
ar
X

iv
:0

90
6.

18
49

v1
 [

cs
.D

S]
 1

0
Ju

n
20

09

A Randomized Algorithm for 3-SAT

Subhas Kumar Ghosh, Janardan Misra∗

October 25, 2018

Abstract

In this work we propose and analyze a simple randomized algorithm to find a satisfi-
able assignment for a Boolean formula in conjunctive normal form (CNF) having at most
3 literals in every clause. Given a k-CNF formula φ on n variables, and α ∈ {0, 1}

n

that
satisfies φ, a clause of φ is critical if exactly one literal of that clause is satisfied under
assignment α. Paturi et. al. (Chicago Journal of Theoretical Computer Science 1999)
proposed a simple randomized algorithm (PPZ) for k-SAT for which success probability
increases with the number of critical clauses (with respect to a fixed satisfiable solution
of the input formula). Here, we first describe another simple randomized algorithm DEL

which performs better if the number of critical clauses are less (with respect to a fixed
satisfiable solution of the input formula). Subsequently, we combine these two simple
algorithms such that the success probability of the combined algorithm is maximum
of the success probabilities of PPZ and DEL on every input instance. We show that
when the average number of clauses per variable that appear as unique true literal in
one or more critical clauses in φ is between 1 and 2/(3 · log (3/2)), combined algorithm
performs better than the PPZ algorithm.

1 Introduction

The problem of finding a satisfiable assignment (SAT) for a propositional formula in con-
junctive normal form (CNF) is notably the most important problem in the theory of com-
putation. The decision problem for CNF-SAT was one of the first problems shown to be
NP-complete[1, 2]. CNF-SAT is widely believed to require deterministic algorithm of expo-
nential time complexity. A syntactically restricted version of general CNF-SAT is k-SAT,
where each clause of a given CNF formula contains at most k literals, for some constant k.
k-SAT remains NP complete for k ≥ 3 (while 2-SAT is solvable in polynomial time [3]). This
restriction on the number of literals per clause seem to be of help, and existing algorithms
have O (2ǫkn) time complexity for some constant 0 < ǫk < 1 dependent on k. Several work
exists on faster algorithms for k-SAT (cf. [4], [5], [6], [7], [8]).

The objectives of working on k-SAT algorithms are several. Primary of them is to
obtain algorithms having provable bounds on the running time that is significantly better
than trivial search algorithm (which is poly (n) 2n for formula having n variables) and works

∗Honeywell Technology Solutions Laboratory, 151/1, Doraisanipalya, Bannerghatta Road, Bangalore,
India, 560076, Email:subhas.kumar@honeywell.com, janardan.misra@honeywell.com

1

http://arxiv.org/abs/0906.1849v1

for larger set of k-CNF. Second objective is to understand instances that are significantly
hard or easy while useful (i.e. they appear in practical problems).

In following we mention all bounds by suppressing the polynomial factors. Monien and
Speckenmeyer [5] described first such non-trivial algorithm with running time O

(

2(1−ǫk)n
)

,
with ǫk > 0 for all k, and in specific it is O (1.618n) for k = 3. Faster algorithm for 3-CNF
satisfiability is due to Kullmann [9], with running time O (1.505n) for k = 3. Both of these
algorithms are deterministic. Paturi et al. [10] proposed a simple randomized algorithm

for k-SAT. Though it is not faster than other known algorithms for k = 3, it has better
performance for larger values of k. This algorithm was improved in [11, 8] with a randomized
variant of the Davis-Putnam procedure [12] with limited resolution. Schöning’s random walk
algorithm [13, 6] is better than [8] for k = 3, but is worse for k ≥ 4. Schöning’s random
walk algorithm [6] has bound of O ((2− 2/(k + ǫ))n) for some ǫ > 0. Further improvements
of his algorithm were found by Hofmeister et al. [14] for k = 3. Randomized algorithm of
[8] has expected running time O (1.362n) for k = 3.

Better randomized algorithm is due to Iwama and Tamaki [15], having expected running
time O (1.3238n) for k = 3, which is a combination of the Schöning’s random walk algorithm
[13, 6] and the algorithm of Paturi et al. [11] (this bound improves to O (1.32266n) using
modified analysis in [8]). Iwama and Tamaki’s algorithm [15] has been improved by Rolf
[16] recently to best known randomized bound of O (1.32216n) for 3-SAT.

Schöning’s algorithm was derandomized in [7] to the currently best known bound of
O (1.481n) for k = 3 and to a bound of O ((2− 2/((k + 1) + ǫ))n) for k > 3, using limited
local search and covering codes. This was improved for k = 3 in [17] to a deterministic bound
of O (1.473n). Randomized algorithm of [11] was derandomized in [18] for Unique-k-SAT (i.e.
k-CNF formulas having only one solution) using techniques of limited independence, i.e. by
constructing a small bias probability space to choose samples for original algorithm of [11]
yielding deterministic running time O (1.3071n) for Unique-3-SAT. In this work we present
and analyze a randomized algorithm for finding a satisfiable assignment for a Boolean
formula in CNF having at most 3 literals in every clause. We consider the k-SAT algorithm
of Paturi et al. [10] for k = 3 and combine it with another randomized algorithm that we
describe here, such that the success probability of the combined algorithm is maximum of
the success probabilities of these two algorithms on every input instance.

