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Abstract. Stochastic local search is a successful technique in diverse ar-
eas of combinatorial optimisation and is predominantly applied to hard
problems. When dealing with individual instances of hard problems,
gathering information about specific properties of instances in a pre-
processing phase is helpful for an appropriate parameter adjustment of
local search-based procedures. In the present paper, we address parame-
ter estimations in the context of landscapes induced by k-SAT instances:
at first, we utilise a sampling method devised by Garnier and Kallel in
2002 for approximations of the number of local maxima in landscapes
generated by individual k-SAT instances and a simple neighbourhood re-
lation. The objective function is given by the number of satisfied clauses.
The procedure provides good approximations of the actual number of
local maxima, with a deviation typically around 10%. Secondly, we pro-
vide a method for obtaining upper bounds for the average number of
local maxima in k-SAT instances. The method allows us to obtain the

upper bound 2n−O(
√

n/k) for the average number of local maxima, if m
is in the region of 2k ·n/k.
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1. Introduction

In recent years, much attention has been paid to local search algorithms as one
of the basic methods to solve k-SAT problems. A first summary was presented
in [14] along with an empirical analysis of run-time distributions for various
local search-based methods such as WalkSAT [30]. Improvements on run-time
estimations for k-SAT problems as well as for CNFs with unconstrained clause
lengths are reported by a number of authors [1, 7, 9, 11, 21, 25, 26], where
the results are partly based on randomised local search methods. Significant
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progress has been achieved in the analysis of phase transitions since this
effect was reported in [18] and [31]. Sophisticated methods from statistical
mechanics [19, 17, 20] provided quite accurate estimates for the crucial phase
transition parameter, which eventually led to a rigorous proof of a tight bound
of 2k ·log 2 − O(k) for the phase transition threshold as presented in [2]; for
an overview on statistical mechanics applied to combinatorial optimization
we refer the reader to [16].

In the present paper, we attempt to analyse the number of local max-
ima in a combinatorial landscape induced by a k-CNF and a simple neigh-
bourhood function, with the objective function being the number of satisfied
clauses for a given assignment of binary values. In recent years, combinatorial
landscape analysis has become a major tool in the design of search-based al-
gorithms, see [23]. For example, instance-specific landscape parameters such
as the maximum value of the minimum escape height from local minima
can be utilised to obtain relatively tight bounds for the termination of local
search when coupled with a confidence parameter, see [3]. The application of
this type of run-time bounds to protein folding simulation exhibits a close
correspondence between the simulation time (in number of transitions) and
estimates of real folding times (in nanoseconds) of protein sequences [5, 32],
which is due to the common source of thermodynamics (simulated annealing,
minimizing free energy in protein foldings).

In [22] it has been demonstrated how to incorporate the number of local
optima into run-time estimates of local search algorithms. For landscapes that
can be partitioned into attraction basins, they proved that with probability
α all local optima have been covered by local search with random restart
after a waiting time of ν·ln (ν+γ)+zα·

√
(ν ·π)2/6+1−ν ·ln (ν+γ), where ν is

the number of local optima, γ is the Euler-Mascheroni constant, and zα is an
appropriate confidence coefficient. Thus, estimates for ν provide information,
e.g., for the selection of the population size in parallelized versions of local
search algorithms, such as genetic algorithms or evolutionary algorithms in
general.

