
HAL Id: lirmm-01276797
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01276797

Submitted on 9 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Opening Web Applications for Third Party
Development: a Service-Oriented Solution

Mohamed Lamine Kerdoudi, Chouki Tibermacine, Salah Sadou

To cite this version:
Mohamed Lamine Kerdoudi, Chouki Tibermacine, Salah Sadou. Opening Web Applications for Third
Party Development: a Service-Oriented Solution. Service Oriented Computing and Applications, 2016,
10 (4), pp.437-463. �10.1007/s11761-016-0192-7�. �lirmm-01276797�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01276797
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Opening Web Applications for Third Party Development:
a Service-Oriented Solution

Mohamed Lamine Kerdoudi · Chouki Tibermacine · Salah Sadou

the date of receipt and acceptance should be inserted later

Abstract Web applications are nowadays prevalent

software systems in our every-day’s life. A lot of these

applications have been developed for end-users only.

Thus, they are not designed by considering future ex-

tensions that would be developed by third parties. One

possible and interesting solution for opening these ap-

plications for such kind of extension development is to

create and deploy Web services starting from these ap-

plications. In this paper, we present a method and a tool

for semi-automatically creating Web service implemen-

tations from applications having Web interfaces. The

proposed method generates operations that are pub-

lished in Web services for each functionality provided

by a Web application. In addition, it generates new op-

erations starting from Web interfaces. Our approach

goes further in the creation of services by generating

executable orchestrations, as BPEL processes, starting

from navigations in the Web interfaces of these appli-

cations and by providing BPMN choreography speci-

fications starting from the collaborations between the

generated Web services. We implemented and exper-

imented our solution in the migration of three real-

world Web applications towards Web service-oriented

systems.

Keywords Web Application, SOA, Web Service,

Service Composition and Application Migration

Mohamed Lamine Kerdoudi
Computer Science Department, University of Biskra, Algeria
E-mail: lamine.kerdoudi@gmail.com

Chouki Tibermacine
LIRMM, CNRS and Montpellier University, France
E-mail: tibermacin@lirmm.fr

Salah Sadou
IRISA, University of South Brittany, France
E-mail: salah.sadou@irisa.fr

1 Introduction

Web applications are software systems that are widely

used since the early nineties and the emergence of the

World Wide Web. They have gained a lot of popularity

comparatively to Desktop applications, because of their

ease of use, via Web browsers, whereas Desktop appli-

cations need sometimes heavy installations. These ap-

plications provide to their users Web interfaces through

which they can submit data to server-side scripts and

through which they can receive the processing results.

The majority of Web applications have been de-

signed and deployed exclusively for end-users that are

humans. They have not been considered as a possible

basis for remote extensions by third parties. For doing

so, third party developers have no other choice than

manually programming HTTP requests and then pars-

ing the HTML code returned by these Web applica-

tions. This represents a cumbersome task for a devel-

oper especially that in most cases the parsed HTML

code is too long and verbose. In addition, HTTP re-

quests need frequently a detailed customization and

HTTP responses need careful handling (dealing with

errors and redirections).

In this paper, we propose a method for creating Web

services by analyzing the source code and the config-

uration files of Web applications. Our method helps

the Web application providers in opening their soft-

ware product for the development of extensions, with-

out having to write the necessary code for doing so

from scratch. The proposed method generates opera-

tions that are published in Web services for each func-

tionality provided by a Web application (methods and

functions in the server-side source code of the applica-

tion). In addition, it generates new operations starting

from Web UI interfaces. This makes it possible to pro-

2 M.L. Kerdoudi et al.

vide parameterizable services starting from pages de-

signed for human interactions.

Besides the generation of these individual Web ser-

vices, the proposed method creates composite Web ser-

vices. It creates executable orchestrations of the gen-

erated Web services starting from the navigations be-

tween Web interfaces of the analyzed application. These

orchestrations are generated as BPEL [27] processes.

They implement a coarse-grained functionality pro-

vided by the Web application, comparatively with the

individual Web services that implement fine-grained

functionality. In addition, the proposed method creates

choreographies of the generated Web services starting

from the collaborations between them. These chore-

ographies are specified in BPMN [32]. They provide

models of a high level of abstraction, which help third

party developers in understanding the architecture of

the henceforth Web-service application.

We implemented our method on a collection of Java

Frameworks. Component-based Web applications built

with Java EE and its frameworks like JSF are the in-

put of our implementation and a set of Web services

are provided as output. The choice of such technologies

is motivated by the fact that they offer a structured or-

ganization of the source code of Web applications. This

made easy the parsing performed in our approach in

order to generate Web services.

The potential beneficiaries of this work are: i) the

organization which holds the rights on the Web appli-

cation and whose developers would use the proposed

method: migrating a Web application of this organiza-

tion towards a service-oriented one enables the organi-

zation to modernize its “patrimony” and to shift to a

new paradigm (of service orientation); ii) third party

developers: they will be able to develop new business

processes, potentially with financial benefits, starting

from the generated Web services. The development of

this “ecosystem” (composed of third party developers)

around the generated services should necessarily bring

a return on investment for the organization holding the

rights on the original Web application.

The remaining of the paper is organized as follows.

Section 2 introduces an example which better illustrates

the problem tackled by our work and which serves as a

running example for illustrating our proposals through-

out the paper. Section 3 introduces a formal description

of the context of our work, which is composed of Web

applications and Web service-oriented systems. In Sec-

tion 4 we give an overview of the proposed approach

and we describe in detail how to create individual Web

services starting from the components of the applica-

tion. Section 5 introduces how the generated individual

Web services are assembled to build composite services.

In Section 6 we apply our method on three real-world

Web applications, and we use some measures to show

the effectiveness of the proposed solution. Before con-

cluding and presenting some perspectives to this work,

we describe the related work in Section 7.

2 Illustrative Example

Our example is an e-shopping Web application that

offers to customers the opportunity to purchase elec-

tronic devices. The seller offers also delivery capabilities

to ensure the transportation of the purchased items.

The shopping process begins when the customer en-

ters keywords for searching products via a Web inter-

face (HTML form) provided by the application. A set

of items which are relevant to these keywords are pro-

vided and distributed on HTML pages. The customer

can choose one or a set of items among the returned

ones. The selected items are saved in a virtual cart and

the total price is then calculated and provided via a

Web interface. Once the customer finishes the shop-

ping (s)he is asked to sign in or to register for a new

account. At the end, before proceeding to checkout the

delivery schedule is prepared and provided via another

Web interface.

2.1 Problem Statement

Let us suppose now that a third-party developer would

like to implement an extension to this Web applica-

tion. This extension concerns services for the purchased

items (insurance against theft, breakage, fire, etc). This
extension provides first to customers an interface for

searching products that are for sale by the original ap-

plication. The customer selects a set of desired products

and chooses the quantity for each one. The extended

version of the application includes all the steps from

the original version. However, it gives the opportunity

to choose an insurance service and then integrate its

cost to the final amount.

So, there are some functionalities needed by this ex-

tension that are already provided by the original appli-

cation (eg. searching, payment and delivery schedule).

Therefore, for implementing this extension it would be

interesting for the third-party developer if (s)he can use

functionalities which are provided by the original appli-

cation instead of implementing them from scratch.

In order to implement this solution, the third-party

developer should have access to the functionality pro-

vided by the Web application differently than via its

Web interfaces. Indeed, if (s)he uses only these Web in-

terfaces, (s)he should send from her(his) programs the

Opening Web Applications for Third Party Development: a Service-Oriented Solution 3

necessary HTTP requests, with customized parameters,

and should then parse the returned HTTP responses.

This parsing involves an analysis of the responses in or-

der to look for some specific parts which are of interest.

In our example, the third-party developer should im-

plement a program that sends an HTTP request to the

server hosting the Web application, with for example

the reference(s) of the product(s) (chosen by the cus-

tomer). The parsing should identify the price of the pur-

chased items, among other elements. As stated in the

introduction, this task is time-consuming, cumbersome

and error prone. In addition, the developer should know

the exact type and structure of the HTTP requests and

responses.

Moreover, unfortunately, there is no means to di-

rectly publish some services of the application for third

party development. Even if stubs can be generated and

provided for client applications, these stubs are gen-

erally language-dependent (only Java clients can use

stubs generated for EJBs) and cannot be published, as

they are, in libraries of services. Besides, the EJB 3.x

specification introduced some annotations to enable de-

velopers to publish some methods in a bean as services.

However, this is possible only for individual methods

and we cannot introduce annotations to create compo-

sition of operations which we found in real-world busi-

ness logic. In addition, we cannot use these annotations

to expose Web interfaces as Web services. The same ob-

servations can be made on Eclipse tools (WTP project),

which allow to generate Web services starting from in-

dividual methods in Java classes.

2.2 Potential Web Services

One of the best solutions for the previous problem is to

enable the Web developer to create starting from the

Web application a set of Web services suitable for re-

mote extensions. In the presented example, the created

Web services could be: a Searching Service for search-

ing items, a Cart Service to manage a virtual shopping

cart, an Account Service used to sign in or to register

for a new account, a Delivery Service and a Payment

Service.

The application extension scenario introduced pre-

viously can easily be implemented by remotely invoking

the Web service operations. The extension of the shop-

ping Web application can even be built simply as a

BPEL process by invoking the Searching Web service

using the reference of the chosen product as input. The

returned price is added to the insurance’s price.

The BPEL process makes the payment of the pur-

chased products (without insurance) from the original

Web application by invoking the generated Payment

Web service. After that, to pay the insurance costs, the

BPEL process invokes an operation that is implemented

by the third party developer. At the end of this process,

it invokes the Delivery Service.

3 Web applications and Service oriented

Systems

Before presenting the details of our approach and how

Web service-oriented systems can be derived from Web

applications, we define in this section the different con-

cepts used in this work. Indeed, we introduce formal de-

scriptions of what composes Web applications and Web

service oriented systems. These formal descriptions pro-

vide a better understanding of both kinds of software

systems. In addition, this enables an accurate presenta-

tion of the processing performed on Web applications

to generate Web service systems.

3.1 Web application Model

We adapt here the generic model of Briand et al. [?]

to represent Web applications and their elements as a

directed graph expressed using a set-theoretic notation.

This graph is expressed as a pair (E,R), where E sym-

bolizes a set of software entities found in a Web appli-

cation, namely, client side artifacts and server

side artifacts. R is a binary relation on E(R ⊆
E × E). It corresponds to the relationships between

Web application elements, representing both structural

and behavioral dependencies. Figure 1 gives an example

of such a representation for an imaginary Web applica-

tion.

Definition 1 Representation of a Web application

A Web application is represented as a pair (E,R),

where

– E = CSA ∪ SSA with:

– CSA is the set of all client side artifacts which

are HTML Web pages (WP in Figure 1) and

Client Scripts (CS in Figure 1).

– SSA is the set of all server side artifacts which

are Server Scripts (SeS in Figure 1) and Server

Classes (SC in Figure 1)

– R is the set of all common and possible relationships

between artifacts of Web applications with:

– (CSA × SeS) corresponding to relationships

between static Web pages and server side

scripts (such as submit, build, redirect,

clientScriptRequest, among other relation-

ships in Figure 1)

4 M.L. Kerdoudi et al.

SeS(ses3)

WP (wp1)CS(cs1)

WP (wp2)

SeS(ses1) SC(sc1)

SC(sc2) SC(sc3)

SeS(ses2)

submit use

use

redirect

use

build

include

clientScriptRequest

clientScriptResponse

Fig. 1 Structure of a Web application

– (SeS × SC) corresponding to relationships be-

tween server scripts and server classes (eg. (ses1
use sc1) in Figure 1)

– (SeS × SeS) corresponding to relationships be-

tween server scripts (eg. redirect in Figure 1)

– (SC × SC) corresponding to relationships be-

tween server classes (eg. (sc1 use sc3) in Fig-

ure 1)

– (CSA × CSA) corresponding to relationships

that exist between client side artifacts (eg. (wp1
include cs1) in Figure 1)

For instance, for the example given in Figure 1 we have:

– CSA = { wp1, wp2, cs1}
– SSA = { ses1, ses2, ses3, sc1, sc2, sc3}
– R = {(wp1 include cs1), (ses2 build wp2),...}

3.1.1 Representation of a Web Interface

A Web (user) interface (UI) may be formally defined as

a sub-graph of the graph representing the Web applica-

tion to which it belongs. Thus, a Web UI is defined by a

pair (Ewui, Rwui) such as: Ewui = (CSAwui ∪SSAwui)

with (CSAwui ⊆ CSA) ∧ (SSAwui ⊆ SSA) ∧ (Rwui ⊆
R)

A Web UI consists of server pages, client static pages

and client built pages. The server pages are deployed

on the Web server and could manipulate some server

classes; client static pages have a static content which

is composed of HTML tags; the content of client built

pages is generated on the fly by the server pages after

processing user’s requests.

3.1.2 Example of a Web Interface Sub-Graph

Considering our example of the e-shopping application.