Before we proceed further let us introduce some notations. A formula φ in n-variables is
defined over a set {x1, . . . , xn}. Literals are variable x or negated variable ¬x. Clauses are
disjunctions of literals, and we assume that a clause do not contain both, a literal and its
negation. A Boolean formula φ = ∧mi=1Ci is a k-CNF if each clause Ci is a disjunction of at
most k literals. Variables are assigned truth values 1 (true) or 0 (false). An assignment
to variables {x1, . . . , xn} is an element α ∈ {0, 1}n. For S ⊆ {0, 1}n and α ∈ S, α is an
isolated point of S in direction i if flipping ith bit of α produces an element that is not in
S. We will call α ∈ S, j–isolated in S if there are exactly (n − j) neighbors of α in S. An
n-isolated point in S ⊆ {0, 1}n will be called isolated.

Given a k-CNF formula φ on n variables {x1, . . . , xn}, single iteration of Paturi et al.’s
randomized algorithm [10] (see Algorithm-1) works by selecting a random permutation of
variables π ∈ Sn, and then assigning truth values uniformly at random in {0, 1} to each
variable xπ(i) for i = 1, . . . , n. However, before assigning a random truth value, algorithm
checks if there is an unsatisfied unit clause (i.e., a clause having only one literal) corre-

2

Algorithm PPZ (φ) Input: 3-CNF φ = ∧mi=1Ci on variables {x1, . . . , xn}
Pick a permutation π of the set {1, . . . , n} uniformly at random.
for i = 1, . . . , n do

if there is an unit clause corresponding to the variable xπ(i) then
Set xπ(i) so that corresponding unit clause is satisfied, let b be the assignment.

else
Set xπ(i) to true or false uniformly at random, let b be the assignment.

end

φ := φ[xπ(i) ← b], αi := b.

end

if α is a satisfying assignment then
return α.

else
return “Unsatisfiable”.

end

Algorithm 1: One iteration of procedure PPZ (φ)

sponding to variable xπ(i), and if there is one, it forces the value of xπ(i) such that the
corresponding unit clause gets satisfied. We will call this algorithm PPZ. Let S ⊆ {0, 1}n

be the set of all satisfying assignments of φ.
Crucial observation made in [10] is that if α is an isolated point of S in some direction i,

then there exists a clause in which exactly one literal is satisfied under assignment α – and
that literal corresponds to the variable xi (such a clause will be called critical for variable xi
under solution α). Given formula φ let α ∈ S be a fixed satisfying assignment in the set of
all satisfying assignments of φ. Now observe that after selecting a random permutation of
variables π, probability that PPZ(φ) outputs assignment α depends on number of variables
that are not forced. On the other hand variables that are forced correspond to at least one
critical clause. Thus Pr[PPZ(φ) = α|π] improves if there are more critical clauses. With
clever analysis it was shown in [10] that the success probability that one iteration of PPZ
finds a satisfying assignment of φ is at least 2−n(1−1/k) – which is at least 2−2n/3 for 3-CNF.
Finally we note that PPZ makes one-sided error - if input formula φ is unsatisfiable then
algorithm will always say so, but on satisfiable instances it may make error.

Let us consider another very simple randomized algorithm for 3-CNF. We will call this
algorithm DEL (see Algorithm-2). In a single iteration of this algorithm we first delete one
literal from each clause having three literals independently uniformly at random (a clause
having less than three literals is ignored in this step) and obtain a new formula. Since input
formula φ is a 3-CNF, we obtain a new formula φ′ in 2-CNF for which there is a known
linear time deterministic algorithm [3] (we will call this algorithm 2SAT). After running
algorithm 2SAT(φ′) if we find a satisfying assignment then we output that (after extending
it to the rest of the variables (if any) - which can be assigned any truth value).

Again, let α ∈ S be a fixed solution in the set of all solutions of the input formula φ.
Let C(α) be a critical clause of φ for variable x under solution α. Now observe that in the
process of deletion if we delete the literal corresponding to variable x from C(α) then in
the first step of the algorithm DEL(φ) we may produce a formula φ′ having no satisfying

3

Algorithm DEL (φ) Input: 3-CNF φ = ∧mi=1Ci on variables {x1, . . . , xn}
for Each clause C having 3 literals do /* ignore clause with less than 3
literals */

