ser-

vices. The goal of this service description model

is to become a neutral language that is eas-

ily mappable onto the different registry models.

To this end, the service description model uses

a faceted approach: each service is described

A Distributed Architecture for Efficient Web Service Discovery 5

Wsoogle.com

Communication bus

XMethods.net

Web
service
Registry

DIRE
Delivery
Manager

Web
service
Registry

DIRE
Delivery
Manager

URBE
Similarity
Engine

DIRE
Dispatcher

Touristic co.Healtcare SW developer co.

UDDI

DIRE
Delivery
Manager

ebXML

DIRE
Delivery
Manager

Chess player community

UDDI

DIRE
Delivery
Manager

Main Web service registries

Web service requesters

Fig. 2 DREAM architecture.

serviceId: id
name: String
addinfo: boolean

Service

facetId: id
XMLSchemaDef: String
XMLDoc: String

SpecFacet

AddFacet1 *describedBy

Fig. 3 Service model using facets.

by means of facets, each addressing a different

characteristic of the service or point of view.

A Facet is the key constituent of the pro-

posed model (see Figure 3). It describes a web

service from a particular point of view. For ex-

ample, a facet may characterize a service from

a functional point of view and describe the op-

erations it provides —by means of a WSDL

document, or it can describe the quality of ser-

vices guaranteed by the service and detail its

availability, reputation, and response time. The

model only requires that facets be self-contained,

and the information they provide rendered in

XML. The first requirement ensures that once

a subject retrieves a facet, there is no need to

retrieve additional documents to get the infor-

mation it contains. The latter eases document

management and is justified by the wide adop-

tion of XML languages by the service commu-

nity. As usual, XML schema documents char-

acterize the facets with the type of informa-

tion they contain. For example, WSDL facets

describe the interface of services, RDF facets

add semantics, and XMI facets specify complex

service behaviors by means of UML diagrams.

Additionally, each Facet has a unique identifier,

used to ease its management. Hereafter, {fwi
j }

identifies the facets of a Web service wi.

Each Service comprises a set of specifica-

tion facets (SpecFacet). The service provider is

in charge of writing these facets, and they con-

tain properties that it guarantees for its service.

For example, a service can be described through

facets that specify its interface, the company

that provides it, and the guaranteed qualities

of service. Users can reassemble the complete

specification of a service by collecting and an-

alyzing all its specification facets. For exam-

ple, Figure 4 shows the excerpts of two possible

facets associated with the book example. We

assume that the service providers define for the

same service two different WSDL and OWL-S

description, respectively.

The users of a service may also create some

additional facets (AddFacet) and describe the

service from their point of view. For example,

users can describe a service by specifying its rat-

ing, its level of customization, and the measured

quality of service. These facets do not specify

the service, but they contain information that

may be useful in the service-selection phase to

rank retrieved services.

In addition, the user can also rely on exist-

ing standards and frameworks like UDDI and

ebXML and can use parts of that specifications

to proper identify the services in DREAM. For

example, possible usages could be to create ad-

ditional facets that are linked to a tModel or

6 Luciano Baresi et al.

<wsdl:definitions ...>

 <wsdl:types>

 ...

 </wsdl:types>

 <wsdl:message name="get_PRICEResponse">

 <wsdl:part name="_PRICE" type="tns:PriceType" />

 </wsdl:message>

 <wsdl:message name="get_PRICERequest">

 <wsdl:part name="_BOOK" type="tns:BookType" />

 </wsdl:message>

 <wsdl:portType name="BookPriceSoap">

 <wsdl:operation name="get_PRICE">

 <wsdl:input message="tns:get_PRICERequest" />

 <wsdl:output message="tns:get_PRICEResponse" />

 </wsdl:operation>

 </wsdl:portType>

...

</wsdl:definitions>

WSDL facet: book_price_service.wsdl

<?xml version="1.0" encoding="WINDOWS-1252"?>

<rdf ...>

 <service:Service rdf:ID="BOOK_PRICE_SERVICE">...</service:Service>

 <profile:Profile rdf:ID="BOOK_PRICE_PROFILE">

 <service:isPresentedBy rdf:resource="#BOOK_PRICE_SERVICE"/>

 <profile:serviceName xml:lang="en">BookPriceService</profile:serviceName>

 <profile:hasInput rdf:resource="#_BOOK"/>

 <profile:hasOutput rdf:resource="#_PRICE"/>

 ...

 </profile:Profile>

 <process:Input rdf:ID="_BOOK">

 <process:parameterType>books.owl#Book"</process:parameterType>

 </process:Input>

 <process:Output rdf:ID="_PRICE">

 <process:parameterType>concept.owl#Price</process:parameterType>

 </process:Output>

 <grounding:WsdlGrounding rdf:ID="BOOK_PRICE_GROUNDING">

 <service:supportedBy rdf:resource="#BOOK_PRICE_SERVICE"/>

 </grounding:WsdlGrounding>

</rdf:RDF>

OWL-S facet: book_price_service.owls

Fig. 4 Example of facets.

to a categoryBag, in case of UDDI, or to a

Collaborative Partner Profile, in case of

ebXML.

At this stage, DREAM implements facets

linked to WSDL descriptions, and in the rest of

the paper we discuss how DREAM can sup-

port different kinds of service requestors ex-

pressing different kinds of queries. Future re-

leases will include other types of services de-

scription models, i.e., OWL-S or REST-based,

as well as facets expressing quality of service

capabilities.

3.2 Communication infrastructure

Differently from other approaches such as METEOR-

S [10] and PYRAMID-S [11], which create a sin-

gle logical registry spread among several phys-

ical nodes, we propose a really distributed reg-

istry. DREAM exploits the inherent distribu-

tion of registries to provide the user with a finer

control over published information. DREAM

assumes that each party manages a private reg-

istry. This registry manages information regard-

ing the services being used. Being the registry

private to the corporation, it glues together the

different parts of its IT infrastructure by allow-

ing a blackboard communication style between

the various components. The registry may be

used from parts of system to retrieve, add, or

modify information on services. For example, a

component may monitor the execution of ser-

vices, measure the average response time, and

store it in the registry as additional facets. An-

other component, which retrieves services, may

use that information to select the fastest service

for a given task.

The party that manages a registry has the

full control on the information published on the

registry. This means that it can perform a pre-

liminary selection of the services in the reg-

istry, and ensure that it only contains services

that are of interest. Each query performed on

the registry works on pre-approved services. Ac-

cordingly, the results of these queries have a

high precision (i.e., almost only relevant ser-

vices are found), at the price of a lower recall

(i.e., not all relevant services may be found).

DREAM improves the recall by introduc-

ing a marketplace mechanism to exchange ser-

vice facets among registries. Like “real” market-

places, DREAM allows a loosely-coupled coop-

eration among service providers and potential

customers. On one side, service providers are

allowed to share their services and to broadcast

their descriptions. On the other side, DREAM

provides clients with the ability to analyze sha-

red facets (i.e., service descriptions). The client

can decide whether a service meets its require-

ments and, if it is the case, acquire the relevant

facets and insert them in its registry.