In the Cart Web UI the total price of all saved items in

the user’s cart is calculated and presented to users via

a Web interface.

WP (showCart.html)

WP (cartDetails.html)

SeS(totalPriceInCart.jsp)

SC(Item.java)

SC(Products.java)

submit

use

use

build

Fig. 2 A sub-graph representing the Cart Web Interface

Figure 2 shows a sub-graph that represents the Cart

Web UI 1 where,

– WP = { showCart.html, cartDetails.html}
– SeS = {totalPriceInCart.jsp}
– SC = { Item.java, Products.java }
– R={(totalPriceInCart.jsp use Item.java),... }

In this sub-graph, the user can access the cart

through the client page showCart.html. In order to

calculate the total price of the products in the cart, the

user can submit data (such as product references and

quantities) to the server script located in the JSP page

totalPriceInCart.jsp. As a result, the total price is dis-

played to the user via the client page cartDetails.html.

3.1.3 Properties of server side artifacts

We define a set of structural and behavioral properties

related to server side artifacts as follow:

– Request Parameters: are the data entered by users

when manipulating a Web interface and which are

processed by a server side script.

1 This sub-graph is used as an illustrative example through-
out this paper

Opening Web Applications for Third Party Development: a Service-Oriented Solution 5

For each element ses ∈ SeS,

RP (ses) is the set of request parameters which are

processed by the server script ses.

– Environment Objects: Each server side script

could manipulate a set of environment objects such

as session variables, cookies and business objects in

order to store and share user’s data.

For each element ses ∈ SeS,

EO(ses) is the set of environment objects which are

manipulated by the server script ses.

– Produced Contents: For each element ses ∈ SeS,

PC(ses) is the set of produced contents by a server

side script as a result of processing user’s requests.

– Statements of Server Scripts: For each ses ∈
SeS, Stats(ses) is the set of all statements declared

in ses.

– Methods of Server Classes: For each sc ∈ SC,

M(sc) is the set of all methods declared in a server

class sc.

– Method parameters: Each server method has a set

of parameters, where

For each method m ∈M(sc),

IPar(m) is the set of input parameters of m and

OPar(m) is the set of output parameters of m.

– Navigation Condition: NC(wp) represents the as-

sociated navigation condition to a Web page wp.

It states that the user action navigates dynami-

cally from the Web page wp to another page. In

most web applications, navigation is not static. The

page flow does not just depend on which button the

user clicks, but also on the input value that (s)he

introduces. For example, submitting a login page

may have two outcomes: success or failure. The out-

come depends on a computation (result of reference

method invocation), namely, whether the username

and password are valid.

The presented model and the set of definitions are

used later throughout the paper.

3.2 Web Service Oriented System Model

Perepletchikov et al. [?] extended the generic model

proposed by Briand et al. [?] and proposed a model

covering structural and behavioral properties of the de-

sign artifacts in service-oriented systems. We adapt this

model for representing the generated Web Service ori-

ented application as a graph. In this graph, the WSDL

files are used as service interfaces and Object-oriented

(OO) classes are implementations for the primitive Web

services. BPEL processes are used as implementations

of the generated Web service orchestrations.

Fig. 3 shows an example of a graph representing the

software entities of an imaginary Web service-oriented

application.

Definition 2 Representation of a Web Service-

oriented System

A Web service-oriented system is represented as a

pair (Esos, Rsos), where

– Esos = SI ∪BP ∪ C ;

– SI is a set of all service (WSDL) interfaces;

– BP is a set (possibly empty) of all BPEL processes

that implement the WSDL service interfaces of the

Web service orchestrations;

– C is a set of all OO classes that implement WSDL

service interfaces of primitive Web services ;

– Rsos is the set of all common and possible relation-

ships between the sets SI, BP and C. So, Rsos =

IIR ∪ ISR ∪ WSR with,

– IIR (Interface Implementation Relationship)

represents relationships between service interface

and service implementation elements. A Service

interface could be implemented using OO classes

and/or business processes.

– ISR (Internal Service Relationship) represents

relationships between classes. Two classes in a

given service could have a dependency relation-

ship when an object of the first class invokes the

methods (on objects) of the second class.

– WSR (Web Service Request Relationship) repre-

sents relationships between a class (or a Busi-

ness process) of a particular service and a service

interface of another service. A class (or BPEL

process) can invoke the operations defined in the

service interface of another service.

For instance, for the graph given in Figure 3 we

have:

– SI = {si1, si2}
– C = {c1, c2, c3, c4, c5, c6}
– BP = {bpel1}
– R= {(si1 IIR c1), (c1 ISR c2), (c3 WSR si2),...}

A Web service may be formally defined as a sub-

graph of the graph representing the Web service-

oriented system to which it belongs. Thus, a Web ser-

vice is defined by a pair (Es, Rs): Es = (SIs∪BPs∪Cs)

where (SIs ∈ SI)∧(BPs ⊆ BP)∧(Cs ⊆ C)∧(Rs ⊆ R)

with,

– A Web service has only a single service interface SIs
– Each Web service exposes a set of operations, where

– For each element e ∈ SI ∪BP ∪ C,

O(e) is the set of operations of e.

6 M.L. Kerdoudi et al.

SI(si1)Service(ser1)

C(c1)

C(c2) C(c3)

C(c4)

IIR IIR

ISR

ISR

ISR

SI(si2)Service(ser2)

C(c5)

C(c6)

BP (bpel1)

IIR IIR

ISR

WSR

Fig. 3 Structure of a Web Service-oriented System

– For each operation o ∈ O(e),

IParam(o) is the set of input parameters of o;

OParam(o) is the set of output parameters of o.

– For each operation o ∈ O(e) ∧ e ∈ C,

Code(o) is the set of all statements of o.

3.2.1 Example of Web service-oriented system graph

Returning to the Cart Web UI presented previously

(Section 3.1.2), Fig. 4 shows a graph SOSsos1 =
(Esos1, Rsos1) that represents the Web services which

could be generated starting from this Web UI.

– SI = {wsdlCart, wsdlProducts}
– C = {CartService, Item, ProductsService}
– BP = {}
– R = {(wsdlCart IIR CartService), (CartService

WSR wsdlProducts),...}

In this sub-graph, Service(ser1) represents the

generated Web service starting from server scripts

in the Cart Web UI and Service(ser2) represents

the generated Web service starting from the server

class Products.java. The WSR relationship repre-

sents an invocation to an operation published in

wsdlProducts interface from the source code of the

class C(CartService). This relationship represents an

invocation from a server script in the Cart Web UI to a

method (this method is exposed later as a Web service

operation) located in the Products.java class.

SI(wsdlCart)Service(ser1)

C(CartService)C(Item)

IIR

ISR

SI(wsdlProducts)Service(ser2)

C(ProductsService)

IIR

WSR

Fig. 4 A sub-graph that represents the generated Web ser-
vices from the Cart Web Interface (SOS1)

4 Proposed Approach

This section covers the proposed solution for mi-

grating Web applications toward Web service-oriented

systems. First, we give an overview of the proposed ap-

proach. Then, we present in detail each step in the pro-

cess.

4.1 General Overview

The creation of Web services from Web applications is a

semi-automatic multi-step process. This is illustrated in

Fig. 5. The dashed boxes in the process represent steps

where the developer is involved. This process begins by

receiving from the developer as input the source code

and the configuration files of the Web application to be

analyzed. A set of primitive and composite Web services

are provided as output.

To present the details of our approach accurately,

we use the previous formal definitions to represent the

input Web application as a pair (E,R) and the de-

sired Web service oriented solution as another pair

(Esos, Rsos). Moreover, we show how to generate the

Web service oriented application as a mapping from a

Web application graph to a Web service-oriented sys-

tem graph.

The algorithm 1 introduces a sequence of the main

functions and procedures used to apply this mapping.

In this algorithm we follow the same logic of steps

in Fig. 5. First, each element in a Web application is

statically parsed to identify the potential set of oper-

ations with their input and output messages. The op-

erations can be identified starting from existing meth-

ods in server classes (see Line 3) and from the server

Opening Web Applications for Third Party Development: a Service-Oriented Solution 7

Fig. 5 The Proposed Process

scripts that provide functionalities via Web UIs (see

Line 5). Then, all operations that must not be pub-

lished in Web services are eliminated. This needs the

contribution of the developer. (S)he should manually

remove these unwanted operations. Besides, we provide

to the developer a way for specifying constraints so that

the operations that are recurrently unwanted can be

automatically removed (see Line 9). After that, the re-

maining operations are grouped in Web services (see

Line 10) and represented as sub-graphs of the output

graph. The dependencies between Web services are then

identified and represented using the WSR relationships

(see Line 11). At the end, a set of Web service orchestra-

tions are created (see Line 12) and added as additional

sub-graphs of the output graph. Hereinafter we detail

each function in the process.

Algorithm 1 From a Web application model to a Web

service-oriented system model

Input: Web application model WA = (E,R)
Output: Web service-oriented system model SOS =

(Esos, Rsos)
1: for all e ∈ E do
2: if e ∈ SC then
3: s = identifyExistingOperations(e)
4: else if e ∈ SeS then
5: s = identifyOperationsFromWebInterfaces(e)
6: end if
7: add (s, SOS)
8: end for
9: filterUnwantedOperations(SOS, oclConstraints)

10: distributeOperations(SOS)
11: createChoreographies(SOS)
12: createBPELProcesses(SOS)
13: return SOS

4.2 Operation Pool Construction

A pool of operations is constructed by parsing the Web

application’s contents. Two kinds of operations are cre-

ated.

4.2.1 Identification of Existing Operations

These operations are generated starting from the ex-

isting methods and functions in the back-end compo-

nents of the Web application. To do so, we statically

parse different elements (e.g. classes or server scripts)

of the Web components forming the transformed appli-

cation. All methods in classes and functions in scripts

are prepared to be considered as potential operations

in Web services. For instance, in the example presented

in section 3.1.2 the public methods that are declared

in the Products.java class are transformed into new

operations. Algorithm 2 shows how to create a service

containing operations that are generated starting from

existing public methods in a server class.

Algorithm 2 Identify Existing Operations

1: function identifyExistingOperations(serverClass : SC)
2: s = create Service : s=(SIs, BPs, Cs, Rs) . s is

subgraph of a service
3: wsdl = create ServiceInterface : wsdl ∈ SIs
4: c = create Class : c ∈ Cs

5: r = create IIR : r = (wsdl IIR c) ∧ r ∈ Rs

6: for all m ∈ M(serverClass) do
7: if isPublic(m) then
8: createNewOperation(s, c,m,wsdl)
9: end if

10: end for

11: return s

12: end function

8 M.L. Kerdoudi et al.

Therefore, the service interface and its implementa-

tion class are created here (see Lines 3 to 5 in Algo-

rithm 2).

Algorithm 3 gives the details of how to create opera-

tions. Each access to global variables or attributes from

the source code of the identified methods and functions

is transformed into additional parameters (see Line 5

in Algorithm 3). This makes these operations stateless.

Moreover, each server class and all their dependent in-

ternal classes (which does not publish operations) are

grouped together to form a Web service (see Lines 7

to 12 in Algorithm 3).

Algorithm 3 Create New Operation

1: function createNewOperation(s : SOS, c : Cs,m :
M(c), wsdl : SIs)

2: op = create Operation : op ∈ O(c) ∧ op ∈ O(wsdl)
3: IParam(op) = IPar(m)
4: OParam(op) = OPar(m)
5: IParam(op) = IParam(op) ∪ UsedGlobalV arIn(m)
6: Code(op) = Stats(m)
7: for all usedClass ∈ getUsedClassesIn(Code(op)) do

8: if usedClass does not publish operations then

9: c1 = create Class : c ∈ Cs

10: isr = create ISR : isr = (c ISR c1) ∧ isr ∈ Rs

11: end if

12: end for
13: end function

4.2.2 Creation of New Operations from Web Interfaces

The main entities of a Web application are the Web

user interfaces that consist of server’s pages and client’s

pages. Through client pages, the end-users can submit

data to server-side scripts and through which they can

receive the processing results.

The public functionalities which are accessible via

Web interfaces from end-users are transformed into new

operations. These operations have as parameters the

data entered by users when manipulating the Web in-

terface (data entered in forms, for example), and have

as output the results returned by the scripts processing

the data entered by the users. In other words, the code

present in programs executed at the server-side (JSP

or PHP scripts, for example) is grouped within new op-

erations and formatted to be executed as stand-alone

code. For example, all the code present in scriptlets

of a JSP page which implements a provided function-

ality to users is grouped and formatted within a sin-

gle operation. For instance, in the Web interface pre-

sented in section 3.1.2, the code present in scriptlets of

totalPriceInCart.jsp server page is formatted within

a new operation exposed by the wsdlCart interface in

Fig. 4. More details about this transformation is given

in the next section.

Therefore, the Web interfaces that use a secure pro-

tocol such as TSL(SSL) [?] to protect the exchanged

messages content or to authenticate the client by using

a clients public key certificate are migrated toward a se-

cure Web service that uses the same protocol. Indeed,

the source code that implement the TSL(SSL) protocol

in the Web interface is formatted to be a secure Web

service. In this way, our approach will not weaken the

migrated Web application security level.