Select one literal uniformly at random and delete it.
end

Let φ′ be the obtained 2-CNF.
if 2SAT(φ′) returns a satisfiable assignment α then

return α.
else

return “Unsatisfiable”.
end

Algorithm 2: One iteration of procedure DEL (φ)

assignment (e.g. when α is the unique solution of formula φ, or if we make this error in
a critical clause with respect to an isolated solution). Probability that this event does not
happen is 2/3 for C(α) - as a clause can not be critical for more than one variable, and
every clause have 3 literals (other clauses with less than three literals were not considered
in the deletion step). Now observe that only the deletion step of the algorithm DEL makes
randomized choices, while executing the algorithm 2SAT on φ′ is deterministic. Hence, if
the deletion step of the algorithm makes no error (i.e. it does not remove solutions) then
algorithm 2SAT on φ′ will always find a satisfying assignment whenever input formula φ
is satisfiable. Now assume there are c(α) number of critical clauses of φ under solution α.
Then we have the probability that DEL(φ) returns a satisfying assignment with respect to
an α ∈ S is (2/3)c(α). In general c(α) can be polynomial in n, thus DEL performs well only
when all satisfiable solutions of φ have less number of critical clauses. Let us note that
like PPZ algorithm, DEL also makes one-sided error - if input formula φ is unsatisfiable
then algorithm will always say so, but on satisfiable instances it may make error. This can
be seen from the following: assume that the input formula φ is unsatisfiable but 2SAT(φ′)
returns with a satisfiable assignment - but φ′ is obtained from φ by deleting one literal
from each clause of size three, and hence the assignment that satisfies φ′ also satisfies φ - a
contradiction.

While success probability of DEL decreases with increasing number of critical clauses
with respect to a fixed satisfiable solution α – success probability of PPZ increases. This
fact suggests that a combination of these two algorithms can perform better. In order to
motivate this further consider the worst case of PPZ algorithm [10] on 3-CNF. One such
example is φ = ∧m−1

i=0 (x3i+1 ⊕ x3i+2 ⊕ x3i+3) where n = 3m. Any solution α of φ has n
critical clauses with respect to α, e.g. {(x3i+1 + x̄3i+2 + x̄3i+3), (x̄3i+1 + x3i+2 + x̄3i+3),
(x̄3i+1 + x̄3i+2 + x3i+3)}

m−1
i=0 , and success probability of PPZ on φ is 2−2n/3 ≥ (1.5875)−n.

On the other hand success probability of DEL on this instance is (2/3)n = (1.5)−n, and this
is more than the success probability of PPZ. Our objective in this work is to combine these
two algorithms such that the success probability of the combined algorithm is maximum of
the success probability of DEL and PPZ on every input instance.

4

Organization. Rest of the paper is organized as follows. In section-2 we describe the
algorithm DEL-PPZ - which is a combination of algorithm PPZ and algorithm DEL described
before. Subsequently, in section-3 we analyze this combined algorithm. Finally in section-4
we conclude the paper.

2 Combined algorithm

In this section we describe the algorithm DEL-PPZ (see Algorithm-3) – which is a combi-
nation of the algorithm PPZ and algorithm DEL described above. Algorithm-3 describes
one iteration, and in order to increase the success probability as a standard technique the
algorithm needs to be executed several times. We will discuss about it at the end of this
section. Like PPZ, one iteration of DEL-PPZ algorithm works by first selecting a random
permutation of variables π ∈ Sn. Then for i = 1, . . . , n the algorithm either execute steps
that are similar to DEL(φ) and, if unsuccessful in finding a satisfying assignment, it execute
steps that are similar to PPZ.

Algorithm DEL-PPZ (φ) Input: 3− CNF φ = ∧mi=1Ci on variables {x1, . . . , xn}
Pick a permutation π of the set {1, . . . , n} uniformly at random.
α := 0n

for i = 1, . . . , n do

for Each clause C having 3 literals do /* ignore clause with less than 3
literals */

Select one literal uniformly at random and delete it.
end

Let φ′ be the obtained 2-CNF.
if 2SAT(φ′) returns a satisfiable assignment β then

(∗) return β.
else

if there is an unit clause corresponding to the variable xπ(i) then
Set xπ(i) so that corresponding unit clause is satisfied, let b be the
assignment.

else
Set xπ(i) to true or false uniformly at random, let b be the assignment.

end

end

φ := φ[xπ(i) ← b], αi := b.

end

if α is a satisfying assignment then
(∗∗) return α.

else
return “Unsatisfiable”.

end

Algorithm 3: One iteration of procedure DEL-PPZ (φ)

In other words, for each i = 1, . . . , n the algorithm works on the current formula φ (like

5

PPZ, input formula φ is modified in every execution of the for loop as we assign truth value
to variable xπ(i) in ith execution) and first delete one literal from each clause of φ having
three literals independently uniformly at random (a clause having less than three literals is
ignored in this step) and obtain a new formula φ′. Since input formula φ is a 3-CNF, we
obtain a new formula φ′ in 2-CNF. After running algorithm 2SAT(φ′) if we find a satisfying
assignment then we output that (after extending it to the rest of the variables – which can
be assigned any truth value), or else we again consider the current formula φ and assign
truth values in {0, 1} to variable xπ(i). This is done as follows: we first check if there is an
unsatisfied unit clause corresponding to variable xπ(i) and force the value of xπ(i) such that
the corresponding unit clause gets satisfied, otherwise we assign truth values in {0, 1} to
xπ(i) uniformly at random.

After this, the current formula φ is modified as φ := φ[xπ(i) ← b]. Where, by φ :=
φ[xπ(i) ← b] we denote that variable xπ(i) is assigned b ∈ {0, 1}, and formula φ is modified
by treating each clause C of φ as follows: (i) if C is satisfied with this assignment then
delete C, otherwise (ii) replace clause C by clause C ′ obtained by deleting any literals of
C that are set to 0 by this assignment. Hence, DEL(φ) works on a new instance of formula
in each execution of the for loop.

