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Abstract Total profit is one of the most important factors
to be considered from the perspective of resource providers.
In this paper, an original MapReduce workflow scheduling
with deadline and data locality is proposed to maximize to-
tal profit of resource providers. A new workflow conversion
based on Dynamic Programming and ChainMap/ChainReduce
is designed to decrease transmission times among MapRe-
duce jobs of workflows. A new deadline division consider-
ing execution time, float time and job level is proposed to ob-
tain better deadlines of MapReduce jobs in workflows. With
the adapted replica strategy in MapReduce workflow, a new
task scheduling is proposed to improve data locality which
assigns tasks to servers with the earliest completion time in
order to ensure resource providers obtain more profit. Ex-
perimental results show that the proposed heuristic results
in larger total profit than other adopted algorithms.
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1 Introduction

Even though Spark [1] has been widely applied to work-
flows, many applications (e.g., weather forecasting [2] and
frequent itemsets mining [3]) are MapReduce workflows in
which activities are MapReduce jobs [4]. The practical ex-
ample shown in Figure 1 shows an application instance of
face recognition MapReduce workflow. In the workflow, there
are six dependent MapReduce jobs and each MapReduce
job contains many map and/or reduce tasks. Usually each
MapReduce workflow application is required to finish be-
fore a given deadline. Results of each MapReduce job are
stored in HDFS (Hadoop Distributed File System). Since
data are located on geo-distributed servers, dealing with the
massive transmission times among jobs is imperative. Dur-
ing the process of MapReduce workflows, the requirements
of computation resource requests users to pay for services.
Also resource providers need to be punished if workflow in-
stances cannot finish before deadlines. Generally, resource
providers always focus on total profit for commercial op-
erations [4]. Therefore, it is desirable to develop effective
and efficient scheduling methods for MapReduce workflows
with deadlines in order to maximize total profit.

In this paper, we consider the problem of scheduling
MapReduce workflows to geo-distributed servers in a cloud
data center to maximize total profit. The servers are het-
erogeneous, with different processing speeds and different
number of map and reduce slots. Slot is the minimal re-
source unit in Hadoop. Data blocks are located on these
geo-distributed servers. Some of them might be transmitted
to target servers if necessary. A set of MapReduce work-
flow instances are processed, each of which is deadline con-
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(b) A conversion of MapReduce workflow instance with data and temporal dependences.
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Fig. 1: An example of MapReduce workflow instance.

strained. A workflow instance consists of many dependent
activities. Many dependent activities consist of a workflow
instance. Each activity is a MapReduce job which contains
a batch of map and/or reduce tasks. Some jobs may include
only map tasks. The map, shuffle and reduce phases are per-
formed sequentially, i.e., the shuffle and reduce phases can-
not start until all the map tasks of the job have finished. The
same type of tasks (map or reduce tasks) are independent,
i.e., they can be processed in parallel.

Because of the heterogeneity and geo-distribution of re-
sources and complex precedence relationships of MapRe-
duce workflows, there are two challenges for the problem
under study. (i) Many DAG (Directed Acyclic Graph) con-
strained workflow jobs competing for limited computation
resources makes the allocation of tasks and slots difficult.
Moreover, each workflow has to complete before the dead-
line. Though deadline division is commonly used to get a
controllable scheme for workflow scheduling, different divi-
sion strategies result in varying performance. (ii) Total prof-
it of workflows is closely related to the transmission time
among jobs Tj , transmission time among tasks Tt, and the
execution time Te. Tj decreases if adjacent jobs are allocat-
ed to the same server, e.g., Tj could be decreased if we al-
locate jobs 2 and 3 in Figure 1 to the same server. However,
different combinations of a workflow instance have differ-
ent Tj . Tt includes transmission time of intermediate data
between jobs (inter-jobs) and those processed in the shuf-
fle phase (intra-jobs), is related to Tj . Te depends on the
speed of the allocated server. These three times are inter-
related which results in a different problem of scheduling
precedence-constrained jobs and tasks.

The total profit of workflows is closely related to I/O
times, data transmission times and processing times of tasks/jobs.
Since workflows are constrained by deadlines, it is crucial to
design an effective workflow scheduling. In this paper, we
adopt Dynamic Programming to dynamically convert work-
flow instances according to deadlines and execution times.

Except workflow conversion, other three components are in-
cluded: (i) Deadlines are divided into subdeadlines of jobs
according to time and space parameters. (ii) Tasks list is con-
structed with the consideration of workflow sequences, job
orders and task sequences. (iii) A heuristic is proposed to
allocate tasks to slots. The main contributions of this paper
are summarized as follows:

– A workflow conversion is presented to dynamically con-
vert workflows by Dynamic Programming in order to
balance transmission times among jobs and processing
times of jobs.

– A deadline division considering execution times, float
times and locations of MapReduce jobs is proposed to
better subdeadlines. Meanwhile a task list is constructed.

– A heuristic task scheduling with replica strategy is in-
vestigated.

The rest of the paper is organized as follows: Section 2
reviews related works. A detailed description of the consid-
ered problem is presented in Section 3. Section 4 describes a
scheduling framework for the problem under study. Exper-
imental results are given in Section 5 followed by conclu-
sions and further work in Section 6.

2 Related work

MapReduce is a popular framework for big data of which
job scheduling is crucial for practical applications. Fairness,
throughput, response time SLA/deadline, energy efficiency,
data locality and resource utilization are commonly consid-
ered [5]. Since users require their jobs completed on time,
MapReduce job scheduling problems with deadlines have
been widely studied in the literature. In terms of the relation-
ships between jobs, there are three kinds of scheduling prob-
lems with independent jobs, iterative jobs and dependen-
t jobs, respectively. Since some frameworks without dead-
lines [21–23] are designed for iterative MapReduce job, the
detailed works on independent and dependent MapReduce
job scheduling with deadlines are described in this section.

Much attention has been paid to independent MapRe-
duce job scheduling. Deadlines are one of the most impor-
tant constraints in the existing literature. The required num-
ber of slots for each job [6, 7] or the assignment of tasks
and resources [8–12] were always calculated based on dead-
lines. A two-level scheduling framework was designed in [6]
which consists of a real-time scheduler and a non real-time
scheduler. The real-time scheduler determines the number
of slots based on both jobs’ deadlines and their running s-
tates. Palanisamy et al. [10] proposed two methods for of-
fline and online VM-aware scheduling problems with dead-
lines, respectively. The former was converted to a multiple
bin-packing problem and a heuristic strategy was present-
ed for the latter. Besides deadlines, other factors have been
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taken into account in this kind of problems, such as data lo-
cality [13–17] and energy efficiency [18–20]. Two schedul-
ing strategies were presented [17] for allocating tasks to n-
odes with or without data locality consideration in order to
minimize the number of jobs violating deadlines. A smart
energy-efficient MapReduce scheduling algorithm with dead-
line consideration was introduced by [20] to minimize the
energy consumption of a data center which is partially pow-
ered by the renewable energy.

Existing studies on dependent MapReduce job schedul-
ing mainly focused on deadlines [4, 24–28, 45], data locali-
ty [29] and resource utilization [30]. A task-unit based dead-
line division and an enhanced multiple-rules based time slot
selection were investigated [27] for renting the appropriate
type and number of VMs for batch-task based workflow ap-
plications. Tang et al. [29] proposed a MapReduce workflow
scheduling algorithm with data locality consideration. Both
job prioritization and task assignment phases were includ-
ed. Xu et al. [30] improved resource utilization of servers for
cloud-based MapReduce workflows. An optimal assignment
of tasks and a heuristic strategy were presented for match-
ing VMs and tasks. Ardagna et al. [31] migrated workflow
to reasonable service according to the physical and logical
architecture at runtime. BaresiA et al. [32] bound workflow
and service dynamically in terms of time parameters. How-
ever, the problem considered in this paper focuses on the
composition and scheduling of MapReduce workflow.

In addition, transmission times among tasks and jobs
have a great influence on the performance of practical MapRe-
duce based systems, especially among geo-distributed server-
s in cloud data centers. Lim et al. [33] showed that trans-
mission times among jobs might be greatly reduced by con-
verting workflows with data dependencies in terms of orig-
inal and intermediate data. Some other existing studies op-
timized transmission times among jobs. Data transmission
at the shuffle phase has seldom been considered in existing
dependent MapReduce job scheduling problems with dead-
lines, which always result in a poor assignment of tasks to
slots [35]. For independent MapReduce jobs, data opera-
tors (e.g., partition, aggregation) [35,36] and transfer router-
s [34, 37, 38] were usually highlighted on data transmis-
sion to reduce shuffle times. Various strategies of shuffle
phase results in a different performance for the reduce phase.
Few dependent MapReduce job scheduling problems with
deadlines have taken into account the influence of the shuf-
fle phase on the reduce phase. For independent MapReduce
jobs, reduce tasks were assigned in accordance with the data
size and the network distance [39] or the estimated shuffle
time and the network distance [40]. Deadlines were seldom
considered among assignments of reduce tasks.