Besides, a Web interface may include a Frameset

composed of one or more frames, and in each frame,

there is a content which could be dynamically loaded

from elsewhere (Web intefaces, texts, images, etc.). For

example, the <iframe src="URL"> tags are used to em-

bed another content (HTML, JSP, PHP...) within a

given HTML, JSP or PHP document. For such tags,

the inline frame (document) sometimes corresponds to

a Web interface, which has been transformed into a

Web service. In this case, an invocation to this Web

service is added in the source code of the operation cre-

ated starting from the currently analyzed Web inter-

face. This invocation allows to retrieve some data from

the server.

Algorithm 4 shows how to create a Web service sub-

graph starting from a Web interface sub-graph. First,

the service interface and its implementation class are

created (see Lines 3 to 5). After that, a new operation

is created from the Web interface (see Lines 6 to 9).

This operation and its internal dependent classes are

grouped within a Web service (see Lines 10 to 15). In

other words, for each dependent class we create a node

of type Cs. This node is connected to the class that

implements the service with an ISR relationship. For

example, in Fig. 4 the C(Item.java) class is an internal

class used by the C(CartService) class. Additional op-

erations are also generated from the existing methods

in the server page (see Lines 16 to 20).

4.3 Input and Output Message Generation

Based on the result of the first step, the input and out-

put messages related to each operation in Web services

are identified and generated starting from the parsed

elements in the Web application: i) For operations in

classes and other structured code elements, the param-

eters and the returned values are formatted as (respec-

tively, input and output) SOAP messages (see Lines 3

and 4 in Algorithm 3); ii) The saved data in HTTP re-

quests and HTTP responses are parsed to extract new

input and output messages (see Lines 7 and 8 in the

Opening Web Applications for Third Party Development: a Service-Oriented Solution 9

Algorithm 4); iii) The used environment objects (ses-

sion variables, cookies and business objects) by the Web

interface are considered as input and output messages

(see Lines 7 and 8 in Algorithm 4).

Algorithm 4 Identify Operations From Web Interfaces
1: function identifyOperationsFromWebInter-

faces(serverClass : SeS)
2: s = create Service : s=(SIs, BPs, Cs, Rs) . s is

subgraph of a service
3: wsdl = create ServiceInterface : wsdl ∈ SIs
4: c = create Class : c ∈ Cs

5: r = create IIR : r = (wsdl IIR c) ∧ r ∈ Rs

6: op = create Operation : op ∈ O(c) ∧ op ∈ O(wsdl)
7: IParam(op) = RP (ses) ∪ EO(ses)
8: OParam(op) = PC(ses) ∪ EO(ses)
9: Code(op) = Filter(Stats(m))

10: for all usedClass ∈ getUsedClassesIn(Code(op)) do

11: if usedClass does not publish operations then

12: c1 = create Class : c ∈ Cs

13: isr = create ISR : isr = (c ISR c1) ∧ isr ∈ Rs

14: end if
15: end for

16: for all meth ∈ declaredMethodIn(ses) do

17: if isPublic(m) then
18: createNewOperation(s, c,meth,wsdl)
19: end if

20: end for
21: return s

22: end function

4.3.1 Dealing with HTTP requests and HTTP

responses

The code present in the server programs (e.g. server

pages like JSP or PHP pages) is parsed to extract

the input values received in the HTTP requests (by

identifying the statements getting values from HTTP

requests). Their types are deduced from the parsed

code by analyzing type casts and other conversion

statements. This is directly possible in statically typed

scripting languages like JSP and C]. For dynamically

typed ones (like PHP or Python), we use external tools

for type inference. In addition, the shared objects (such

as JavaBeans instances), which are used across multi-

ple Web interfaces, are considered as additional input

parameters for the generated operation. In this way the

saved data in these objects can be passed from an op-

eration to another in order to compose them.

Furthermore, the contents produced by the server

programs, which are viewed at the client side (this con-

tent is produced using statements such as: JSP expres-

sions or out.println(...) for JSP and PHP’s echo()

or print() function calls), are considered as output

values. The types of these values are extracted from

the code and defined in the generated SOAP messages.

The arguments of the out.println(...) or echo(...)

methods can be variables, method invocations or ex-

pressions. For variables, we get their type from the

parsed code. In the case of method invocations, the

type of the generated output message corresponds to

the returned type of the invoked method. The expres-

sions can be a concatenation of texts and values of vari-

ables and/or method invocations. In this case, the val-

ues from method invocations and the variable accesses

are extracted to be added as output values of the gen-

erated operation. The text is added as another output.

Let us consider the Cart Web UI of our ex-

ample presented in Section 3.1.2. This interface al-

lows users to calculate the total price of her/his

items. Listing 1 shows an excerpt of the code

present in the totalPriceInCart.jsp server script.

Two input messages are identified starting from the

request.getParameterValues(...) statements (see

Lines 8 and 9). They correspond to the references of

the selected items to be purchased and the quantities

wanted by the user for each selected item. Another in-

put message is extracted from the used JavaBean ob-

ject prods. For the sub-graph created for this Web

interface (see Fig. 2), we represent these values as:

RP={references, quantities} and EO= {prods}.

1 <jsp:useBean class="shop.prod.Products" id="prods" scope

="page"/>

2 <%!

3 String[] references;

4 String[] quantities;

5 double totalPrice = 0;

6 %>

7 <%

8 references = request.getParameterValues("references");

9 quantities = request.getParameterValues("quantities");

10 if(references != null){

11 for(int i = 0; i < references.length; i++){

12 Item item = prods.getItemByReference(references[i]);

13 double unitPrice = item.getUnitPrice();

14 int quantity = Integer.parseInt(quantities[i]);

15 totalPrice = totalPrice + calculateTPrice(

unitPrice, quantity);

16 }

17 }

18 %>

19 <%= totalPrice %>

Listing 1 An excerpt of the code present in the Cart Web
interface

The type of the references input is an array of Strings.

From the conversion statement (see Line 14) we have

deduced that the type of quantities is an array of

Integers.

10 M.L. Kerdoudi et al.

Finally, we have deleted from the source code

of the generated operation: the conversion, the cast

and the request.getParameterValues(...) state-

ments (Lines 8, 9 and 14 in Listing 1). The returned

value of the generated operation is the result saved in

the variable totalPrice and bound to the Web inter-

face using a JSP expression (Line 19). This is used to

create an output SOAP message of type Double (in our

sub-graph, we have PC = {totalPrice}).
Applying the two first steps and making the neces-

sary modifications for the previous source code, a new

operation is created (see Listing 2). For that, four input

parameters and a returned value are identified.

1 public double serviceTotalPriceInCart(String[]

references, int[] quantities, shop.prod.Products

prods){

2 double totalPrice = 0;

3 if(references != null){

4 for(int i = 0; i < references.length; i++){

5 Item item = prods.getItemByReference(references[i

]);

6 double unitPrice = item.getUnitPrice();

7 int quantity = quantities[i];

8 totalPrice = totalPrice + calculateTPrice(

unitPrice, quantity);

9 }

10 }

11 return totalPrice;

12 }

Listing 2 An excerpt of the generated operation from the
Cart Web interface

Fig. 4 shows the subgraph that represents the gen-

erated Web service from the Cart Web interface and

the server class Products, where, the following values

represent these services.

– O(CartService) ={totalPriceInCart,

calculateTPrice,...}
– IParam(totalPriceInCart)= {references,

quantities, prods }
– OParam(totalPriceInCart) = { totalPrice}
– IParam(calculateTPrice)={unitPrice, quantity}
– OParam(calculateTPrice) = {TPrice}
– O(Products) = {getItemByReference,

getItemDetails,...}

4.3.2 Handling Session Objects

Most of Web applications manage session variables in

order to store and share the user’s data when (s)he nav-

igates from a Web interface to another one. To avoid

losing this data and make possible using them in the

composition of the generated Web services from the

Web interfaces, we consider these values as additional

input and output messages.

The user’s data that is stored in these session ob-

jects could be used as constraints for accessing other

Web interfaces when the user navigates in the appli-

cation. Therefore, the output messages generated from

the first Web interface are considered as the input to the

generated services from the navigated Web interfaces.

This ensures that these services are not freely accessible

(preserve security). In order to generate these messages,

we parse the code present in operations that use session

variables.

In our illustrative example, the addItem Web in-

terface is used to add a new item into a virtual cart.

Listing 3 shows an example of using session variables

to store information about the cart. The quantity

and the reference are identified and considered as

input messages. They are identified after the parsing

of the request.getParameter(...) statements (as ex-

plained in the previous section). Now, statements such

as session.getAttribute(...) (see Lines 2 and 11)

return the objects bound to the name ’currentCart’

specified in this session. So, this object is transformed

into an additional input. The session objects can be up-

dated in the source code (see Line 18). For this reason,

they are also considered as output messages of the gen-

erated operation. After analyzing the cast statements

in Lines 2 and 11 we have deduced that the concrete

type of the ’currentCart’ message is Cart.

1 <%

2 Cart currentCart =(Cart) session.getAttribute("

currentCart");

3 // return the object bound with the name ’currentCart’

in this session, or null if no object is bound

under this name

4 Cart newCart = null;

5 if (currentCart == null){

6 //binds a new object ’newCart’ to this session using

the name "currentCart"

7 newCart = new Cart();

8 session.setAttribute("currentCart",newCart);

9 }

10 else {

11 newCart = (Cart) session.getAttribute("

currentCart");

12 }

13 String StrQuantity = request.getParameter("quantity");

14 int quantity = Integer.parseInt(StrQuantity);

15 if (quantity > 0){

16 String reference = request.getParameter("

reference");

17 // update the Cart and the object bound the this

session

18 newCart.addItem(reference,quantity);

19 }

20 out.println(newCart.getTotalPrice())

21 %>

Listing 3 An excerpt of a server script present in the addItem

Web interface

Opening Web Applications for Third Party Development: a Service-Oriented Solution 11

In addition, the parsing of statements that

are used to bind an object to a session, such

as: session.setAttribute(...,...), generates addi-

tional output messages. For example, from the Line 8

we create an output message named ’currentCart’.

At the end, an additional output message correspond-

ing to the calculated price is generated from the parsing

of the statement out.println(...) (see Line 20). The

type of this output corresponds to the returned type of

getTotalPrice method that is Double.

Listing 4 shows an excerpt of the newly created

operation. It allows to add a new item in the vir-

tual cart. This operation receives three input messages

(reference, quantity and currentCart) and returns

a composed message that contains the new total price

and the updated virtual cart. However, the statements

that use session variables are removed from the code of

this operation.

1 public AddItemOutput serviceAddItem(String reference,

int quantity , Cart currentCart){

2 Cart newCart = null;

3 if (currentCart == null){

4 newCart = new Cart();

5 currentCart = newCart;

6 }

7 else {

8 newCart = currentCart;

9 }

10 if (quantity >0){

11 newCart.addItem(reference,quantity);

12 }

13 return (new AddItemOutput(newCart.getTotalPrice(),

currentCart));

14 }

Listing 4 An excerpt of the generated operation from
addItem Web interface

4.3.3 Dealing with Cookies

Actually, the server can maintain information about

user sessions in many ways such as using cookies.

In our approach, the used set of cookies is consid-

ered as input and output messages. The statements

which are used to access and to modify the saved

cookies (e.g. in a JSP page, request.getCookies()

and response.addCookie(...)) are identified and re-

placed in the body of the new generated operation with

equivalent statements accessing these new messages.

Listing 5 shows an example of using cookies to save

information about user authentication in the signIn

Web interface.

The parsing of this code has identified one in-

put message which is defined starting from the

request.getCookies() statement (see Line 2). This

input value corresponds to a set of cookies that are used

in the generated operation’s code. This set of cookies is

returned as output message of this operation in order

to be used as input of another operation generated from

another Web interface that uses these cookies. In this

way the composition of these two operations would be

easier.

1 <%

2 Cookie[] cookies = request.getCookies();

3 String email = "", password ="";

4 if(cookies != null){

5 for(Cookie cookie : cookies){

6 if (cookie.getName().equals("email")){

7 email = cookie.getValue();

8 }

9 if(cookie.getName().equals("password")){

10 password = cookie.getValue();

11 }

12 }

13 AccountManager userId= new AccountManager();

14 if(userId.signIn(email,password)){

15 //

16 }

17 }

18 %>

Listing 5 An excerpt of code showing the using of cookies in
the signIn Web interface

The generated operation has a body with the same

code as the script shown above, except the statement

at Line 2. This Line is replaced with a statement which

is used for extracting the cookies from an object of

type Collection (obj.getCookies()) received as an ar-

gument. In addition, a “return” statement is added

at the end of the operation’s body, which returns this

object (retun obj;).

4.4 Operation Filtering

In this step, the identified pool of operations is filtered

by eliminating the operations which are not suitable to

be published in Web services. For example, the modern

Web applications use Public and Private APIs. Thus,

by this filtering task, we allow developers to eliminate

all operations that are identified from Private APIs.

