
Math.comput.sci. 2 (2009), 653–682
c© 2009 Birkhäuser Verlag Basel/Switzerland
1661-8270/040653-30, published online December 7, 2009

DOI 10.1007/s11786-009-0073-y

Mathematics in
Computer Science

Local Algorithms for the Prime Factorization
of Strong Product Graphs

Marc Hellmuth, Wilfried Imrich, Werner Klöckl and Peter F. Stadler

Abstract. The practical application of graph prime factorization algorithms
is limited in practice by unavoidable noise in the data. A first step towards
error-tolerant “approximate” prime factorization, is the development of local
approaches that cover the graph by factorizable patches and then use this
information to derive global factors. We present here a local, quasi-linear al-
gorithm for the prime factorization of “locally unrefined” graphs with respect
to the strong product. To this end we introduce the backbone B(G) for a given
graph G and show that the neighborhoods of the backbone vertices provide
enough information to determine the global prime factors.

Mathematics Subject Classification (2000). Primary 99Z99; Secondary 00A00.

Keywords. Strong product graphs, local covering, backbone, S1-condition.

1. Introduction

Network structures derived from real-life data are notoriously incomplete and/or
plagued by measurement errors. As a consequence, the structures need to be an-
alyzed in a way that is robust against inaccuracies, noise, and perturbations in
the data. Most of the classical graph invariants, however, are very fragile in this
respect. The property of factorizability w.r.t. to each of the associative graphs
products [5] is no exception. In fact, very small perturbations already can destroy
the product structure completely, modifying a graph with many factors to a prime
one [2, 9]. The recognition of product structures, even if disguised by noise, is a
problem of practical interest e.g. in theoretical biology [8] and in mathematical en-
gineering [7]. A first systematic investigation into “approximate graph products”
showed, that a practically viable approach can be based on local factorization
algorithms, because these recognize product structures in small subgraphs and at-
tempt to stepwisely extend regions with product structures. This idea has been
fruitful in particular for the strong product of graphs, where one benefits from the

654 M. Hellmuth et al. Math.comput.sci.

fact that the local product structure of neighborhoods is a refinement of the global
factors [4].

In [4] we have introduced the class of thin-neighborhood intersection coverable
(NICE) graphs, and devised an efficient quasi-linear-time local factorization algo-
rithm w.r.t. the strong product. Here we extend this previous work to the much
larger class of thin graphs which are whose local factorization is not finer than the
global one. Will call this property locally unrefined.

Figure 4 gives an example of a thin but locally refined graph. It is prime but
the closed neighborhoods of all vertices have two prime factors. We can regard this
graph as an approximate product, arising from a product of paths that are then
connected in a twisted way that destroys factorizability at the global level but
leaves the local product structure intact. A local approach like the one proposed
here, will recognize the regional product structure and only at a later stage report
global inconsistencies. A detailed discussion of this point is, however, beyond the
scope of this contribution. Here, we shall focus only on the recognition of globally
factorizable graphs by means of a novel, strictly local approach. It is based on the
concept of the backbone B(G) of a thin graph, defined on the cardinality of equiv-
alence classes of a particular relation S. As it turns out B(G) is the set of vertices
with strictly maximal closed neighborhoods. We will show how to determine the
prime factors of a given locally unrefined graph G by covering it by neighborhoods
of the backbone vertices only. Moreover, we will derive polynomial-time local al-
gorithms for computing the product coloring and the Cartesian skeleton of G, and
for recognizing whether G is locally unrefined.

2. Background and results

2.1. Definitions

Basic notation. We only consider finite, simple, connected and undirected graphs
G = (V,E) with vertex set V and edge set E. A graph is nontrivial if it has at least
two vertices. The neighborhood N(v) of a vertex v ∈ V is the set of all vertices
that are adjacent to v. Throughout this contribution, we will mostly be concerned
with closed neighborhoods N [v] := N(v) ∪ {v}. We define the n-neighborhood of
vertex v as the set Nn[v] = {x ∈ V (G) | d(v, x) ≤ n}, where d(x, y) denotes the
canonical distance in G, i.e., the length of a shortest path connecting the vertices
x and y. Notice that N1[v] = N [v]. Unless there is a risk of confusion, we call a
1-neighborhood just neighborhood. The degree deg(v) of a vertex v is the number
adjacent vertices, or, equivalently, the number of incident edges. The maximum
degree in a given graph is denoted by Δ. The subgraph of a graph G that is induced
by a vertex set W ⊆ V (G) is denoted by 〈W 〉.

Product graphs. The vertex set of the strong product G1 � G2 of two graphs G1

and G2 is defined as {(v1, v2) | v1 ∈ V (G1), v2 ∈ V (G2)}, the Cartesian product of
the vertex sets of the factors. Two vertices (x1, x2), (y1, y2) are adjacent in G1�G2

if one of the following conditions is satisfied:

Vol. 2 (2009) Local Covering Algorithms 655

(i) [x1, y1] ∈ E(G1) and [x2, y2] ∈ E(G2),
(ii) [x1, y1] ∈ E(G1) and x2 = y2,
(iii) [x2, y2] ∈ E(G2) and x1 = y1.

The Cartesian product G1�G2 has the same vertex set asG1�G2, but vertices
are only adjacent if they satisfy (ii) or (iii). Consequently, edges that satisfy (ii)
or (iii) in a strong product are called Cartesian, the other edges non-Cartesian.
In products of more factors, the edges that join vertices differing in exactly one
coordinate are called Cartesian.

It is well known that the strong product is associative. Thus a vertex of
�Gi is properly “coordinatized” by the vector (x1, . . . , xn) whose entries are the
vertices xi of its factor graphs Gi. The coordinatization of a product is equivalent
to a (partial) edge coloring of G in which edges (xy) share the same color ck if the
two points x and y differ only in the value of a single coordinate k, i.e., if xi = yi,
i �= k and xk �= yk. This colors the Cartesian edges of G (with respect to the
given product representation). It follows that for each color c the set Ec = {e ∈
E | c(e) = c} of edges with color c spans G. The connected components of 〈Ec〉,
usually called the layers or fibers of G, are isomorphic subgraphs of G.

For later reference we note that the distance of two vertices and product
graph is determined by distances within the factors:

Lemma 2.1 ([5], p. 149). Let G = G1 � · · ·�Gk be the strong product of connected
graphs. Then

dG(u, v) = max
1≤i≤k

dGi
(ui, vi).

A subproduct of a product G � H is defined as the product of subgraphs of
G and H respectively. In particular, neighborhoods are subproducts:

Lemma 2.2 ([4]). For any two graphs G and H holds 〈NG�H
n [(x, y)]〉 = 〈NG

n [x]〉�
〈NH

n [y]〉.
Let G = �n

j=1Gj be a strong product graph graphs and denote the coordi-
nates of x ∈ V (G) by (x1, . . . xi−1, xi, xi+1, . . . , xn). The mapping pi(x) = xi is
called projection of x onto the i−th factor.Gx

i denotes the subgraph that is induced
by the vertices of the set {(x1, . . . xi−1, v, xi+1, . . . , xn) ∈ V (G) | v ∈ V (Gi)}. We
call this subgraph Gx

i a Gi-fiber or Gi-layer through vertex x. With a horizontal
fiber we mean the subgraph of G induced by vertices of one and the same fiber,
i.e. we mean a particular Gx

i -fiber without mention this particularly, if there is no
risk of confusion. With parallel Gi-fibers we mean all fibers with respect to a given
factor Gi. Edges of (not necessarily) different Gi-fibers are said to be edges of one
and the same factor Gi. If a subgraph H of G = G1 � G2 has a representation
H = H1�H2 that is compatible with the strong product G in the sense that Hi-
fibers and the Gi-fibers induce the same partition of the vertex sets V (H) = V (G),
we call the subgraph H Cartesian skeleton, see [5].

A graph G is prime with respect to the strong product if it is not isomorphic
to the strong product of two nontrivial graphs. It is clear that every finite graph

656 M. Hellmuth et al. Math.comput.sci.

a = x1y1 b = x1y2

c = x2y1 d = x2y2

a = x1y1 b = x2y2

c = x1y2 d = x2y1

Figure 1. The edge (a,b) is Cartesian in the left and non-
Cartesian in the right coordinatization.

is isomorphic to a strong product of prime graphs. This product representation
usually is called prime factor decomposition (PFD).

For finite connected graphs, the prime factorization with respect to the strong
product is unique up to isomorphism and the order of the factors [1]. There are,
however, disconnected graphs with a non-unique PFD, see e.g. [5].

Thinness. An important issue in the context of graph products is whether or not
two vertices can be distinguished by their neighborhoods. This is captured by the
relation S, see [1]: Two vertices x, y ∈ V (G) are in the relation S if they have the
same closed neighborhoods, N [x] = N [y]. Note that xSy implies that x and y are
adjacent since, by definition, x ∈ N [x] and y ∈ N [y]. Clearly, S is an equivalence
relation. The S-class of x is denoted by S(x) = {v ∈ V | N [v] = N [x]}.

The graph G/S is the usual quotient graph. More precisely, its vertex set is
V (G/S) = {Si | Si is an equivalence class of S} and (Si, Sj) ∈ E(G/S) whenever
(x, y) ∈ E(G) for some x ∈ Si and y ∈ Sj . Note that SG/S is trivial, that is, its
equivalence classes are single vertices [5]. We call a graph S-thin, or thin for short,
if it has trivial S, i.e. if no two vertices are in relation S. Thus G/S is thin. The
importance of thinness lies in the following uniqueness result:

Theorem 2.3 ([1,5]). A finite, undirected, simple, connected graph G has a unique
PFD with respect to the strong product. If G is S-thin, then the coordinatization
is unique.