Compared to the existing MapReduce workflow schedul-
ing with deadlines, the problem considered in this paper is
different in two aspects: (i) Apart from optimizing assign-

ments of tasks to slots in map and reduce phases, an im-
provement of data transmission is also considered in this
paper. (ii) Since resource providers care more about total
profit, the objective of this paper is to maximize total profit.
To the best of our knowledge, the problem of scheduling de-
pendent MapReduce jobs constrained by deadlines and data
locality to maximize total profit has not been studied yet in
the literature, as the previous review shows.

3 Problem description

MapReduce workflows share servers in the cloud data cen-
ter. All the considered batch of workflow instances arrive
at time 0. For each workflow, the penalty per unit time and
profit are given. Map tasks are assigned only to map slots,
so do reduce tasks. Reduce tasks of each job can start only
when all its map tasks are finished. Each task is processed
by only one slot at the same time while each slot is allo-
cated to only one task at a time. Tasks are non-preemptive
during processing. Data needed by workflows is distributed
over heterogeneous geo-distributed physical servers. Server
or task failures during execution are not considered. We fo-
cus on the MapReduce workflow job scheduling in a cloud
data center to maximize the total profit. Symbols used in the
following are shown in Table 1.

In this paper, n MapReduce workflow instances W =

{W1,W2, . . . ,Wn} are processed by a cloud data center
withm geo-distributed heterogeneous servers S = {S1, S2,

. . . , Sm}. We assume that there is only one server at each
place (all servers in the same place can be regarded as one
super server) in order to simply the problem under studied.
Each workflow instance can be represented by a DAG (Di-
rected Acyclic Graph) Wi = {Vi, Ei} with a deadline Di.
Vi = {Ji,1, Ji,2, . . . , Ji,Bi} is the set of MapReduce job-
s in Wi, i.e., Wi contains Bi (1 ≤ i ≤ n) jobs. Ei =

{(j, j′)|Ji,j , Ji,j′ ∈ Vi} are precedence constraints of the
jobs. (j, j′) ∈ Ei indicates that Ji,j′ cannot start until Ji,j
completes. There are NM

i,j map tasks and NR
i,j reduce tasks

in job Ji,j . We use a ∈ {M,R} to denote the map or reduce
phase, i.e.,M means the map phase andR the reduce phase.
T ai,j,k represents the kth type a (map or reduce) task of job
Ji,j . A profit Ii can be obtained if Wi completes within Di.
A penalty is incurred if the completion of Wi exceeds Di

which is determined by the penalty per unit time Pi and the
tardiness Ai. NM

u map slots {LMu,1, . . . , LMu,NMu } and NR
u

reduce slots {LRu,1, . . . , LRu,NRu } are configured on server Su
according to different servers configurations (such as CPUs,
memory). Generally NM

u = NR
u on each server Su [41].

The objective of the considered problem is to maximize
the total profit I , which is determined by the profit cost
Ii, the penalty per unit time Pi, the deadline Di and the
completion time Ci of each workflow instance Wi (i =



4 Jia Wang et al.

Table 1: Symbols to be used.

Notation Definition

n Number of workflows
W The set of workflows
Wi The ith workflow instance
Vi The set of activities in Wi

Ei The set of edges in Wi

Di Deadline of Wi

Ji,j The jth activity in Wi

Bi Number of activities in Wi

Nai,j Number of tasks of Ji,j at phase a
m Number of servers
S The set of servers
Su The uth server of S
Nau The number of slots of Su with type a
Tai,j,k The kth task of Ji,j at phase a
Lau,v The vth slot of server Su with type a
I The total profit of resource provider
Ii The profit of Wi

Pi The penalty per unit time of Wi

Ai The tardiness of Wi

Ci The completion time of Wi

Fi,j The finish time of Ji,j
Ai,j The start time of Ji,j
fai,j,k The completion time of task Tai,j,k
tai,j,k The start time of task Tai,j,k
pai,j,k The execution time of task Tai,j,k
τai,j,k The transmission time of task Tai,j,k
Dai,j,k The data volume of task Tai,j,k
µau The processing speed of server Su with the task of type a
β The bandwidth among servers

τI,ai,j,k The transmission time of input data of task Tai,j,k
τO,ai,j,k The transmission time of output data of task Tai,j,k
γai,j,k The ratio of the data volume before processing to

that after processing of task Tai,j,k
IMi,j,k The set of servers containing data of task TMi,j,k
Oai,j,k The set of servers storing results of task Tai,j,k

1, . . . , n). More specifically, I =
n∑
i=1

(Ii − Pi × Ai) and

Ai = max{0, Ci−Di}. Ci depends on the finish time Fi,Bi
of the MapReduce job Ji,Bi , i.e., Ci = Fi,Bi . If job Ji,j
is one of the immediate predecessors of job Ji,j′ , the start
time Ai,j′ of Ji,j′ is no less than the finish time of Ji,j , i.e.,
Ai,j′ ≥ max

(j,j′)∈Ei
Fi,j . Ai,j is the earliest start time tMi,j,k of

all the map tasks TMi,j,k. Therefore tMi,j,k ≥ Ai,j .Fi,j depends
on the completion time fRi,j,k′ of reduce tasks TRi,j,k′ . Fi,j =

max
1≤k′≤NRi,j

fRi,j,k′ . Since reduce task TRi,j,k′ can start only af-

ter all map tasks of Ji,j finish, tRi,j,k′ ≥ max
1≤k≤NMi,j

fMi,j,k. The

completion time fai,j,k of task T ai,j,k is determined by the s-
tart time tai,j,k, the execution time pai,j,k and the transmission

time τai,j,k, i.e.

fai,j,k = tai,j,k + pai,j,k + τai,j,k (1)

Except tai,j,k, the other two parameters are determined
by the following way:

– pai,j,k depends on the data volume Dai,j,k of task T ai,j,k
and the processing speed µau of server Su. Decision vari-
ables xai,j,k;u,v ∈ {0, 1} are defined for assignments of
T ai,j,k to Lau,v . xai,j,k;u,v = 1 only if task T ai,j,k is as-
signed to slot Lau,v and 0 otherwise. Therefore, pai,j,k =
m∑
u=1

Nau∑
v=1
Dai,j,k/µau × xai,j,k;u,v . The data processed by a

reduce task TRi,j,k′ comes from more than one map task,
i.e., data transmission is necessary among servers. We
use γai,j,k to denote the ratio of the data volume before
processing to that after processing of task T ai,j,k, i.e.,

DRi,j,k′ =
NMi,j∑
k=1

DMi,j,kγMi,j,k.

– τai,j,k is closely related to the bandwidth β between server-
s. In order to improve data locality in map and reduce
phases, we consider replicas as three in Hadoop. In oth-
er words, there are 3 input and 3 output replications for
each map/reduce task. Therefore τai,j,k consists of the
transmission time of input data τI,ai,j,k and that of output
data τO,ai,j,k, i.e., τai,j,k = τI,ai,j,k + τO,ai,j,k. Assume IMi,j,k is
the set of three servers containing input data of TMi,j,k and
Oai,j,k are the servers storing output data of T ai,j,k. τI,Mi,j,k

is the minimum transmission time from the servers in
IMi,j,k to the server where TMi,j,k is allocated, i.e.,

τI,Mi,j,k =

{
0, If TMi,j,k is allocated to any server in IMi,j,k
DMc
i,j,k

β
, Otherwise

Since generally there are many map tasks transmitting
mapped data to a reduce task and every copy of mapped
data has two other copies, τI,Ri,j,k′ is the maximum trans-
mission time from the server containing the results of
all map tasks to the server where the reduce task TRi,j,k′
is located, i.e., τI,Ri,j,k′ = max

1≤k≤NMi,j
τI,R

′

i,j,k′ where τI,R
′

i,j,k′ is

the minimum transmission time of one map task output.
The calculation of τI,R

′

i,j,k′ is similar to that of τI,Mi,j,k′ . τ
O,a
i,j,k

is the maximum transmission time from the server pro-
cessing T ai,j,k to servers Sw ∈ Oai,j,k, τO,ai,j,k =

Dai,j,kγ
a
i,j,k

β

according to the different locations of the three replicas.