The filtering cannot be fully automated and it needs

the developer involvement. The developer is asked to

choose among the selected operations those that are

not interesting for a publication. A set of filtering ex-

pressions are made available to be used and enriched by

the developer. Some kinds of operations are recurrent

in most of applications. Therefore, the specified expres-

sions could be reused by another developer in order

to filter operations which are generated starting from

other Web applications. The developer will not have to

12 M.L. Kerdoudi et al.

Fig. 6 The Operation Meta-model

specify them from scratch. These expressions are con-

straints that are checked on an Ecore [13] instance of

a meta-model representing operations. These instances

of the meta-model are automatically built by analyzing

the operations’ code. Constraints are Boolean expres-

sions which are specified using OCL (Object Constraint

Language [30]). OCL has been chosen because of its

simplicity [6] and the existence of a good tool support

(OCL Toolkit [10], Eclipse MDT/OCL [14], ...). The

specified constraints navigate in the meta-model, which

is illustrated in Figure 6. This meta-model is an excerpt

of the UML meta-model (related to operations) [33] ex-

tended with some basic constructs.

The main meta-class in Figure 6 is Operation,

which represents an identified operation from the code.

The Operation meta-class is associated to a Type meta-

class which represents the returned type of the opera-

tion. In addition, this operation could have a body and

a set of parameters.

All constraints have as a context an instance of the

Operation meta-class. An example of a constraint is

given below:

context Operation inv :

not ((self.returnedType.name= ’void’) and

(self.name.substring(1,3) = ’set’) and

(self.ownedParameter->size() = 1) and

self.body.statement->exists(kind =

’AssignmentStatement’ and

isFieldAccess = ’true’)

In this example, all operations that represent field

accessors (for example, setter methods) are eliminated.

4.5 Operation Distribution in Services

The extracted operations are distributed on multi-

ple Web services based on the following criteria:

4.5.1 Grouping Criterion

We group operations based on the cohesion and cou-

pling criteria. We argue that an optimal granularity is

the key to a well-designed service. Service granularity

generally refers to the performance and size of a ser-

vice [?]. The data granularity is one of service granu-

larity types [?]. It reflects the amount of data that is

exchanged with a service. A good grouping of the iden-

tified operations in Web services has a positive impact

on the data granularity. In our approach, the highly

coupled and cohesive operations are grouped together

in a single Web service. And, the low coupled opera-

tions are distributed on multiple services. This strat-

egy of grouping reflects a low amount of data which

is exchanged and reduces the communication overhead.

Hence from the service quality viewpoint, we increase

the performance and the maintainability of the gener-

ated services.

The cohesion of a service is assessed based the de-

gree of the strength of functional relatedness of oper-

ations within a service. We measure the cohesion of a

service by analyzing the static invocations between op-

erations within that service. Several cohesion metrics

have been proposed in the literature in order to mea-

sure the cohesion of a class in an object-oriented sys-

tem [7]. We believe that one of these metrics can be

used to evaluate the cohesiveness of the generated Web

services. The LCOM (Lack of Cohesion in Methods),

TCC (Tight Class Cohesion) and LCC (Loose Class

Cohesion) are one of the most used metrics to mea-

sure cohesion between public methods in a class. The

problem with LCOM metric is that such metric only

helps in identifying the absence of cohesion rather than

its presence [?]. On the contrary, we need in our work

to measure the presence of cohesion in Web services.

For this reason we use the TCC and LCC metrics to

measure service cohesion. To do so, we start with a

flat organization of operations (all operations are dis-

tributed in one Web service). Then, we calculate TCC

and LCC to check the cohesiveness of this Web service.

If the service is not cohesive, we split it into set of low

coupling services and we check again the cohesiveness

of each one of them. We repeat the measurement until

the produced services are “quite cohesive”.

To measure the TCC, we consider a Web service

with N operations. NP is the maximum number of op-

eration’s pairs:NP = [N ∗ (N − 1)]/2. The NDC is

the number of direct connections between operations.

Then TCC is defined as the relative number of directly

connected operations: TCC = NDC/NP .

To measure LCC, we consider NIC is the number

of indirect connections between operations (when two

Opening Web Applications for Third Party Development: a Service-Oriented Solution 13

operations are connected via other operations). LCC is

defined as the relative number of directly or indirectly

connected operations: LCC = NDC + NIC/NP .

According to [3], a class (a service in our case) is con-

sidered non-cohesive when TCC < 0.5 and LCC < 0.5.

If LCC = 0.8 the class is considered ”strongly cohe-

sive”. If TCC = LCC = 1 then the class is maximally

cohesive, which means all methods are connected. In

our approach, we experimentally tested these metrics

and we found out that with TCC > 0.5 or LCC > 0.5

the obtained Web services are “quite cohesive”.

Algorithm 5 shows how the grouping is performed.

First, each group of operations is represented with a

graph which is expressed as a pair (OP,CON), where

OP symbolizes a set of operations. CON is a binary

relation on CON(⊆ OP × OP). It corresponds to the

direct and indirect connections between operations.

The input of this algorithm is a group that contains

all the identified operations. The output is a set of co-

hesive Web services.

Algorithm 5 Grouping Operations

1: function goupingOperations(CL = (OP,CON)))
2: TCC = calculateTCC(CL)
3: if TCC > 0.5 then

4: return TRUE

5: else
6: LCC = calculateLCC(CL)
7: if LCC > 0.5 then

8: return TRUE
9: else

10: if existExplicitGroups(CL) then
11: explicitGroups = split(CL)
12: for all group ∈ explicitGroups do

13: goupingOperations(group)
14: end for

15: else

16: implicitGroups = getImplicitGroups(CL)
17: for all group ∈ implicitGroups do

18: goupingOperations(group)
19: end for
20: end if

21: return FALSE
22: end if
23: end if
24: end function

First, we try to find the best grouping (best level

of cohesiveness) by measuring the TCC. If TCC > 0.5

we conclude that the Web service is ”quite cohesive”. In

this case we do not need to calculate the LCC, because,

the existing number of direct connections is enough, in

order to know if service is cohesive or not. Now, in the

case of TCC < 0.5, the indirect connections between

operations that belongs to a service are used to assess

the cohesiveness of that service. Hence, we need to cal-

culate the LCC. If LCC > 0.5 we consider the Web

service is ”cohesive” although the TCC < 0.5. Now, if

the LCC < 0.5 and TCC < 0.5, then the service is not

cohesive. In this case, we split the service into a set of

explicit groups of operations (where, there are no con-

nections between these groups) (see Line 11). For each

explicit group we invoke again the grouping algorithm.

Now, if there is no explicit groups, we identify the im-

plicit groups where there is a lowest coupling between

them (see Line 16). And we repeat the measurement

for each group.

For instance, the following operations are created

starting from the e-shopping application:

– (op1) : boolean serviceLogin(String userName,

String paswword)

– (op2) : boolean authenticate(String userName,

String paswword)

– (op3) : User getUserDetails(String userName)

– (op4) : boolean userRegistration(String firstname,

String lastname, String address, int mobile, String

email, String password)

– (op5) : Item[] serviceProducts()

– (op6) : Item[] getAllItems()

– (op7) : Item[] getItemsByUser(String userName)

– (op8) : Item getItemDetails(String reference)

– (op9) : Item getItemByReference(String reference)

– (op10) : Double serviceTotalPriceCart(String[] refer-

ences, int[] quantities)

– (op11) : Double calculateTPrice(Double unitPrice,

int quantity)

Fig. 7 shows the dependencies between operations

where, dashed lines represent the indirect connections

between a pair of operations and solid lines represent

direct connections between them. The measurements

give the following values:

– TCC(G1) = 6
55 = 0.10

– LCC(G1) = 6+6
55 = 0.21

– TCC(G2) = 3
6 = 0.5

– LCC(G2) = 3+2
6 = 0.83

– TCC(G3) = 3
21 = 0.14

– LCC(G3) = 3+4
21 = 0.33

– TCC(G4) = 1
10 = 0.10

– LCC(G4) = 1+4
10 = 0.5

– TCC(G5) = 1
1 =1

– LCC(G5) = 1
1 = 1

We have started with the group G1 which is not co-

hesive. G1 is divided into two explicit groups (G2) and

(G3). After that, (G4) and (G5) are created starting

from (G3). Finally, the obtained cohesive Web services

are: G2 (op1, op2, op3, op4), G4(op5, op6, op7, op8,

op9) and G5(op10, op11).

14 M.L. Kerdoudi et al.

G1

G2 op1

op2

op3

op4

G3

G4

op8

op5

op6

op7 op9

G5

op11

op10

Fig. 7 Example of operations grouping

4.5.2 Spreading Criterion

Similar operations are spread out in different Web ser-

vices. In this way, for users of an operation within a

service, another service containing a similar operation

can be easily and quickly found at the same provider

(reliability).

In other words, Web services are exposed to errors

and failures for many reasons, such as, the network is

unreachable, the application server is unavailable or the

service is not working properly. Hence, the reliability

of the programs (it could be an orchestration of Web

services) that invokes these services will be decreased.

Several error-handling approaches are proposed in the

literature such as [?], [?], [?] and [?]. Many of these

approaches are based on finding a relevant service sub-

stitute that replaces the failed service. For example in

previous works [2] and [?] the identification of the sub-

stitute is based on the measurement of similarity be-

tween service interfaces.

In this work, a solution based on a comparison of op-

eration signatures has been used. The WSSim tool [40]

allows to measure the similarity between operations by

comparing the operations’ names and input and output

messages. Table 1 shows the similarity measurement re-

sults that are produced by WSSim for the operations

that are depicted in Fig. 7. In this table we give a score

of similarity (between 0 and 1) for all pairs of opera-

tions. The operations that have a similarity score that

ranges between 0.80 and 1 are considered highly simi-

lar. According to the obtained similarity assessment, we

consider that operations op8 and op9 are highly similar.

Table 1 Obtained similarity scores

op1 op2 op3 op4 op5 op6 op7 op8 op9 op10 op11
op1 1 0.74 0.53 0.73 0.57 0.41 0.51 0.50 0.49 0.63 0.55
op2 1 0.52 0.5 0.45 0.42 0.67 0.60 0.55 0.52 0.61
op3 1 0.53 0.55 0.61 0.70 0.70 0.56 0.38 0.50
op4 1 0.46 0.35 0.53 0.56 0.53 0.59 0.53
op5 1 0.42 0.49 0.50 0.49 0.52 0.47
op6 1 0.63 0.64 0.60 0.34 0.49
op7 1 0.76 0.79 0.38 0.51
op8 1 0.86 0.48 0.56
op9 1 0.59 0.53
op10 1 0.65
op11 1

After the calculation of cohesion and similarity be-

tween the different operations, the next step is to dis-

tribute these operations on Web services. In the cur-

rent implementation, we assist the developer for giving

a new organization based on the obtained results from

the cohesion and similarity values. The proposed orga-

nization could then be manually updated by the de-

veloper. For example, we decide to move the operation

(op8) from the Web service G4 into G5. This moving

does not have a negative impact on the cohesiveness of

the obtained services.

5 Generation of composite Web Services

In this step, the potential dependencies between the

different selected operations in the Web services are

identified. There are two kinds of dependencies between

operations: operation invocation dependencies and Web

navigation relationships. The first kind of dependencies
gives rise to Web service choreographies and the sec-

ond to Web service orchestrations. These are detailed

below:

5.1 Web Service Choreography Creation

In this step, we identify in the source code of the gener-

ated Web services all external calls between operations

in order to replace them by Web service requests. This

is explained in Algorithm 6. If the called operations

are published in the same Web service of the caller op-

eration, nothing is done, the calls are left as method

invocations (see Line 6). If the called operations are

present in the other published Web services these oper-

ation dependencies are replaced by Web service requests

in source code of the invoking operation.

In the created graph for the Web service-oriented

system, we represent each Web service request by a re-

lationship of type WSR which relates the invoking class

Opening Web Applications for Third Party Development: a Service-Oriented Solution 15

node and the WSDL interface node of the invoked ser-

vice (see Lines 6 to 9). An example of this relation-

ship is given in Fig. 4, where the invocation to the

getItemByReference method from the code of the op-

eration serviceTotalPriceInCart is transformed into a

WSR between the class CartService and the interface

wsdlProducts. As for a local method invocation, this

is represented by an ISR relationship. Fig. 4 shows an

ISR relationship between the CartService class and

the Item class.

Algorithm 6 Web Service Choreography Creation

1: procedure createChoreographies(SOS)
2: for all op ∈ SOS do

3: for all invOp ∈ invokedOpsFrom(op) do

4: c1 = declaringClass(invOp)
5: c = declaringClass(op)
6: if c1 /∈ Cs then

7: wsdl1 = getServiceInterfaceOf(c1)
8: wsr = create WSR : wsr = (c WSR wsdl1) ∧

wsr ∈ Rsos

9: createWSRequest(Code(op), invOp,wsdl1)
10: end if

11: end for
12: end for

13: end procedure

Besides, other Web service requests can also be cre-

ated starting from the parsing of client-side scripts.