As a consequence, the Cartesian edges are uniquely determined in S-thin
graphs. Note that the set of all Cartesian edges in a thin strong product G are the
edges of the Cartesian skeleton H of G. An example of a non S-thin graph and
with different possible coordinatizations is shown in Figure 1.

Much of our work is based on the intuition that it should be feasible to
construct the Cartesian skeleton of G by considering only PFDs of suitable neigh-
borhoods, more precisely, it should be sufficient to work with the Cartesian edges

Vol. 2 (2009) Local Covering Algorithms 657

1 2

3

z v x

y

Figure 2. A thin graph whereby 〈N [v]〉 is not thin. The S-classes
in 〈N [v]〉 are Sv(v) = {v}, Sv(z) = {z} and Sv(x) = Sv(y) =
{x, y}.

of these neighborhoods. The main problem with this idea is that it requires that G
can be covered by thin neighborhoods 〈N [v]〉, a condition that is not always met.

The main obstacle is the realization that even though G is thin, this is not
necessarily true for subgraphs, and in particular neighborhoods, Figure 2. In order
to investigate this issue in some more detail, we also consider S-classes w.r.t.
subgraphs of a given graph G.

Definition 2.4. Let H ⊆ G be an arbitrary subgraph of a given graph G. Then
SH(x) is defined as the set

SH(x) =
{
v ∈ V (H) | N [v] ∩ V (H) = N [x] ∩ V (H)

}

For the sake of convenience we set Sy(x) := S〈N [y]〉(x) =
{v ∈ N [y] | N [v] ∩N [y] = N [x] ∩N [y]}. In other words, Sy(x) is the S-class that
contains x in the subgraph 〈N [y]〉. Notice that N [x] ⊆ N [v] holds for all v ∈ Sx(x).
If G is additionally thin, then N [x] � N [v].

Lemma 2.5 ([5], p. 155). For any two graphs G1 and G2 holds (G1 � G2)/S

G1/S � G2/S. Furthermore, for every x = (x1, x2) ∈ V (G), SG(x) = SG1

(x1) ×
SG2

(x2).

Corollary 2.6. Let G be a strong product G = G1�G2. Consider a vertex x ∈ V (G)
with coordinates (x1, x2). Then for every z ∈ SG(x) holds zi ∈ SGi

(xi), i.e. the
i-th coordinate of z is contained in the S-class of the i-th coordinate of x.

Moreover, G and G/S have the same number of nontrivial prime factors if
and only if none of the prime factors of G is isomorphic to a complete graph.

The S1-condition. Since the Cartesian edges are globally uniquely defined in a
thin graph, the challenge is to find a way to determine enough Cartesian edges
from local information, even if 〈N [v]〉 is not thin. The following property will play
a crucial role for this purpose:

Definition 2.7. Let G = (V,E) be a thin graph. An edge (x, y) ∈ E satisfies the
S1-condition if there is vertex z ∈ V s.t.

1. x, y ∈ N [z] and
2. |Sz(x)| = 1 or |Sz(y)| = 1.

658 M. Hellmuth et al. Math.comput.sci.

From Lemma 2.5 we can directly infer that the cardinality of an S-class in a
product graph G is the product of the cardinalities of the corresponding S-classes
in the factors. Applying this fact together with Lemma 2.2 to the subgraph of G
induced by a closed neighborhood N [v] immediately implies Corollary 2.8.

Corollary 2.8. Consider a strong product G = G1�G2 and two vertices v, x ∈ V (G)
with coordinates (v1, v2) and (x1, x2), s.t. vi, xi ∈ V (Gi) and vi ∈ N [xi] for i =
1, 2. Then Sv(x) = Sv1

(x1)×Sv2
(x2) and therefore |Sv(x)| = |Sv1

(x1)| · |Sv2
(x2)|.

Lemma 2.9. Let G be a strong product graph containing two S-classes SG(x), SG(y)
that satisfy

(i) (SG(x), SG(y)) is a Cartesian edge in G/S and
(ii) |SG(x)| = 1 or |SG(y)| = 1.

Then all edges in G induced by vertices of SG(x) and SG(y) are Cartesian and
copies of one and the same factor.

Proof. For simplicity, we write S(.) for SG(.). Suppose the PFD of G consists
of n factors. Furthermore, we may assume w.l.o.g. that |S(x)| = 1. Lemma 2.5
implies that for every prime factor Gi of G, 1 ≤ i ≤ n, holds

|SGi
(xi)| = 1

In the following, S(v)m denotes the m-th coordinate of vertex S(v) in G/S. Being
a Cartesian edge means that S(x) and S(y) coincide in every, but one, say the j-th
coordinate w.r.t. the PFD of G/S, i.e. ∀i �= j holds S(x)i = S(y)i. By Lemma 2.5
this is SGi

(xi) = SGi
(yi).

Corollary 2.6 implies that the i-th coordinate (i �= j) of every vertex in
S(x) ∪ S(y) is in SGi

(xi) ∪ SGi
(yi) = SGi

(xi), which is a set of cardinality 1.
Hence, all vertices in S(x)∪S(y) have the same i-th coordinate. This is equivalent
to the claim of the lemma. �

Remark 2.10. Whenever we find a Cartesian edge (x, y) in a neighborhood 〈N [z]〉
so that one endpoint of (x, y) is contained in a S-class of cardinality 1 in 〈N [z]〉/S,
i.e., such that Sz(x) = {x} or Sz(y) = {y}, we can therefore conclude that all edges
in 〈N [z]〉 induced by vertices of Sz(x) and Sz(y) are also Cartesian and are copies
of one and the same factor.

The backbone of G. This observation naturally gives rise to two questions:

• Which Cartesian edges have these properties?
• What is the global structure of a Cartesian skeleton that can be determined
in this way?

We first consider a subset of V (G) that will play a special role in our approach.

Definition 2.11. The backbone of a thin graph G is the vertex set

B(G) =
{
v ∈ V (G) | |Sv(v)| = 1

}
.

Vol. 2 (2009) Local Covering Algorithms 659

a0 a1 a2

a3

b0 b1 b2

b3

c0 c1 c2

c3

0 1 2

3

4 5 6

7

8 9 10

11

a0 a1 S1

b0 b1 S2

c0 c1 S3

0 1 S1

4 5 S2

7 8 S3

a0 a1 a2

a3

b0 b1 b2

b3

c0 c1 c2

c3

0 1 2

3

4 5 6

7

8 9 10

11

G G/S Cartesian edges of G that

satisfy the S1-condition

Figure 3. This figure shows how we identify (a couple of) Carte-
sian edges that satisfy the S1-condition. Given a graph G compute
its quotient graph G/S, decompose G/S w.r.t. to its strong prime
factors. Since G/S is thin the Cartesian edges in G/S are uniquely
determined. Apply now Lemma 2.9 to identify all Cartesian edges
in G that satisfy the S1-condition in G/S.

Notice that Corollary 2.6 implies that the number of prime factors of 〈N [v]〉
coincides with the number of prime factors of 〈N [v]/S〉 for all v ∈ B(G), otherwise
we would have |Sv(v)| > 1.

Definition 2.12. Let G = (V,E) be a graph. A subset D of V is a dominating set
for G, if for all vertices in V \D there is at least one adjacent vertex from D.

We callD connected dominating set, ifD is a dominating set and the subgraph
induced by D is connected.

2.2. Main results

In this subsection we give preview of our main results. The proofs will then be
given in the next sections.

Theorem 2.13. Let G be a thin graph. Then the backbone B(G) is a connected
dominating set for G.

For all v ∈ V (G), there exists a vertex w ∈ N [v] s.t. w ∈ B(G). In other words,
the entire graph can be covered by closed neighborhoods of the backbone vertices.
The following result highlights the importance of B(G) for the identification of
Cartesian edges.

Theorem 2.14. All Cartesian edges that satisfy the S1-condition in an arbitrary
induced neighborhood also satisfy the S1-condition in the induced neighborhood of
a vertex of the backbone B(G).

If at least one edge of Gx
i in G = �n

j=1Gj satisfies the S1-condition then all
vertices of Gx

i are contained in edges of Gx
i that satisfy the S1-condition.

660 M. Hellmuth et al. Math.comput.sci.

x y z

Figure 4. A prime graph where each local factorization leads to
two factors. This graph is often also called a twisted product.

This result implies that it makes sense to give the following definition:

Definition 2.15. An entire Gx
i -fiber satisfies the S1-condition, whenever one of its

edges does.

Taken together, these two theorems allow us to identify all Cartesian edges
of Gx

i -fiber that satisfies the S1-condition, using exclusively information about the
neighborhoods of the backbone vertices.

The identification of the Cartesian edges is only the first step in constructing
a PFD, however. We also need to be able to determine which Cartesian edges
belong to copies of the same factor Gi. This task is explained in the next sections.
As we shall see, the PFD can be computed with particular efficiency for graphs in
which the local PDF is not finer than the global one.

Definition 2.16. Let G be a given graph and H ⊆ G be an arbitrary subgraph.
|PF (G)| and |PF (H)| denote the number of the prime factors of G and H, respec-
tively.

The graph class Υ of locally unrefined graphs consists of all S-thin graphs
with the property that |PF (G)| = |PF (〈N [v]〉)| for all v ∈ B(G).

The graph class Υn is the set of all graphs G ∈ Υ with |PF (G)| = n.