In every execution there are two places from where the algorithm could exit and return
a satisfying assignment. When 2SAT(φ′) returns a satisfying assignment β for some i =
1, . . . , n(marked as (∗), and we shall call it return by DEL) or at the end (marked as (∗∗),
which we shall call as return by PPZ).

It is not hard to see that the algorithm DEL-PPZ never returns an assignment if the
input formula is unsatisfiable. As stated earlier, both PPZ and DEL has one-sided error
and similar argument holds for DEL-PPZ as well. Thus the problem of interest would be to
bound the probability that the algorithm answers “unsatisfiable” when the input formula
φ is satisfiable. If τ(φ) is the success probability of the algorithm DEL-PPZ on input φ,
and if we execute the algorithm ω number of times, then for a satisfiable formula φ the
error probability is equal to (1− τ(φ))ω ≤ e−(ω·τ(φ)). This will be at most e−n if we choose
ω ≥ n/τ(φ). In following section we shall estimate τ(φ) and subsequently choose the value
of ω.

3 Analysis of the combined algorithm

In this section we analyze the algorithm DEL-PPZ. Let φ = ∧mi=1Ci be the input 3 −
CNF formula defined on n variables {x1, . . . , xn}. Let S ⊆ {0, 1}n be the set of satisfying
assignments of φ, α ∈ S, and let π be any permutation in Sn.

Observe that in the main loop for each i = 1, . . . , n, the algorithm can return by DEL

(marked as (∗)) for any i. When the algorithm returns by DEL in the ith execution of the
for loop, we estimate the success probability of obtaining any satisfying assignment in that
execution of the for loop with respect to a α ∈ S, for a fixed π ∈ Sn. Let us denote the
ith such event by Ai(α) for i = 1, . . . , n to indicate that ith execution returns by DEL with
some satisfying assignment. To indicate that π ∈ Sn is fixed we use the shorthand notation
Pr[A|π] to denote Pr[A|When π is fixed], for some event A. Also, for any event A let A
denote the complement of event A.

Similarly, let the event B denote that the algorithm returns by PPZ at the end of the for

6

loop (marked as (∗∗)) and satisfying assignment returned is α, again for a fixed π ∈ Sn. Let
us denote by DEL-PPZ(φ, α) the event that with respect to some α ∈ S, algorithm DEL-PPZ
returns with a successful satisfying assignment - either by DEL or by PPZ. Now observe
that the algorithm either returns by DEL in any one of the execution of the for loop for
i = 1 . . . , n, or it returns by PPZ at the end of the for loop, hence, Pr[(∪ni=1Ai(α))∩B|π] = 0.
With this we have:

Pr[DEL-PPZ(φ, α)|π] = Pr[

n
⋃

i=1

Ai(α) ∨B|π] =





n
∑

i=1

Pr[Ai(α)|

i−1
∧

j=1

Aj(α) ∧ π] ·Pr[

i−1
∧

j=1

Aj(α)|π]



+

Pr[B|
n
∧

i=1

Ai(α) ∧ π] ·Pr[
n
∧

i=1

Ai(α)|π] (1)

Recall, if the deletion step of the algorithm makes no error then algorithm 2SAT on φ′ will
always find a satisfying assignment. On the other hand in the process of deletion if we
delete any unique true literal corresponding to a critical clause with respect to satisfying
assignment α we may produce a formula φ′ which will not have any satisfying assignment,
and we will make error.

Let ci−1
π (α) be the number of critical clauses of the resulting formula in the ith step

with respect to assignment α on which the deletion step of DEL and subsequently 2SAT is
executed. In specific c0π(α) denotes the number of critical clauses of the input formula φ.
Since ci−1

π (α) is the number of critical clauses of the resulting formula used in the ith step
with respect to assignment α then success probability of returning by DEL in that step i.e.

Pr[Ai(α)| ∧
i−1
j=1 Aj(α) ∧ π] is (2/3)c

i−1
π (α). Now for collection of events A1(α), . . . , An(α) it

holds that, for r = 1, . . . , n,

Pr[

r
∧

j=1

Ai(α)|π] = Pr[A1(α)|π] ·Pr[A2(α)|A1(α) ∧ π] · . . .

·Pr[Ar(α)|

r−1
⋂

j=1

Aj(α) ∧ π]

Observe that if the algorithm fails to return by DEL in the (r − 1)th execution of the for
loop, then given there were cr−2

π (α) many critical clauses in the beginning of the (r − 1)th
execution, there will be cr−1

π (α) many critical clauses after PPZ part of the algorithm
executes. Hence, for r = 1, . . . , n, given all (r−1) trial of return by DEL has failed we have:

Pr[Ar(α)|

r−1
⋂

j=1

Aj(α) ∧ π] =

(

1−

(

2

3

)cr−1
π (α)

)

, for r = 1, . . . , n.