To illustrate the relationships among the parameters, Fig-
ure 2 shows an example of assigning some tasks of Mapre-
duce job Ji,4 in workflow instance Wi to some slots. The
grey colored rectangles are busy slots and the white ones
are idle slots. The map task TMi,4,2 is to be scheduled with
IMi,4,2 = {S2, Su, Sm}. Since only map slot LM1,2 is idle,
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task TMi,4,2 is assigned to LM1,2 and xMi,4,2;1,2 = 1. The trans-
mission time τMi,4,2 = τI,Mi,4,2 + τO,Mi,4,2 . τI,Mi,4,2 is the mini-
mum transmission time from {S2, Su, Sm} to S1 when data
DMi,4,2 is transmitted from servers in IMi,4,2 to S1. τO,Mi,4,2 is
the minimum transmission time of the output data of task
TMi,4,2 from S1 to OMi,4,2 = {Sw, Su′ , Sm}. The reduce task
TRi,4,1 is allocated to slot LRu′,1 according to current status
of servers. Suppose data DRi,4,1 of TRi,4,1 comes from the re-
sults of TMi,4,2 and TMi,4,3. Since OMi,4,2 = {Sw, Su′ , Sm} and
OMi,4,3 = {S2, Su, Sm}, τI,Ri,4,1 transfer the intermediate data
with size DMi,4,2 × γMi,4,2 from servers in OMi,4,2 to Su′ and
the intermediate data with size DMi,4,3 × γMi,4,3 from server-
s in OMi,4,3 to Su′ . The transmission time of DMi,4,2 × γMi,4,2
is the minimum time from {Sw, Su′ , Sm} to Su′ and that
of DMi,4,3 × γMi,4,3 is the minimum time from {S2, Su, Sm}
to Su′ . τ

I,R
i,4,1 is the maximum time of transmission time of

DMi,4,2× γMi,4,2 and DMi,4,3× γMi,4,3. At last, the result DRi,4,1×
γRi,4,1 of the reduce task TRi,4,1 is stored inORi,4,1 = {S2, Su, Sw}
with time τO,Ri,4,1 which is the minimum time from Su′ to
{S2, Su, Sw}.

Based on above descriptions and assumptions, the prob-
lem under study can be mathematically modelled as fol-
lows:

max I =

n∑
i=1

(Ii − Pi × Ai) (2)

s.t.

Ai ≥ 0 ∀i ∈ {1, 2, . . . , n} (3)

Ai ≥ Ci −Di ∀i ∈ {1, 2, . . . , n} (4)

Ci ≤ max
1≤k′≤NR

i,Bi

m∑
u′=1

NR
u′∑

v=1

fRi,Bi,k′ × xi,Bi,k′;u′,v

∀i ∈ {1, 2, . . . , n} (5)

tRi,j,k′ ≥
m∑
u=1

NM
u∑

v=1

fMi,j,k × xMi,j,k;u,v ∀i ∈ {1, 2, . . . , n},

∀j ∈ {1, 2, . . . , Bi},∀k ∈ {1, 2, . . . , NMi,j},

∀k′ ∈ {1, 2, . . . , NRi,j} (6)

tMi,j′,k ≥ max
(j,j′)∈Ei

Fi,j ∀i ∈ {1, 2, . . . , n},

∀j ∈ {1, 2, . . . , Bi},∀k ∈ {1, 2, . . . , NMi,j},
∀j′ ∈ {1, 2, . . . , Bi} (7)

Fi,j ≤ max
1≤k′≤NR

i,j

m∑
u′=1

NR
u′∑

v=1

fRi,j,k′ × xi,j,k′;u′,v

∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . , Bi} (8)

tMi,1,k ≥ 0 ∀i ∈ {1, 2, . . . , n}, ∀k ∈ {1, 2, . . . , NMi,j} (9)

m∑
u=1

Na
u∑

v=1

xai,j,k;u,v = 1 ∀i ∈ {1, 2, . . . , n},

∀j ∈ {1, 2, . . . , Bi},∀k ∈ {1, 2, . . . , NMi,j}, a ∈ {M,R} (10)

n∑
i=1

Bi∑
j=1

Na
i,j∑

k=1

xai,j,k;u,v = 1 ∀u ∈ {1, 2, . . . ,m},

∀v ∈ {1, 2, . . . ,Nau}, a ∈ {M,R} (11)

xai,j,k;u,v ∈ {0, 1} ∀i ∈ {1, 2, . . . , n},

∀j ∈ {1, 2, . . . , Bi}, ∀k ∈ {1, 2, . . . , NMi,j},
∀u ∈ {1, 2, . . . ,m},∀v ∈ {1, 2, . . . ,Nau}, a ∈ {M,R} (12)

Equation (3) and (4) define the tardiness time of Wi. E-
quation (5) guarantees the completion time of workflow in-
stance Wi. Due to the precedence among map and reduce
phases, formula (6) ensures that the start time of any reduce
tasks is no less than completion time of any map tasks. Many
MapReduce jobs in a workflow instance have precedences,
formula (7) and (8) controls that Ji,j′ cannot start processing
until all its immediate predecessors are finished. Formula (9)
assures that start time of any map tasks is non-negative. E-
quation (10) makes sure that each map or reduce task can be
assigned only to one slot and equation (11) ensures that each
map or reduce slot can be assigned to only one task. Finally,
formula (12) defines the decision variable xai,j,k;u,v .

4 Proposed algorithms

In the considered scenario where jobs arrive at the same
time and servers are free, the independent MapReduce job
scheduling problem considering data locality has been shown
to be NP-hard [42]. In this paper, MapReduce workflow schedul-
ing with deadlines is at least as hard as the above prob-
lem because MapReduce jobs are dependent in a workflow
instance and both deadlines and data locality are consid-
ered. Heuristics are effective for NP-hard combinational op-
timization problems. In this paper, we propose a heuristic
for this MapReduce workflow scheduling framework.

In the proposed framework, all map/reduce slots in the
cloud data center are managed by a list Las . Each workflow
Wi is converted using the proposed CWDP (the Conversion
of Workflow based on Dynamic Programming). In terms of
the converted workflow W c

i , Di of Wi is divided into Di,j
of MapReduce job Jci,j(1 ≤ j ≤ Bci ) by the designed D-
FL (the Deadline Division based on Float time and job Lev-
el), in which Bci is the number of jobs in W c

i . NMc
i,j map

tasks and NRc
i,j reduce tasks in each MapReduce job Jci,j

are ordered by the LTF (Longest Time First) rule accord-
ing to [43]. All the corresponding notations in the convert-
ed workflow use now ‘c’ as a superscript. According to the
workflow sequence Lw, job sequence Lj and the job’s task
orders, map/reduce tasks are selected and kept in the task list
Lt using the proposed CT (the Construction of Task list). In
other words, Lt contains both map and reduce tasks. A new
TS (Task Scheduling) procedure is proposed to assign Lt
to Las for maximizing total profit. As aforementioned, the
proposed framework contains four main components: con-
structing workflow instance W c

i , dividing workflow dead-
line Di, constructing task list Lt and scheduling tasks. The
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Fig. 2: Relationships among the parameters.

WS (Workflow Scheduling) framework is shown in Algo-
rithm 1.

Algorithm 1: Workflow Scheduling (WS) framework
1 Initialize list of map/reduce slots Las ;
2 for i = 1 to n do
3 Convert workflow instance Wi to W c

i by CWDP
(Algorithm 2);

4 Divide Di toDi,j of job Jci,j in W c
i by DFL

(Algorithm 3);
5 for j = 1 to Bci do
6 Sort map and reduce tasks of job Jci,j using LTF;

7 Constructing map and reduce task list Lt by CT (Algorithm 4);
8 Call TS to allocate Lt to Las ;
9 return.

4.1 Converting workflows

Data transmission times among jobs are closely related to
completion times of jobs and workflows. Most papers study-
ing independent MapReduce job scheduling consider trans-
mission times of input data from HDFS to target servers.
They avoid transmission times of output data because sin-
gle MapReduce job can obtain final results. However, in
MapReduce workflows, the processed data of job Ji,j′ is de-
termined by the output of all its immediate predecessors, i.e.,

output data of Ji,j ∈ {(j, j′) ∈ Ei} need transfer to HDF-
S. In other words, transmission time of output data of job-
s must be considered in MapReduce workflow scheduling.
Workflow conversion can greatly decrease data transmission
times among jobs by joining multiple jobs into one. Work-
flow is converted according to detailed functions of tasks
in [33]. It has to be noted that resource providers do not
usually know this information beforehand. Therefore, a new
workflow conversion needs to be designed from the resource
providers perspective.

The completion time Ci has great influence on the to-
tal benefit in terms of equation (2) and formula (4). The
combination of jobs can decrease transmission times andCi,
e.g., ChainMap/ChainReduce are used to combine MapRe-
duce jobs for better performance. Since the combination of
ChainMap/ChainReduce without any help of detailed func-
tions of tasks, a workflow conversion with ChainMap/ChainReduce
is proposed to maximize total profit I .