Not all graphs have this property. A counter-example is shown in Figure 4.
The following theorems state the time complexity of our developed algorithms

working on a local level and concerning the PFD and the determination of the
Cartesian skeleton of graph G ∈ Υ and the recognition if G ∈ Υ.

Vol. 2 (2009) Local Covering Algorithms 661

Theorem 2.17 (PFD of G ∈ Υ). Let G = (V,E) = �n
j=1Gj ∈ Υ with

bounded maximum degree Δ. Then the prime factors of G can be determined in
O(|V | · log2(Δ) ·Δ6) time.

Theorem 2.18. Let G = (V,E) ∈ Υ with bounded maximum degree Δ. Then the
Cartesian skeleton of G can be determined and colored w.r.t. to the prime factors
in O(|V |2) ·Δ10) time.

Theorem 2.19. Let G = (V,E) be a thin graph with bounded maximum degree Δ.
Determining whether G ∈ Υ can be done in O(|V |2) ·Δ10) time.

3. Backbone

We start exploring properties of the backbone B(G) of thin graphs. Our immediate
goal is to establish that every vertex of G is in B(G) or has an adjacent vertex
contained in B(G). This is equivalent to the statement that B(G) is a domination
set for G. We will then show that B(G) is connected.

Lemma 3.1. Let G be a thin, connected simple graph and v ∈ V (G) with |Sv(v)| >
1. Then there exists a vertex y ∈ Sv(v) s.t. |Sy(y)| = 1.

Proof. Let |Sv(v)| > 1. Since G is finite we can choose a vertex y ∈ Sv(v) that has
a maximal closed neighborhood in G among all vertices in Sv(v). Moreover N [y]
is maximal in G among all vertices of V (G). Assume not. Then there is a vertex
z s.t. N [y] ⊂ N [z], but then z ∈ Sv(v), a contradiction to the maximality of N [y]
among all vertices in Sv(v). Since G is thin N [y] is strictly maximal.

Furthermore |Sy(y)| = 1, otherwise there is a z ∈ Sy(y), z �= y s.t. N [z] ∩
N [y] = N [y]. Since G is thin, there is a x ∈ N [z] with x �∈ N [y] and thus N [y] �
N [z], but this is a contradiction to the fact that N [y] is strictly maximal. �
Lemma 3.2. Let G be a thin graph and v an arbitrary vertex of G. Then v ∈ B(G)
if and only if N [v] is a strictly maximal neighborhood in G

Proof. If N [v] is a strictly maximal neighborhood in G then |Sv(v)| = 1 which is
shown analogously to the last part of the last proof.

Let now v ∈ B(G). Assume N [v] is not strictly maximal. Then there is a
vertex z ∈ V (G) different from v such that N [v] ⊆ N [z]. Thus, N [v]∩N [z] = N [v],
z ∈ Sv(v) and |Sv(v)| > 1, contradicting that v ∈ B(G). �
Lemma 3.3. Let G be a thin connected simple graph. Then the backbone B(G) is a
dominating set for G.

Proof. We have to show that for all v ∈ V (G) there exists a vertex w ∈ N [v]
s.t. |Sw(w)| = 1. If 〈N [v]〉 is thin or |Sv(v)| = 1, there is nothing to show. If
|Sv(v)| > 1, then the statement follows from Lemma 3.1. �
Lemma 3.4. Let G be a thin connected simple graph. Then the set of adjacent
vertices v and w with |Sw(w)| = 1 or |Sv(v)| = 1 induces one connected subgraph
H of G.

662 M. Hellmuth et al. Math.comput.sci.

Figure 5. Examples of backbones, highlighted by the dashed lines.

Proof. Assume H consists of at least two components and let C denote the set of
these components. Since G is connected we can choose components C,C ′ ∈ C s.t.
there are vertices x ∈ C, y ∈ C ′ that are adjacent in G. Since G is finite and
x, y ∈ N [x] there is a maximal closed neighborhood N [z] in G containing x and y.
The thinness of G implies that N [z] is strictly maximal. This implies, analogously
as in the proof of Lemma 3.1, that |Sz(z)| = 1 contradicting that x and y are in
different components of H. �

Lemma 3.5. Let G be a thin connected graph. Then the set of adjacent vertices v
and w with |Sw(w)| = 1 and |Sv(v)| = 1 induces one connected subgraph H of G,
i.e. the backbone B(G) induces a connected subgraph H of G.

Proof. Assume H consists of at least two connected component. Let C C ′ be any
such connected component. From Lemma 3.4 we can conclude that the subgraph
M of G induced by all vertices of edges (v, w) with |Sw(w)| = 1 or |Sv(v)| = 1 is
connected. Hence, in M there is path P = {x = x0, x1, x2, . . . , xn−1, xn = y} from
x ∈ C to y ∈ C ′, where C ′ is any other connected component.

W.l.o.g., we may assume that P ∩ V (C) = {x}. (Otherwise we replace P by
{xm, xm+1, . . . , xn = y}, where m = max{i | xi ∈ P ∩ V (C)}.) This implies that
x1 is not in B(G). But then x2 must be in a component C ′′ �= C from B(G), since
every edge in M contains at least one vertex which is in B(G).

Notice that neither x nor x2 are in Sx1
(x1), otherwise (x, x2) ∈ E(G) and C

and C ′′ would be connected. By Lemma 3.1 we can choose a z ∈ Sx1
(x1), z �= x, x2

with |Sz(z)| = 1. Thus C and C ′′ are connected. Contradiction. �
From Lemma 3.3 and Lemma 3.5 we can directly infer Theorem 2.13. Notice

that if G is thin and |B(G)| > 1, then every vertex has an adjacent vertex that is
in the backbone. Clearly this is not true whenever |B(G)| = 1, as the example in
Figure 6 shows.

Lemma 3.6. Let G be a thin graph with a backbone consisting of a single vertex
B(G) = {v}. Then |Sv(w)| = 1 for all w ∈ V (G).

Proof. Theorem 2.13 implies that 〈N [v]〉
 G and thus Sv(w) = SG(w) for all
w ∈ V (G). Since G is thin every S class in G is trivial and therefore also in
〈N [v]〉. �

Vol. 2 (2009) Local Covering Algorithms 663

v

z’ x

Figure 6. A thin graph G with backbone B(G) = {v}. Thus
there is no vertex w ∈ N(v) s.t. |Sw(w)| = 1. Moreover notice
that |Sz′(x)| = 1 but x, z′ /∈ B(G). Lemma 3.7 implies that there
is a vertex z ∈ B(G) such that |Sz(x)| = 1. In this example holds
z = v.

The backbone vertices play a special role in our approach. First we observe
that all Cartesian edges (x, y) that have a vertex which is contained in the backbone
satisfy the S1-condition. Furthermore, we will show next that it suffices to consider
only induced neighborhoods of backbone vertices to find all Cartesian edges that
satisfy the S1-condition.

Lemma 3.7. Let G be a thin graph and (x, y) an arbitrary edge in E(G). If there
exists a vertex z′ ∈ N [x] ∩ N [y] with |Sz′(x)| = 1 then there exists even a vertex
z ∈ N [x] ∩N [y] with the following properties:

z ∈ B(G) and |Sz(x)| = 1 .

Proof. If z′ ∈ B(G) there is nothing to show.
Now suppose |Sz′(z′)| > 1. By Lemma 3.1 we can choose a vertex z ∈ Sz′(z′)

with |Sz(z)| = 1. Since z ∈ Sz′(z′), we can conclude that N [z′] ⊂ N [z] and thus
x, y ∈ N [z] and therefore z ∈ N [x] ∩N [y].

It remains to show that |Sz(x)| = 1. Assume |Sz(x)| > 1 then there is a
vertex w ∈ Sz(x) different from x. The definition of Sz(x) implies N [w] ∩N [z] =
N [x] ∩ N [z], which implies that w ∈ N [z′], since z′ ∈ N [x] ∩ N [z]. Moreover we
can conclude

N [w] ∩N [z] ∩N [z′] = N [x] ∩N [z] ∩N [z′] . (3.1)

Since N [z′] ⊂ N [z], we can cancel the intersection with N [z] in equation 3.1 to
obtain

N [w] ∩N [z′] = N [x] ∩N [z′] .

But then w ∈ Sz′(x) and thus |Sz′(x)| > 1, contradicting |Sz′(x)| = 1. Hence
|Sz(x)| = 1. �
Lemma 3.8. Let (x, y) ∈ E(G) be an arbitrary edge in a thin graph G such that
|Sx(x)| > 1. Then there exists a vertex z ∈ B(G) s.t. z ∈ N [x] ∩N [y].

Proof. Since |Sx(x)| > 1 and by applying Lemma 3.1 we can choose a vertex
z ∈ Sx(x) with z ∈ B(G). Since z ∈ Sx(x) it holds N [x] ⊂ N [z] and hence
y ∈ N [z], and the claim follows. �

664 M. Hellmuth et al. Math.comput.sci.

Corollary 3.9. Let G be a thin graph and (x, y) an arbitrary edge in E(G) that
does not satisfy the S1-condition. Then there exists a vertex z ∈ B(G) s.t. z ∈
N [x] ∩N [y], i.e. the edges (z, x) and (z, y) satisfy the S1-condition.

4. Determining the prime factors of G ∈ Υ in quasi-linear time

In this section we will first show that it is possible to determine all (Cartesian)
edges of a Gx

i -fiber, whenever one edge of this Gx
i -fiber satisfies the S1-condition.

Then we will explain how we can color such fibers in a way that all edges of a
particular Gx

i -fiber receive the same color, restricted to the fact that x ∈ B(G).
The general case will be treated in Section 5. Moreover we will give an algorithm
that determines the prime factors of a given graph G ∈ Υ in quasi-linear time in
the number of vertices of G.