Indeed, the majority of modern Web applications use

Ajax, which allows to build dynamic and interactive

Web applications. Client-side scripts can create direct

connections to the server and transfer data from clients

to servers. The XMLHttpRequest API is the mostly

used technique as an Ajax implementation [12]. In some

cases, the request sent to the server asks for a server-

side program which has been transformed into a Web

service. We check this by the parsing of the scripts that

use this API. In this case, we create a new request to

this Web service. This request is added at the beginning

of the source code of the Web service that is generated

starting from the current Web interface. This invoca-

tion allows to update the data at the server side before

it will be used by the Web service.

Let us consider our illustrative example to show how

to create a composite Web service at code level. In

the Cart Web Interface we use a client-side script to

send data to the server. Before proceeding to check-

out, the user can modify the quantity of the pur-

chased items. The new quantity is sent as data to the

server via a client-side script (in JavaScript using an

XMLHttpRequest object). This client side script con-

tains a call to a program executed at the server side cor-

responding to the UpdateCart Web interface. This pro-

gram allows to update the cart and calculate the new

total price. When the user clicks on the proceed to

checkout button, a program (provided by the Payment

Web interface) is executed at the server side. This pro-

gram takes as input the new calculated total price and

the new cart details.

Following our approach, the payment and

updateCart operations are created respectively

starting from the Payment and UpdateCart Web

interfaces. So, an invocation to updateCart operation

is added at the beginning of the payment operation

source code. In this way, the new total price is

calculated before proceeding to payment.

In addition to the invocation of the updateCart op-

eration several other operation invocations are created

in order to accomplish the payment process. Indeed, the

checkCreditCard and checkPersonalInformation

operations are invoked successively so that the in-

put credit card information and the personal infor-

mation of the user are checked. If they are valid, we

call two other operations, which are approvalPayment

operation to approve the payment and sendEmail

operation. The approvalPayment operation itself

calls some other operations, which are respectively:

checkCredit, createInvoice, validatePayment and

getDeliverySchedule. In this way, a choreography at

code level is created for the operations that are involved

in the payment activity.

5.2 Choreography Modeling

In this step of our approach, we reverse engineer the

source code of the Web services to create high-level

specifications in the BPMN language. This refers to the

global view of the composition spanning multiple par-

ticipants. We chose BPMN language because it provides

a rich graphical notation for choreography modeling [9].

The creation of these choreographies helps in better un-

derstanding the composition of services, which for the

moment can be seen at code level only.

The generation of BPMN models is based on set of

rules that we have defined as mappings between the

source code elements and the BPMN elements.

– For each choreography (collaboration between ser-

vices and service clients) we create a BPMN model.

– Each participant (Web service or service client) in

the choreography is modeled with a Pool element2.

This Pool is used as a container of the activities that

are performed by the participant. The activities rep-

2 A Pool is the graphical representation of a Participant in
a Collaboration.

16 M.L. Kerdoudi et al.

Fig. 8 A BPMN model representing a service choreography to accomplish the payment activity.

resent mainly the message exchanges of the service

(or service client) with the others participants.

– If the participant is a service client, it must thus con-

tain one or several Web service invocation(s). Each

service invocation is modeled as a Task3 element to

be added to the created Pool element of the ser-

vice client. This Task element is a kind of activities

within BPMN. It is an atomic Activity within a pro-

cess flow.

– The set of Tasks within a Pool are connected as a

sequence (in the same order of their appearance in

source code) using the Sequence Flow element.

– If the participant is a Web service and it has no

requests for other services, the service is modeled as

a Service Task4 element. The Service Task is a

kind of Task used to represent some sort of service,
which can be a Web service.

– If the participant is a Web service and if it imple-

ments requests to other services, the service is mod-

eled as a SubProcess5 element. The SubProcess el-

ement can be a white box or a contour which shows

a lower-level process that is executed by the Web

service participant. Each request to an external ser-

vice is identified and modeled as a Task element to

be added as an inner activity of the SubProcess el-

ement. The set of Tasks within a SubProcess are

3 A Task is a rounded corner rectangle which is drawn with
a single thin line.
4 A Service Task shares the same shape as the Task, which

is a rectangle that has rounded corners, with a graphical
marker in the upper left corner of the shape that indicates
that the Task is a Service Task
5 A SubProcess is an Activity whose internal details have

been modeled using Activities, Gateways, Events, and Se-
quence Flows.

connected as sequence using the Sequence Flow el-

ement.

– The connection between a Task element (which is

generated for a service request) and the Service

Task (or the SubProcess) which is located in a sep-

arate pool is done via a Message Flow element. The

Message Flow element is used to represent the mes-

sage sending or receiving between the client and the

Web service participants.

– Each control statement (for example, a conditional

statement) containing a service invocation is mod-

eled with a diverging Exclusive Gateway (Deci-

sion) element6. It is used to create alternative paths

within a process flow, only one of the paths can be

taken. Each path is targeted to an activity element

or to a default path (which can be the end of the pro-
cess). The decision of the Exclusive Gateway can

be a question or the conditional expression which is

extracted from the source code (for example, the

condition expression of a conditional statement).

The path where the answer to this question is true is

targeted to the Task element created for the service

invocation. The two elements (Exclusive Gateway

and Task elements) are connected using a Sequence

Flow element.

– If the service invocation statements are located

within a loop statement, the loop is represented with

a Loop Task element. It has the same form as the

Task with a loop marker in the medium. And, we

move the Task elements created for the service in-

vocation statements into the Loop Task element.

6 It has the form of a diamond with a marker inside that is
shaped like an ”X”

Opening Web Applications for Third Party Development: a Service-Oriented Solution 17

Figure 8 shows the generated BPMN model7, that

represents the participants services which are involved

in the payment activity of the example presented pre-

viously.

As we can see in this model, all the hidden chore-

ographies are extracted and we can easily comprehend

the behavior of the overall composition. This is due

to our technique of reverse engineering, since only op-

eration invocations and the control or loop statements

that contain operation invocations are extracted. In this

way, the developer does not need to know all the details

which could be found in a large source code. Only par-

ticipants (Web services) in the choreography and their

exchanged messages are modeled.

By extracting this model, we believe that thanks to

the high level of abstraction provided by the choreogra-

phies, evolving these applications will be simpler. In-

deed, we help the developer in choosing the well suited

position in the code in order to apply the necessary

changes to implement an evolution scenario.

Let us suppose the following evolution scenario for

the payment activity choreography. We need to add a

new Web service that enhances the security of the pay-

ment process. This service can be a program that sends

to the client a validation code with an SMS on her/his

mobile phone. The client introduces the received code

and the application checks its validity. On looking at

the generated model, the developer can clearly decide

to add an invocation to the new service after the Credit

Card Authorization task in the initiating Pool.

5.3 Web Service Orchestration Creation

In this step, a set of Web service orchestrations is gener-

ated from the relationships between Web interfaces. We

parse navigation documents such as JSF faces-config

files and their navigation rules. This allows the identifi-

cation of other potential collaborations of the different

Web services created from these pages.

5.3.1 Navigation Rule Extraction

In some Web applications the navigation rules are not

available. In this case, the hypertext links and the

redirection statements/tags located in the Web appli-

cation are parsed in order to create these rules. The

Web application graph could be considered as a navi-

gation model for the input Web application. We asso-

ciate to each Web page node a navigation condition

7 The generated model is updated and validated manually
by grouping the Pools which are of the same category and
giving more readable names to Pools, Lanes (sub-partition
within a Pool) and Activities.

(NC(web page)). Indeed, the redirection statements

like response.sendRedirect("url") are generally de-

clared in the body of a conditional statement such as If

Statement. Thus, depending on the condition value,

the page is redirected to the appropriate destination.

The used condition in this code is extracted and ana-

lyzed to be added as a condition of created navigation

rule. This task requires sometimes the developer inter-

vention to validate the generated navigation rules.

5.3.2 BPEL Process Creation Algorithm

The generated BPEL processes represent new services

which implement some coarse grained functionalities

provided by the application. The exchange of messages

between the BPEL process and external clients (other

applications or partner (Web) services) is done via a

contract described in WSDL. This contract represents

an interface of the BPEL composite Web service. Now,

the generation of the Web service orchestration is im-

plemented according to Algorithm 7.

In this algorithm, first all navigation paths are

calculated from the Web navigation document of the

parsed Web application (Line 2). Each path represents

a coarse grained functionality provided to the user when

(s)he navigates between the Web interfaces of this path.

Therefore, for each path we create a BPEL process

(Line 4) which represents a new generated Web ser-

vice. After that, for each navigation rule in the current

path, we identify the source operation (Line 8). The

source operation corresponds to the operation that has

been generated starting from the navigation’s source

Web interface. The same thing is done for the des-

tination Web interface (Line 19). As specified in the

algorithm, a navigation rule contains three elements:

i) a source view (Line 8), which represents the Web in-

terface(s) from which the navigation started (e.g., the

Web interface presenting the form for searching items

in the example introduced previously: search.jsp);

ii) a destination view (Line 19) that corresponds to

the Web interface(s) to which the user will be auto-

matically directed (e.g., the Web interface(s) present-

ing the result of the search searchResult.jsp); and

iii) an execution condition which contains an expression

and a value (e.g., the expression is a call to the Jav-

aBean method for getting the number of items found:

#{searchResult.getItemsCount}, and the value is

"NotZero").

For each navigation rule, we first test if the source

operation has already been called in the process while

parsing another navigation rule (Line 9). This ensures

that operation invocations are not duplicated. In the

case of an operation which has already been invoked in

18 M.L. Kerdoudi et al.

Algorithm 7 WS Orchestration Creation Algorithm

1: procedure createBPELProcesses(naviRules)
2: naviPaths = calcNaviPaths(naviRules)
3: for all path ∈ naviPaths do

4: process = ProcessFactory.newInstance()
5: seq = process.createSequence()
6: returnedV al1 = process.createV ariable()
7: for all navigRule ∈ path do
8: opFrom = parseSourceV iew(navigRule.sV iew)

9: if !(opFrom isPreviouslyInvokedIn process)
then

10: op1 = process.createInvocationTo(opFrom)
11: op1.setParameters(variablesofprocess)
12: returnedV al1 = op1.invoke()
13: process.store(opFrom, returnedV al1)
14: seq.add(op1)
15: else

16: returnedV al1 = getStoredReturnedV alBy
(opFrom)

17: end if

18: ifActivity = parseConditionExpression
(navigRule, process, seq)

19: opTo = parseDestinationV iew(navigRule.dV iew)

20: if !(opTo isPreviouslyInvokedIn process) then

21: op2 = process.createInvocationTo(opTo)
22: matchedParts = calculateSimilarity

(opFrom.outputMsg, opTo.InputMsg)
23: op2.setParameters(variablesinprocess +

returnedV al1,matchedParts)
24: returnedV al2 = op2.invoke()
25: process.store(opTo, returnedV al2)
26: ifActivity.add(opTo)
27: else

28: seq = addP ickToProcess(navigRule, process, seq)

29: end if

30: end for
31: end for

32: end procedure

the process, we just get the returned value (Line 16).

This kind of values are stored after each operation in-

vocation (see Lines 13 and 25). Then, we parse the

condition part in the navigation rule, by calling a func-

tion (see Line 18). In this function, we get the expres-

sion of the condition, which corresponds to the oper-

ation to be invoked. We test if this operation is not

invoked previously in the process. In this case, we cre-

ate in the process an invocation to this operation. Af-

ter that, we create in the process an If Activity. It

is used to compare the obtained value after invoking

the operation defined in the condition’s expression and

the condition’s value. If the two values are equal, then

we invoke the corresponding destination operation (see

Lines 19 to 24). We need to test before, if the des-

tination operation has already been called in the pro-

cess while parsing another navigation rule. This means

that there is a cycle in this navigation path. The cy-

Fig. 9 An excerpt of a BPEL process representing the created
activities to deal with a cycle.

cles occurs when the user wants to navigate again in

a path with new input values. So, all invoked opera-

tions in this cycle can be invoked again with the new

input values. We deal with cycles by calling of the func-

tion addPickToProcess (see Line 28). Fig. 9 shows an

excerpt of an abstract process, which represents the se-

quence of generated activities to be added in the process

after calling the addPickToProcess function. This ab-

stract process contains mainly the activities: Pick and

RepeatUntil(Loop).

The loop activity is used to repeat the set of created

invocations starting from the cycle. The pick activity

allows the process to block and wait for one or a set

of suitable message(s). The arrival of a message indi-

cates that the user needs to repeat the invocation of

operations in the cycle. When one of these messages is

received, the associated activity is performed and the

pick completes. If none of these expected messages is

received within a certain period of time 8, the pick can

specify an exceptional behavior to be performed (in our

algorithm, an OnAlarm activity is added, which al-

lows to the process to wait). In this way, the cycle of

the navigation path is considered in the BPEL process.