To support this cooperation style, DREAM

introduces a global communication bus and a

delivery manager to connect each registry (see

Figure 2) to it. The communication bus acts

as a common reference to all the delivery man-

agers, and allows them to efficiently exchange

messages in a peer-to-peer manner. The main

element of the communication bus is the dis-

patcher, which follows the publish / subscri-

be paradigm. When a node wants to deliver

a message, it contacts the dispatcher and pub-

lishes the message. Conversely, subscriptions al-

low nodes to declare what messages are relevant

for them. The dispatcher forwards messages be-

ing published to nodes with a proper subscrip-

tion.

The core of this communication system is

based on REDS [12], a distributed publish / sub-

scribe system [13]. REDS splits the dispatcher

A Distributed Architecture for Efficient Web Service Discovery 7

among several nodes, and guarantees logical in-

tegrity. Consequently, it is able to create a scal-

able infrastructure that can manage very large

networks. Moreover, REDS is able to adjust its

internal structure, react to node failures, opti-

mize its performance, and ensure a reliable and

efficient communication system.

The delivery manager acts as façade for the

registry. It allows the party to both publicize

and discover services, by managing the infor-

mation flow from the local registry to the other

registries and vice-versa. For this purpose, the

delivery manager is able to perform the ade-

quate conversions between the faceted service

model and the one used by the particular reg-

istry.

When it is asked to publish the information

about a service, the delivery manager accesses

the local registry, fetches the information on the

service, converts it into the proper facets, and

delivers them as a message to the bus. The dis-

patcher forwards that message to all the inter-

ested parties by using a best effort delivery. In

fact, the bus operates on an unreliable network:

nodes can crash, have temporary failures, and

the whole network may have problems.

Additionally, parties may join the market-

place after the information on a service has al-

ready been shared. To solve these issues,

DREAM uses the lease mechanism, which guar-

antees a global consistency even if some mes-

sages are lost. The lease mechanism is typical

of many distributed systems (e.g., Jini [14]) and

requires that each sent message (information)

has an expiration date. When a message ex-

pires, the information is not considered valid

anymore, and it can be deleted, unless a re-

new request is sent. These renews ensure that

all customers receive the information, even if

they enter the system after the first distribu-

tion. Moreover, since messages are retransmit-

ted more often than they expire, the infrastruc-

ture can tolerate a certain amount of lost mes-

sages. The delivery manager automatically per-

forms this operation and renews the informa-

tion about published services.

The delivery manager can also help who

wants to discover new services. The party must

specify the interest, that is the query to be used

to find the new services. DREAM allows inter-

ests to analyze the content of facets, and sup-

ports different match-making solutions: XPath,

R-XPath, and WSDL-based (see Section 4). The

delivery manager uses the interests created by

the party to perform subscriptions on the com-

munication bus. The dispatcher will then for-

ward to the delivery manager all the messages

whose content matches the interests. As soon as

these messages are received, the delivery man-

ager converts them into the local format, and

inserts them in the limbo zone of the local reg-

istry.

If one wanted to extend the set of match-

makers, the key element is interface Interest

which declaration follows:

interface Interest {

public boolean matches(Deliverable msg);

}

To introduce a new matchmaker, one must

implement such an interface by implementing

method matches. This method receives a Deliv-

erable object as input that contains the refer-

ences to the facets that must be exploited to

answer the query. DREAM comes with three

implementations of this interface for the match-

makers that are discussed in the next section.

4 Match-making

As previously discussed, one of the main goals of

DREAM is to provide a flexible way for retriev-

ing services by allowing users to submit their

requests in different ways. Since all services are

described through facets, the request (a.k.a in-

terest) can be expressed in three different ways.

They differ in the way the query is formulated

and in the accuracy provided by the similarity

engine. One can:

– Use an XPath expression:

mmX(xpath, {fwi
j }).

This is to state that one or more keywords

have to exactly match a given element in the

service description. Since users could be un-

able to write XPath expressions, we assume

they may use directories of pre-selected

XPaths, or tools for translating keywords

into them.

– Adopt a relaxed XPath (R-XPath):

mmR(xpath, {fwi
j }).

It is similar to the previous XPath-based ap-

proach, but it also allows for a relaxed match

between the terms included in the expres-

sion and the service description. It means

that the match is satisfied when the terms,

8 Luciano Baresi et al.

even if they are not equal, are however con-

nected in a reference ontology.

– Exploit any facet of the service description

and compare its terms:

mmW (facet, fwi

facet).

For example, given a WSDL description of

the desired Web service, the match-making

would compare the operations, messages, and

parameters as defined in the published WSDL

facet.

Given this flexibility, DREAM can deal with

different scenarios. For instance, one can as-

sume that a user looks for a service to buy books

on line (see Figure 5). The user’s interests can

be defined by an XPath expression stating that

buy is the name of the portType and getBook

is the name of the operation, and these two

names must be included in the service descrip-

tion 5. Other users can be less restrictive on

names and also be interested in services that

use similar terms like, for instance, purchase

and getPaperback. Experienced users, like pro-

grammers, may also provide a WSDL to spec-

ify the interface of the service they would like.

This situation is also similar to when a service

already used by an application becomes unavail-

able and it must be replaced: the closer the new

service interface is, the lesser the work needed

to adjust the client is.

4.1 XPath-based match-making

The first approach leverages the XPath language

to inspect facets and determine whether they

contain valuable information. The use of XPath

fits perfectly the service model proposed in Sec-

tion 3.1, where facets are defined as XML do-

cuments.

Queries expressed by using the XPath-based

match-making require the XML schema of the

facet they target and the XPath expression that

states the properties of interest. As for XPath

expressions that concern name matching, func-

tion mmX(xpath, {fwi
j }) returns true if the

XPath expression is satisfied. For example, if

one considers the example of Figure 5, and as-

sumes the availability of a WSDL facet (whose

namespace is wsdl), the query corresponds to

5 For the sake of simplicity, in the example, we use
only the WSDL facets, even if it is possible to apply
the XPath and R-XPath matchmaking to any XML-
based document.

the following XPath expression:

xpath =//wdsl:portType[@name=’’buy’’]

&& //wdsl:operation[@name=’’getBook’’]

mmX(xpath, fwi

wsdl) returns true only if the

portType attribute is equal to buy and the name

of the operation is getBook. Note that, along

with the name matching evaluation, the user

can exploit the full power of XPath to specify

more complex conditions.

4.2 R-XPath-based match-making

The second approach extends the previous one

by allowing for a more flexible comparison: a

service is considered to be relevant even if its

description does not exactly correspond to the

terms specified in the query. To do this, we eval-

uate the similarities between words by means of

function wSim(w1, w2) → [0, 1], where w1 and

w2 are the two words to be compared, and the

higher the result is, the more similar the two

words are.