Hence,

Pr[

r
∧

j=1

Ai(α)|π] =

r
∏

j=1

(

1−

(

2

3

)cr−1
π (α)

)

, for r = 1, . . . , n.

7

And we have,

n
∑

i=1

Pr[Ai(α)|
i−1
∧

j=1

Aj(α) ∧ π] ·Pr[
i−1
∧

j=1

Aj(α)|π] =

n
∑

i=1

(

2

3

)ci−1
π (α)

·

i−1
∏

j=1

(

1−

(

2

3

)cj−1
π (α)

)

(2)

Let dπ(α) be the number of variables that are not forced by PPZ. Then we have:

Pr[B|
n
∧

i=1

Ai(α) ∧ π] ·Pr[
n
∧

i=1

Ai(α)|π] = 2−dπ(α) ·
n
∏

i=1

(

1−

(

2

3

)ci−1
π (α)

)

(3)

Using Eq. (2) and Eq. (3) with Eq. (1) it is easy to see now that,

Pr[DEL-PPZ(φ, α)|π] =

n
∑

i=1





(

2

3

)ci−1
π (α)

·

i−1
∏

j=1

(

1−

(

2

3

)cj−1
π (α)

)



+

(

2−dπ(α) ·
n
∏

i=1

(

1−

(

2

3

)ci−1
π (α)

))

(4)

Let Expπ[X] denote the expectation of random variable X taken over all random permu-
tation π ∈ Sn. Now it is easy to see that using Eq. (4), and summing over the set S of all
satisfying solutions of φ, we have using linearity of expectation:

τ(φ) = Pr[DEL-PPZ(φ) outputs some satisfying assignment]

=
∑

α∈S

Expπ





n
∑

i=1





(

2

3

)ci−1
π (α)

·

i−1
∏

j=1

(

1−

(

2

3

)cj−1
π (α)

)







+

∑

α∈S

Expπ

[

2−dπ(α) ·
n
∏

i=1

(

1−

(

2

3

)ci−1
π (α)

)]

≥
∑

α∈S





n
∑

i=1





(

2

3

)Expπ[c
i−1
π (α)]

·

i−1
∏

j=1

(

1−

(

2

3

)Expπ[c
j−1
π (α)]

)







+

∑

α∈S

[

2−Expπ [dπ(α)] ·

n
∏

i=1

(

1−

(

2

3

)Expπ[c
i−1
π (α)]

)]

(5)

Where last inequality (Eq. (5)) follows from Jensen’s inequality (cf. [19])- which states that
for a random variable X = (c0π(α), c

1
π(α), . . . , c

n−1
π (α), dπ(α)) and any convex function f ,

Exp[f(X)] ≥ f(Exp[X]). Now observe that c0π(α), c
1
π(α), . . .,c

n−1
π (α) is a non-increasing

sequence of integers, i.e. c0π(α) ≥ c1π(α) ≥ . . . ≥ cn−1
π (α), because in every execution

whenever a variable is forced by PPZ a collection of critical clause gets satisfied and are
removed from φ. Hence, we can simplify Eq. (5) as follows using the fact that Expπ[c

0
π(α)] =

8

c0π(α), when c0π(α) 6= 0. On the other hand when c0π(α) = 0, it follows that τ(φ) = 1 by
taking ci−1

π (α) = 0 for all i = 1, . . . , n in Eq. (4):

τ(φ) ≥
∑

α∈S





(

2

3

)c0π(α)

·

n
∑

i=1

i−1
∏

j=1

(

1−

(

2

3

)Expπ[c
j−1
π (α)]

)



+

∑

α∈S

[

2−Expπ[dπ(α)] ·
n
∏

i=1

(

1−

(

2

3

)Expπ[c
i−1
π (α)]

)]

(6)

Let l(α)
∆
= |{α′ ∈ S : d(α,α′) = 1}| denote that number of satisfying assignments of φ that

has Hamming distance 1 from α. Using arguments from [10] (cf. [20]) we can bound
Expπ [dπ(α)]. For completeness we state it here. Given the definition of l(α), there are
n − l(α) variables such that each of them appear as a unique true literal in some critical
clause of φ. It follows that each such variable xπ(i) will be forced under randomly chosen
π ∈ Sn if xπ(i) occurs last in the corresponding critical clause. This happens with probability
at least 1/3. Using linearity of expectation we have that expected number of forced variables
is at least ((n − l(α)))/3, and hence,

Expπ [dπ(α)] ≤

(

n−
(n− l(α))

3

)

(7)

Now we concentrate on giving bounds on Expπ[c
i−1
π (α)] for i = 1, . . . , n. Let C(α) be the

set of all critical clauses of φ with respect to α. Let us also denote by riπ(α) the number
of critical clauses that are removed by PPZ at the end of ith execution of the for loop.
Clearly the expected number of critical clauses in the beginning of the ith execution of the
for loop, Expπ[c

i−1
π (α)] is equal to the expected number of critical clauses that were present

in the beginning of the (i − 1)th execution minus the expected number of critical clauses
that were removed by PPZ at the end of the (i−1)th execution. It follows,Expπ[c

i−1
π (α)] =

Expπ[c
i−2
π (α)] − Expπ[r

i−1
π (α)], with Expπ[c

0
π(α)] = c0π(α). Let Ci−2

π (α) denote the set of
all critical clauses in the beginning of i− 1th execution of the for loop. Also, let Xc be an
indicator random variable taking values in {0, 1} such that Xc = 1 iff clause c ∈ Ci−2