4.1. Determining Cartesian edges

First we will prove the following. If at least one edge of a fiber Gx
i satisfies the

S1-condition in G, then all vertices contained in Gx
i have an endpoint in an edge

e ∈ E(Gx
i) that satisfies the S1-condition. In practice, this means that we can

mark all edges of the subgraph Gx
i as Cartesian if at least one edge of Gx

i satisfies
the S1-condition provided that the corresponding product graph G is thin.

Lemma 4.1. Let G = �n
j=1Gj be the strong product of thin graphs and (x, y) ∈

E(G) be a Cartesian edge, where x and y differ in coordinate i. Moreover let (x, y)
satisfy the S1-condition. Then for all edges (a, b) ∈ E(Gx

i) at least one of the
following statements is true:

1. (a, b) satisfies the S1-condition.
2. There are edges (z̃, a), (z̃, b) ∈ E(Gx

i) that satisfy the S1-condition.
In this case, knowing that (z̃, a), (z̃, b) belong to Gx

i implies that (a, b) is
necessarily also an edge of Gx

i .

Furthermore, the vertices incident with edges of Gx
i that satisfy the S1-condition

induce a single connected subgraph H ⊆ Gx
i .

Proof. By associativity and commutativity of the strong product it suffices to
show this for the product G = G1 �G2 of two thin (not necessarily prime) graphs.
Notice that Gx

i = Gy
i , since x and y differ only in coordinate i. Furthermore let

(x1, x2) denote the coordinates of x. The notation of the coordinates of a, b, and y
is analogous. W.l.o.g. assume i = 2 and |Sz(x)| = 1 with z = (z1, z2) ∈ N [x]∩N [y].
Corollary 2.8 implies |Sz1(x1)| = 1 and |Sz2(x2)| = 1. The idea of the rest of the
proof is to shift properties of (a2, b2), the projection of (a, b) into the factor G2,
to (a, b).

Case (a) (a2, b2) satisfies the S1-condition inG2. Then we may assume w.l.o.g.
that there is a v2 ∈ G2 with |Sv2

(a2)| = 1 and a2, b2 ∈ N [v2]. Since x1 = a1,
Corollary 2.8 implies |S(z1,v2)(a)| = 1. Lemma 2.1 shows that a, b ∈ N [(z1, v2)].
This means (a, b) satisfies the S1-condition.

Vol. 2 (2009) Local Covering Algorithms 665

Case (b) (a2, b2) does not satisfy the S1-condition in G2. Then Corollary 3.9
implies the existence of a vertex v2 ∈ G2 such that both (v2, a2) and (v2, b2) satisfy
the S1-condition in G2. Case (a) shows that ((a1, v2), a) and ((a1, v2), b) satisfy
the S1-condition.

Since B(G2) is a connected dominating set for G2, the subgraph of G2 induced
by all vertices of edges that satisfy the S1-condition in G2 is connected. Since we
can shift every edge that satisfies the S1-condition in G2 to an edge that satisfies
the S1-condition in Gx

i , H is connected. �

From Lemmas 3.7 and 4.1 we can directly conclude that Theorem 2.14 holds.
Clearly, we can identify at least one edge of each prime factor that belongs

to the backbone of G, even if the local decomposition is finer than the global one.
In the case of locally unrefined graphs G ∈ Υ, however, we can do much more:
Once we have found an edge (x, y) of a Gx

i -fiber that satisfies the S1-condition we
can identify all edges of that Gx

i -fiber as Cartesian.
It remains to show how we can identify edges not only as Cartesian but also

as belonging to a fiber of a particular factor Gi. In the next subsection we will
explain how this works

4.2. Identify colors of Gx
i -fibers with x ∈ B(G)

In this subsection we will show how to color a Gx
i -fiber of a given product graph

G ∈ Υ with x ∈ B(G) in a way that all edges of the Gx
i -fiber receive the same

color. For this we will need several definitions that are quite similar to those ones
in [4]. Here, we will restrict the constructions to individual Gx

i -fibers, however.

Definition 4.2. A product coloring of a graph G = �n
i=1Gi is a mapping FG from

a subset E′ of the set of Cartesian edges of G into a set C = {1, . . . , n} of colors,
such that all edges in a Gi-fibers receive the same color i.

Let Gx
j be a fiber of an arbitrary factor Gj of G. An (x, j)-partial product

coloring ((x, j)-PPC) of a graph G = �n
i=1Gi is a mapping FG from a subset E′

of the set of Cartesian edges of G into a set C of colors, such that all edges in this
particular Gx

j -fiber receive the same color.

Definition 4.3. Let H1, H2 ⊂ G and FH1
be a (x, j)-PPC of H1. resp. H2. Then

FH2
is a (x, j)-color continuation of FH1

if there is a color c in the image of FH2

such that there is an edge of the Gx
j -fiber that satisfies the S1-condition in H2

with color c that is also in the domain of FH1
and satisfies the S1-condition in H1.

More formally:

∃ edge e ∈ Dom(FH1
) ∩Dom(FH2

) ∩ E(Gx
j)

that satisfies the S1-condition in both H1 and H2.
The combined (x, j)-PPC on H1∪H2 uses the color of FH1

on H1 and colors
all edges f of H2 with FH2

(f) = c with the color FH1
(e).

Definition 4.4. A finite sequence σ(x,j) = (vi)
k
i=0 of vertices of G is a (x, j)-covering

sequence if

666 M. Hellmuth et al. Math.comput.sci.

1. for all v ∈ V (Gx
j) there exists a vertex w ∈ σ(x,j) with v ∈ N [w] and

2. if for all i > 0 every PPC of 〈N [vi+1]〉 is a (x, j)-color continuation of the

combined (x, j)-coloring of
⋃i

l=1 E(〈N [vl]〉) defined by the (x, j)-PPC of each
〈N [vl]〉.

We call a (x, j)-covering sequence simply covering sequence if there is no risk
of confusion.

In order to construct a proper covering sequence we introduce an ordering of
the vertices V = {w0, . . . , wn−1} of G by means of breadth-first search: Select an
arbitrary vertex v ∈ V and create a sorted list BFS(v) of vertices beginning with
v; append all neighbors v1, . . . , vd(v) of v; then append all neighbors of v1 that are
not already in this list; continue recursively with v2, v3, . . . until all vertices of V
are processed. In this way we build levels where each v in level i is adjacent to
some vertex w in level i− 1 and vertices u in level i+ 1. We then call the vertex
w the parent of v, denoted by parent(v), and vertex v a child of w.

In our approach we will use this search algorithm in a slightly modified way.
Let v ∈ B(G) be the starting vertex. We then decompose the neighborhood of
v w.r.t. to its strong prime factor decomposition. Then we fix one color c of one
fiber, say Gv

i , and append only those neighbors vj of v to the current list BFS(v)
if

1. they are not already in this list and
2. vj ∈ B(G) and
3. the edge (v, vj) has the color c of the corresponding Gv

i -fiber.

This will be done recursively for the remaining vertices w fixing the color in each
neighborhood 〈N [w]〉 of the underlying Gv

i -fiber. Therefore, BFS(v) is a sorted
BFS-list on the vertex set B(G) ∩ V (Gv

i).
First we show that in a prime graph G ∈ Υ such a BFS(x) ordering on the

vertices of B(G) leads to a (x, 1)-covering sequence of G.

Lemma 4.5. Let G ∈ Υ be prime and let x be an arbitrary vertex of the backbone
B(G) = {w1, . . . , wm}. Then BFS(x) on the vertices of B(G) is a (x, 1)-covering
sequence.

Proof. By Theorem 2.13 holds that for all v ∈ V (G) there is a vertex w ∈ BFS(x)
such that v ∈ N [w]. Thus item (1) of Definition 4.4 is fulfilled.

Notice that |PF (〈N [v]〉)| = 1 for all v ∈ BFS(x) since G ∈ Υ. Thus all edges
in such 〈N [v]〉 are Cartesian and get exactly one color.

Now, take two arbitrary consecutive vertices vi, vi+1 from BFS(x). If vi and
vi+1 are adjacent then vi+1 is a child of vi and the edge (vi, vi+1) satisfies the
S1-condition in 〈N [vi]〉 as well as in 〈N [vi+1]〉, since vi, vi+1 ∈ B(G). Therefore
the edge (vi, vi+1) is colored in the neighborhoods of both adjacent vertices and

we get a proper (x, 1)-color continuation from 〈N [x]〉 ∪
⋃i

l=1〈N [vl]〉 to 〈N [vi+1]〉.
If vi and vi+1 are not adjacent (thus vi �= x) then there must be parents u,w ∈

BFS(x) of vi and vi+1, resp. and we can apply the latter argument. Therefore
BFS(x) is a proper (x, 1)-covering sequence. �

Vol. 2 (2009) Local Covering Algorithms 667

Algorithm 1 Color Gx
i -fiber

1: INPUT: a thin graph G ∈ Υn and a vertex x ∈ B(G)
2: factor 〈N [x]/S〉 and properly color the Cartesian edges in 〈N [x]〉 that satisfy

the S1-condition with colors c1, . . . , cn;
3: Li ← ∅, i = 1, . . . , n;
4: for i = 1, . . . , n do
5: mark x;
6: add all neighbors v ∈ B(G) of x with color ci in list Li in the order of their

covering;
7: while Li �= ∅ do
8: take first vertex v from the front of Li;
9: delete v from Li;

10: if v is not marked then
11: mark v;
12: factor 〈N [v]/S〉 and properly color the Cartesian edges in 〈N [v]〉 that

satisfy the S1-condition;
13: combine the colors on edge (parent(v), v);
14: add all neighbors w ∈ B(G) of v with color ci to the end of list Li in

the order of their covering;
15: end if
16: end while
17: for all edges (v, w) that do not satisfy the S1-condition do
18: if there are edges (z, v) and (z, w) that have color ci then
19: mark (v, w) as Cartesian and assign color ci to (v, w);
20: {Notice that these edges (z, v) and (z, w) satisfy the S1-condition}
21: end if
22: end for
23: end for
24: OUTPUT: G with colored Gx

j -fiber, j = 1, . . . , n;
25: {Notice that every Gx

j -fiber is isomorphic to one prime factor of G}

We will now directly transfer that knowledge to (non prime) product graphs.
For this we will introduce in Algorithm 1 how to get a proper coloring on all Gx

i -
fiber with x ∈ B(G). The correctness is proved in the following lemma. Remind
that Υn ⊂ Υ denotes the set of graphs G ∈ Υ with |PF (G)| = n.