Before discussing how wSim works, we in-

troduce the bipartite graph assignment prob-

lem since it provides the basis for our similarity

function. Given a graph G = (V,E), where V

is the set of vertexes and E the set of edges,

M ⊆ E is a matching on G iff no two edges

in M share a common vertex. If M covers all

the nodes of the graph, G is bipartite. This also
means that each node of the graph has an in-

cident edge in M . Let us suppose that the set

of vertices are partitioned in two sets Q and P ,

and that the edges of the graph are weighted

according to function f : (Q,P) → [0..1]. The

function maxSim : (f,Q, P) → [0..1] returns

the maximum weighted assignment, that is, an

assignment such that the average of the weights

of the edges is maximum. Fig. 6 shows a graph-

ical representation of the problem, where the

bold lines constitute the matching M .

If we expressed the assignment in bipartite

graphs according to a linear programming model,

we would have:

maxSim(f,Q, P) = max

j∈J∑
i∈I

f(qi, pj) · xi,j∑
j∈J

xi,j ≤ 1 ∀i ∈ I

∑
i∈I

xi,j ≤ 1 ∀j ∈ J

A Distributed Architecture for Efficient Web Service Discovery 9

Similarity Engine

XPath Matchmaker
(mmX)

R-XPath Matchmaker
(mmR)

WSDL Matchmaker
(mmW)

Service
Description

Returned
Service

descriptions list

I need a service with this WSDL
<definition>
 ...
 <portType name="buy">
 <operation name="getBook">
 ...
 </operation>
 ...
 </portType>
 </definition>

(//portType[@name="buy"] &&
//operation[@name=ʼgetBookʼ]),

f
w_i

wsdl

(//portType[@name≅"buy"] &&

//operation[@name≅ʼgetBookʼ]),

f
w_i

wsdl

Reference
ontologies

Fig. 5 Query types in DREAM.

q1

q2

q3

p1

p2

p3

Q

P

1.0

0.5
0.7

0.3
0.8

0.7

0.2

1.0

0.2

f(q1, p1)

p4

0.0

0.2

0.1

Fig. 6 Graphical representation of the assignment
in bipartite graphs problem.

I = [1..|Q|], J = [1..|P |]
(1)

ut
The similarity between two words w1 and w2

is computed in three steps: tokenization, stem-

ming, and distance evaluation. Tokenization de-

composes w1 and w2 in two bags of terms: w1 =

{t1,i} and w2 = {t2,i}. It considers case changes,

underscores, hyphenations, and numbers. The

terms resulting from the tokenization are also

stemmed (second step). Thus, words like send-

ing or exchanged are transformed into their

stemmed version: send and exchange. The stem-

ming process is a well-known process adopted

by several information retrieval approaches [15] 6.

The third step is about the computation of the

similarity wSim, obtained by exploiting the as-

signment problem in bipartite graphs:

wSim(w1, w2) =
maxSim(termSim, t1,i, t2,i)

|t1,i|
(2)

The inputs are the two sets of tokens {t1,i}
and {t2,i} that compose the two words to be

compared, and function

termSim : (term′, term′′)→ [0..1]

that returns the similarity of two tokens. This

way, wSim returns the word similarity as the

sum of the similarities between the pairs of to-

kens that maximize such a sum. On this basis,

termSim holds a central role in the computa-

tion of the similarity.

The literature proposes several approaches

to state the similarity and relatedness between

terms [16]. These algorithms usually compute

such a similarity by relying on the relationships

among terms defined in a reference ontology

(e.g., is-a, part-of, attribute-of). Our approach

computes the similarity between terms by adopt-

ing the solution proposed by Seco et al. [17]:

they rely on the assumption that concepts with

6 For the sake of simplicity, we use the terms ti for
both the original and stemmed versions.

10 Luciano Baresi et al.

many hyponyms 7 convey less information than

concepts that have less hyponyms or any at all

(i.e, they are leaves in the ontology).

Note that wSim returns the maximum sum

divided by the number of terms composing w1.

Indeed, in the application of the assignment

problem in bipartite graphs to our context, set

t1 represents a query, whereas t2 is what we

compare against the query to evaluate the sim-

ilarity. |t1| < |t2| means that the number of ele-

ments required in the query t1 is lower than the

number of elements made available in t2: for

each element in t1 we may find a correspond-

ing element in t2. In contrast, |t1| > |t2| means

that we are asking for more elements than those

that are actually available. As a consequence,

we consider that the situation in which |t1| <
|t2| is in general better than the case |t1| >
|t2|. For this reason, we divide the result of

the maximization by the cardinality of |t1|. So,

if |t1| < |t2| then wSim : (t1, t2) → [0..1],

whereas if |t2| < |t1| then wSim : (w1, w2) →
[0.. |t2||t1|]. This way function wSim is asymmet-

ric, that is, wSim(w1, w2) 6= wSim(w2, w1). If

all the tokens composing w1 has a correspon-

dence with one token in w2, then the similarity

will be higher than in the case in which some

“requested” token is not associated with any

token on the other side.

We assume the presence of both domain spe-

cific and general purpose ontologies. The former

include terms related to a given application do-

main, and can be built by a domain expert,

for example, by analyzing the terms included

in the Web services published in the registry.

The latter include all the possible terms —and

we adopt Wordnet. We decided to rely on both

types of ontologies since the domain specific on-

tology offers more accuracy in the relationships

between terms, while the general purpose one

offers wider coverage. This happens because in

a general purpose ontology a word may have dif-

ferent meanings, and thus different sets of syn-

onyms (synsets) in different contexts. In con-

trast, we assume that in a domain specific on-

tology, each word has a unique meaning with

respect to the domain itself. For instance, cur-

rency has two synsets in WordNet. The first is

about the financial domain, that is, the system

of money used in a country; the second is about

7 A hyponym is a word that conveys a more spe-
cific meaning than a general term applicable to it.
For example, spoon is a hyponym of cutlery.

the fact of being generally accepted. This means

that if we compared the terms currency and

money 8, we could realize that they are strictly

related only if we consider the financial domain.

On the other hand, if we considered the other

synset, the relationship would be looser. There-

fore, in case of general purpose ontologies, it is

hard to identify the correct domain to consider:

our solution is to use the average similarity eval-

uated over the different synsets.

According to the definition of wSim, the

match-making function for the relaxed XPath

mmR(xpath, {fwi
j }) → [true; false] is defined

by starting from the previously defined mmX,

where the similarity operator ∼= can be used in

the XPath expression. In this case (A ∼= B =

true)⇔ w(A,B) > thr. Having the ∼= operator,

the user can enrich the XPath expression with

relaxed name matching, that is, the names in-

cluded in the service descriptor not necessarily

need to be equal to the names specified in the

query. We assume that the threshold th ∈ [0..1]

is defined by the DREAM administrator af-

ter a training session as its value is critical for

the reliability of the match-making function.

Indeed, if the value is too low, the number of

false-positive might increase. The number of

false-negatives increases if the threshold has a

too high value.

4.3 WSDL-based match-making

The third match-making algorithm considers

only the WSDL facets and it is based on the

functionality provided by Urbe (Uddi Registry

By Example) [6] that evaluates the similarity

between two WSDLs. Urbe proposes a match-

making algorithm aimed to identify similar (sub-

stitute) services by analyzing the WSDL de-

scriptions of the different services. Retrieved

Web services must expose an interface that is

equal to or richer than the required one. In par-

ticular, Urbe computes the similarity degree of

two WDSL descriptions by computing the effort

—in terms of changes to the code— requested

to a client to use the service(s) retrieved by the

system.