8 We give a default value for this time interval, which could
be modified by the developer on the generated BPEL process

Opening Web Applications for Third Party Development: a Service-Oriented Solution 19

In orchestration creation, before each operation in-

vocation (see Line (24) in the algorithm above), we pre-

pare the list of arguments. A matching of the variables’

names in the orchestration and the arguments of the

operation to be invoked is performed. In this way, we

check the syntactic composability [25] of the two opera-

tions to be composed and we ensure that arguments are

passed in the correct order (see Lines (22) and (23)).

Each generated composite service is modeled as a

sub-graph that belongs to the graph which represents

the migrated service-oriented system. In this sub-graph

we create a WSDL interface node and BP(bpel) node

and we connect them via an IIR relationship. These

nodes represent respectively the interface and imple-

mentation of the generated composite service. The in-

vocations to operations which belong to other Web ser-

vices are represented with WSR relationships. These

relationships relate the BP(bpel) node of the generated

composite service and the WSDL interface node of each

invoked service.

5.3.3 Example of BPEL Process generation

Let us take the example presented in Section 2. A BPEL

process is generated for the navigation path which rep-

resents a successful purchasing. The process first in-

vokes the basicSearch operation of the first service.

Then, it stores the result into a variable and invokes

getItemsCount operation of the same service to get

the number of found items. If the returned value is

equal to "NotZero", the addItems operation of the

CartService is invoked. The selected items (received

using a Receive activity) by the customer are the in-

put of this operation. The returned total price is stored.

After receiving the email and the password of the cus-

tomer the signIn operation is invoked. If the iden-

tification is passed successfully, an invocation to the

DeliveryService is done. After that, the stored total

price is used as input for invoking the PaymentService.

At last, the sendMail operation is invoked with the nec-

essary data.

6 Experimentation: A Case study

As stated at the beginning of the paper, when develop-

ers want to implement extensions to Web applications,

without using our approach, they can either: i) develop

these extensions from scratch by writing programs that

send HTTP requests to the Web applications and then

analyze the returned HTTP responses; or ii) create

“manually” Web services that publish the functionality

of the Web application9 and then write programs that

invoke these services. We have aforementioned that this

task of developing extensions is costly: cumbersome and

so time-consuming.

In order to show that our approach reduces the cost

of the development of extensions to Web applications,

we have conducted an experiment on three real-world

Web applications of different sizes. In this experiment

we have in particular addressed the following research

questions:

– RQ1: What is the performance of the process of

identification of operations and Web services that

are generated and published?

– RQ2: What is the additional cost induced by the

proposed approach?

For answering the first research question, we mea-

sured in our experiment the performance of our ap-

proach taking the definition of “performance” from the

information retrieval domain. We measured thus the

precision and the recall on the results of the steps in the

process: i) the identification of published operations, ii)

and the creation of BPEL processes.

For answering the second research question, we have

measured: i) the size (in terms of number of statements)

of the same extensions developed first without our ap-

proach, and then with our approach; ii) the time taken

in the development of many extensions to see at what

time (from how many developed extensions) we can see

the benefits of using our approach (initial cost of Web

service generation amortized).

The chosen applications for our experiment are:

(i) an E-Auction application [15] that provides via its

Web interfaces the functionality for buying and selling

second-hand goods by bidders and sellers10. (ii) An On-

line Music Portal, which is a JEE Web application11.

This application offers to users and administrators sev-

eral functionalities such as: searching, purchasing and

managing songs. (iii) A simulated version of a Web ser-

vice search engine (Seekda). This application provides

a set of functionalities, such as, searching for public

Web services in the Internet. Table 2 describes the size

of the three Web applications, where NSAC represents

the Number of Server-side scripts And Classes. NLOC

represents the Number of Lines Of Code in the Web

application. These Web applications are considered as

9 This task is not really fully manual. We consider the use
of tools for annotating code and then generating Web services
from this annotated code.
10 It has been downloaded from the following GitHub repos-
itory: https://github.com/FrancescaRodricks/E-Auction-SE-
Project
11 Downloaded from:
https://github.com/sahebkanodia/onlinemusicportal

https://github.com/FrancescaRodricks/E-Auction-SE-Project
https://github.com/FrancescaRodricks/E-Auction-SE-Project
https://github.com/sahebkanodia/onlinemusicportal

20 M.L. Kerdoudi et al.

Table 2 Size of the three Web applications

Systems NSAC NLOC

E-Auction Application 31 1600
Music Portal Application 32 570

Seekda Application 10 850

inputs for our tool (WSGen: Web Service Generator).

We have presented in our previous work [39] what are

the generated Web services and their compositions ob-

tained from the Seekda Web application.

6.1 Experiment for RQ1

In order to answer the first research question, we have

involved in our experiment four PhD students master-

ing Java EE. First, each participant is asked to annotate

the code of the three Web applications using EJB 3 an-

notations. Then, we have used Eclipse JEE to generate

Web services starting from the annotated classes and

methods of these applications. This is what we consider

the “manual” Web service generation. We have then

measured the number of the generated operations. In

addition, we have asked these PhD students to imag-

ine all the possible pertinent operations that can be

created from each application’s source code. We have

calculated the number of these operations. After that,

in order to calculate Recall and Precision for the op-

eration identification step, we have measured for each

application:

– True Positives (TP): the operations identified

and published by WSGen and which are also cre-
ated manually.

– False Positives (FP): the operations created by

WSGen, but which are eliminated manually.

– False Negatives (FN): the operations created

manually without our approach and which have not

been generated by WSGen.

– True Negatives (TN): the operations eliminated

by WSGen and are not created manually.

The Precision is the ratio of the number of true

positives to the total number of all created operations

by WSGen (TP + FP). Precision = TP
(TP+FP) .

The Recall is the ratio of the number of true posi-

tives to the number of operations that should be pub-

lished (TP + FN). Recall = TP
(TP+FN) .

Table 3 depicts the obtained values of precision and

recall for the three applications. The obtained values

show that precision of the operations identification is

relatively good except the case of the Music Portal ap-

plication where the precision is low. In this case, the

elimination of the operations provided to the adminis-

trator of the application (adding users, ...) cannot effec-

tively be automated and requires the developer knowl-

edge. By this intervention of the developer the value of

FP becomes high, which affects negatively the value of

the precision.

Besides, in the third column of Table 3 (TP) we can

see a little difference between the values obtained by

the involved developers. This is due to the fact that

there are some correct operations which are identified

by some developers but they are not identified by the

others. This variance is due in general to several factors

such as: the level of developer skills, the time spent in

analyzing the code (careful code review or not), the

complexity and the size of the code and the availability

of Web application documentation and architecture.

However, the measures show that the recall rate is

relatively high for the three applications. This means

that the correctness level of our approach is relatively

good (most of the identified operations by WSGen are

also created manually). Nevertheless, additional oper-

ations are created manually and cannot be identified

automatically by WSGen (False Negatives). An exam-

ple of these operations for the E-Auction application

is getAuctionListForProduct operation. It returns a

list of created auctions for a specific kind of product.

This functionality was not provided directly by the E-

Auction application, but it was easy to create it by in-

voking an existing method in the Web application and

then filtering its returned results that correspond to

a specific product. Additional operations are created

manually (False Negatives) by slicing the source code

of some programs in the Web applications. The cre-

ation of this kind of operations implies complex human

thinking and this cannot be fully automated.

There are many variables which are involved in the

service and operation identification which made this

task too complicated and time-consuming. In such a

scenario, identification of candidate services and oper-

ations within a large source code is challenging. Vari-

ous strategies and ways could be adopted such as: using

architectural reconstruction approaches [?], pattern de-

tection [?] or concept analysis and program slicing tech-

niques [?].

After the evaluation of performance for the opera-

tion’s identification step, now we have made measures

of performance in order to calculate the recall and the

precision for the step of the generation of BPEL pro-

cesses. We have asked the four PhD students to ex-

tract all possible combinations that could be considered

as pertinent Web service orchestrations. Then, these

have been compared with the generated orchestrations

by WSGen. For these measures, the True Positives

Opening Web Applications for Third Party Development: a Service-Oriented Solution 21

Table 3 Recall and Precision calculation for the operation identification step

Involved developers Systems TP FP FN Precision Recall

E-Auction Application 25 9 3 0.73 0.89
PhD Student 1 Music Portal Application 10 15 2 0.40 0.83

Seekda Application 12 2 1 0.85 0.92

E-Auction Application 28 9 7 0.75 0.80
PhD Student 2 Music Portal Application 12 15 3 0.44 0.80

Seekda Application 12 2 2 0.85 0.85

E-Auction Application 26 9 4 0.74 0.86
PhD Student 3 Music Portal Application 13 15 5 0.46 0.72

Seekda Application 9 2 2 0.81 0.81

E-Auction Application 27 9 8 0.75 0.77
PhD Student 4 Music Portal Application 14 15 6 0.48 0.70

Seekda Application 11 2 3 0.84 0.78

Table 4 Recall and Precision calculation for the step of BPEL generation step

Involved developers Systems TP FP FN Precision Recall

E-Auction Application 32 4 10 0.88 0.76
PhD Student 1 Music Portal Application 10 2 2 0.83 0.83

Seekda Application 10 2 1 0.83 0.90

E-Auction Application 37 4 15 0.90 0.71
PhD Student 2 Music Portal Application 11 2 2 0.84 0.84

Seekda Application 10 2 2 0.83 0.83

E-Auction Application 29 4 9 0.87 0.76
PhD Student 3 Music Portal Application 13 2 2 0.86 0.86

Seekda Application 8 2 1 0.80 0.88

E-Auction Application 35 4 13 0.89 0.72
PhD Student 4 Music Portal Application 15 2 2 0.88 0.88

Seekda Application 12 2 3 0.85 0.80

are the number of BPEL processes which are created

manually and with WSGen. The False Positives are

the BPEL processes created by WSGen and eliminated

manually. The False Negatives are the processes cre-

ated manually but which have not been generated by

WSGen.

As we have seen in the first evaluation, there are

some operations which have been created manually and

which are not generated by WSGen. As a result, we

cannot rely on the previous operation sets to measure

recall and precision for BPEL process generation. To

deal with this issue, we have decided to consider in our

measurement only the operations that are correct (cre-

ated both by WSGen and manually). After that, we

measured the number of BPEL processes that invoke

these operations. The obtained values are depicted in

Table 4. We can see in this table that the precision

is high for the three applications, which demonstrates

that the step of orchestration generation gives good re-

sults with a minimum rate of errors.

Besides, we can observe also in Table 4 that the

recall is relatively high for the three applications. De-

spite that, there is a number of orchestrations which

are created manually and which are not generated by

WSGen. This is due to the use of navigation models

for generating BPEL processes. As result, some com-

binations of operations cannot be identified from these

models but they are defined manually (False Negatives).

An example of these combinations is an orchestration

that invokes operations which are created starting from

programs in back-end components of Web applications.

This kind of operations are not always invoked directly

from BPEL processes that are generated by WSGen.

This fact does not have an influence on the correct-

ness of our approach, because most of the orchestrations

which represent the functionality used by end-users via

Web interfaces are created by WSGen.

6.2 Experiment for RQ2

To answer RQ2, we estimated the developer’s effort

when (s)he implements extensions to the three Web ap-

plications with and without our approach. This part of

the experiment is based on the following steps:

– We have implemented extensions to the three Web

applications without using our approach and then

the same extensions have been developed using our

approach. In the extensions, which have been devel-

oped without using our approach, we have written

22 M.L. Kerdoudi et al.

Java programs that send HTTP requests to the run-

ning Web applications and by analyze the HTTP

responses. The implemented extensions are:

– For the E-Auction: the extension allows to the

user to create alerts by sending an email when

particular products with specific features are of-

fered by the E-Auction application.

– For the Music Portal: the extension is a mobile

front-end for this application, for accessing the

searching functionality of the application from

an Android tablet.

– For Seekda: the extension searches for Web ser-

vice descriptions from the search engine by send-

ing keywords and then retrieves WSDL files from

the obtained results (in order to exploit them to

make classifications of Web services [2]).

– We evaluated the number of statements in each im-

plemented extension to each Web application and

we compare the obtained values for the two ap-

proaches. NSWSGen is the number of statements for

implementing an extension by invoking the gener-

ated Web services. NSHTTP is the number of state-

ments for implementing an extension by sending

HTTP requests to the Web application and ana-

lyzing the returned responses.

– We calculated StmRatio which is the ratio between

NSWSGen and NSHTTP for the three Web applica-

tions (StmRatio = NSHTTP / NSWSGen).

The values for StmRatio for the three applications

are: 3.76 for the E-Auction application, 3.6 for the Mu-

sic Portal application, and 3.2 for Seekda. All the val-

ues confirm that the extensions developed using our ap-

proach are more than three times smaller than the same

extensions developed using HTTP requests (answer to

RQ2).