Lemma 4.6. Let G ∈ Υn and x be an arbitrary vertex of B(G). Then Algorithm 1
properly colors all edges of each Gx

i -fiber for i = 1, . . . , n.

Proof. We show in the sequel that the BFS covering of vertices of B(G)∩V (Gx
i),

i.e of vertices along Cartesian edges (a, b) of Gx
i with a, b ∈ B(G), leads to a proper

(x, i)-covering sequence.
First notice that for each x ∈ B(G) holds |PF (〈N [x]〉)| = |PF (G)| = n, since

G ∈ Υn. Moreover, all Cartesian edges (v, w) with v, w ∈ B(G)∩V (Gx
i) satisfy the

668 M. Hellmuth et al. Math.comput.sci.

S1-condition and therefore can be determined as Cartesian, by applying Lemma 2.2
and Lemma 2.9. Hence, any such edge (v, w) was properly colored both in 〈N [w]〉
and in 〈N [v]〉. Applying Theorem 2.3 leads to the requested PPC.

We show next that for all vertices y ∈ Gx
i there is a vertex w ∈ N [y] with

w ∈ BFS(x), implying that item (1) of Definition 4.4 is fulfilled. Since B(Gi)
is a connected dominating set for factor Gi we can conclude that for all vertices
yi ∈ V (Gi) there is a vertex wi ∈ N [yi] such that wi ∈ B(Gi). Suppose that the co-
ordinates for the chosen vertices x are (x1, . . . , xn). Then, w ∈ N [y] has coordinates
(x1, . . . , xi−1, wi, xi+1, . . . , xn). Corollary 2.8 implies |Sxj

(xj)| = 1 for j = 1, . . . , n

Furthermore, we have Sw(w) =
∏i−1

j=1 |Sxj
(xj)| · |Swi

(wi)| ·
∏n

j=i+1 |Sxj
(xj)| = 1.

Thus w ∈ V (Gx
i) ∩ B(G) and therefore w ∈ BFS(x).

Moreover, since all those edges (w, y) with y /∈ B(G) satisfy the S1-condition
and the fact that G ∈ Υn we can conclude that these edges are properly colored
in the neighborhood 〈N [w]〉. Therefore BFS(x) along vertices of B(G) ∩ V (Gx

i)
constitutes a proper (x, i)-covering sequence σx,i.

Finally, consider Line 17–22 of the algorithm. Theorem 2.13 and Lemma 4.1
imply that the remaining edges (y, y′) of Gx

i that do not satisfy the S1-condition
are induced by vertices of Cartesian edges (z, y) and (z, y′) that do satisfy the
S1-condition. As shown above, all those edges (z, y) and (z, y′) are already colored
with the same color in some 〈N [w]〉 with w ∈ V (Gx

i) ∩ B(G). It follows that we
obtain a complete coloring in Gx

i .

This procedure is repeated independently for all colors ci in 〈N [x]〉, i =
1, . . . , n. This completes the proof. �

Lemma 4.7. Algorithm 1 determines the prime factors of a given graph
G = (V,E) ∈ Υ with bounded maximum degree Δ in time complexity
O(|V | · log2(Δ) · (Δ)6).

Proof. The time complexity of Algorithm 1 is determined by the complexity of the
BFS search and the decomposition of each neighborhood in each step.

Notice that the number of vertices of every neighborhood N [v] is at most
Δ + 1. With the algorithm of Feigenbaum and Schäffer [3] it can be factored in
O((Δ+1)5) time. The number of colors is bounded by the number of factors in each
neighborhood, which is at most log2(Δ+1). The BFS search takes at most O(|V |+
|E|) time for each color. Since the number of edges in G is bounded by |V | ·Δ we
can conclude the the time complexity of the BFS search is O(|V | + |V | ·Δ) =
O(|V | ·Δ). Thus we end in an overall time complexity of O((|V | ·Δ) · log2(Δ +
1) · (Δ + 1)5) which is O(|V | · log2(Δ) · (Δ)6). �

If G ∈ Υ, it is sufficient to use Algorithm 1 to identify a single Gi-fiber
through exactly one vertex x ∈ B(G) in order to determine the corresponding
prime factor of G. For G ∈ Υ we would therefore be ready at this point. Finding
a vertex that is in the backbone can be efficiently done and thus its cost can
be ignored in the estimation of the complexity in Theorem 2.17 (see the proof

Vol. 2 (2009) Local Covering Algorithms 669

�

Figure 7. The Backbone is depicted as dashed line. Starting
with some vertex x ∈ B(G) we go along backbone vertices of G
with fixed color, i.e. we apply the BFS algorithm only on vertices
B(G)∩Gx

i for all i. Applying Lemma 4.6, 5.1 and 5.2 we can color
all Gi-fibers that satisfy the S1-condition.

of Lemma 5.8). Hence together with Lemma 4.6 and Lemma 4.7 we can directly
conclude Theorem 2.17.

There is, however, no known sufficient condition to establish that G ∈ Υ,
except of course by computing the PFD of G. Moreover, as discussed in [4], it will
be very helpful to determine as many identificable fibers as possible for applications
to approximate graph products. However, this task will be treated in Section 5.

5. Detection and product coloring of the Cartesian skeleton

As shown in the last section we can identify and even color Gx
i -fiber that satisfy the

S1-condition in a way that all edges of this fiber receive the same color, whenever
x ∈ B(G). We will generalize this result for all fibers that satisfy the S1-condition in
Lemma 5.1. This provides that we get a big part of the Cartesian skeleton colored
such that all edges of identified Gy

i -fibers received the same color. Moreover we
will show how to identify colors of different colored Gi-fibers. Furthermore we
introduce a “brute-force” method to determine Cartesian edges of fibers that do
not satisfy the S1-condition.

5.1. Identify colors of all Gx
i -fibers that satisfy the S1-condition

Lemma 5.1. Let G ∈ Υn and Gy
i with y /∈ B(G) be an arbitrary fiber that satisfies

the S1-condition. Let z ∈ B(G) such that |Sz(a)| = 1 or |Sz(b)| = 1 for some
edge (a, b) ∈ Gy

i . Then the (z, i)-covering sequence σz,i is also a (y, i)-covering
sequence.

670 M. Hellmuth et al. Math.comput.sci.

a = (a1, . . . , ai, . . . , an)

z = (z1, . . . , zi, . . . , zn)

ŵ = (a1, . . . , wi, . . . , an) û = (a1, . . . , ui, . . . , an)

w = (z1, . . . , wi, . . . , zn)

Gy
i

Gz
i

Figure 8. N [ŵ] ∩ V (Gy
i) ⊆ N [w].

Proof. The existence of such a vertex z follows directly from Lemma 3.7. W.l.o.g.
let |Sz(a)| = 1, otherwise switch the labels of vertices a and b. If Gy

i = Gz
i then the

assumption follows directly from Lemma 4.6. Thus we can assume that Gy
i �= Gz

i .

W.l.o.g. let vertex z have coordinates (z1, . . . , zi, . . . , zn) and vertex a have
coordinates (a1, . . . , ai, . . . , an). In the following ẑ will denote the vertex in Gy

i

with coordinates ẑj = aj for j �= i and ẑi = zi, in short with coordinates
(a1, . . . , zi, . . . , an). Thus we can infer that Gẑ

i = Gy
i . For the sake of con-

venience we will denote all vertices with coordinates (z1, . . . , wi, . . . , zn) and
(a1, . . . , wi, . . . , an) with w and ŵ, respectively. Remark that w and ŵ are ad-
jacent, by choice of their coordinates and by definition of the strong product.

Moreover, since a ∈ N [z] and because of the coordinates of the vertices
û, ŵ ∈ Gy

i we can infer that û ∈ N [w] holds for all vertices û ∈ N [ŵ] by definition
of the strong product. More formally, N [ŵ] ∩ V (Gy

i) ⊆ N [w], see Figure 8.

Let σz,i = (z, v1, . . . , vm) be a proper (z, i)-covering sequence, based on the
BFS approach explained above, consisting of all backbone vertices of G contained
in Gz

i . Furthermore let w be any vertex of σz,i. Notice that for all such vertices
w holds |Sw(w)| = 1 and therefore in particular |Swi

(wi)| = 1, by applying Corol-
lary 2.8. Thus for all such vertices ŵ holds

|Sw(ŵ)| =
i−1∏

j=1

|Szi(ai)| · |Swi
(wi)| ·

n∏

j=i+1

|Szi(ai)| = 1 ,

by applying Corollary 2.8 again. Hence all edges (û, ŵ) ∈ E(〈N [ŵ]〉) ∩ E(Gy
i)

satisfy the S1-condition in the closed induced neighborhood of the vertex w, since
N [ŵ] ∩ V (Gy

i) ⊆ N [w]. Moreover since B(Gi) is a connected dominating set we
can infer that item (1) of Definition 4.4 is fulfilled.