4.1.1 ChainMap/ChainReduce

ChainMap/ChainReduce is generated for MapReduce job-
s with linear constraint to combine some jobs in order to
decrease completion times. With the constraints of Chain-
Map/ChainReduce, jobs are combined as much as possible
so as to decrease transmission times among jobs. Since there
are few Reduce-only jobs (MapReduce jobs have no map
phase) [44], both Map-only jobs and MapReduce jobs are
considered in this paper. According to ChainMap/ChainReduce,
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Fig. 3: Four basic combinations of MapReduce jobs.

four basic combinations of MapReduce jobs are shown in
Figure 3. $ + 1 jobs are converted into a new job Jci,j . In
general Na

i,j and γai,j,k(1 ≤ k ≤ Na
i,j) of job Ji,j change to

Nac
i,j and γaci,j,k(1 ≤ k ≤ Nac

i,j) of Jci,j after the combination.
Because of the static size of the input and output data of Ji,j ,
the calculations of Nac

i,j and γaci,j,k for the four combinations
are shown as follows: Figure 3 (a) shows the combination

of Map-only jobs. NMc
i,j =

j+$∑
o=j

NMi,o

$+1 , NRc
i,j = 0, γMc

i,j,k =

γMc
i,j+$,k and γRci,j,k = −. Figure 3 (b) shows the combination

of Map-only jobs and a MapReduce job allocating to the left

of all Map-only jobs.NMc
i,j = NM

i,j ,NRc
i,j =

NRi,j+
j+$∑
o=j+1

NMi,o

$+1 ,
γMc
i,j,k = γMi,j,k and γRci,j,k = γMi,j+$,k. The combination of a

MapReduce job to the right of all Map-only jobs is shown

in Figure 3 (c). NMc
i,j =

j+$∑
o=j

NMi,o

$+1 , NRc
i,j = NR

i,j , γ
Mc
i,j,k =

γMi,j+$,k and γRci,j,k = γRi,j+$,k. The last combination of a
MapReduce job at the middle of Map-only jobs is shown in

Figure 3 (d) in which 1 ≤ l ≤ $. NMc
i,j =

j+l∑
o=j

NMi,o

l+1 , NRc
i,j =

NRi,j+l+
j+$∑

o=j+l+1

NMi,o

$−l+1 , γMc
i,j,k = γMi,j+l,k and γRci,j,k = γMi,j+$,k.

4.1.2 Examples of workflow conversions

Different workflow conversions result in different comple-
tion times for the workflows. In general, Ci depends on the
execution time of all jobs Ji,j ∈ Vi. The execution time
of Ji,j consists of that of map and reduce phases (shuffle
phase is seen as part of reduce phase in this paper), which
are closely related to τI,ai,j,k, pai,j,k and τO,ai,j,k. Suppose µ̄a and
L̄a are the average processing speed of servers and the av-
erage allocated number of slots, respectively. The estimated
execution time of job Ji,j is denoted as:

EEi,j =
⌈NMi,j
L̄M

⌉
×
(DMi,j,k

β
+
DMi,j,k

¯µM
+
DMi,j,kγMi,j,k

β

)
+
⌈NRi,j
L̄R

⌉
×
(DRi,j,k

β
+
DRi,j,k
µ̄R

+
DRi,j,kγRi,j,k

β

)
. (13)

With the obtained execution times of jobs, we can obtain
Ci.

Figure 4 shows an example of MapReduce workflow
Wi. 10 dependent MapReduce jobs are in Wi. Table 2 lists
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Fig. 4: A workflow containing 10 dependent MapReduce jobs.

Table 2: Configurations of workflow instance Wi in the example.

Ji,1 Ji,2 Ji,3 Ji,4 Ji,5 Ji,6 Ji,7 Ji,8 Ji,9 Ji,10

NMi,j 63 26 16 4 40 52 21 5 26 10
NRi,j 0 0 0 0 64 0 0 0 24 0
γMi,j,k 0.4 0.6 0.2 2.4 1.6 0.4 0.2 3.1 0.9 0.5
γRi,j,k - - - - 0.8 - - - 0.4 -

the configurations (Na
i,j and γai,j,k) of the MapReduce job-

s, where − means that there is no γRi,j,k. Suppose L̄a =5,
µ̄a=50 MB/s and β=100 MB/s, respectively. The execution
times of jobs Ji,j(1 ≤ j ≤ 10) are estimated according to
equation (13), and the completion time of Wi is 494.336.
In terms of the four combinations of Figure 3, the exam-
ple of Figure 4 can be converted to the workflow of Figure
5 (a) by ChainMap/ChainReduce. The corresponding con-
figurations after the workflow conversion are listed in Table
3 (a). Replacing Na

i,j and γai,j,k by Nac
i,j and γaci,j,k respec-

tively in equation (13), the completion time of W c
i in Fig-

ure 5 (a) is 291.84. Different combinations of jobs results in
different workflow conversions. Another workflow conver-
sion based on ChainMap/ChainReduce is shown in Figure 5
(b) and Table 3 (b) details the resulting configurations. The
completion time of W c

i in Figure 5 (b) is 264.448 according
to equation (13). The completion time of workflow in Figure
5 (b) is less than that of (a), i.e., the ChainMap/ChainReduce
without any heuristics need to improve for better workflow
conversion. In this paper, an effective workflow conversion
based on ChainMap/ChainReduce is proposed in order to
maximize the total benefit.

4.1.3 The proposed Conversion of Workflow based on
Dynamic Programming (CWDP)

Because ChainMap/ChainReduce is constrained by jobs with
linear dependencies, jobs of workflow Wi are divided into
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Table 3: Configurations of W c
i after conversion by Figure 5.

(a) (b)

Jci,1 Jci,2 Jci,3 Jci,1 Jci,2 Jci,3 Jci,4 Jci,5

NMci,j 28 40 26 35 4 40 5 26
NRci,j 0 36 17 0 0 46 0 17
γMci,j,k 2.4 1.6 0.9 0.2 2.4 1.6 3.1 0.9
γRci,j,k - 3.1 0.5 - - 0.2 - 0.5
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Fig. 5: Different conversions of workflow instances of the workflow
instance example of Figure 4.

ξi set of jobs Si = {S1
i ,S2

i , . . . ,S
ξi
i }. In each set Sωi (1 ≤

ω ≤ ξi), jobs {Ji,l, Ji,l+1, . . . , Ji,l+|Sωi |−1} have linear de-
pendencies. The workflow conversion in Sωi can be seen as
a segmentation of jobs with constraints of ChainMap and
ChianReduce, i.e., jobs in each set need to be segmented
in order to maximize profit of the workflow instance. S-
ince the job segmentation of Sωi meets the optimal substruc-
ture and overlapping sub-problems requirements, the prob-
lem can be solved by Bottom-Up Dynamic Programming.
In other words, p jobs are repeatedly decomposed into a
left part of q jobs and a right part of p − q jobs. The op-
timal solution for the p jobs segmentation is obtained by
repeatedly calculating p − q jobs segmentation. An array
r[|Sωi |+ 1] is used to store execution times of subproblems
for Sωi . r[0] = 0 means there are no jobs in the right part
(i.e., p− q = 0) and the execution time is 0. For p jobs seg-
mentation, r[p] is initialized to ∞ and list R[p] stores new
combined jobs. Assume each job can be combined with ∅.
Nac
i,l+|Sωi |−p

, γaci,l+|Sωi |−p,k and EEci,l+|Sωi |−p are needed af-
ter a new combination. An update of r[p] and R[p] might be
necessary. r[|Sωi |+1] and R[|Sωi |] are results of the job seg-
mentation for Sωi . Since the number of combined jobs is not
continuous, the combined jobs in Sωi for the converted work-
flow W c

i are renumbered. The detailed CWDP algorithm is
shown in Algorithm 2. In Algorithm 2, the time complexi-
ty of line 1 is O(Bi), that of line 3 is O(ξi) while that of
line 6, 9 and 24 are the same as O(|Sωi |). So CWDP has a
computational time complexity of O(Bi + ξi|Sωi |3).