The algorithm computes the relationships

between the main elements of the WSDL de-

scriptions, that is, of their portTypes, messages,

8 see http://marimba.d.umn.edu/cgi-
bin/similarity.cgi

A Distributed Architecture for Efficient Web Service Discovery 11

ws
1

ws
1
.

op
1

ws
1
.

op
2

ws1.

op1.in1

ws1.

op1.out1

ws1.

op2.in1

ws1.

op2.in2

ws1.

op2.out1

ws
2

ws
2
.

op
1

ws
2
.

op
2

ws2.

op1.in1

ws2.

op1.out1

ws2.

op2.in1

ws2.

op2.out1

wsSim

opSim

parSim

wsSim(ws1, ws2) = wPTNameSim · wSim(ws1.name,ws2.name) +

+ (1− wPTNameSim) ·

· 1

|ws1.{opk1}|
·maxSim(opSim,ws1.{opk1}, ws2.{opk2}),

(3)

where:

opSim(ws1.opk1, ws2.opk2) =

wOpNameSim · wSim(ws1.opk1.name,ws2.opk2.name) +

+(1− wOpNameSim) ·

·[0.5 · 1

|ws1.{opk1.{inl1}}|
·

maxSim(inParSim,ws1.opk1.{inl1}, ws2.opk2.{inl2})

+0.5 · 1

|ws2.{opk2.{outm2}}|
·

maxSim(outParSim,ws2.opk2.{outm2}, ws1.opk1.{outm1})]
(4)

and

inParSim(ws1.opk1.inl1, ws2.opk2.inl2) =

wSim(ws1.opk1.inl1.name,ws2.opk2.inl2.name)

(5)

outParSim(ws1.opk1.outl1, ws2.opk2.outl2) =

wSim(ws1.opk1.outl1.name,ws2.opk2.outl2.name)

(6)

Fig. 7 Structure of the service similarity function wsSim.

operations, and parameters. If available, seman-

tic annotations associated with the candidate

service as a SAWSDL (Semantic Annotated

WSDL [18]) facet can be used to improve the

retrieval process.

Since semantic annotations are rare,

DREAM usually computes the similarity func-

tion wsSim : (ws1, ws2) → [0, 1] between two

WSDL service descriptions and returns their

similarity degree, where ws1 represents the user

query, whereas w2 represents a service included

in the registry that needs to be compared to the

query. Also in this case, the higher the returned

value is, the better the similarity between the

services is. Function wsSim considers the num-

ber of operations and parameters and the sim-

ilarity between the names used for portTypes,

operations, and parameters.

The hierarchical structure of a WSDL de-

scription impacts the structure of wsSim. More

in detail, as reported in Figure 7, the similarity

between two web service descriptions computed

12 Luciano Baresi et al.

by wsSim depends on the similarity among their

portTypes, as they represents the k1, k2 opera-

tions made available by the services. This sim-

ilarity at portType level is computed by func-

tion opSim. In turn, the similarity between two

portTypes depends on the similarity between

the l1, l2 input and m1,m2 output parameters

that characterize each operation, which is com-

puted by using functions inParSim and

outParSim, respectively.

Equations 3-6 detail the structure of these

four functions where the same pattern is adopted.

On the one side, the name similarity wSim is

used to compare the names of analyzed ele-

ments (i.e., the service names for wsSim, the

portType names for opSim, and the parameter

names for inParSim and outParSim). On the

other side, as a service is composed of several

portTypes that, in turn, are composed of sev-

eral parameters, function maxSim is used to

identify the best matching between elements of

the comparing services that maximizes the simi-

larity value. Finally, the result of maxSim is di-

vided by the number of elements included in the

service representing query ws1 (i.e., the num-

ber of portTypes in ws1 for wsSim, the num-

ber of parameters defining a portType belong-

ing to ws1 for opSim). This aspect introduces

an asymmetry in the similarity function that is

justified by the need for distinguishing between

a query ws1 asking for more elements than ser-

vice ws2 offers, and a query ws1 asking for less

elements than ws2 offers. In the first case, the

similarity will be lower as the query is not fully

satisfied, whereas in the second case, even if the

service can offer more than requested, the query

is satisfied.

To balance the importance of these two as-

pects —while computing the overall similarity—

, weights wPTNameSim, wOpNameSim are

introduced. More specifically, wPTNameSim ∈
[0..1] defines the importance of the name of the

portTypes with respect to the similarity be-

tween the operations these portTypes offer. Sim-

ilarly, at operation level, parameter

wOpNameSim ∈ [0..1] weights the importance

between the similarity of operation names and

the similarity of related parameters.

The following properties hold for the simi-

larity function wsSim:

– wsSim(σi, σi) = 1: a Web service is totally

similar to itself;

– in general, wsSim(σi, σj) 6= wsSim(σj , σi):

the similarity depends on the Web service

description used as query.

Based on this algorithm, function

mmW (wsdl, {fwi
j })→ [true; false] returns true

if wsSim(wsdl, fwi

wsdl) > thw. Similarly to the

case of the relaxed X-Path, the threshold needs

to be set by the administrator after a training

session. In addition to that, for this similarity

function, the administrator is also in charge of

tuning the values of wPTNameSim and

wOpNameSim.

5 Validation

The efficiency and effectiveness of DREAM has

been assessed through a set of experiments. In

particular, we started from a set of queries is-

sued at different nodes and a set of registries

distributed over the network to evaluate (i) the

efficiency by measuring the response time to re-

turn the result of the comparison, and (ii) the

effectiveness by measuring the precision and re-

call of such a result.

The benchmark adopted for both tuning and

evaluating the performance of the similarity al-

gorithm has been obtained from the

SAWSDL [18] service retrieval test collection

(SAWSDL-TC1) 9. SAWSDL semantically en-

riches the WSDL-based service definition by an-

notations that contain concepts organized in a

reference ontology: the benchmark of WSDL

services used for evaluating our approach is ob-

tained by ignoring these annotations. More in

detail, the benchmark consists of 894 Web ser-

vices that cover different application domains:

communication, economy, education, food, med-

ical care, travel, and weaponry. The benchmark

also includes 26 test queries, represented as

SAWSDL documents; the list is reported as Ap-

pendix A.