Related work on combinatorial landscapes is presented in [15] and [34].
Zhang [34] proposes a landscape-based method that performs especially well
on overconstrained random MAX-SAT instances. Moreover, Zhang’s algo-
rithm finds satisfiable solutions on large k-SAT instances more often than
WalkSAT. The paper highlights the importance of how to deal with indi-
vidual instances rather than with collections of (randomly selected) problem
instances. In the context of the present paper, it is interesting to note that
Zhang [34] reports a relatively small number of local minima for n = 100.
Kaski [15] proved that for k-SAT instances with a constant number m = const
of conjunctions the number of local maxima (or minimum number of violated
conjunctions) is of order 2Ω(n), with typically barriers of order Ω(n) between
maxima. In the present paper, we aim at variable m that cover the region of
phase transition.
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We utilise the approach devised in [10] for estimating the number of
local maxima for a given problem instance, where sample data are used to
approximate a probability distribution associated with the landscape induced
by the problem instance. The results are discussed against the information
gathered by a complete analysis of the landscape for a limited number of
k-SAT problem instances. Given the nature of the problem (i.e., complete
search for local maxima and, in particular, optimising parameters of stochas-
tic models for 20 instances per each (n,m)-pair), we were able to analyse only
small-scale instances and overall only a limited number of different, randomly
generated k-SAT instances. Apart from the experimental analysis based on
the Garnier/Kallel-approach, we derive an estimation of the average number
of local maxima per k-CNF in terms of parameters of individual problem
instances for the given, simple neighbourhood relation. We note that the cal-
culations depend on the type of the neighbourhood, i.e. other neighbourhood
relations may produce different values, which will be the subject of future
research.

2. Basic Notations

We follow mainly the notations from [2]: for a set V of n Boolean variables
let Ck(V ) denote the set of all

(
n
k

)
·2k different disjunctive k-clauses on V ,

i.e. repeated literals and tautologies are excluded. A k-CNF is formed by
selecting m different clauses C from Ck(V ) and taking their conjunction. We
note that the selection does not imply - as in [2] - that the k-CNF strictly
depends upon all n variables. The set of all such k-CNF consisting of m
clauses is denoted by Fk(n,m). The set of m clauses forming F ∈Fk(n,m) is
denoted by C(F ), and ZF (σ̃) is the number of satisfied clauses C ∈ C(F ) on
the truth assignment σ̃ = (σ1, ..., σn), i.e. 0 ≤ ZF (σ̃) ≤ m and F is satisfiable,
if there exists η̃ such that ZF (η̃) = m.

In [27], various neighbourhood functions are analysed that employ in-
formation about ZF (σ̃) and elements of C(F ) that maximise changes of the
objective function in one way or another. For example, flipping values of truth
assignments is determined by unsatisfied clauses only [29, 28]. We consider
a simple, unconstrained (i.e., features of clauses w.r.t. ZF (σ̃) are not taken
into account) neighbourhood function where the value of a single variable is
flipped, which makes it possible to consider the elements of the unit cube
{0, 1}n as elements of the configuration space. Thus, the landscape L(F ) for
F is induced by ZF (σ̃), σ̃∈{0, 1}n, and the neighbourhood relation

N(σ̃) =
{
σ̃′|d(σ̃, σ̃′) = 1

}
, (2.1)

where d(σ̃, σ̃′) is the Hamming distance.
A path w(σ̃, σ̃′) of length ` ≥ 0 within L(F ) is a sequence of σ̃i ∈L(F )

such that σ̃0 = σ̃, σ̃` = σ̃′, and σ̃i+1∈N(σ̃i), i = 1, ..., −̀1. We use σ̃i∈w(σ̃, σ̃′),
if σ̃i belongs to w(σ̃, σ̃′). For the simple neighbourhood (2.1), each σ̃′∈L(F )
is reachable from a fixed σ̃ through a path of length ` ≤ n.

Let W (σ̃) denote the set of all paths w(σ̃, σ̃′) of length ` ≤ n.



4 A.A. Albrecht, P.C.R. Lane and K. Steinhöfel

Definition 1. If ∀w(σ̃, σ̃′)∀σ̃i
(
w(σ̃, σ̃′)∈W (σ̃)∧

(
σ̃i, σ̃i+1∈w(σ̃, σ̃′)∧

(
ZF (σ̃i+1) >

ZF (σ̃i)
)
→ ∃σ̃j

(
σ̃j , σ̃j+1 ∈w(σ̃, σ̃′)∧

(
j < i

)
∧
(
ZF (σ̃j+1) < ZF (σ̃j)

))
, then σ̃

is called a local maximum. The number of local maxima of F is denoted by
Nlm(F ).