Algorithm 2: Conversion of Workflow based on Dy-
namic Programming (CWDP)

1 Divide Ji,j ∈ Vi into ξi set of jobs Si = {S1
i ,S2

i , . . . ,S
ξi
i };

2 j ← 1;
3 for ω = 1 to ξi do
4 Initialize array r[|Sωi |+ 1];
5 r[0]← 0;
6 for p = 1 to |Sωi | do

/* Combine jobs in Sωi by dynamic
programming */

7 r[p]←∞;
8 Initialize list R[p];
9 for q = 1 to p do

10 S← ∅;
11 if q > 1 then
12 for h = 1 to q − 1 do
13 Add Ji,l+|Sω

i
|−p+h to S;

14 if Ji,l+|Sω
i
|−p can be combined with jobs in S

in terms of ChainMap/ChainReduce then
15 Calculate Naci,l+|Sω

i
|−p and γaci,l+|Sω

i
|−p,k

according to combinations in Figure 3;
16 Calculate EEci,l+|Sω

i
|−p according to

equation (13);
17 A′i = EEci,l+|Sω

i
|−p + r[p− q] >

Di?(EEci,l+|Sω
i
|−p + r[p− q]−Di) : 0;

18 A′′i = r[p] > Di?(r[p]−Di) : 0;
19 if Ii − Pi × A′i > Ii − Pi × A′′i then
20 r[p]← EEci,l+|Sω

i
|−p + r[p− q];

21 Clear R[p];
22 Add Jci,l+|Sω

i
|−p to R[p];

23 if p− q > 0 then
24 for g = 0 to |R[p− q]| do
25 Add the gth job of R[p− q]

to R[p];

26 else
27 Break;

28 for f = 0 to |R[|Sωi |]| do
29 Set Jci,j as the fth job of R[|Sωi |]; /* Renumber

the combined job Jci,j */

30 j + +;

31 return.

4.2 Dividing deadlines

Let Aei,j , Fei,j and F li,j be the earliest start time, the earliest
finish time and the latest finish time of job Jci,j , respectively.
Since the subdeadline Di,j of jobs Jci,j ∈ W c

i is determined
by the execution time of Jci,j and time float [45] among job-
s, two divisions considering execution times [46] or time
float [45] are used. The former assigns long subdeadlines
to tasks/jobs because all jobs’ Aei,j , Fei,j and F li,j are fixed
with the only one consideration of execution time. While the
later always obtain better subdeadlines by the variable Aei,j ,
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Fei,j and F li,j of jobs, which divides the total time float of
the critical path in proportion to the time float and execu-
tion time. Because Ci is greatly related to the total profit I ,
the time float assigned to Jci,j ∈ {(j, j′) ∈ Eci } needs less
than that of Jci,j′ in order to make the profit of workflow
larger where Eci is the set of edges in W c

i . In other words,
subdeadlines of jobs also depend on their locations in the
workflow. However, there is no information of job level in
deadline division considering time float. Therefore, a new
deadline division (DFL) based on job level and time float is
proposed.

Let FP and FD
i,j be the total time float among jobs in crit-

ical path P and the distributed time float of Jci,j , respectively.
The main problem of DFL is to distribute FP to FD

i,j of all
jobs in P ∈ {Jci,j , Jci,j+1, · · · , Jci,ι} according to job level
and time float. Assume Fi,j is the float duration of Jci,j after
one deadline division. Fi,j consists of execution time EEci,j
and FD

i,j , which is similar to [45]. Initially, Fi,j = EEci,j .
With the given P, FP is closely related toAei,j , Fei,j and F li,j
of jobs, which can be computed by Algorithm EFT & LFT
in [45]. With F li,Bci = Di,

FP =
∑

Jc
i,j
∈{P/Φ/{Jc

i,ι
}}

(j,j′)∈Ec
i

(Aei,j′ −Fei,j) + Fli,ι −Fei,ι. (14)

where Φ is the set of jobs with Aei,j + Fi,j = F li,j . Assume
Γi,j is the level of job Jci,j in W c

i . FD
i,j of Jci,j is determined

by FP, Γi,j and Fi,j , which is different from the deadline
division in [45]. Γi,j is calculated as the maximum num-
ber of edges in any path from Jci,1 to job Jci,j in each work-
flow W c

i . Γi,j′ is calculated recursively according to Γi,j of
Jci,j ∈ {(j, j′) ∈ Eci } with Γi,1 = 0. In other words:

Γi,j′ =

0, j′ = 1

max
(j,j′)∈Ec

i

Γi,j + 1, Otherwise (15)

Suppose ρ is a weight of Γi,j ,

FD
i,j = FP × (

ρΓi,j∑
Jc
i,j
∈{P/Φ}

Γi,j
+

(1− ρ)Fi,j∑
Jc
i,j
∈{P/Φ}

Fi,j
). (16)

Specially when Fei,j +FD
i,j > F li,j , FD

i,j = F li,j−Fei,j . With
a new obtained FD

i,j , Fi,j , Aei,j′ and Fei,j′ of successors of
Jci,j are updated. After FP is distributed to all jobs in {P/Φ},
FP and F li,j of Jci,j ∈ P needs to be updated in order to
determine whether a new critical path has been generated or
not. Finally Di,j of Jci,j ∈ W c

i is set as Fei,j , i.e., Di,j =

Fei,j . The detailed DFL is shown in Algorithm 3. The time
complexity of Algorithm 3 is mainly from line 5-16. The
complexity of line 5 is O(Bci ), that of line 7 is O(|P|), that
of line 8 is O(|P|), that of line 14 is O(Bci ), that of line 15
is O(Bci ) while that of line 16 is O(Bc2i ). So DFL has a
computational time complexity of O(Bc2i |P|2 + Bc2i |P| +
Bc3i ).

Algorithm 3: Deadline Division based on Float time
and job Level (DFL)
1 Obtain EEci,j and Γi,j for jobs in W c

i by equation (13) and
(15);

2 CalculateAei,j , Fei,j and Fli,j of the jobs using EFT&LFT
in [45];

3 Initialize Fi,j ← EEci,j for all jobs Jci,j ∈W c
i ;

4 Generate critical path P in terms of similar method
ASSIGNPARENT in [46];

5 while P 6= ∅ do
6 Compute FP according to equation (14);
7 while FP > 0 do

/* Reasonably distribute FP to jobs
in P */

8 foreach Jci,j ∈ P do
9 if Jci,j 6∈ Φ then

10 Calculate FD
i,j by equation (16);

11 if Fei,j + FD
i,j > Fli,j then

12 FD
i,j ← Fli,j −Fei,j

13 Fi,j ← Fi,j + FD
i,j ;

14 UpdateAei,j′ and Fei,j′ of
Jci,j′ ∈ {(j, j′) ∈ Eci };

15 Update Fli,j of Jci,j ∈W c
i and FP;

16 Generate new critical path;

17 SetDi,j as Fei,j of Jci,j ∈W c
i ;

18 return.

4.3 Constructing the task list

Different task lists result in different completion times for
the workflows. In MapReduce workflow scheduling, sequences
of workflow, MapReduce jobs and map/reduce tasks have a
great influence on the position of each task in Lt. Usual-
ly, three strategies are used to schedule multiple workflow
instances: independently & sequentially, independently &
interleaving and merging [47]. Since various workflow in-
stances have different Pi, i.e., workflows have precedences
constraints, the last strategy - merging is not suitable for
workflow scheduling in this paper. With the objective of
maximizing total profit I , W c

i ∈ W are sequenced in non-
increasing order of Pi in order for workflows with a higher
Pi to finish earlier. Generally, jobs in each workflow are se-
quenced by a list-based strategy (e.g., topological sequence,
priority sequence) [47]. Job sequences based on topologies
and deadlines are adopted in this paper. The main differ-
ence between these two methods is the order of the jobs that
might be processed in parallel in each workflow. For job se-
quences based on deadlines, jobs are sorted by EDF (Ear-
liest Deadline First) rule in order to make jobs complete as
early as possible. While jobs processing in parallel are se-
quenced randomly by another method. Because of the good
performance of LTF for minimizing makespan [43], tasks
in each job are ordered by LTF before constructing Lt. As
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aforementioned, we adopt four methods: WSJT (schedul-
ing workflows sequentially and jobs based on topologies),
WSJD (scheduling workflows sequentially and jobs based
on deadlines), WIJT (scheduling workflows interleaving and
jobs based on topologies) and WIJD (scheduling workflows
interleaving and jobs based on deadlines) to construct the
task list Lt. With the sequences of workflow, MapReduce
jobs and map/reduce tasks, map and reduce tasks are se-
quentially appened to Lt in each method. The detailed de-
scription of WSJT and WIJT are shown in Algorithms 4 and
5, respectively. Sequencing jobs in non-decreasing order of
Di,j is used to replace Line 3 of Algorithms 4 and 5 in order
to obtain the WSJD and WIJD alternatives. Because the time
complexity of line 1 isO(n log n), that of line 2 isO(n(Bci+

|Eci |)) while that of line 5 is O(
∑

W c
i ∈W

Bci ( max
Jci,j∈Lj

NMc
i,j +

max
Jci,j∈Lj

NRc
i,j )), the time complexity of WSJT is O(n log n+

n(Bci + |Eci |) +
∑

W c
i ∈W

Bci ( max
Jci,j∈Lj

NMc
i,j + max

Jci,j∈Lj
NRc
i,j )).