To have a fair comparison among the three

approaches, that is, XPath, R-XPath, and WSDL,

we started from the queries suitable for the WSDL

case and we derived those for the other two

cases. Figure 8 shows how given a WSDL-based

query (included in the benchmark), the related

XPath expression requires that the names of

portTypes and (input/output) messages be the

same as those of the initial query. Yet, the R-

XPath expression also indicates the similarity

9 http://projects.semwebcentral.org/projects/

sawsdl-tc/

A Distributed Architecture for Efficient Web Service Discovery 13

operation@name = getPrice

AND

message/part@name= Book OR _Book

AND

message/part@name= Price OR _Price

XPATH query based on book_price_service.wsdl

 ws.name = BookPriceSoap

 ws.op1 = {ws.op1.name = getPrice,

 ws.op1.in1 = { ws.op1.in1.name = _Book,

 ws.op1.in1.type = tns:BookType},

 ws.op1.out1 = { ws.op1.out1.name = _Price,

 ws.op1.out1.type = tns:PriceType}

 }

WSDL query: book_price_service.wsdl

operation@name = getPrice [relaxed=0.7]

AND

message/part@name= Book OR _Book [relaxed=0.7]

AND

message/part@name= Price OR _Price [relaxed=0.7]

R-XPATH query based on book_price_service.wsdl

Fig. 8 Example of queries used for the assessment.

threshold that must be reached to obtain a pos-

itive match.

5.1 Effectiveness

To analyze the effectiveness of DREAM [19],

we used precision and recall as performance in-

dicators. Each test query is associated with a

set of services that the proponents of the bench-

mark have defined as relevant. This means that

given a query, the precision provides the ratio

between the number of relevant Web services

among those returned by DREAM, where the

lower the precision is, the lower the number of

false positives is. On the other side, the recall

indicates the ratio between the number of rele-

vant Web services returned by DREAM among

those defined relevant. In this case, the higher

the recall is, the lower the number of false nega-

tives is. The total precision and recall have been

computed as the average of the precision and

recall of each of the 26 test queries. Note that

precision and recall also indicate how DREAM

can be beneficial to the user. Indeed, high pre-

cision indicates that all the returned services

are likely what the user is expecting for. High

recall indicates that DREAM returns a signifi-

cant amount of services that are potentially in-

teresting for the user.

As expected, Figure 910 shows that the

wsSim similarity algorithm provides the best

trend, while the XPath-based similarity has a

questionable behavior. Indeed, wsSim deeply

analyses all the elements of the WSDL descrip-

tion since the queries are richer than the XPath-

based ones. Note that in this last case, a service

is considered to be relevant only if the names

match exactly.

Although the wsSim algorithm provides the

best precision-recall among the three, in the lit-

erature [20] there are other matchmaking al-

gorithms that might perform better and, due

to the flexibility of DREAM, they can be in-

cluded in the architecture. Note that the pre-

cision and recall obtained by DREAM come

from a system that integrates different mod-

els for describing a service and that supports

different types of query mechanisms. For this

reason, even if in the literature there are bet-

ter approaches, they are specifically studied to

support a particular service description model

(e.g., WSDL, SAWSDL, or tag-based only). As

a consequence, one should consider how to im-

prove the precision and recall without affecting

the flexibility of describing services and query-

ing a registry using the languages one prefers.

5.2 Efficiency

To measure the efficiency of the three match-

making methods, we created a “simple”, dis-

tributed environment composed of three nodes.

Each node used a 550 Mhz Intel Xeon E 5530

processor and 1.5 Gbyte of memory, running

Linux. We used the server profile of the Oracle

Java virtual machine, and the heap was lim-

ited to 1 Gbyte. The first node acted as service

provider, and periodically published all the ser-

vices in our benchmark. The second node acted

as service consumer: it used the queries defined

in our benchmark as subscriptions. The third

node acted as broker, and connected the ser-

vice provider and service consumer. The scala-

bility of DREAM mainly depends on the abil-

ity of brokers to route service descriptions to

interested nodes. For this reason, we focused on

the third node and measured the match-making

time.

10 Precision and recall are calculated by using
the SME2 Evaluation tool (projects.semwebcentral.
org/projects/sme2/).

14 Luciano Baresi et al.

Fig. 9 Precision-Recall chart for XPath, R-XPath, and WSDL-based match-making.

In particular, we run each matchmaking al-

gorithm ten times and we consider the average

response time. Each run consisted of publishing

all the 894 services of our testbed on the first

node at the fastest possibile rate. Before start-

ing the next experiment, we waited until the

last node received the last service published, so

to be sure that any random fluctuation of an ex-

periment does not interfere also with the follow-

ing experiments. Each service was described by

a single WSDL facet, which matches at least one

of the queries performed on the second node.

Figure 10 summarizes measured performance.

XPath is the fastest match-making method, and

it requires on average 5.55 ms. R-XPath is

slightly slower, having an average match-making

time of 6.90 ms. The method based on WSDL is

much slower, requiring an average of 25.91 ms

to perform a comparison.

This preliminary analysis shows that both

XPath and R-XPath-based match-making mech-

anisms allow one to create a scalable dispatch-

ing network. Its brokers are able to process

10,810 and 8,696 service descriptions per minute,

respectively. Note that the whole UDDI Busi-

ness Registry contained around 50,000 service

descriptions before being shut down. Instead,

the WSDL-based match-making mechanism only

processes 2,316 service descriptions per minute,

and thus poses serious scalability issues.

For this reason, we enhanced DREAM by

introducing caching mechanisms to speed-up the

match-making process. The caching mechanism

allowed us to store the similarity values com-

puted in the past and the comparison of two

terms, which have been already compared, only

requires an access to the cache. At this stage the

MRU (Most Recently Used) policy is adopted

for caching: i.e., descriptions that are used more

are kept longer. Other kind of policies will be

implemented in future versions. Based on this,

we validated the effects of the caching mech-

anism by considering two diverse scenarios: a

dynamic environment and a static one.

The dynamic environment is characterized

by a high ratio of new services and new queries.

In this situation, the caching mechanism has

limited ability to improve its performance. To

simulate this scenario, we subscribed to a query

per time, we sent all the services in the bench-

mark, and we reset the cache before consider-

ing the next subscription. Results are reported

in Figure 11: the performance of XPath and

R-XPath have a slight improvement, and re-

spectively require 5.08 ms and 6.60 ms on aver-

age to perform a comparison. Interestingly, the

method based on WSDL only requires 11.15 ms

(56.97% faster than the version without cache).

In the static environment, service providers

publish the same services, and consumers per-

forms the same queries altogether. This is the

best-case scenario for caching: after a short ini-

tial period in which the system processes the

services and the queries for the first time, all

the requests can leverage the cache. To mea-

sure the performance, we subscribed to all the

queries and sent all the services twice. The first

time served to fill the cache, and we did not

measure the matching time. Instead, we mea-

sured the performance when the services were

A Distributed Architecture for Efficient Web Service Discovery 15

XPath R−XPath WSDL

1
0

2
0

3
0

4
0

5
0

Matchmaking method

ti
m
e
(m
s
)

Fig. 10 Performance indicators.

XPath R−XPath WSDL

5
1
0

1
5

2
0

2
5

3
0

Matchmaking method

ti
m
e
(m
s
)

Fig. 11 Performance with caching
in the dynamic environment.

XPath R−XPath WSDL

1
2

3
4

5
6

7

Matchmaking method

ti
m
e
(m
s
)

Fig. 12 Performance with caching
in the static environment.

sent for the second time. Figure 12 reports the

results: the XPath, R-XPath, and WSDL-based

methods require 2.74 ms, 3.73 ms, and 3.31 ms

for each comparison, respectively. These figures

are in line with the requirement of a scalable

distributed dispatching network, since brokers

can process 21,897, 16,085, and 18,126 service

descriptions per minute, respectively.