We can observe that the comparison made, between

the two ways of developing extensions, to answer the

second research question does not take into considera-

tion the initial overhead of our approach. This overhead

can be quantified by measuring the number of OCL ex-

pressions and the number of interactions with WSGen

GUI (number of clicks in order to validate operations,

for example). But this cannot be added up to the num-

ber of statements and then be compared with the num-

ber of statements when developing the extensions with-

out our approach. Then, we have decided to compare

the total time spent during the development of several

extensions to one of the three Web applications, which

is the Music Portal application. In addition to the firstly

created extension we have implemented three other sim-

ple extensions to this Web application. Then, in order

to not limit ourselves to four extensions of this Web

application, we have decided to create several fictive

Table 5 Time for the four extensions of the Music Portal
application

Extensions THTTP TWS

Extension 1 1.94 1.9
Extension 2 1.2 0.85
Extension 3 0.94 0.77
Extension 4 0.92 0.75

(simulated) extensions. For each simulated extension we

vary randomly the value of NSHTTP and we calculate

NSWSGen which is equal to: NSHTTP × StmRatio.

The comparison now is based on the calculation of

the following values:

– T : represents the total time for generating primitive

and composite Web services from the Web applica-

tion using our approach. This time is the sum of

the global time for executing our tool and the time

for the intervention of the developer: writing OCL

constraints and validating the generated operations

and services.

– TWSG: represents the time spent during the imple-

mentation of an extension to a Web application by

invoking the generated Web services. This time is

the sum of the global time needed for a developer

to understand the service descriptions and/or the

BPEL processes in addition to the time for program-

ming and testing an extension.

– THTTPG: represents the needed time to implement

the same extension without using our approach.

This time is the sum of the estimated time for navi-

gating between the interfaces of the Web application

in order to learn and save, before the development

of the extension, the content of the HTTP requests

(and their responses) sent to (resp. received from)

the Web application and the global time to imple-

ment and test this extension.

– TWS : is the average time for implementing one

statement within an extension using our approach.

This time is equal to TWSG/NSWSGen.

– THTTP : is the average time for implementing one

statement within an extension without using our ap-

proach. This time is equal to THTTPG/NSHTTP .

Table 5 shows the average values of time for im-

plementing one statement in the four extensions of the

Music Portal Web application. We can observe that the

values of THTTP and TWS decrease from one exten-

sion to the next one. This is related to the fact that

the developer acquires a programming experience dur-

ing the implementation of an extension, which allows

her(him) to implement the next extension in less time.

This experience is affected by several factors such as the

use of the same API. In this experimentation, we have

Opening Web Applications for Third Party Development: a Service-Oriented Solution 23

Fig. 10 Result of the application of the regression technique
for our approach.

supposed that all the simulated extensions are imple-

mented using the same API and in the same program-

ming language. Besides, we have estimated the time

for rewriting the code of the four extensions (as if it

was a “mechanical” task that does not imply think-

ing). The estimated value of THTTP and TWS is equal

to 0.37 min. This is the minimal time. Now, we would

like to predict the values of THTTP and TWS for each

simulated extension. For this, starting from the values

in Table 5 we have used a regression technique to ob-

tain two curves of trends and their equations. These

two equations allowed us to extrapolate the values of

THTTP and TWS for the simulated extensions. As we

have aforementioned, the values in Table 5 have a de-

creasing trend that tends to the value 0.37. So, to de-

termine the curves of trends we used an inverse power

regression model, which is defined mathematically as

following: f(x) = a × xb, where a and b are constants

and b is negative. f(x) represents the value of THTTP

or TWS for the extension number: x. It is clear that

this function converges to zero. But we have mentioned

that the minimal value of time for THTTP and TWS is

0.37. Thus, the function that we need in our calculation

could be defined as the following: g(x) = f(x) + 0.37.

To calculate f(x), we have first subtracted the value

0.37 from the values in Table 5. After that, we have

used these new values as input when we have applied

the regression technique. The obtained curves of trends

and their equations12 are shown in Fig 10 and Fig 11.

Now, in order to estimate the global time(THTTPG and

TWSG) for implementing each simulated extension we

use a function h which is defined mathematically as

the following: h(x, r) = g(x) × r, where r represents

the number of statements NSHTTP
13 or NSWSGen

14

in each simulated extension. Thus, the result of the cal-

culation of time for implementing all the extensions of

the Music Portal are shown in Fig12.

12 These curves and equations are generated using the tool
provided by the Microsoft Office Excel 2007.
13 NSHTTP is generated randomly.
14 NSWSGen is calculated by: NSHTTP × StmRatio.

Fig. 11 Result of the application of the regression technique
for the HTTP approach.

Fig. 12 Variation of the time over the number of extensions
in the Music Portal Application

We have accumulated the global time for each sim-

ulated extension (the time to develop the whole exten-

sion, not the time for writing one statement). We can

observe in the curves that the time for implementing

the first extension using our approach is relatively high

comparatively to the time spent during the implemen-

tation of the same extension without our approach. This

time is equal to T +TWSG, which represents the initial

overhead of our approach (which is considered only one

time) and the time for implementing the first exten-

sion. We can see in Fig. 12, starting from the fourth

extension (it represents the point where the two curves

intersect), that our method becomes beneficial and the

global time for implementing and testing extensions be-

comes less than the global time for doing the same thing

without our approach. In addition, we can observe that

the slopes of the two curves are different. The curve

related to the development of extensions without our

approach grows faster. This shows the amortization of

the initial overhead of our approach over the develop-

ment of multiple extensions (answer to the second part

of RQ2).

6.3 Discussion & Threats To Validity

For the external validity, and in order to generalize the

experiment results of the case study we need to take into

consideration several aspects such as, the type and the

size of the selected Web applications. We conducted our

experiment on different types of Web applications that

have relatively medium sizes. To achieve results which

24 M.L. Kerdoudi et al.

can be confidently generalized we need to run this ex-

periment on larger Web applications developed using

different technologies (languages and/or frameworks).

But the fact that our applications have medium sizes

helped us in manually creating Web services in a rea-

sonable time. In addition, the hypothesis about the use

of HTTP requests (using java.net API of the standard

library of the JDK) for developing extensions slightly

biases the experiment. Indeed, this is not the most ef-

fective way of doing, but we have considered it because

it is the most straightforward and the standard way

for developing Java-based extensions of Web applica-

tions (for Web scraping, for instance). Besides, this is

the only way of developing such extensions for Web ap-

plications that do not provide a service-oriented REST

(or SOAP-based) API, which is the case of most Web

applications today.

On what concerns the internal validity, we can be

tempted to say that, as the authors have been involved

(not in the manual annotation of the Web application

code to generate Web services in the first part of the

experiment, but) in the development of the extensions

without WSGen in the second part of the experiment,

the results would be biased. This fact does not have

an influence on the experiment results. Indeed, the way

of developing the extensions by using HTTP requests

is greatly different from using Web services. The fact

that the developers know what would be the generated

Web service interfaces of the Web applications does not

impact their way of programming the HTTP requests

using the java.net API.

7 Related Work

We have grouped the existing approaches and tools for

migrating systems to (Web) services-oriented applica-

tions in the following categories:

7.1 Approaches for generating Web services from

software components

The proposed approach in [20] aims to convert software

components into Web services. The components are

saved by the provider in a component repository. The

client specifies a request for searching a given function-

ality in components which are implemented in C++ or

Java. A set of services are generated automatically for

the desired functionalities and returned to the client. A.

Marinho et al. [24] propose a similar approach to [20]. In

addition, the proposal allows the generation of services

starting from components, which are written in differ-

ent programming languages. In our approach we do not

react to a client request, but we propose to the devel-

opers of the Web application to anticipate the export of

some functionalities as Web services. In this way third

party developers can make remote extensions of the ser-

vices exposed by the interfaces of the Web components.

However, in [20,24], only business functionalities im-

plemented in software components are transformed. In

our approach, the Web interfaces, the business func-

tionalities and the navigation between Web interfaces

are converted into stateless Web services and composi-

tions of them. In [11], the authors present a conceptual

model of Web components. They propose a method for

composing a set of services provided by Web compo-

nents using parameterized contracts. These contracts

link the services in the provided interfaces of a given

component to the services of its required ones. To sat-

isfy a given functionality when a composition is under

construction, a service is included if all its required ser-

vices are satisfied by the component’s environment. If

some required services are not satisfied, other provided

services from other components are integrated. In our

approach, the Web components that we deal with do

not define required interfaces. They refer to industrial

solutions of Web development (like Java EE). In addi-

tion, we build compositions of services as BPEL pro-

cesses starting from existing Web and business logic

code, while in [11], compositions are built starting from

formal definitions (contracts) associated to some candi-

date services in a repository.

7.2 Approaches for migrating Web applications to

SOA

Some works have been proposed recently for migrat-

ing Web applications to service oriented architectures

(SOA), such as [1,38,41,17]. The authors of [1] pro-

pose a semi-automatic transformation process to mi-

grate Legacy Web applications (implemented using the

PHP scripting language) to a service oriented applica-

tion. In contrast to our approach, the authors of [1]

focus on the service migration aspect, while the identi-

fication of services is done manually based on the devel-

oper knowledge. In our work, we deal with this aspect

in an automatic manner. We parse automatically pro-

grams executed at sever side in the aim of identifying

the potential operations to be published as Web ser-

vices. The proposed work in [38] addresses the problem

of extracting Web services from Web applications. This

work proposes a model for decomposing and abstract-

ing a Web application into modular building blocks

forming the desired Web services. The decomposition

model is created by modeling each human transition

Opening Web Applications for Third Party Development: a Service-Oriented Solution 25

from page to page as modular pieces of the entire ser-

vice. The abstract model consists of argument passing,

data extraction and context propagation in each tran-

sition from page to page. Using these two models and

a set of configuration files created manually by the de-

veloper, Web service wrappers can be created for the

Web applications. The decomposition technique in [38]

do not work a priori with Web applications that use

techniques for retrieving remote data asynchronously

(like AJAX). In our approach, we deal with this kind

of applications by transforming the scripts at client-side

into Web service requests, while the executed program

at server side is exported as a Web service. In addition,

the page transition approach in [38] is applied to tra-

ditional Web pages, where the navigation is done with

hyperlinks contained in pages. Actually, modern Web

applications that use navigation documents to imple-

ment dynamic transitions from page to page (such as

in JSF Framework) are not addressed. In the proposed

approach in [41], RESTful services can be extracted

from Web applications. The approach is based on the

capturing of scenarios executed by a user for the task to

be migrated as a RESTful service. The input, output

and HTTP methods of the task are identified by the

analysis of the annotation logs and the execution logs.

In another work, Wike [17] generates virtual Web ser-

vices by extracting information from Web pages. Users

can define patterns which are used to extract partial

information from Web pages. The extraction function

can be used to generate a Web service that returns the

result of the extraction process. Content-based Web

pages are not the main concern in our approach. In-

deed in our process, Web components including Web

interfaces and business logic implementation are the

artifacts concerned by Web service generation. These

works are complementary solutions to our work. Web

services that are generated using our approach start-

ing from Web components, which produce to users dur-

ing execution a large quantity of content, can be en-

hanced with new operations that return only partial

information (texts, images, ...) using Wike. Invocations

to these new operations can be added to the orchestra-

tions generated by WSGen. Another work is proposed

by [23] relies on the analysis of the client-side Web ap-

plication code. The authors consider several behaviors

which could be reused in a large number of Web appli-

cations [22]. They propose an approach to identify and

extract the code which implements certain behaviors.

The proposal is based on dynamic analysis, which relies

to the execution of scenarios and saving the executed

code (client-side code) responsible for an expected be-

havior. In addition to the behavior identification, the

approach can extract library functionalities and iden-

tify (or delete) the code that does not implement any

behavior (improve the performance). This work is com-

plementary to our proposal as it deals with client side

scripts’ code. Analyzing such kind of client code is one

of the perspectives of our work. For the moment, we

partially deal with it in choreography creation when

Ajax is used in Web application.

7.3 Approaches for migrating legacy systems to SOA

Several techniques and methods have been proposed to

face the problem of migrating legacy systems to service-

oriented architectures (SOA). The works in [21,37,44]

are representative examples of such approaches. The

SMART approach [21] aims at assisting organizations

to migrate their legacy systems to SOA in a system-

atic way. The legacy systems functionalities, or subsets

of them are exposed as services. The proposal is based

on an interview guide, which is presented to the de-

veloper in terms of questions. These questions concern

issues about the process of the migration. Based on de-

veloper’s responses, the degree of the difficulty and the

required effort to make such migration are determined.

Sneed et al. [37] present a set of metrics to be consid-

ered in the identification of services in legacy systems.

The identified legacy code will be wrapped and make it

available as a web service. Zhang and Yang [44] propose

a re-engineering approach based on clustering to inte-

grate legacy systems in SOA. The extracted functional

legacy code is restructured to facilitate the Web ser-
vice construction. Another solution has been proposed

in [8] to migrate form-based legacy systems into Web

services based on a wrapping approach. In the form-

based legacy system the flow of data between the sys-

tem and the user is described by a sequence of query and

response interactions, which is converted into message

requests from the client and message responses from

the service provider. In this approach, the behaviors

accrued when the user interacts with the legacy system

is modeled in term of finite state automata, based on

a black box reverse engineering technique. This specifi-

cation will be interpreted by the wrapper. Comparing

these works to our approach, we do not create wrappers

for the functionalities exposed by the Web application,

but we create a new Web service application starting

from the functionality exposed by the Web application.