Similarly, the time complexity of WIJT isO(n log n+n(Bci+

|Eci |)+ max
W c
i ∈W

Bcin+
∑

W c
i ∈W

Bci ( max
Jci,j∈Lj

NMc
i,j + max

Jci,j∈Lj
NRc
i,j )).

Algorithm 4: Constructing Task list (CT) – WSJT
1 Generate Lw by sequencing workflows in decreasing order of
Pi;

2 foreach workflow W c
i in Lw do

3 Sort jobs of W c
i according to topological sequence;

4 Append jobs to Lj ;

5 foreach MapReduce job Jci,j in Lj do
6 Append map tasks to Lt;
7 Append reduce tasks to Lt;
8 return.

Algorithm 5: Constructing Task list (CT) – WIJT
1 Generate Lw by sequencing workflows in decreasing order of
Pi;

2 foreach workflow W c
i in Lw do

3 Sort jobs of W c
i according to topological sequence;

4 for j = 1 to max
W c
i
∈Lw

Bci do

5 foreach workflow W c
i in Lw do

6 if Jci,j ∈W c
i then

7 Append Jci,j to Lj ;

8 foreach MapReduce job Jci,j in Lj do
9 Append map tasks to Lt;

10 Append reduce tasks to Lt;
11 return.

4.4 Task scheduling

With the constructed Lt, tasks in Lt are allocated to map
slots in LMs or reduce slots in LRs . Transmission times of
map/reduce tasks are always considered in order to decrease
the completion times of jobs and workflows. Since data chunks
of each map task has several replicas, existing map task
scheduling strategies always locate map tasks to servers con-
taining their data to minimize transmission times [13–17]. S-
ince the input data of a reduce task is the output data of more
than one map task, reduce tasks are allocated to servers with
the largest part of data in order to minimize transmission and
completion times [39, 40]. Both map and reduce schedul-
ing strategies are focused on independent MapReduce jobs.
They are not directly applicable to MapReduce workflow
scheduling because the transmission time of output of jobs
(transmission time among jobs) must be considered. There-
fore, a new task scheduling (TS) considering transmission
times of input and output is designed to decrease comple-
tion times.

Since the replica strategy can greatly decrease transmis-
sion times in MapReduce scheduling, it is adopted to MapRe-
duce workflow scheduling. In map task scheduling of MapRe-
duce, the replica strategy make it more likely that map tasks
will allocate to servers where holding their data. The repli-
ca strategy is applied in map task scheduling of MapRe-
duce workflow. With the great influence of the shuffle phase
(transmission time of input data of reduce tasks) on the re-
duce phase [34, 35], the replica strategy would adopt to re-
duce task scheduling of MapReduce workflow. In order to
give more chances for a reduce task to decrease transmission
time, the output of each map task needs to have a replica, i.e.,
output of TMc

i,j,k must transfer from the processing server Su
to servers Sw ∈ OMc

i,j,k. Since transmission times among jobs
must be considered in MapReduce workflow scheduling, the
output of each reduce task also needs to be duplicated to en-
sure that successors’ map tasks can also benefit from replica
strategy. As aforementioned, replica strategy would use in
MapReduce workflow scheduling.

After the adapted replica strategy in MapReduce work-
flow scheduling, TS considering replica strategy is proposed.
The transmission time consists of input and output data trans-
mission times in TS, which is the main differences from the
existing MapReduce scheduling strategies. In other words,
τaci,j,k = τI,aci,j,k + τO,aci,j,k for each task T aci,j,k. Obviously:

τI,Mci,j,k =

{
0, Su ∈ IMci,j,k
DMc
i,j,k

β
, Otherwise

and τO,aci,j,k =
Daci,j,kγ

ac
i,j,k

β . Assume IRci,j,k is the set of servers
holding data of DRci,j,k. Initially, IRci,j,k = ∅. Suppose Su is
the server to process the reduce task TRci,j,k. Let ~w′ be the
transmission time from Sw′ to Su. With the adapted replica
strategy at reduce task scheduling, the output data of each
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map task TMc
i,j,k′ need to transfer from OMc

i,j,k′ servers to Su.
In order to decrease τI,Rci,j,k of TRci,j,k, the server Sw in OMc

i,j,k′

with the minimal transmission time is added to IRci,j,k, i.e.,
Sw = argmin

Sw′∈OMci,j,k′

~w′ . According to the constructed IRci,j,k,

τI,Rci,j,k = max
Sw∈IRci,j,k

~w. In terms of the calculated τI,Mc
i,j,k ,

τI,Rci,j,k and τO,aci,j,k , the transmission time of tasks is obtained.
The details of CTT (Calculate Transmission Time) are giv-
en in Algorithm 6 with a computational time complexity
O(NMc

i,j′ |OMc
i,j′,k′ |). With the given slot Lau,v , the comple-

tion time faci,j,k of task is calculated by taci,j,k, paci,j,k and τaci,j,k
according to equation (1). Because the minimization of Ci
depends on faci,j,k, the slot Lau,v with the minimal faci,j,k is
chosen for task T aci,j,k in task scheduling. Assume λau,v is
the next available time of slot Lau,v . For map tasks, tMc

i,j′,k

and fMc
i,j′,k are initialized to the maximal completion time

of jobs Jci,j ∈ {(j, j′) ∈ Eci } and ∞, respectively. More
specifically, tMc

i,j′,k = 0 if Jci,j′ is the first job of workflow
W c
i . After the selection of map slot LMu,v with the mini-

mal fMc
i,j′,k, λMu,v is reset as fMc

i,j′,k. For reduce tasks, tRci,j′,k
is set to the maximal completion time of map tasks of Jci,j′ ,
i.e, tRci,j′,k = max

1≤k′≤NMc
i,j′

fMc
i,j′,k′ . Similar to the scheduling

of map tasks, a reduce slot LRu,v with the minimal fRci,j′,k
is chosen to schedule TRci,j′,k and λRu,v = fRci,j′,k. Let σ be
the number of immediate predecessors of Jci,j . The TS is
given in Algorithm 7 and the time complexity of Algorithm
7 is depended on that of line 3-21. Because the time com-

plexity of line 3 is O(
n∑
i=1

Bci∑
j=1

(NMc
i,j + NRc

i,j )), that of line 9

is O(BciN
Rc
i,j ), that of line 11 is O(NMc

i,j′ ), that of line 14 is

O(
m∑
u=1
NM
u +

m∑
u=1
NR
u ) while that of line 19 isO(

m∑
u=1
NM
u +

m∑
u=1
NR
u ), we can obtain the computational time complexi-

ty is O
(
(
n∑
i=1

Bci∑
j=1

(NMc
i,j +NRc

i,j ))× (
m∑
u=1
NM
u +

m∑
u=1
NR
u )×

(NMc
i,j′ |OMc

i,j′,k′ |)
)
.

5 Performance Evaluation

We adopt the prototype proposed in [48] which was com-
monly used to MapReduce workflows for performance e-
valuation. The number of MapReduce workflows is set as
{50,100,150}. For each workflow, the number of DAG de-
pendent MapReduce jobs is generated with a uniform distri-
bution U(50,500). In other words, a given number of work-
flows mixes any size (small, medium and large) of workflow.
For each MapReduce job, the number of map and reduce
tasks are normally distributed in N(154,558) and N(19,145)
respectively according to [49]. In terms of distributions of

Algorithm 6: Calculate Transmission Time (CTT)
Input: Taci,j′,k, Lau,v
Output: τaci,j′,k

1 F = 1;
2 if a = M then
3 if Su ∈ IMci,j′,k then
4 F=0;

5 τMci,j′,k ←
DMc
i,j′,k
β
× F +

DMc
i,j′,kγ

Mc
i,j′,k

β
; /* Calculate

transmission times of map tasks */

6 else
7 IRci,j′,k ← ∅;
8 for k′ = 1 to NMci,j′ do
9 foreach server Sw′ in OMci,j′,k′ do

10 if Sw′ = Su then
11 ~w′ ← 0;

12 else

13 ~w′ ←
DMc
i,j′,k′γ

Mc
i,j′,k′

β
;

14 Sw ← argmin
Sw′∈OMc

i,j′,k′

~w′ ;

15 Add Sw to IRci,j′,k; /* Obtain the set of

servers IRci,j′,k */

16 if Su ∈ IRci,j′,k then
17 IRci,j′,k ← IRci,j′,k − {Su};

18 τRci,j′,k ← max
Sw∈IRci,j′,k

~w +
DRc
i,j′,kγ

Rc
i,j′,k

β
;

/* Calculate transmission times of
reduce tasks */

19 return τaci,j′,k.

processing times of map and reduce tasks [49], the process-
ing time of each MapReduce job is d 154

L̄M
e×50+d 19

L̄R
e×100.