Interestingly, the architecture of DREAM

leverages a lease mechanism, and requires that

services be periodically sent through the dis-

patching network. For this reason, we expect

that the real usage scenario is always close to

the “static environment”, and that the aver-

age throughput is thus appropriate. Our ex-

periments showed that DREAM can be used

as underlying infrastructure for a scalable dis-

patching network.

6 Related work

Over the last years, the service community has

proposed several approaches for publishing and

retrieving Web services. Given the goals of

DREAM, we only address two wide classes of

approaches: those that concentrate on the ar-

chitecture of service registries and those that

deal with service match-making.

6.1 Registry architectures

The need for a management of service registries

in a federated fashion has been recently consid-

ered in [21] . In this case, the authors based their

approach on the existence of communities that

have similar preferences in term of service func-

tionalities. According to those preferences, the

services can be organized in different registries

where similar services belong to the same reg-

istry. According to this scenario, our approach

is complementary to what it is proposed in the

article as it can be helpful to support the dis-

covery of the services published in the already

created registries with the possibility to specify

more than one type of query.

Focusing on the technology, current solu-

tions support the cooperation among registries,

but they imply that all registries be of a sin-

gle type and the cooperation needs a set up

phase to manually define the information con-

tributed by each registry. For example, UDDI

v.3 [9] extends the replication and distribution

mechanisms offered by the previous versions to

support complex and hierarchical topologies of

registries. It also supports the identification of

services by means of a unique key over different

registries. The standard only says that different

registries can interoperate, but the actual inter-

action policies must be defined by the develop-

ers. In our approach, the role of the registries

and the way they cooperate are clearly defined.

Similarly, ebXML [4] is a family of standards

based on XML to provide an infrastructure to

ease the online exchange of commercial infor-

mation. ebXML fosters the cooperation through

the idea that groups of registries share the same

commercial interests or are located in the same

domain. One of such groups can then be seen as

a single logical entity where all the elements are

replicated on the different registries. Service re-

trieval with ebXML registries results ineffective

since users must browse pre-defined taxonomies

or submit keywords to find desired services.

METEOR-S [10] and PYRAMID-S [11] fall

in the family of semantic-aware approaches for

the creation of scalable peer-to-peer infrastruc-

tures for the publication and discovery of ser-

vices. These works create a federation of reg-

16 Luciano Baresi et al.

istries using different concrete nodes, where the

single node is simply a gateway to the logical,

global registry. The usage of a semantic infras-

tructure allows for the implementation of dif-

ferent algorithms for the publication and dis-

covery of services, but it also forbids the com-

plete control over the registries, as the semantic

layer imposes too heavy constraints on publica-

tion policies and also on the way federations can

evolve dynamically.

These approaches adopt ontology-based

meta-information to allow a set of registries to

be federated with each registry “specialized” ac-

cording to one or more categories it is associated

with. This means that the publication of a new

service requires the meta-information needed to

categorize the service within the ontology. Ser-

vices are discovered by means of semantic tem-

plates that give an abstract characterization of

the service and are used to query the ontology

and identify the registries that contain signifi-

cant information. In addition to this approaches,

[22] adopts semantic-based techniques for im-

plementing an infrastructure able to manage a

distributed registry. In the proposed architec-

ture, communication among the actors rely on

shared spaces, to provide a flexible and scalable

solution.

VISR (View based Integration of heteroge-

neous web Service Registries) [23] allows the

communication among registries by means of

ATOM feeds. Service providers publish infor-

mation and updates regarding their services by

means of ATOM feeds. Customers can subscribe

to these feeds and get new service descriptions

as soon as they are available. Simple match-

making algorithms are provided, allowing cus-

tomers to select services by considering pro-

vided operations and parameters or XPath ex-

pressions.

Besides the “classical” approaches, Sellami

et al. [24] leverage information on the customer

(e.g., interests, previous invocation history) to

enrich service descriptions. This allows them to

reduce the query space. When a query is per-

formed, the approach selects the registry that is

closest to the customer’s preferences: the query

is then processed by this system. At a more gen-

eral level, [25] discusses the idea of an open

repository environment and addresses some of

the key features of DREAM.

6.2 Service match-making

The approach proposed in this paper is a mix

of syntactical and semantic matchmaking algo-

rithms that provides to the users a great flex-

ibility in their querying. The different possible

queries that can be adopted are well summa-

rized by Klein and Bernstein [26] that identify

four main retrieval approaches: keyword-based,

concept-based, table-based, and deductive. The

match-making algorithm implemented in

DREAM is both table-based (because of the

use of name-attribute pairs in the facets) and

concept-based (because of the use of semantics).

In the area of table-based solutions, also

other approaches in the literature rely on the

syntax of the Web service description and com-

pare the signature of the requested service

against the signatures of existing ones. This type

of approach is closely related to the work on re-

trieving reusable components [27]. In this field,

as stated by Zaremski and Wing, there are two

types of methods to address this problem: sig-

nature matching [28] and specification match-

ing [29]. In particular, signature matching con-

siders two levels of similarity and introduces the

exact and relaxed signature matching. In our

work, signature matching represents the core of

the solution. In addition, our similarity algo-

rithm also quantifies how similar a Web service

is with respect to another one, instead of simply

dividing retrieved Web services in exact match-

ing and relaxed matching ones. Furthermore, as

in the case of [30], [31], and [32], our approach

takes into account the structure of the service

description for the match-making process. How-

ever, our approach considers the role of each de-

scription element with respect to the resulting

compatibility between service descriptions. [33]

adopts the same approach where the similarity

of WSDL descriptions also considers the com-

posite elements as a whole and not separately.

A further class of similarity algorithms [34–

39] retrieves Web services through a reasoning

process on a semantic specification; [40] com-

plements it with a structural analysis. Descrip-

tion Logic is the usual formalization adopted

and results in languages such as OWL-S [41]

and WSMO [42]. Even if these approaches are

more effective than the ones based on WSDL,

building a logic-based Web service description

requires more effort for developers. A recent

survey of semantic-based retrieval algorithms is

published in [43]. This paper is also interest-

A Distributed Architecture for Efficient Web Service Discovery 17

ing for the discussion on the open issues in this

field. In particular, the authors claim the need

for matchmaking mechanisms that cope with

“geographically dispersed and non-interrelated

service registries”. With DREAM we aim to

deal with this situation by providing a flexible

retrieval approach that does not stick on a sin-

gle web service description language and does

not impose a specific structure or centralized

management.

Our work focuses also on the structure of

the Web service, for substitution purposes. In

the above mentioned algorithms, the result of

the retrieval activity is a set of Web services

that achieve the same goal. Nothing can be said

about how the goal is achieved. In addition,

these approaches are usually able to group Web

services in similarity classes, i.e., exact match,

partial match, and relaxed match. In contrast,

our approach offers a finer grained Web service

ranking based on a similarity value. The Seman-

tic Web community also adopts SPARQL [44]

(Simple Protocol and RDF Query Language),

a query language for RDF (Resource Descrip-

tion Framework) documents [45], as a way to

express the characteristics of the required Web

service [46]. According to a query-by-example

approach, our work imposes that the requested

Web service be defined by using the same lan-

guage adopted to describe published Web ser-

vices, that is, WSDL or SAWSDL.