In order to simplify the combinatorial analysis of local maxima, we
consider a potentially larger subset of L(F ) by taking into account only the
neighbourhood N(σ̃) rather than the set of paths W (σ̃):

Definition 2. If ∀σ̃′
(
σ̃′ ∈N(σ̃) → (ZF (σ̃′) ≤ ZF (σ̃)

)
, then σ̃ is called a one-

step local maximum. The number of one-step local maxima is denoted by
N1

lm(F ).

Since Nlm(F ) ≤ N1
lm(F ), an upper bound for N1

lm is also valid for Nlm.

3. The Garnier/Kallel-Approach

In the present paper, we are solely concerned with the landscape analysis
called inverse problem [10], i.e. M elements of the landscape are selected at
random as initial points of a pre-defined local search procedure. Then, for
j initial points, where 1 ≤ j ≤ M , the local search procedure is started
and executed until a (local) maximum has been detected. The number of
different (local) maxima is denoted by βj . The local search procedure is
quasi-deterministic and follows the steepest ascent rule: for the intermedi-
ate landscape element σ̃, all elements of N(σ̃) are examined and one of the
neighbours σ̃′ with the highest value of ZF (σ̃′) among all neighbours is cho-
sen as the successor of σ̃ in the search procedure. The search terminates if
no improvement of the objective function can be achieved. In [10], and the
same applies to [22], a single element σ̃′ ∈ N(σ̃) is assumed at each step that
maximises ZF (σ̃′), which implies a partition of L into attraction basins Ai,
where 1 ≤ i ≤ N for a total number of N local and global maxima. The set
Ai consists of all elements of L that lead to the ith local or global maximum
by the steepest ascent local search. The assumption affects the normalised
size αi = |Ai|/|L| of attraction basins and

∑N
i=1 |Ai|/|L| = 1. Since we em-

ploy the Garnier/Kallel-approach in an experimental context, we assume in
the following that the impact of random selections among σ̃′ that maximise
ZF (σ̃′) within a given neighbourhood is negligible.

Garnier and Kallel [10] assume that the normalised sizes αi of attraction
basins can be described by a distribution parametrized by some positive
number γ as follows: let (Zi)i=1,..,N be a sequence of independent random
variables whose common distribution has density pγ defined by

pγ =
γγ

Γ(z)
· zγ−1 · e−γ·z, (3.1)

where Γ(z) =
∫∞

0
e−t · tz−1dt, i.e. (3.1) represents the Gamma distribution

with the parameter setting [γ, γ], see [10]. Let Hγ denote the assumption
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that the (αi)i=1,...,N can be approximated by (Zi/TN )i=1,...,N , where TN =∑N
i=1 Zi with each Zi having the density function pγ . Furthermore, let βj,γ =

Eγ [βj ] denote the expected value of βj , j = 1, ...,M . Garnier and Kallel [10]
prove that

βj,γ = N ·
(
M

j

)
·Γ(γ+j)

Γ(γ)
· Γ(N ·γ)
Γ((N−1)·γ)

·Γ((N−1)·γ+M−j)
Γ(N ·γ+M)

. (3.2)

We note that for N = M/r, a fixed value of M , and appropriate approxima-
tions of the Γ-function, the βj,γ can be approximated according to (3.2) as
functions of (j, γ, r). For fixed r, Garnier and Kallel [10] propose the χ2 test
to approximate γ for Hγ , which consists of calculating

Tγ =
M∑
j=1

(βj − βj,γ)2

βj,γ
, (3.3)

where the βj are given from observation and the βj,γ are approximated ac-
cording to (3.2). The goal is then to determine

γ0(r) = argmin{Tγ , γ > 0} (3.4)

by appropriate numerical methods. In our computational experiments, we
incorporate the approximation of γ0(r) as a sub-routine in calculations where
the parameter r varies (is decremented) until γ0(r) changes only marginally
for r = rappr, see Section 4. Thus, for a fixed (but sufficiently large) value of
M the number of local maxima is finally estimated by