Hereby, we can obtain the longest processing time CL of
workflow Wi from the critical path. Assume Dt

i = CL×1.0

and Dl
i = CL × 2.0 are the tight and loose deadlines of

workflowWi.Di ofWi is randomly distributed in U(Dt
i ,D

l
i)

with the unit being seconds. Ii is generated with a unifor-
m distribution U(1000,10000) according to Di and prac-
tical hourly wage. Meanwhile Pi = 2 × Ii

Di
. In this pa-

per, each data chunk is set as 256MB and three replica are
configured. γai,j,k is a random value from 0 to 10 accord-
ing to [50]. All data chunks are randomly distributed among
1000 geo-distributed servers of a cloud data center. Accord-
ing to the size of data chunk and the distributions of process-
ing times of map and reduce tasks [49], the speed of servers
for map and reduce tasks are generated with uniform distri-
bution U(2,6) and U(1,3) respectively. Different number of
slots are configured to servers with different CPU and mem-
ory. The configuration of slots ensures that the number of
map slots equals to that of reduce slots. Bandwidth among
servers is randomly distributed following the uniform distri-
bution U(10,50) with the unit being MB in this paper.

We run all strategies (which are coded in Java with E-
clipse Helios Release JDK1.6) on computers with Intel Core
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Algorithm 7: Task Scheduling (TS)
1 foreach slot Lau,v in Las do
2 λau,v ← 0; /* The available time of all

slots are set as 0 */

3 foreach task Taci,j′,k in Lt do
4 L← ∅;
5 if a = M then
6 if j′ = 1 then
7 tMci,j′,k ← 0;

8 else
9 tMci,j′,k ← max

(j,j′)∈Ec
i

1≤k′≤NRc
i,j

fRci,j,k′ ; /* Calculate

the start time of map tasks */

10 else
11 tRci,j′,k ← max

1≤k′≤NMc
i,j′

fMci,j′,k′ ; /* Calculate

the start time of reduce tasks */

12 DRci,j′,k =
NMc
i,j′∑

k′=1

DMci,j′,k′γ
Mc
i,j′,k′ ; /* Obtain the

transmission data size of reduce
tasks */

13 faci,j′,k ←∞;
14 foreach slot Lau,v in Las do

/* Assign the task to the most
reasonable slot */

15 Calculate τaci,j′,k using CTT (Taci,j′,k, Lau,v);

16 if faci,j′,k > max{λau,v, taci,j′,k}+
Dac
i,j′,k
µa
u

+ τaci,j′,k

then
17 faci,j′,k ←

max{λau,v, taci,j′,k}+
Dac
i,j′,k
µa
u

+ τaci,j′,k;

18 L← Lau,v ;

19 foreach slot Lau,v in Las do
20 if Lau,v = L then
21 λau,v ← faci,j′,k; /* Set the available

time of slot as the finish
time of task */

22 return.

i5-3479 3.7GHz processors with 4GB of RAM and with
Intel Core i7-3770 3.4GHz processors with 8GB of RAM.
With the objective of maximizing total profit I , RDI (Rela-
tive Deviation Index) of I is set as the response variable. Let
I∗ and I† be the maximal and minimal value of all result-
s with the same number of workflows. According to [52],
RDI of I is described as follows:

RDI =

{
0 I† = I∗

I−I∗
I†−I∗ Otherwise

(17)

A smaller RDI of I means a higher total profit.

5.1 Parameters tuning

In terms of the WS framework shown in Section 4, four
components (workflow conversion, deadline division, task

list construction and task scheduling) have a large expected
impact on the performance. Different workflow conversions
result in different performance. Let NCW and CWC denote
the strategy without workflow conversion and the workflow
conversion based on ChainMap/ChainReduce, respectively.
Three workflow conversions (the proposed CWDP, CWC
and NCW) are compared. Various deadline divisions lead
to different performance too. We compare DE [46], DF [45]
and the generated DFL. ρ is the weight of Γi,j , which is
used in DFL. We test ρ with four representative values 0.2,
0.4, 0.6 and 0.8 in this paper. Let DFL2, DFL4, DFL6

and DFL8 represent DFL with ρ = 0.2, ρ = 0.4, ρ = 0.6

and ρ = 0.8, respectively. Specially, DF is the DFL with
ρ = 0. There are six different deadline divisions. Different
task list constructions have an influence on completion times
of workflows. We compare WSJT, WIJT, WSJD and WIJD,
which are shown in Section 4.3. Various task scheduling s-
trategies result in different completion times of workflows
as well. Since the considered transmission times of task are
different from existing MapReduce task scheduling, EA and
EF [51] are adapted in this paper. Assume REA is the adapt-
ed EA with the consideration of replicas. Four task schedul-
ing strategies (EA, EF, REA and the proposed TS) are com-
pared. Note that the proposed TS is the same as the adapted
EF with replicas. As a result from all the above options, there
are 3×6×4×4 = 288 treatments in the experimental design
of parameters tunning. With the aforementioned three levels
of the number of workflows, the number of treatments is up
to 864. Five random instances for each treatment are tested
and the total number of results in the calibration experiment
is 4320. All instances are generated by RanGen [53].

Experimental results are analyzed by the multi-factor
analysis of variance (ANOVA) statistical technique. All three
main hypotheses (normality, homoscedasticity and indepen-
dence of the residuals) are checked and accepted during the
analysis. According to the analysis of variance (workflow
conversion, deadline division, task list construction and task
scheduling) for RDI of total profit I , all p-values are less
than 0.05 which indicates that all studied factors have a sig-
nificant effect on the response variable at a 95.0% confi-
dence level. The means plots of workflow conversions and
task list constructions with 95.0% Tukey Honest Significant
Difference (HSD) intervals are shown in Figure 6.

From Figure 6 (a), RDI of I is minimum with CWDP.
The reason lies in that CWDP combines MapReduce jobs
by dynamic programming in order to minimize completion
times of workflows, which balances the processing times of
the new combined MapReduce jobs and the transmission
times among jobs. CWC has bigger RDI than CWDP. It
groups all combinable MapReduce jobs into a new MapRe-
duce job to reduce transmission times. The combination of
CWC ignores considerations of profit, which results in long
processing times of the new combined MapReduce jobs and
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Fig. 6: Means plots of workflow conversions and task list constructions
for I with 95.0% Tukey HSD intervals.

nullifies the advantage of combinations. Without doubt, NCW
with no combinations leads to long completion times of work-
flows and less profit for the resource provider. In order to
make the comparison of CWDP and CWC clear, a zoomed-
in view is shown in Figure 7 (a). From Figure 6 (b), we
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Fig. 7: Means plots of workflow conversions (CWDP and CWC) and
task list constructions (WIJT and WIJD) for I with 95.0% Tukey HSD
intervals.

can see that two sequential workflow scheduling WSJT and
WSJD have the highest RDI , because the sequential pro-
cessing of workflows makes completion times of workflows
too long and violate deadlines and result in a small total
profit. Meanwhile the interleaving workflow scheduling per-
forms better than those sequential ones, especially WIJD has
less mean value of RDI than WIJT. The reason lies in that
WIJD schedules jobs processing in parallel of workflow ac-
cording to deadlines in order to decrease completion times
of workflows. While WIJT just randomly processes these
jobs and results in longer completion times and in a worse
total profit. The means plots of deadline divisions and task
scheduling strategies with 95.0% Tukey HSD intervals are
shown in Figure 8. Figure 8 (a) demonstrates that DE has
the worst performance. DE obtains the largestRDI because
it only considers the execution times, resulting in unreason-
able subdeadlines and in the worst total profit. The perfor-
mance of other five rules have no significant differences,
while DFL2 has the minimal mean value of RDI . DFL2
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Fig. 8: Means plots of deadline divisions and task scheduling strategies
for I with 95.0% Tukey HSD intervals.

divides deadlines of workflows in terms of execution times,
float times and locations of MapReduce jobs, which consid-
ers both time and space of jobs in critical path to obtain exact
subdeadlines. Figure 8 (b) shows that TS statistically outper-
forms the other three rules. TS considers replica strategy to
greatly increase the possibility of tasks being processed by
servers holding data in order to decrease transmission times.
At the same time, TS selects servers with the earliest finish
time of tasks to decrease completion times of workflows.
The total profit with REA is less than TS. Even though the
replica strategy is adopted by REA, it selects servers with the
earliest start time of tasks which cannot ensure small com-
pletion times of tasks. Because EF and EA ignore the replica
strategy, they also have worse performance. Especially EF
has less RDI than EA by assigning tasks to servers with the
earliest finish time. As a result from this detailed analysis
and calibration, the proposed framework WS with CWDP,
DFL2, WIJD and TS will be compared with other existing
algorithms in the next section.