π (α) is
removed by the end of i − 1th execution of the for loop. Using linearity of expectation we
have that,

Expπ[c
i−1
π (α)] = ci−2

π (α) −
∑

c∈Ci−2
π (α)

Expπ[Xc]

= ci−2
π (α) −

∑

c∈Ci−2
π (α)

(1 ·Prπ[Xc = 1] + 0 ·Prπ[Xc = 0])

= ci−2
π (α) −

∑

c∈Ci−2
π (α)

Prπ[Xc = 1]

As discussed above, a clause can not be critical for more than one variable. On the other
hand each variable xπ(i) that appears as a unique true literal in some set of critical clauses
of φ creates a partition of C(α). Let us denote the cardinality of the partition of critical
clauses corresponding to variable xπ(i) with respect to α by tiπ(α) (where, t0π(α) = 0).

9

Surely, c0π(α) =
∑n

i=1 t
i
π(α). Now in the (i − 1)th execution we consider variable xπ(i−1),

that appears as a unique true literal in ti−1
π (α) many critical clauses under assignment

α. There is one possible way a critical clause c is removed by PPZ in accordance with
assignment α under randomly chosen π ∈ Sn - (as discussed above) when corresponding
variable is forced, and probability of that event to occur for clause c is at least 1/3.

Note that here we have ignored one particular effect of the statement φ := φ[xπ(i) ← b].
By this modification of φ in every execution of the for loop a critical clause with 3 literals
can become a clause having 2 or less number of literals and still remain critical - but will not
be considered in the deletion step in next execution of the for loop. However, considering
this effect will only improve the success probability of return by DEL, as there will be lesser
number of critical clauses in the subsequent execution of the for loop, on the other hand it
will make the analysis complicated.

Based on the above discussion we have,
∑

c∈Ci−2
π (α) Prπ[Xc = 1] ≥ ti−1

π (α)/3. And we

have, Expπ[c
0
π(α)] = c0π(α), and Expπ[c

i−1
π (α)] ≤ ci−2

π (α) − 1
3 · t

i−1
π (α). Solving this we

obtain that,

Expπ[c
i−1
π (α)] ≤ c0π(α) −

1

3
·

i−1
∑

j=1

tjπ(α) = c0π(α)−
1

3
·

n
∑

j=1

tjπ(α) +
1

3
·

n
∑

j=i

tjπ(α)

= c0π(α)−
c0π(α)

3
+

1

3
·

n
∑

j=i

tjπ(α) =
2

3
· c0π(α) +

1

3
·

n
∑

j=i

tjπ(α) (8)

In following, we simplify notation by replacing c0π(α) with c(α), and tiπ(α) with ti(α). Now

observe that in the expression
∏i−1

j=1 (1− (2/3)Expπ[c
j−1
π (α)]) in Eq. (6), for every i, term

(1− (2/3)Expπ[c
0
π(α)]) appears in every product. Also observe that

∑n
j=i t

j
π(α) ≥ 0 for any

i. So we use
∏i−1

j=1 (1− (2/3)
2
3
·c(α)) ≤

∏i−1
j=1 (1− (2/3)Expπ[c

j−1
π (α)]) as lower bound, and

with Eq. (7) and Eq. (8) we modify Eq. (6) as follows:

τ(φ) ≥
∑

α∈S





(

2

3

)c(α)

·

n
∑

i=1

i−1
∏

j=1

(

1−

(

2

3

) 2
3
·c(α)

)



+

∑

α∈S

[

2
−

“

n−
(n−l(α))

3

”

·
n
∏

i=1

(

1−

(

2

3

) 2
3
·c(α)

)]

(9)

Now observe that since α is (n−l(α))–isolated it must be that c(α) ≥ (n−l(α)). In fact recall
that c(α) =

∑n
i=1 t

i(α). Let us define t as the minimum of ti(α) over i ∈ {1, . . . , n} such that

xπ(i) appears as unique true literal in at least one critical clause, and Tav
∆
= c(α)/(n− l(α)).

We have Tav(n − l(α)) = c(α) ≥ t(n − l(α)). Also note that t ≥ 1. Using these two facts

10

with Eq. (9), we can lower bound τ(φ) now as follows1:

τ(φ) ≥
∑

α∈S





(

2

3

)Tav(n−l(α))

·

n
∑

i=1

i−1
∏

j=1



1−

(

2

3

)
2t(n−l(α))

3







+

∑

α∈S



2
−

“

n−
(n−l(α))

3

”

·

n
∏

i=1



1−

(

2

3

)
2t(n−l(α))

3









= 2−Tav·n·log (3/2) ·
∑

α∈S





(

2

3

)−Tav·l(α)

·



1−

(

2

3

)
2t(n−l(α))

3





n−1

+

2−
2n
3 ·
∑

α∈S



2−
l(α)
3 ·



1−

(

2

3

)
2t(n−l(α))