Nappr =
M

rappr
. (3.5)

3.1. Evaluation of random 3-SAT instances

We fixed k = 3 and for n = 18, 20 we randomly generated twenty instances
from F3(n,m) for varying ratios m/n around the phase transion threshold
m/n ≈ 4.267. For each of the k-CNF we executed a complete search for
local/global maxima in {0, 1}18 and {0, 1}20. We then selected three values
for M , the number of random points chosen in {0, 1}22, {0, 1}23 and {0, 1}24

as initial elements for a deterministic steepest ascent search for local maxima.
For each of the values Mi, i = 1, 2, 3, and the natural order of the Mi points
we counted by βij , j = 1, ...,Mi the number of different maxima detected by
the first j starting points for steepest ascent search.

3.2. Approximation of Hγ

For the calculation of βj,γ according to (3.2) we implemented the following
procedure, which actually approximates βj,γ , since we employ an approxima-
tion of the Γ-function. We recall that in (3.2) the (unknown) N is substituted
by M/r, where M is selected as described in Section 3.1 and r is a variable
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in our calculations. At first, we represent Eqn. 3.2 by

βj,γ =
M

r
·
(
M

j

)
· A1

A2
· B1

B2
· C1

C2
, where (3.6)

A1 = Γ(a1) for a1 = γ + j; (3.7)
A2 = Γ(a2) for a2 = γ; (3.8)

B1 = Γ(b1) for b1 = γ · M
r

; (3.9)

B2 = Γ(b2) for b2 = γ ·
(M
r
− 1
)
; (3.10)

C1 = Γ(c1) for c1 = M − j + γ ·
(M
r
− 1
)
; (3.11)

C2 = Γ(c2) for c2 = M + γ · M
r
. (3.12)

Since in our case some of the values are very large, we use intermediately a
representation by the natural logarithm (as a built-in procedure for Γ(x)),
i.e. in the second step we calculate

Z = ln
((M

j

)
· A1

A2
· B1

B2
· C1

C2

)
(3.13)

= ln
(
M

j

)
+ lnA1 + lnB1 + lnC1 − lnA2 − lnB2 − lnC2. (3.14)

The ln Γ(x) are calculated by a built-in function, and for the binomial coef-
ficient we use the formula

ln
(
M

j

)
=

M∑
s=M−j+1

ln s−
j∑
t=1

ln t. (3.15)

Finally, we set

βj,γ =
M

r
· eZ , (3.16)

which is used as a sub-routine in the search for optimum settings of (r, γ):

1. For a fixed r ≥ r0 we search for γ such that Tγ from (3.3) is minimised,
i.e. Eqn. 3.3 and Eqn. 3.16 are repeatedly calculated for γ ≥ γ0 and
γ = γ + δ, until Tγ changes only marginally or increases above the
minimum value obtained so far.

2. For r0 and r = r + ∆ ≤ rmax, the triplets (r, γ, Tγ) are recorded and
finally rappr at the inflection point of the graph of r against Tγ is selected.

3. The output is then determined by Nappr = M/rappr.

In the computational experiments presented in the next section, we
locate the inflection point in the graph of r against Tγ to identify a value for
r. We search for r for 10 intervals in the range [0.8× rtrue, 1.2× rtrue].
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4. Numeric Results

4.1. Statistics over k-SAT instances

Table 1 gives data on the k-SAT instances. The columns report the mini-
mum, maximum, mean value and standard deviation of the number of sat-
isfied clauses; these values are averaged across the set of 20 instances. In
Table 2, the columns for ‘Local maxima’ and ‘Satisfies’ do the same, but
for the number of local maxima and number of instantiations which make
the expression true, respectively; here, the minimum and maximum are the
largest and smallest value in the set of instances, and the mean and standard
deviation are computed across the set of instances.

Table 1. Summary statistics for varying n and m, with 20
instances for each value of m.