7 Conclusions

This article introduces DREAM: an innovative

infrastructure for the distributed publication of

Web services and for their easy retrieval. The

proposal, based on previous experiences of the

authors, provides a holistic solution for gov-

erning the replication of service information by

means of user requests and preferences. It pro-

vides users with partial, but acceptable, solu-

tions whose fitness is defined through differ-

ent match making techniques. The experiments

conducted and discussed in this paper demon-

strate the capabilities of the proposed solutions

in terms of precision and recall. They also as-

sess the impact the complexity of queries has

on response time.

The flexibility of both service publication

and retrieval makes DREAM suitable for situ-

ations with different registries distributed over

a network and with a high number of services.

The use of facets fosters the interoperability

of heterogeneous service registries. The publi-

sh / subscribe middleware allows DREAM to

continuously inform the parties about new in-

teresting services. The different types of queries

provide results with different quality attributes,

and thus permit different uses of the infrastruc-

ture.

The current implementation of DREAM in-

tegrates services described using WSDL. As the

nature of the services is actually more diversi-

fied, we plan to implement the required modules

to have Facets for OWL-S or REST-based ser-

vice descriptions and to test how these kinds of

service description models affect the precision

and recall.

In addition, future extensions of DREAM

will also provide mechanisms to better manage

the non-functional aspects of services. Since in

the current implementation, most of the work

has been focused on describing the operational

aspects, service requestors are also interested

in performance and security aspects. Suitable

mechanisms for considering these aspects and

for validating the feasibility of the solution are

then required.

Finally, even if the research on technologies

related to service registries has been abandoned

over the last years, we think DREAM can pro-

vide a significant contribution to enabling sce-

narios where different technologies coexist and

“relevant” service information are distributed

(to interested users) in a smart and efficient
way. This is one of the key enables of the forth-

coming Internet of Services/Things [47], where

information about multitudes of heterogenous

services must be communicated to possible users

properly and timely.

References

1. M. P. Papazoglou, G. Georgakopolous, Service
Oriented Computing: Introduction, Communi-
cations of the ACM 46 (10) (2003) 1–5.

2. The UDDI Web site, http://uddi.xml.org.
3. M. Clark, http://www.webservicesarchitect.

com/content/articles/clark04.asp (November
2001).

4. ebXML: Electronic Business using eXtensible
Markup Language, http://www.ebxml.org/.

5. L. Baresi, M. Miraz, A distributed approach
for the federation of heterogeneous registries,
in: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing - ICSOC 2006, Vol.
4294 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2006, pp. 240–251,
10.1007/11948148 20.

18 Luciano Baresi et al.

6. P. Plebani, B. Pernici, URBE: Web ser-
vice retrieval based on similarity evalua-
tion, IEEE Transactions on Knowledge and
Data Engineering 21 (11) (2009) 1629–1642.
doi:10.1109/TKDE.2009.35.

7. P. Sawyer, Specification language definition,
Tech. Rep. A1.D2.3, EC SeCSE Project (2006).

8. L. Baresi, M. Miraz, P. Plebani, A flexible
and semantic-aware publication infrastructure
for web services, in: Advanced Information Sys-
tems Engineering, 20th International Confer-
ence, CAiSE 2008, Montpellier, France, June
16-20, 2008, Proceedings, Vol. 5074 of Lecture
Notes in Computer Science, 2008, pp. 435–449.
doi:10.1007/978-3-540-69534-9 33.

9. L. Clement, A. Hately, C. von Riegen, T. R.
(eds.), Universal Description, Discovery and In-
tegration version 3.0.2, http://uddi.org/pubs/

uddi_v3.htm (10 2004).
10. K. Verma, K. Sivashanmugam, A. Sheth,

A. Patil, S. Oundhakar, J. Miller, METEOR-S
WSDI: A scalable p2p infrastructure of registries
for semantic publication and discovery of web
services, in: Information Technology and Man-
agement, Vol. 6, Jan 2005, pp. 17 – 39.

11. T. Pilioura, G. Kapos, A. Tsalgatidou,
PYRAMID-S: A scalable infrastructure for
semantic web services publication and discov-
ery, in: RIDE-DGS 2004 14th Int’l Workshop
on Research Issues on Data Engineering, in
conjunction with the IEEE Conf. on Data
Engineering (ICDE 2004), March 2004.

12. G. Cugola, G. P. Picco, REDS: a reconfigurable
dispatching system, in: SEM, 2006, pp. 9–16.

13. A. Carzaniga, D. S. Rosenblum, A. L. Wolf, De-
sign and evaluation of a wide-area event notifi-
cation service, ACM Transactions on Computer
Systems 19 (3) (2001) 332–383.

14. Jini, http://www.jini.org/.
15. M. Lennon, D. Pierce, B. Tarry, P. Willett, An

evaluation of some conflation algorithms for in-
formation retrieval, Journal of Information Sci-
ence 8 (3) (1988) 99–105.

16. T. Pedersen, S. Patwardhan, J. Michelizzi,
WordNet::Similarity - measuring the relatedness
of concepts, in: Proc. National Conf. on Artifi-
cial Intelligence, July 25-29, San Jose, California,
USA, 2004, pp. 1024–1025.

17. N. Seco, T. Veale, J. Hayes, An intrinsic infor-
mation content metric for semantic similarity in
Wordnet, in: Proc. Eureopean Conf. on Artificial
Intelligence (ECAI’04), Valencia, Spain, August
22-27, IOS Press, 2004, pp. 1089–1090.

18. J. Farrel, H. Lausen, Semantic anno-
tations for WSDL and XML schema,
http://www.w3.org/TR/sawsdl/ (April 2007).

19. R. Baeza-Yates, B. Ribeiro-Neto, Modern Infor-
mation Retrieval, ACM Press / Addison-Wesley,
1999.

20. M. Klusch et al., Performance Evaluation of Se-
mantic Service Matchmakers. 5th International Se-
mantic Service Selection Contest, 2013.

21. M. Sellami, O. Bouchaala, W. Gaaloul,
S. Tata, Communities of web service registries:
Construction and management, Journal of
Systems and Software 86 (3) (2013) 835 – 853.
doi:http://dx.doi.org/10.1016/j.jss.2012.11.019.

URL http://www.sciencedirect.com/science/

article/pii/S0164121212003123

22. B. Sapkota, D. Roman, S.R. Kruk, D. Fensel,
Distributed Web Service Discovery Architec-
ture, in: Proc. AICT-ICIW ’06. Int’l Conf.
on Internet and Web Applications and Ser-
vices/Advanced International Conference
on Telecommunications, 2006, pp.136-136.
doi:10.1109/AICT-ICIW.2006.85.

23. S. Dustdar, M. Treiber, View based integration
of heterogeneous web service registries - the case
of visr, World Wide Web 9 (4) (2006) 457–483.