3





n

 (10)

Let L
∆
= Expα∈S [l(α)] and s

∆
= |S|. Using Jensen’s inequality we obtain:

∑

α∈S





(

2

3

)−Tav·l(α)

·



1−

(

2

3

)
2t(n−l(α))

3





n−1

 ≥

s ·

(

2

3

)−Tav·L

·



1−

(

2

3

)
2t(n−L)

3





n−1

(11)

And,

∑

α∈S



2−
l(α)
3 ·



1−

(

2

3

)
2t(n−l(α))

3





n

 ≥ s · 2−L/3 ·



1−

(

2

3

)
2t(n−L)

3





n

(12)

Combining Eq. (11) and Eq. (12) with Eq. (10) we have:

τ(φ) ≥ s ·









2−(n−L)·Tav·log (3/2)

(

1−
(

2
3

)

2t(n−L)
3

) + 2−(2n+L)/3









·



1−

(

2

3

)
2t(n−L)

3





n

≥ s ·
(

2−(n−L)·Tav·log (3/2)+o(1) + 2−(2n+L)/3
)

·



1−

(

2

3

)
2t(n−L)

3





n

(13)

In order to bound L we will use the edge isoperimetric inequality from [21], which states that
for any S ⊆ {0, 1}n, |{(a, a′)|a, a′ ∈ S and d(a, a′) = 1}| ≤ |S| · log (|S|), and

∑

α∈S l(α) ≤
s · log s. So using this result as in [20] L = Expα∈S [l(α)] ≤ log s. On the other hand, it
is not hard to observe that the lower bound on

∑

α∈S l(α) is 0 as long as s ≤ 2n−1. This

1All logarithms are base 2.

11

can be seen as follows. We consider {0, 1}n as the vertex set of a graph (Hamming cube,
denoted Qn) and for a, a′ ∈ {0, 1}n, aa′ is an edge of this graph iff d(a, a′) = 1. Now the
lower bound in question corresponds to finding a subgraph of Qn having s many vertices and
having minimum number of induced edges having both of their end-points in S ⊆ {0, 1}n.
Now observe that since Qn is bipartite, with s ≤ 2n−1 we have always a set of vertices of
size s having no edges between them. Updating Eq. (13) with this we have:

τ(φ) ≥ s ·
(

2−n·Tav·log (3/2) + 2−(2n+log s)/3
)

·



1−

(

2

3

)
2t(n−log s)

3





n

=
(

s · 2−n·Tav·log (3/2) +
(

2−n · s
)2/3

)

·
(

1−
(

2−n · s
)2/3·t·log (3/2)

)n
(14)

Now it can be seen that the term,(1 − (2−n · s)2/3·t·log (3/2))n converges to 1 very fast with
n. So for sufficiently large n we can ignore this term. Thus for sufficiently large n we have
from Eq. (14),

τ(φ) ≥
(

s · 2−n·Tav·log (3/2) +
(

2−n · s
)2/3

)

(15)

Lower bound on τ(φ) from Eq. (15) shows that (like PPZ [10]) performance of the algorithm
DEL-PPZ improves with more number of solutions. On the other hand for any value of
1 ≤ Tav < 2/(3 · log (3/2)) = 1.13967, performance of DEL-PPZ is better than PPZ. For
higher values of Tav and with s = 1 performance of the algorithm DEL-PPZ tends to become
same as the performance of PPZ algorithm, which is 1.5875−n. On the other hand for s = 1
(unique solution) and Tav = 1 (one critical clause per variable) performance of the algorithm
DEL-PPZ tends to become same as the performance of algorithm DEL, which is 1.5−n (see
Fig. 1.). Our results on the algorithm DEL-PPZ can now be summarized in the following

1.0000
 1.0250
 1.0500
 1.0750
 1.1000
 1.1250
 1.1500
 1.1750

10

−30

10
−25

10
−20

10
−15

10
−10

τ
(φ

)

Tav

Plot of τ (φ) w.r.t Tav for different n

PPZ

DEL−PPZ

DEL

n = 27

n = 26

Figure 1: Illustration of how success probability of PPZ, DEL and DEL-PPZ changes with
1 ≤ Tav < 2/(3 · log (3/2)) for different values of n with s = 1(Y-axis is in log scale).

statements:

12

Lemma 3.1. Let φ be any 3-CNF formula over n variables that has s number of satisfying

assignments, and let Tav be the average number of clauses per variable that appear as unique

true literal in one or more critical clauses in φ. Then probability that one iteration of

algorithm DEL-PPZ outputs some satisfying assignment is at least,

(

s · 2−n·Tav·log (3/2) +
(

2−n · s
)2/3

)

Theorem 3.1. Let φ be any 3-CNF formula over n variables and let Tav ∈ [1, 2/(3·log (3/2))]
be the average number of clauses per variable that appear as unique true literal in one or

more critical clauses in φ. Then probability that one iteration algorithm DEL-PPZ outputs

some satisfying assignment is at least 1.5−n for Tav = 1 and decreases to 1.5875−n for

Tav = 2/(3 · log (3/2)). For Tav > 2/(3 · log (3/2)) probability that one iteration algorithm

DEL-PPZ outputs some satisfying assignment is at least 1.5875−n. And these bounds are

tight for φ = ∧m−1
i=1 (x3i ⊕ x3i+1 ⊕ x3i+2) where n = 3m.