The generated Web service application will be eventu-

ally used and extended remotely by third party devel-

opers. However, the existing Web applications are kept

running and accessible for end users.

26 M.L. Kerdoudi et al.

7.4 Model-Driven Approaches for generating Web

service-oriented applications

Many works in the literature propose model-driven

techniques to generate Web service-oriented applica-

tions. The authors of [4] propose an approach based

on MDA15 to transform the UML2 sequence diagrams

to BPEL processes. This approach aims in particu-

lar to assist the developer in coding BPEL specifica-

tions. [16] proposed a model-driven process for build-

ing Web service compositions. The WSDL descriptions

are transformed into UML models. These models are

integrated by the developer to form composite Web

services, which contain interface and workflow descrip-

tions. Interface models are described using stereotyped

UML class diagrams and workflow models are repre-

sented by stereotyped activity diagrams. At the end,

a set of WSDL descriptions are generated for the re-

sulting composite services. This work provides means

for making forward engineering (UML to WSDL and

BPEL) and reverse engineering (WSDL to UML) by

specifying bidirectional transformation rules. In [42],

the authors propose transformation rules for convert-

ing orchestration models specified in CCA (Component

Collaboration Architecture), which is part of the UML

profile for Enterprise Distributed Object Computing

(EDOC [29]), into BPEL specifications. Another model-

driven approach for creating service-oriented solutions

has been proposed in [19]. In this work, a UML profile

has been defined for service-oriented applications.

All these works are complementary to our approach.

In our work the transformations are made from PSM

to PSM. Web components, which are models specific to

a given platform (in the current implementation, Java

EE), are converted into Web services, which are consid-

ered as another platform-specific model (WSDL, Java

and BPEL, in the actual version of WSGen). The UML

profile presented in [19] can be used to define high-level

models of the generated Web services. The other ap-

proaches can be used to make a reverse engineering of

the generated Web services or orchestrations and ob-

tain more understandable models (compared to code).

In addition, all these related works focus on UML mod-

eling and generating new Web services starting from

models of a high level of abstraction. In our approach,

we worked on the transformation of existing Web code.

7.5 Approaches for Web Service Composition

A summary of proposed solutions, standards and

Frameworks for Web service composition is presented

15 OMG’s Website: http://www.omg.org/mda/specs.htm

in [26]. A survey of existing methods and approaches

for reliable composite services is presented in [18]. Sev-

eral other automatic, semi-automatic and manual ser-

vice composition approaches are proposed in the lit-

erature such as [34,28,36,43,35,25,5]. Paik et al. [34]

propose a nested multilevel dynamic composition model

which provides functional scalability and seamless com-

position. Oh et al. [28] consider the automatic compo-

sition of Web services as AI planning and network op-

timization problems. In [36] a context-based semantic

approach is proposed for classifying and ranking Web

services in order to compose them. The classification

is based on the analysis of the WSDL documents and

free text descriptions of the Web services. Medjahed et

al. [25] propose a composability model to check whether

Web services can be composed without failure during

their execution. In this model, the Web services are

compared through four levels: syntactic, static and dy-

namic semantic and qualitative levels. All these works

deal with complementary aspects to our proposal. We

create automatically compositions of the services gener-

ated from Web applications. In our work, we have used

the composability model of [25] to check the syntactic

composability of the services. Semantic composability

is one of the perspectives of our work.

8 Conclusion and Future Work

Nowadays, there is a real need for shifting from Web

applications targeting exclusively humans into Web

service-oriented applications. Examples of scenarios

where this need is felt, for example, when we want to

build mobile applications by using data from existing

Web applications or when we want to implement a new

“niche” business logic in the Web, underlying a large/-

famous Web application. After this shift, the obtained

result will thus enable third tier developers to build sys-

tems by reusing services provided by the existing Web

applications instead of creating them from scratch or

dealing with complex HTTP interactions. In this pa-

per, we have presented an approach that helps develop-

ers to create service-oriented applications starting from

their Web applications. In addition to create individual

Web services from Web interfaces and existing prim-

itive functionality, we also allow to generate compos-

ite Web services by assembling the created individual

Web services as coarse-grained functionalities. All these

“emerging Web services” contribute in opening Web ap-

plications for third-tier extension development.

In the near future we plan to extend the proposed

method by implementing more sophisticated techniques

for grouping complementary operations in Web ser-

vices, based on “text-mining” of Web components’ doc-

Opening Web Applications for Third Party Development: a Service-Oriented Solution 27

umentation. At the conceptual level, we plan to study

the formalization of the performed transformation as a

set of high-level declarative rules. We then define such

rules in a QVT-compliant language [31] and thus inte-

grate our solution in a Model-Driven Engineering pro-

cess. Furthermore, we plan to address more accurately

the security issues when migrating Web application to-

ward Web service oriented systems. In fact, in the cur-

rent work, we deal with Web interfaces that use a secure

protocol such as TSL (SSL). Actually, Web applications

start using a third party secure delegation service (such

as OAuth authorization [?]) to enhance their access se-

curity. As a future work, we intend to study the mi-

gration of such kind of Web applications towards Web

service-oriented systems that use this secure delegation

service.

References

1. Asil A. Almonaies, Manar H. Alalfi, James R. Cordy,
and Thomas R. Dean. A Framework for Migrating Web
Applications to Web Services. In Proc. of ICWE, 2013.

2. Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, Moha N.,
and C. Tibermacine. Selection of composable web ser-
vices driven by user requirements. In Proc. of IEEE ICWS,
2011.

3. Linda Badri and Mourad Badri. A proposal of a new
class cohesion criterion: An empirical study. Journal of
Object Technology, 3(4):145–159, 2004.

4. Bernhard Bauer and Jorg P. Muller. Mda applied: From
sequence diagrams to web service choreography. In Proc.

of ICWE, 2004.
5. Amel Boustil, Ramdane Maamri, and Zaidi Sahnoun. A

semantic selection approach for composite web services
using owl-dl and rules. Serv. Oriented Comput. Appl.,
8(3):221–238, September 2014.

6. L.C. Briand, Y. Labiche, M. Di Penta, and H. Yan-
Bondoc. An experimental investigation of formality in
uml-based development. IEEE TSE, 31:833–849, 2005.

7. Lionel C. Briand, John W. Daly, and Jürgen Wüst.
A unified framework for cohesion measurement in
object-oriented systems. Empirical Software Engineering,
3(1):65–117, 1998.

8. Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo,
and Porfirio Tramontana. A wrapping approach for mi-
grating legacy system interactive functionalities to ser-
vice oriented architectures. JSS, 81(4):463–480, 2008.

9. Gero Decker, Oliver Kopp, Frank Leymann, Kerstin
Pfitzner, and Mathias Weske. Modeling service chore-
ographies using bpmn and bpel4chor. In Proc. of CAiSE,
2008.

10. T. U. Dresden. Ocl compiler web site. http://dresden-
ocl.sourceforge.net/, 2009.

11. Yui-Ku Fei and Zhijian Wang. A concept model of web
components. In Proc. of IEEE SCC, 2004.

12. David Flanagan. JavaScript - The Definitive Guide (6th
ed.). O’Reilly, 2011.

13. Eclipse Foundation. Eclipse
Modeling Framework Project.
http://www.eclipse.org/modeling/emf/?project=emf,
2009.

14. Eclipse Foundation. Model Development Tools website.
http://www.eclipse.org/modeling/mdt/, 2009.

15. Rodricks Francesca, Chauhan Sunil, Pascoala
D’Souza, Kumar Subodh, and Fernandes Leanne.
E-Auction System, project of Goa University .
https://github.com/FrancescaRodricks/E-Auction-
SE-Project.

16. R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik.
Model-driven web service development. IJWSR, 1(4):1–
13, 2004.

17. Hao Han and Takehiro Tokuda. Wike: A web informa-
tion/knowledge extraction system for web service gener-
ation. In Proc. of ICWE, 2008.

18. Anne Immonen and Daniel Pakkala. A survey of meth-
ods and approaches for reliable dynamic service compo-
sitions. Serv. Oriented Comput. Appl., 8(2):129–158, 2014.

19. Simon K. Johnston and Alan W. Brown. A model-driven
development approach to creating service-oriented solu-
tions. In Proc. of ICSOC, 2006.

20. Roger Y. Lee, Ashok K. Harikumar, Chia-Chu Chiang,
Hae Sool Yang, Haeng-Kon Kim, and Byeongdo Kang.
A framework for dynamically converting components to
web services. In Proc. of SERA, 2005.

21. Grace Lewis, Edwin J. Morris, and Dennis Smith. Ana-
lyzing the reuse potential of migrating legacy components
to a service-oriented architecture. In Proc. of CSMR,
2006.

22. Josip Maras, Jan Carlson, and Ivica Crnkovi. Extracting
client-side web application code. In Proc. of WWW, 2012.

23. Josip Maras, Maja Stula, Jan Carlson, and Ivica
Crnkovic. Identifying code of individual features in client-
side web applications. IEEE TSE, 39(12):1680–1697,
2013.

24. Anderson Marinho, Leonardo Gresta Paulino Murta, and
Cludia Werner. Extending a software component reposi-
tory to provide services. In Proc. of ICSR, 2009.

25. Brahim Medjahed and Athman Bouguettaya. A mul-
tilevel composability model for semantic web services.
IEEE TKDE, 17(7):954–968, July 2005.

26. Nikola Milanovic and Miroslaw Malek. Current solutions
for web service composition. IEEE Internet Comp., 8:51–
59, 2004.

27. OASIS. Web Services BPEL Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html, 2007.

28. Seog-Chan Oh, Dongwon Lee, and Soundar R. T. Ku-
mara. Effective web service composition in diverse and
large-scale service networks. IEEE Trans. Serv. Comput.,
1(1):15–32, 2008.

29. OMG. UML Profile for Enter-
prise Distributed Object Comp.
http://www.omg.org/technology/documents/formal/edoc.htm.

30. OMG. Object Constraint Language specifica-
tion, version 2.0, document formal/2006-05-01.
http://www.omg.org/spec/OCL/2.0/, 2006.

31. OMG. Meta Object Facility (MOF)
2.0 Query/View/Transformation (QVT).
http://www.omg.org/spec/QVT/, 2008.

32. OMG. Business Process Model and Notation (BPMN)
Version 2.0. http://www.omg.org/spec/BPMN/2.0/,
2011.

33. OMG. Unified Modeling Language (UML)
Superstructure specification, Version 2.4.1.
http://www.omg.org/spec/UML/2.4.1/, 2011.

34. Incheon Paik, Wuhui Chen, and Michael N. Huhns. A
scalable architecture for automatic service composition.
IEEE Trans. Serv. Comput., 7(1):82–95, 2014.

28 M.L. Kerdoudi et al.

35. Kaijun Ren, Nong Xiao, and Jinjun Chen. Building quick
service query list using wordnet and multiple heteroge-
neous ontologies toward more realistic service composi-
tion. IEEE T. Services Computing, 4(3):216–229, 2011.

36. Aviv Segev and Eran Toch. Context-based matching and
ranking of web services for composition. IEEE Trans.
Serv. Comput., 2(3):210–222, 2009.

37. Harry M. Sneed. Integrating legacy software into a ser-
vice oriented architecture. In Proc. of CSMR, 2006.

38. Michiaki Tatsubori and Kenichi Takashi. Decomposition
and abstraction of web applications for web service ex-
traction and composition. In Proc. of the IEEE ICWS,
2006.

39. Chouki Tibermacine and Mohamed Lamine Kerdoudi.
Migrating component-based web applications to web ser-
vices: Towards considering a ”web interface as a service”.
In Proc. of IEEE ICWS, 2012.

40. Okba Tibermacine, Chouki Tibermacine, and Foudil
Cherif. Wssim: a tool for the measurement of web service
interface similarity. In Proc. of CAL, Toulouse, France,
2013.

41. Bipin Upadhyaya, Foutse Khomh, and Ying Zou. Ex-
tracting restful services from web applications. In Proc.
of IEEE SOCA, 2012.

42. X. Yu, Y. Zhang, T. Zhang, L. Wang, J. Zhao, G. Zheng,
and X. Li. Towards a model driven approach to automatic
bpel generation. In Proc. of ECMFA, 2007.

43. Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu,
Marlon Dumas, Jayant Kalagnanam, and Henry Chang.
Qos-aware middleware for web services composition.
IEEE Trans. Softw. Eng., 30(5):311–327, 2004.

44. Z. Zhang and H. Yang. Incubating services in legacy
systems for architectural migration. In Proc. of APSEC,
2004.

	Introduction
	Illustrative Example
	Web applications and Service oriented Systems
	Proposed Approach
	Generation of composite Web Services
	Experimentation: A Case study
	Related Work
	Conclusion and Future Work