It remains to show that we also get a proper color continuation. The main
challenge now is to show that for all vertices (parent(v), v) contained in BFS(z)
there is an edge (a, b) ∈ Gy

i that satisfies the S1-condition in both 〈N [parent(v)]〉

Vol. 2 (2009) Local Covering Algorithms 671

and〈N [v]〉. This implies that we can continue the color of the Gy
i -fiber on that

edge (a, b).

Therefore, let v̂ and ŵ be any two adjacent vertices of Gy
i with coordinates as

mentioned above such that vi, wi ∈ B(Gi). Thus by choice of the coordinates v and
w are adjacent vertices such that |Sv(v)| = |Sw(w)| = 1 and hence v, w ∈ BFS(z).
As shown above |Sv(v̂)| = 1 and |Sw(ŵ)| = 1. Therefore the edge (v̂, ŵ) satisfies
the S1-condition in both 〈N [v]〉 and 〈N [w]〉, since N [v̂] ∩ V (Gy

i) ⊆ N [v] and
N [ŵ] ∩ V (Gy

i) ⊆ N [w]. The connectedness of B(Gi) and G ∈ Υn implies that any
such edge is properly colored with c by means of the color continuation. Since
B(Gi) is also a dominating set it holds that all vertices û with |Su(û)| > 1 have an
adjacent vertex ŵ with |Sw(ŵ)| = 1. Since N [ŵ]∩V (Gy

i) ⊆ N [w], we can infer that
û ∈ N [w] and therefore all these edges satisfy the S1-condition and are colored
with c. Hence, property (2) of Definition 4.4 is satisfied. �

Lemma 5.2. Let G ∈ Υn and Gy
i with y /∈ B(G) be an arbitrary fiber that satisfies

the S1-condition. Furthermore let z ∈ B(G) with |Sz(a)| = 1 or |Sz(b)| = 1 for
some edge (a, b) ∈ Gy

i . Then Algorithm 1 properly colors all edges of each such
Gy

i -fiber with vertex z as an input vertex.

Proof. Lemma 3.7 implies that there is a z ∈ B(G) such that |Sz(a)| = 1 or
|Sz(b)| = 1 for some edge (a, b) ∈ Gy

i . As shown in Lemma 5.1 each such Gy
i -

fiber that satisfies the S1-condition with y /∈ B(G) can be covered and colored
via the corresponding (z, i)-covering sequence σz,i. By the way since G ∈ Υn and
Theorem 2.3 we can directly color all edges of Gy

i with the same color c as the Gz
i -

fiber. Furthermore applying Lemma 4.1 all remaining edges of (a, b) ∈ E(Gy
i) are

induced by vertices of Cartesian edges (a, z̃), (b, z̃) ∈ E(Gy
i) which are satisfying

the S1-condition and thus already colored with color c. Thus all these edges (a, b)
must be Cartesian edges of Gy

i (by definition of the strong product) and thus also
obtain color c. �

5.2. Identification of parallel fibers

As shown in the last subsection we are able to identify all edges of a Gx
i -fiber that

satisfies the S1-condition as Cartesian in such a way that all these edges in Gx
i get

same color. An example of the colored Cartesian edges of a product graph after
coloring all horizontal fibers that satisfy the S1-condition is shown in Figure 9.

It remains to show how we can identify colors of different colored Gi-fibers.
For this the next lemma is crucial.

Lemma 5.3 (Square Lemma [6]). Let G be a Cartesian product. If e and f are inci-
dent edges of different fibers, then there exists exactly one square without diagonals
that contains e and f .

Furthermore any two opposite edges of a diagonal-free square are edges from
copies of one and the same factor.

672 M. Hellmuth et al. Math.comput.sci.

x y

Figure 9. Cartesian skeleton of the strong product graph, which
has factors induced by one thick and one dashed colored com-
ponent. Application of Algorithm 1 identifies Cartesian edges in
three distinct color classes indicated by thick lines and the two
types of dashed lines. The edges drawn as thin lines are not iden-
tified as Cartesian because they do not satisfy the S1-condition.
The backbone of G consists of the vertices x and y.

In the following, we investigate how we can find the necessary squares and
under which conditions we can identify colors of differently colored fibers that
belong to one and the same factor.

Before stating the next lemma, we explain its practical relevance. Let G =
�n

l=1Gl ∈ Υ be a strong product graph. In this case, different fibers for the same
factor may be colored differently, see Figure 9 for an example. We will show that
in this case there is a square of Cartesian edges containing one Cartesian edge
of each of the fibers Ga

i and Gx
i , if these fibers are connected by an arbitrary

Cartesian edge of some Gj-fiber. The other two Cartesian edges then belong to
two distinct Gj-fibers GA

j and GB
j , both of which satisfy the S1-condition. The

existence of such a square implies that Ga
i and Gx

i are copies of the same factor.
Thus we can identify the fibers that belong to the same factor after computing a
proper horizontal fiber coloring as explained in previous subsection. Moreover we
will show in Lemma 5.5 that all parallel fibers that satisfy the S1-condition are
connected by path of Cartesian edges. This provides that we can color all Gi-fibers
with the same color applying Lemma 5.3 and 5.4.

Lemma 5.4. Let G = �n
l=1Gl be the strong product of thin graphs. Let there be two

different fiber Ga
i and Gx

i that satisfy the S1-condition.

Furthermore let there exist an index j ∈ {1, . . . n} s.t. (pj(a), pj(x)) ∈ E(Gj)
and pk(a) = pk(x) for all k �= i, j.

Vol. 2 (2009) Local Covering Algorithms 673

Then there is a square AÂB̂B in G with

1. (A, Â) ∈ E(Gx
i) and (B, B̂) ∈ E(Ga

i) and

2. (A,B) ∈ E(GA
j) and (Â, B̂) ∈ E(G

̂A
j), whereby GA

j �= G
̂A
j and at least one

edge of GA
j and at least one edge of G

̂A
j satisfies the S1-condition.

Proof. Since the strong product is commutative and associative it suffices to show
this for the product G = G1 � G2 � G3 of thin (not necessarily prime) graphs.
W.l.o.g. choose i = 1, j = 2 and k = 3. W.l.o.g., let x have coordinates (x1, x2, x3)
and a have coordinates (a1, a2, x3). Now we have to distinguish the following cases
for the three different graphs.

Before we proceed we fix a particular notation for the coordinates of certain
vertices and edges, which we will maintain throughout the rest of the proof.

• For G1:
1. |B(G1)| > 1, i.e. there is an edge (v1, v̂1) ∈ E(G1) with v1, v̂1 ∈ B(G1)

and
2. not (1): |B(G1)| = |{v1}| = 1.

• For G2:
A. the edge (a2, x2) satisfies the S1-condition in G2

B. not (A).
Notice that in case (A) there is by definition a vertex z2 ∈ N [a2]∩N [x2] with
|Sz2(a2)| = 1 or |Sz2(x2)| = 1. In the following we will assume w.l.o.g. that
in this case |Sz2(x2)| = 1.

Case (B) implies that |Sx2
(x2)| > 1. By Theorem 2.13 we can conclude

that there is a vertex x̃2 ∈ N [x2] with |Sx̃2
(x̃2)| = 1, which implies that the

edge (x2, x̃2) satisfies the S1-condition in G2.
• For G3:

i. x3 ∈ B(G3)
ii. not (i): x3 /∈ B(G3).

For the sake of convenience define p̃3 = x3 if we have case (i). In case (ii) let
p̃3 = z3 with z3 ∈ N [x3] s.t. |Sz3(x3)| = 1. Notice that such a vertex z3 has
to exist in G3, since otherwise |Sz3(x3)| > 1 for all z3 ∈ N [x3]. But then for
all z, x ∈ V (G) with z ∈ N [x] with coordinates z = (, , z3) and x = (, , x3),

resp., holds |Sz(x)| =
∏3

i=1 |Szi(xi)| > 1. Hence none of the edges of Ga
1 and

Gx
1 satisfies the S1-condition, contradicting the assumption. However, notice

that p̃3 is chosen such that |Sp̃3
(x3)| = 1.

In all cases we will choose the coordinates of the vertices of the square AÂB̂B as

follows: A = (v1, x2, x3), B = (v1, a2, x3) with v1 ∈ B(G1) and Â = (v̂1, x2, x3),

B̂ = (v̂1, a2, x3), v1 �= v̂1. By choice holds (A, Â) ∈ Gx
1 , (B, B̂) ∈ E(Ga

1), (A,B) ∈
GA

2 and (Â, B̂) ∈ E(G
̂A
2) whereby GA

2 �= G
̂A
2 , see Figure 10.

It remains to show that at least one edge of both fibers GA
2 and G

̂A
2 satisfies

the S1-condition. This part of the proof will become very technical.
In Figure 11 and 12 the ideas of the proofs are depicted.

674 M. Hellmuth et al. Math.comput.sci.

A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3) B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

Figure 10. General notation of the chosen square AÂB̂B.

z = (v1, z2, p̃3)

z′ = (v̂1, z2, p̃3)

A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3) B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

z = (v1, x̃2, p̃3)

C = (v1, x̃2, x3)

A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3) B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

Figure 11. Left: Case 1.A.i. and ii.. Right: Case 1.B.i. and ii.