Now recall that we can also bound the error probability of the algorithm to o(1) if
we execute the algorithm DEL-PPZ for ω ≥ n/τ(φ) times. With this we obtain following
results:

Theorem 3.2. Let Tav ≥ 1 be a real number. There is a randomized algorithm for 3-
SAT, namely DEL-PPZ, that given any 3-CNF formula φ over n variables with s number

of satisfying assignments, makes one sided error of at most o(1) on satisfiable instances,

otherwise outputs one of the satisfying assignments of φ in expected time

O

(

min

{(

poly(n) ·

(

2n·Tav·log (3/2)

s

))

,

(

poly(n) ·

(

2n

s

)2/3
)})

4 Concluding remarks

As stated in the introduction that recently best known randomized bound for 3–SAT is
O (1.32216n) [16]. It is interesting to note that this algorithm is a combination of the
random walk algorithm of [13, 6] and algorithm of [11] (we will call this algorithm PPSZ),
and success probability of algorithm in [16] is maximum of the success probability of random
walk algorithm of [13, 6] and algorithm PPSZ. Algorithm PPSZ is a combination of 3d

bounded resolution on input 3-CNF formula φ followed by the PPZ algorithm. Purpose of
using a bounded resolution first is to increase the success probability of PPZ algorithm -
by increasing the number of critical clauses per variable - as that will in effect increase the
probability that a variable (that appears as unique true literal in a set of critical clauses)
is forced with respect to a randomly chosen permutation. On the other hand algorithm
DEL-PPZ performs better when the average number of critical clause per variable in φ is
close to 1. We believe that for values of Tav close to 1 our algorithm improves the algorithm
PPSZ and best known randomized bound for 3–SAT as presented in [16]. We will consider
this analysis as our future work.

13

References

[1] Cook, S.A.: The complexity of theorem-proving procedures. In: STOC ’71: Proceed-
ings of the third annual ACM symposium on Theory of computing, New York, NY,
USA, ACM Press (1971) 151–158

[2] Levin, L.: Universal’nyie perebornyie zadachi (universal search problems: in russian).
Problemy Peredachi Informatsii, English translation in [22] 9(3) (1973) 265–266

[3] Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Inf. Process. Lett. 8(3) (1979) 121–123

[4] Dantsin, E.: Two propositional proof systems based on the splitting method. Za-
piski Nauchnykh Seminarov LOMI, 105:24-44, 1981. (in Russian),English translation
in Journal of Soviet Mathematics 22(3) (1983) 1293–1305

[5] Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10 (1985) 287–295

[6] Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search and
restart. Algorithmica 32(4) (2002) 615–623

[7] Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C.,
Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT
based on local search. Theor. Comput. Sci. 289(1) (2002) 69–83

[8] Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm
for k-SAT. J. ACM 52(3) (2005) 337–364

[9] Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor.
Comput. Sci. 223(1-2) (1999) 1–72

[10] Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. Chicago Journal of
Theoretical Computer Science 1999(115) (1999)

[11] Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm
for k-SAT. In: FOCS ’98: Proceedings of the 39th Annual Symposium on Foundations
of Computer Science, Washington, DC, USA, IEEE Computer Society (1998) 628

[12] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7) (1962) 394–397

[13] Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, Washington, DC, USA, IEEE Computer Society (1999) 410

[14] Hofmeister, T., Schoning, U., Schuler, R., Watanabe, O.: Randomized algorithms for
3-SAT. Theor. Comp. Sys. 40(3) (2007) 249–262

14

[15] Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: SODA ’04: Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia,
PA, USA, Society for Industrial and Applied Mathematics (2004) 328–328

[16] Rolf, D.: Improved bound for the PPSZ/Schöning-algorithm for 3-SAT. Journal on
Satisfiability, Boolean Modeling and Computation (JSAT) 1(1) (2006) 111–122

[17] Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for
3-SAT. Theor. Comput. Sci. 329(1-3) (2004) 303–313

[18] Rolf, D.: Derandomization of PPSZ for unique k-SAT. In Bacchus, F., Walsh, T., eds.:
SAT. Volume 3569 of Lecture Notes in Computer Science., Springer (2005) 216–225

[19] Feller, W.: An Introduction to Probability Theory and Its Applications. Second edn.
Volume II. John Wiley and Sons, New York (1971)

[20] Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique
k-SAT: An isolation lemma for k-CNFs. J. Comput. Syst. Sci. 74(3) (2008) 386–393

[21] Harper, L.H.: A necessary condition on minimal cube numberings. Journal of Applied
Probability 4(2) (1967) 397–401

[22] Trakhtenbrot, B.A.: A survey of russian approaches to perebor (brute-force search)
algorithms. Annals of the History of Computing 6(4) (1984) 384–400

15

	Introduction
	Combined algorithm
	Analysis of the combined algorithm
	Concluding remarks