5.2 Algorithm comparison

To evaluate performance of the proposed algorithm , four
scientific workflow applications (CyberShake, Genome, LIGO
and Montage) are adopted. The number of workflow appli-
cations takes values from {50, 100, 150}. The other con-
figurations of workflow instances and tasks are the same as
those in the previous section. In existing MapReduce work-
flow scheduling, MRWS [29] and TCC [4] focus on single
MapReduce workflow scheduling and deadlines are not con-
sidered. In order to make MRWS and TCC solve the studied
problem, they are adapted with the proposedDFL2 in order
to have a fair comparison with the proposed WS. The num-
ber of treatments in algorithm comparison is 4×3×3 = 36.
With 5 instances for each treatment, the total number of re-
sults is 180.

Figure 9 shows the interactions between the number of
workflows and the compared algorithms for RDI with 95%
Tukey HSD intervals, where (a), (b), (c) and (d) are the plot-
s for CyberShake, Genome, LIGO and Montage workflow
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Fig. 10: Interactions between the number of workflows and the compared algorithms for each workflow application for Ratio with 95% Tukey
HSD intervals.

instances, respectively. From Figure 9 (a), (b) and (c), WS
has the lowestRDI in almost all cases because of the merits
of WS using CWDP to convert MapReduce workflows, WI-
JD to construct the task list and TS to schedule tasks to re-
sources. According to the existing ChainMap/ChainReduce
in Hadoop, CWDP converts workflows using Dynamic Pro-
gramming to balance transmission times among jobs and
processing times of new converted jobs. WIJD sequences
workflows according to penalty, orders jobs by their divid-
ed deadlines and schedules workflows alternatively which
guarantees all workflows to be processed in parallel and con-
siders deadlines and penalties of workflows. TS adopts the
replica strategy in workflow to improve data locality. It as-
signs tasks to servers with the earliest finish time to mini-
mize the completion time of workflows. The combination of
these strategies increases the total profit of resource provider-
s. MRWS and TCC show no statistically significant differ-
ences in most cases. Though they have different task list
constructions and task scheduling strategies, the strategy with-
out workflow conversion makes completion times of work-
flows too long. With the increase of number of workflows,
the differences among MRWS and TCC become larger, i.e.,
the proposed WS has better performance for large number
of workflows. There are no significant differences from d-

ifferent compared algorithms in Figure 9 (d). The reason
is that Montage workflow instances always have less jobs
with linear dependencies. In other words, WS has better per-
formance on CyberShake, Genome and LIGO workflow in-
stances and comparable performance on Montage instances.
The comparison results are shown in Table 4 with the best
values are bold.

Since deadlines are considered in MapReduce workflow
scheduling, we compare the Ratio indicator. Here Ratio is
the ratio of the number of workflows completed before the
deadlines to the total number of submitted workflows. A
higher Ratio implies that more workflows are completed be-
fore their deadlines. Figure 10 shows us the interactions be-
tween the number of workflows and the compared algorithm-
s for Ratio with 95% Tukey HSD intervals. From Figure 10
(a), (b) and (c), WS obtains the highest Ratio among al-
l compared algorithms. The reason is similar to that for I .
MRWS has higher Ratio than TCC. The reason is that M-
RWS sequences jobs in decreasing order of execution time
and transmission time and schedules tasks to servers with
the earliest finish time. Both of them are decreased comple-
tion times of workflows. While TCC sequences workflows,
jobs and tasks randomly, which is not good at the reduc-
tion of completion times. In Figure 10 (a), (b) and (c), the
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Table 4: Results of the compared algorithms.

Indicators RDI of total profit Ratio

Workflow types CyberShake Genome LIGO Montage CyberShake Genome LIGO Montage

Algorithms
Workflows 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150

WS 1 35.57 37.02 7.75 42.59 6.03 15.36 8.33 6.24 7.60 27.91 25.34 16.58 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.00 23.13 15.91 37.96 12.82 14.41 28.65 19.99 11.14 31.43 18.11 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
3 21.83 13.19 11.51 26.65 33.49 15.00 1.14 25.87 5.50 3.78 2.03 11.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 29.74 6.52 18.11 28.44 15.54 15.32 34.93 10.19 17.18 44.23 9.10 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 26.52 24.32 17.26 29.05 0.00 1.33 10.75 18.55 14.77 21.35 30.13 8.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MRWS 1 41.11 82.70 77.25 45.64 43.74 59.71 31.16 69.10 98.49 27.91 25.34 16.70 0.68 0.27 0.18 0.70 0.35 0.31 0.54 0.31 0.16 1.00 1.00 0.97
2 8.34 72.25 88.86 40.89 42.88 62.01 40.33 72.99 100.00 31.43 18.11 0.28 0.62 0.28 0.18 0.86 0.36 0.27 0.62 0.37 0.17 1.00 1.00 0.96
3 26.97 52.67 75.62 28.02 55.52 59.16 21.10 100.00 85.49 3.78 2.03 11.41 0.70 0.40 0.21 0.88 0.46 0.31 0.46 0.23 0.20 1.00 1.00 0.99
4 39.36 58.12 80.21 31.82 48.62 61.62 48.59 82.20 98.96 44.23 9.10 0.08 0.62 0.34 0.21 0.74 0.41 0.28 0.48 0.23 0.15 1.00 1.00 0.98
5 41.05 72.76 85.07 32.00 32.37 47.32 27.67 89.88 96.56 21.35 30.28 9.53 0.58 0.38 0.18 0.74 0.45 0.24 0.50 0.20 0.16 1.00 0.94 0.87

TCC 1 54.11 80.98 76.44 100.00 53.09 49.71 44.72 44.49 41.75 28.74 25.34 18.11 0.24 0.11 0.11 0.00 0.00 0.01 0.08 0.03 0.06 0.94 1.00 0.89
2 16.60 68.20 77.31 69.56 47.94 43.07 59.74 62.51 54.30 32.21 20.31 0.61 0.36 0.12 0.09 0.00 0.02 0.00 0.06 0.02 0.01 0.94 0.88 0.91
3 39.55 50.61 75.24 62.55 71.23 47.41 31.27 71.69 45.24 4.41 3.89 12.18 0.22 0.21 0.07 0.00 0.00 0.01 0.02 0.03 0.01 0.94 0.84 0.87
4 45.63 53.65 74.13 77.92 56.15 54.61 69.15 54.58 58.31 44.55 11.75 0.31 0.36 0.17 0.12 0.00 0.00 0.01 0.04 0.01 0.00 0.94 0.90 0.92
5 45.67 72.78 78.29 71.06 47.30 35.36 28.58 63.45 61.40 22.00 31.15 9.15 0.24 0.15 0.12 0.00 0.02 0.00 0.12 0.02 0.00 0.92 0.89 0.91

trend of Ratio by MRWS and TCC decreases with an in-
creased number of workflows, while that of WS has no sig-
nificant differences. In other words, the performance of WS
is robust on CyberShake, Genome and LIGO workflow in-
stances. Similar to the total profit, the Ratio for algorithms
shows no significant differences in Figure 9 (d) for Montage
instances. The results in Table 4 is in accordance with the
trends shown in Figure 10.

6 Conclusions and future work

In this paper, MapReduce workflow scheduling with dead-
line and data locality is studied to maximize the total profit
of the resource provider. In the generated MapReduce work-
flow scheduling framework, a new workflow conversion based
on Dynamic Programming and a new deadline division con-
sidering job level and float time are produced to better meet
deadlines. Meanwhile, a new task scheduling with replica
strategy is designed to improve data locality. A number of
MapReduce workflows are converted by Dynamic Program-
ming according to ChainMap/ChainReduce in order to de-
crease transmission times among jobs. In terms of execution
times, float times and job level, deadlines of the converted
workflows are divided into subdeadlines of jobs. In the new
task scheduling, the replica strategy is adapted to decrease
transmission times of input and output. With the construct-
ed task list, servers with the earliest finish time are chosen to
process tasks in order to decrease completion times and to
increase total profit. Experimental results show that the to-

tal profit with the proposed strategy is higher than that with
other compared algorithms.

Generally speaking, different types of big data appli-
cations have special computing frameworks. For example,
MapReduce is suitable for batch-like applications and Spark
for real time applications. In other words, several comput-
ing frameworks are run in a cloud data center to increase
resource utilization. Different types of big data applications
have different resource requirements, servers allocated to d-
ifferent computing frameworks always have uneven resource
utilization. There are still some problems have not been solved
in this paper, such as resource management, data placement
and initial placement. These problems with more workflow
scheduling problems in popular models (e.g., in Spark) are
worth studying in the future.
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