Cases 1.A.i and 1.A.ii :
Let v1, v̂1 ∈ B(G1) with (v1, v̂1) ∈ E(G1). Let z2 ∈ N [x2] with |Sz2(x2)| = 1 in
G2. Choose z ∈ V (G) with coordinates (v1, z2, p̃3).

By definition of the strong product the edges (z,A) and (z,B) do exist in G
and therefore z ∈ N [A] ∩N [B]. Moreover Corollary 2.8 implies that |Sz(A)| = 1.
Therefore the edge (A,B) is satisfying the S1-condition in G in both cases (i)
and (ii).

Vol. 2 (2009) Local Covering Algorithms 675

z = (v1, z2, p̃3)

A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3)

B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

z = (v1, x̃2, p̃3)

C = (v1, x̃2, x3)

Ĉ = (v̂1, x̃2, x3)

A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3) B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

Figure 12. Left: Case 2.A.i. and ii.. Right: Case 2.B.i. and ii.

The same argument holds for the edge (Â, B̂) by choosing z ∈ V (G) with
coordinates (v̂1, z2, p̃3).

Case 1.B.i and 1.B.ii :
Let v1, v̂1 ∈ B(G1) with (v1, v̂1) ∈ E(G1) and let x̃2 ∈ N [x2] with |Sx̃2

(x̃2)| = 1.
Choose z ∈ V (G) with coordinates (v1, x̃2, p̃3). By definition of the strong product
holds that (z,A) ∈ E(G).

In case (i) we can conclude from Corollary 2.8 that |Sz(z)| = 1. Moreover
in case (i) holds by definition of the strong product that (z,A) ∈ GA

2 and we are
ready.

Otherwise in case (ii) choose the vertex C with coordinates (v1, x̃2, x3). Then
z ∈ N [A] ∩ N [C] and |Sz(C)| = 1. Since (A,C) ∈ GA

2 the assumption for GA
2

follows.

The same arguments hold for G
̂A
2 by choosing z ∈ V (G) with coordinates

(v̂1, x̃2, p̃3) and C with coordinates (v̂1, x̃2, x3).

Cases 2.A.i and 2.A.ii :
Let v1 ∈ B(G1) and v̂1 ∈ N [v1]. Let z2 ∈ N [x2] ∩N [a2] with |Sz2(x2)| = 1 in G2.
Choose z ∈ V (G) with coordinates (v1, z2, p̃3).

In order to show that the conditions are fulfilled for GA
2 we proceed as in

cases in (1.A.i) and (1.A.ii):

By definition of the strong product there are non-Cartesian edges (z, Â) and

(z, B̂) and thus z ∈ N [Â]∩N [B̂]. Now, Lemma 3.6 implies that |Sv1
(v̂1)| = 1 and

therefore by applying Corollary 2.8 we can conclude that |Sz(Â)| = 1, and the

assumption follows for G
̂A
2 .

676 M. Hellmuth et al. Math.comput.sci.

Case 2.B.i and 2.B.ii :
Let v1 ∈ B(G1) and v̂1 ∈ N [v1]. Let x̃2 ∈ N [x2] with |Sx̃2

(x̃2)| = 1 Choose
z ∈ V (G) with coordinates (v1, x̃2, p̃3).

That the conditions are fulfilled for GA
2 is shown analogously, as in cases in

(1.B.i) and (1.B.ii).

To show that the conditions are also fulfilled in case (2.B.i) and (2.B.ii)

for G
̂A
2 choose z ∈ V (G) with coordinates (v1, x̃2, p̃3) and a vertex C with co-

ordinates (v̂1, x̃2, x3). Clearly (Â, Ĉ) ∈ E(G
̂A
2). Furthermore, by definition of the

strong product, z ∈ N [Â] and z ∈ N [Ĉ], and thus z ∈ N [Â] ∩N [Ĉ]. By applying

Corollary 2.8 we now conclude that |Sz(Ĉ)| = 1, using that Lemma 3.6 implies

|Sv1
(v̂1)| = 1. Thus the edge (Â, Ĉ) satisfies the S1-condition, and the assumption

follows for G
̂A
2 . �

It is important to notice that the square AÂB̂B in the construction of
Lemma 5.3 is composed exclusively of Cartesian edges. The lemma can therefore
be applied to determine whether two fibers Ga

i and Gx
i , which have been colored

differently in the initial steps, are copies of the same factor, and hence, whether
their colors need to be identified. As we shall see below, this approach is in fact
sufficient to identify all fibers belonging to a common factor.

Lemma 5.5. Let G = �n
j=1Gj be the strong product of thin graphs. Furthermore

let Gy1

i , . . . , Gym

i be all Gi-fibers in G satisfying the S1-condition. Then there is
a connected path P in G consisting only of vertices of X = {x1, . . . , xm} with
xj ∈ V (G

yj

i) s.t. each edge (xk, xl) ∈ P is Cartesian.

Proof. Since the strong product is commutative and associative it suffices to show
this for the product G = G1 � G2 of two thin (not necessarily prime) graphs.
W.l.o.g. let i = 1. Moreover, we can choose w.l.o.g. the vertices x1, . . . , xm such
that p1(xk) = x for k = 1, . . . ,m. Moreover by applying Theorem 2.13 we can
choose x such that x ∈ B(G1).

Consider first all vertices v with coordinates (x, v2) such that v2 ∈ B(G2).
From Theorem 2.13 follows that B(G2) is connected. Thus there is connected path
P2 consisting only of such vertices v. Moreover each edge (a, b) with a, b ∈ V (P2)
and thus with coordinates (x, a2) and (x, b2), resp., is Cartesian. Furthermore
all corresponding Gv

1-fibers are satisfying the S1-condition, since for each edge
(v, w) holds |Sv(v)| = 1 , by applying Corollary 2.8. Therefore all vertices v with
coordinates (x, v2) with v2 ∈ B(G2) are also contained in X . Hence all those Gv

i -
fibers are connected by such a path P2 with V (P2) ⊂ X .

Let now ṽ be any vertex in X\V (P2). Hence p2(ṽ) /∈ B(G2). Theorem 2.13
implies that for all those vertices p2(ṽ) /∈ B(G2) there is an adjacent vertex p2(v)
in G2 s.t. p2(v) ∈ B(G2). Thus we can conclude that for all vertices ṽ ∈ X\V (P2)
with coordinates (x, p2(ṽ)) there is an adjacent vertex v ∈ V (P2) with coordinates
(x, p2(v)), from what the assumption follows. �

Vol. 2 (2009) Local Covering Algorithms 677

x

0

2

1

3

Figure 13. Cartesian Skeleton of the strong product G of two
prime factors induced by the dashed and bold lined fibers. Appli-
cation of Algorithm 1 to all fibers determines a part of the Carte-
sian Skeleton H that consists only of the edges drawn as dashed
or bold lines. While the bold and dashed fibers identify the true
factors, we miss the copies shown by thin lines. None of these
edges satisfies the S1-condition in an induced 1-neighborhood.
The backbone B(G) consists of the vertices 0, 1, 2 and 3.

5.3. Detection of unidentified Cartesian edges

One question still remains open: How can we identify a Cartesian (x, y) edge that
does not satisfy the S1-condition, i.e., if for all z ∈ N [x] ∩ N [y], we have both
|Sz(x)| > 1 and |Sz(y)| > 1? Figures 13 and 14 show examples of product graphs,
in which not all fibers were determined by the approach outline in the previous
two sections.

Unfortunately, we do not see an efficient possibility to resolve the missing
cases by utilizing only the information contained in the fibers that already have
been identified so far and the structure of 1-neighborhoods. We therefore resort to
a “brute-force” method which relies on the identification of Cartesian edges within
2-neighborhoods.

Of course, it would be desirable if smaller structure were sufficient. Natural
candidates would be to exploit the S1-condition in unions of adjacent neighbor-
hoods of the form 〈N [x]∪N [x′]〉, where (x, x′) is a Cartesian edge. Such subgraphs
are also sub-products, see [5]. However, the example in Figure 14 shows that the
information contained in these subproducts is still insufficient.

678 M. Hellmuth et al. Math.comput.sci.

x

x’

Figure 14. Cartesian skeleton of a thin strong product graph
whose factors are induced by one thick and dashed component.
The fiber whose edges are drawn as thin lines does not satisfy
the S1-condition. Moreover, even in the subgraph induced by the
neighborhoods of x and x′, which is the product of a path and a
K3, the S1-condition is violated for the Cartesian edge.

In the following we will show that every Cartesian (x, y) edge that does not
satisfy the S1-condition can be determined as Cartesian in the 2-neighborhood
N2[x].

Lemma 5.6. Let G = �n
j=1Gj be the strong product of thin graphs. Let (x, x′) be

any Cartesian edge of G. Then |S〈N2[x]〉(x)| = 1, i.e., the edge (x, x′) satisfies the
S1-condition in 〈N2[x]〉.

Proof. Assume |S〈N2[x]〉(x)| > 1. Then there is a vertex v �= x with N [v]∩N2[x] =
N [x] ∩N2[x]. This would mean that N [v] = N [x] in G, since N [v] ∩N2[x] = N [v]
and N [x] ∩N2[x] = N [x], contradicting that G is thin. �

We will show in the next lemma that the PFD of an arbitrary 2-neighborhood
N2 is not finer than the PFD of a given graph G ∈ Υn. This implies that each
Cartesian edge in G that is contained in N2 and satisfies the S1-condition in N2

can be determined as Cartesian in N2.