24. M. Sellami, W. Gaaloul, S. Tata, Functionality-
driven clustering of web service reg-
istries, in: IEEE SCC, 2010, pp. 631–634.
doi:10.1109/SCC.2010.70.

25. A. Aschenbrenner, T. Blanke, M. W. Küster,
W. Pempe, Towards an open repository environ-
ment, J. Digit. Inf. 11 (1).

26. A. Bernstein, M. Klein, Towards High-Precision
service retrieval, in: Proc. Int. Semantic Web
Conf., ISWC’02, 2002.

27. E. Damiani, M. G. Fugini, C. Bellettini, A
hierarchy-aware approach to faceted classifi-
cation of objected-oriented components, ACM
Trans. Softw. Eng. Methodol. 8 (3) (1999) 215–
262. doi:10.1145/310663.310665.

28. A. Zaremski, J. Wing, Signature matching: a
tool for using software libraries, ACM Trans.
Softw. Eng. Methodol. 4 (2) (1995) 146–170.
doi:10.1145/210134.210179.

29. A. Zaremski, J. Wing, Specification match-
ing of software components, ACM Trans.
Softw. Eng. Methodol. 6 (4) (1997) 333–369.
doi:10.1145/261640.261641.

30. A. Zisman, G. Spanoudakis, J. Dooley, A frame-
work for dynamic service discovery, in: 23rd
IEEE/ACM International Conference on Auto-
mated Software Engineering, L’Aquila, 2008, pp.
158–167. doi:10.1109/ASE.2008.26.

31. E. Stroulia, Y. Wang, Structural and seman-
tic matching for assessing Web-service similar-
ity, Int’l J. Cooperative Inf. Syst. 14 (4) (2005)
407–438. doi:10.1142/S0218843005001213.

32. S. Sellami, O. Boucelma, Web services discov-
ery and composition: A schema matching ap-
proach, in: Web Services (ICWS), 2011 IEEE
International Conference on, 2011, pp. 706 –707.
doi:10.1109/ICWS.2011.105.

33. F. Liu, Y. Shi, J. Yu, T. Wang, J. Wu, Mea-
suring similarity of web services based on wsdl,
in: Web Services (ICWS), 2010 IEEE Inter-
national Conference on, 2010, pp. 155 –162.
doi:10.1109/ICWS.2010.67.

34. S. Agarwal, R. Studer, Automatic match-
making of Web services, in: Int’l Conf. on
Web Services (ICWS’06), 2006, pp. 45–54.
doi:10.1109/ICWS.2006.35.

35. D. Bianchini, V. De Antonellis, M. Melchiori,
Hybrid ontology-based matchmaking for ser-
vice discovery, in: Proceedings of the ACM
symposium on Applied computing (SAC’06),
ACM Press, Dijon, France, 2006, pp. 1707–1708.
doi:10.1145/1141277.1141681.

36. B. Benatallah, M. Hacid, A. Leger, C. Rey,
F. Toumani, On automating Web services dis-
covery, The VLDB Journal 14 (1) (2005) 84–96.
doi:10.1007/s00778-003-0117-x.

A Distributed Architecture for Efficient Web Service Discovery 19

37. M. Klusch, B. Fries, K. Sycara, Automated se-
mantic web service discovery with OWLS-MX,
in: Proc. Int’l Conf. on Autonomous agents
and multiagent systems (AAMAS’06), ACM
Press, New York, NY, USA, 2006, pp. 915–922.
doi:10.1145/1160633.1160796.

38. K. Sycara, S. Widoff, M. Klusch, J. Lu,
Larks: Dynamic matchmaking among hetero-
geneous software agents in cyberspace, in:
Autonomous Agents and Multi-Agent Sys-
tems, Vol. 5, Kluwer Academic Publishers,
Hingham, MA, USA, 2002, pp. 173–203.
doi:10.1023/A:1014897210525.

39. M. Paolucci, T. Kawamura, T. Payne, K. Sycara,
Semantic matching of Web services capabilities,
in: Proc. Int’l Semantic Web Conference on The
Semantic Web (ISWC’02), Springer-Verlag, Lon-
don, UK, 2002, pp. 333–347.

40. R. Amorim, D. Claro, D. Lopes, P. Albers,
A. Andrade, Improving web service discov-
ery by a functional and structural approach,
in: Web Services (ICWS), 2011 IEEE Inter-
national Conference on, 2011, pp. 411 –418.
doi:10.1109/ICWS.2011.14.

41. D. Martin (ed.), OWL-S: Semantic Markup for
Web Services. W3C Submission, http://www.

w3.org/Submission/2004/SUBM-OWL-S-20041122/

(November 2004).
42. WSMO Working Group, Web Service Modeling

Ontology, http://www.wsmo.org.
43. H. Dong, F. K. Hussain, E. Chang, Seman-

tic web service matchmakers: state of the art
andchallenges, Concurrency and Computation:
Practice and Experience 25 (7) (2013) 961–988.
doi:10.1002/cpe.2886.

44. E. Prud’hommeaux, A. Seaborne,
SPARQL query language for RDF,
http://www.w3.org/TR/rdf-sparql-query/
(W3C Candidate Recommendation) (June
2007).

45. D. Beckett (ed.), RDF/XML Syntax Specifica-
tion (Revised). W3C Recommendation, http://
www.w3.org/TR/rdf-syntax-grammar/ (February
2004).

46. S. Lamparter, A. Ankolekar, Automated selec-
tion of configurable Web services, in: 8. Int.
Tagung Wirtschaftsinformatik, Universittsver-
lag Karlsruhe, Germany, 2007.

47. D. Uckelmann, M. Harrison, F. Michahelles
(Eds.), Architecting the Internet of Things,
Springer, 2011.

A Validation queries

These are the queries in benchmark SAWSDL-TC1
that have been used to validate the approach pre-
sented in this paper. As discussed in Section 5, since
these queries are meaningful for the WSDL similar-
ity algorithm, to ensure a fair comparison, queries for
XPath and R-XPath have been adapted from them.

- hospital_investigating_service

- shoppingmall_cameraprice_service

- surfing_destination_service

- surfinghiking_destination_service

- surfingorganization_destination_service

- title_comedyfilm_service

- title_videomedia_service

- university_lecturer-in-academia_service

- userscience-fiction-novel_price_service

- novel_author_service

- preparedfood_price_service

- recommendedprice_coffeewhiskey_service

- researcher-in-academia_address_service

- country_skilledoccupation_service

- dvdplayermp3player_price_service

- geographical-regiongeographical-region_map_service

- geopolitical-entity_weatherprocess_service

- governmentdegree_scholarship_service

- governmentmissile_funding_service

- grocerystore_food_service

- maxprice_cola_service

- book_price_service

- bookpersoncreditcardaccount__service

- bookpersoncreditcardaccount_price_service

- car_price_service

- citycountry_hotel_service

To ensure an independent evaluation of our ap-
proach, we used the queries adopted by the creators
of the benchmark. For each query, they also define
the relevance sets, useful for computing precision and
recall.