Lemma 5.7. Let G ∈ Υn and let x be an arbitrary vertex in V (G). Then
|PF (〈N2[x]〉)| = n.

Proof. Notice that |PF (G)| = n and |PF (N [x])| = n, since G ∈ Υn. Lemma 2.2
implies that the PFD of any neighborhood (2 - neighborhoods included) in a
graph G has at least |PF (G)| factors. Applying this fact two times we have

n = |PF (G)| ≤
∣
∣PF

(
N2[x]

)∣∣ ≤
∣
∣PF

(
N [x]

)∣∣ = n ,

and thus |PF (H)| = n. �

Vol. 2 (2009) Local Covering Algorithms 679

Algorithm 2 Cartesian skeleton and Product Coloring of G

1: INPUT: Graph G ∈ Υ.
2: Compute the backbone B(G);
3: for all x in B(G) do
4: Color all Gx

i -fibers (and Gy
i -fibers that satisfy the S1-condition) with Algo-

rithm 1;
5: end for
6: Determine unidentified Cartesian edges in N2 neighborhoods;
7: Compute all squares in the induced Cartesian skeleton of G and identify the

colors of parallel fibers applying Lemma 5.3;
8: OUTPUT: Product coloring of G with respect to its PFD;

From Lemma 5.6 and 5.7 we can conclude that any Cartesian edge (x, y) of
some fiber that does not satisfy the S1-condition can be determined as Cartesian
in the 2-neighborhood 〈N2[x]〉. Thus we can identify all Cartesian edges of G.

The last step we have to consider is to identify such fibers as copy of the
corresponding factor. This can be done in a simple way. Consider that we have
now identified all Cartesian edges of G. Notice that for all new identified Ga

i -fibers
holds a /∈ B(G), otherwise each edge containing vertex a of this fiber would satisfy
the S1-condition in 〈N [a]〉 and we would have identified this fiber. But for each
such vertex a there is a vertex x ∈ N [a] with x ∈ B(G) since B(G) is a connected
dominating set. Thus the corresponding Gx

i -fiber satisfies the S1-condition and is
therefore already identified and colored as Gi-fiber. Hence again we can apply the
square property to determine such a new identified Ga

i -fiber belonging to a copy
of the factor Gi by identifying the colors of the Ga

i -fiber with the color of the
Gx

i -fiber.

5.4. Algorithm and time complexity

We will now summarize the algorithm for determining the colored Cartesian skele-
ton of a given graph G ∈ Υ w.r.t. to its PFD and give the top level control
structure, which are proved to be correct in the preceding subsections. Moreover
we will determine the time complexity, which is stated in the following lemma.

Lemma 5.8. Algorithm 2 determines the colored Cartesian skeleton with respect to
its PFD of a given graph G = (V,E) ∈ Υ with bounded maximum degree Δ in
O(|V |2 ·Δ10) time.

Proof. 1. Determining the backbone B(G): we have to check for a particular ver-
tex v ∈ V (G) whether there is a vertex w ∈ N [v] with N [w] ∩N [v] = N [v]. This
can be done in O(Δ2) for a particular vertex w in N [v]. Since this must be done
for all vertices in N [v] we end in time-complexity O(Δ3). This step must be re-
peated for all |V | vertices of G. Hence the time complexity for determining B(G)
is O(|V | ·Δ3).

680 M. Hellmuth et al. Math.comput.sci.

Algorithm 3 Recognition if G ∈ Υ

1: INPUT: thin Graph G.
2: compute the colored Cartesian skeleton of G with Algorithm 2 and remind the

number of prime factors in each decomposed neighborhood;
3: MAX ← maximal number of prime factors of decomposed neighborhoods;
4: compute the possible prime factors G1, . . . , Gm of G by taking one connected

component of the Cartesian skeleton of each color 1, . . . ,m;
5: if �m

i=1Gi � G and MAX = m then
6: IS IN Υ ← true;
7: else
8: IS IN Υ ← false;
9: end if

10: OUTPUT: IS IN Υ;

2. For-Loop. The time complexity of Algorithm 1 is O(|V | · log2(Δ) · (Δ)6). The
for-loop is repeated for all backbone vertices. Hence we can conclude that the time
complexity of the for-loop is O(|V | · |V | · log2(Δ) ·Δ6).

3. Determine unidentified Cartesian edges in N2 neighborhoods. Notice that each
N2 neighborhood has at most 1+Δ · (Δ−1) vertices. and Schäffer [3] The decom-
position of each N2 with the algorithm of Feigenbaum and Schäffer [3] and hence
the assignment to an edge of being Cartesian is bounded by O((1 + Δ(Δ− 1))5).
Again this will be repeated for all vertices and thus the time complexity is
O(|V | · (1 + Δ(Δ− 1))5) = O(|V | ·Δ10).

4. Compute all squares. Take an edge (x, y) and check whether there is an edge
(xi, yj) for all neighbors x1, . . . , xl �= y of x and y1, . . . , yk �= x of y. Notice that
l, k ≤ Δ − 1. This leads to all squares containing the edge (x, y) and requires at
most (Δ − 1)2 comparisons. Since we need diagonal-free squares we also have to
check that there is no (Cartesian) edge (x, yj) and no edge (xi, y). This will be
done for all |E| edges. Thus we end in time complexity O(|E| · (Δ− 1)3), which is
O(|V | ·Δ4), since the number of edges in G is bounded by |V | ·Δ.

Considering all steps we end in an overall time complexity O(|V |2 ·Δ10). �

6. Recognition of graphs G ∈ Υ

In this section we will provide an algorithm that tests whether a given graph is
element of Υ in polynomial time.

Lemma 6.1. Algorithm 3 recognizes if a given graph G is in class Υ.

Proof. Lemma 2.2 implies that the PFD of any neighborhood in a graph G has
at least |PF (G)| factors and hence MAX ≥ |PF (G)|. Thus if MAX = |PF (G)|
then none of the decomposed neighborhoods was locally finer. If in addition the
isomorphism test is true we can conclude that we have found the correct factors
and that G ∈ Υ. �

Vol. 2 (2009) Local Covering Algorithms 681

Lemma 6.2. Algorithm 3 recognizes if a given a given graph G = (V,E) with
bounded maximum degree Δ is in class Υ in O(|V |2 ·Δ10) time.

Proof. Algorithmus 2 takes O(|V |2 ·Δ10) time. Computing the maximum MAX
of the number of prime factors of each decomposed neighborhood, extracting the
possible factors and the isomorphism test for a fixed bijection can be done in linear
time in the number of vertices. Thus we end in O(|V |2 ·Δ10) time. �

Acknowledgements

This work was supported by a collaborative grant of the Austrian FWF (Proj
No. P18969-N15) and the German DFG (Proj No. STA850/5-1). We thank the
anonymous reviewer for their constructive comments.

References

[1] W. Dörfler and W. Imrich. Über das starke Produkt von endlichen Graphen.

Österreih. Akad. Wiss., Mathem.-Natur. Kl., S.-B .II, 178:247–262, 1969.

[2] J. Feigenbaum. Product graphs: some algorithmic and combinatorial results. Tech-
nical Report STAN-CS-86-1121, Stanford University, Computer Science, 1986. PhD
Thesis.

[3] J. Feigenbaum and A.A. Schäffer. Finding the prime factors of strong direct product
graphs in polynomial time. Discrete Math., 109:77–102, 1992.

[4] M. Hellmuth, W. Imrich, W. Klöckl, and P. F. Stadler. Approximate graph products.
European Journal of Combinatorics, 30:1119–1133, 2009.

[5] W. Imrich and S. Klavžar. Product graphs. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience, New York, 2000.

[6] W. Imrich and I. Peterin. Recognizing cartesian products in linear time. Discrete
Math., 307:472–482, 2007.

[7] A. Kaveh and K. Koohestani. Graph products for configuration processing of space
structures. Comput. Struct., 86:1219–1231, 2008.

[8] G. Wagner and P. F. Stadler. Quasi-independence, homology and the unity of type:
A topological theory of characters. J. Theor. Biol., 220:505–527, 2003.

[9] B. Zmazek and J. Žerovnik. Weak reconstruction of strong product graphs. Discrete
Math., 307:641–649, 2007.

Marc Hellmuth
Bioinformatics Group
Department of Computer Science; and Interdisciplinary Center for Bioinformatics
University of Leipzig
Härtelstrasse 16–18
D-04107 Leipzig
Germany
and
Max Planck Institute for Mathematics in the Sciences
Inselstrasse 22, D-04103 Leipzig, Germany
e-mail: marc@bioinf.uni-leipzig.de

682 M. Hellmuth et al. Math.comput.sci.

Wilfried Imrich and Werner Klöckl
Chair of Applied Mathematics
Montanuniversität
A-8700 Leoben
Austria
e-mail: imrich@unileoben.ac.at

werner.kloeckl@mu-leoben.at

Peter F. Stadler
Bioinformatics Group
Department of Computer Science; and Interdisciplinary Center for Bioinformatics
University of Leipzig
Härtelstrasse 16–18
D-04107 Leipzig
Germany
and
Max Planck Institute for Mathematics in the Sciences
Inselstrasse 22, D-04103 Leipzig, Germany
and
RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie
Deutscher Platz 5e, D-04103 Leipzig, Germany
and
Department of Theoretical Chemistry
University of Vienna
Währingerstraße 17, A-1090 Wien, Austria
and
Santa Fe Institute
1399 Hyde Park Rd., Santa Fe, NM87501, USA
e-mail: studla@bioinf.uni-leipzig.de

Received: May 25, 2009.

Revised: October 16, 2009.

Accepted: November 20, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00417
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