Number of satisfied clauses
n m min max mean s.d.
18 66 45.3 65.8 57.8 2.7
18 71 50.1 70.9 62.1 2.8
18 76 53.6 75.6 66.5 2.9
18 81 57.6 80.8 70.9 3.0
18 86 61.3 85.3 75.3 3.0
20 74 51.5 73.9 64.8 2.8
20 79 55.4 78.9 69.1 2.9
20 84 59.4 83.9 73.5 3.0
20 89 62.8 88.5 77.9 3.2
20 94 67.1 93.3 82.2 3.3

Tables 1–2 provide evidence that the number of local maxima is on av-
erage relatively small and decreases significantly with increasing m for the
remaining parameters being fixed. In Section 5 we attempt a theoretical ex-
planation for this behaviour of the number of local maxima. In fact, the ex-
perimental observations seem to be counter-intuitive, since with increasing m
and fixed n one moves from k-CNF that are satisfiable with high probability
to conjunctive normal forms that are not satisfiable with high probability.

In particular, Table 2 displays a sharp decrease in the mean value of
local maxima as well as for satisfying assignments for increasing m and fixed
n. For each pair (n,m), 20 instances were generated and analysed.

In Table 3, the values of the relative proportion of the average number
of global to local maxima is ordered in accordance with increasing values
m/n. We recall that the critical threshold is m/n = 4.23. The values from
the table suggest that there is a strong correlation (0.81, using Spearman’s
correlation) between increasing values of m/n and decreasing values of the
relative proportion of global to local maxima.
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Table 2. Local maxima and satisfying assignments.

Local max Satisfies
n m min max mean s.d. max mean s.d.
18 66 21 221 64.2 44.9 221 39.1 50.2
18 71 13 78 33.4 17.7 67 19.1 17.1
18 76 10 196 49.4 42.8 17 5.2 5.7
18 81 7 86 37.3 22.1 35 8.1 9.6
18 86 17 73 34.6 15.2 14 1.4 3.1
20 74 29 162 77.1 39.6 131 37.4 36.1
20 79 7 154 57.9 41.3 52 41.6 46.0
20 84 11 244 51.5 49.5 39 8.1 9.3
20 89 14 119 46.6 27.3 49 9.3 13.0
20 94 12 104 48.5 26.8 42 6.0 11.0

Table 3. Relative proportion of global to local maxima.

n m Local max Global max m/n Global/Local
18 66 64.2 39.1 3.67 0.61
20 74 77.1 37.4 3.70 0.48
18 71 33.4 19.1 3.94 0.57
20 79 57.9 41.6 3.95 0.72
20 84 51.5 8.1 4.20 0.16
18 76 49.4 5.2 4.22 0.10
20 89 46.6 9.3 4.45 0.20
18 81 37.3 8.1 4.50 0.22
20 94 48.5 6.0 4.70 0.12
18 86 34.6 1.4 4.78 0.04

4.2. Number of satisfied clauses

As can be seen in Tables 4– 5, the value for γ(r) is quite small, 0.10. The
value of N is within 15% of the true value in all cases, and frequently around
10%. The computed value for r varies considerably by landscape to reflect
the changing number of local maxima and hence the shape of the landscape.

For each pair (n,m), 20 instances were generated, and for each of the
instances the approximation procedure from Section 3 was executed for three
different values of M . The values for N are from Table 2 for the corresponding
n.

As displayed in Tables 4–5, the values of γ(rappr) are very small, and the
range is actually considered to be critical in [10]. Nevertheless, the deviation
of approximations Nappr from the mean values N is below 15% for all three
different values of Mi, and the typical value is in the region of 10%. We note
that the small number of local maxima could explain the good performance
of local search algorithms on k-SAT instances, see [1].
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Table 4. n = 18: Results averaged over 20 landscapes.

m N M βM γ(r) r N N/N
66 64.2 29 46.95 0.10 10.19 72.14 1.11
66 64.2 210 51.60 0.10 20.15 73.20 1.12
66 64.2 211 55.45 0.10 40.29 73.20 1.12
71 33.4 29 26.55 0.10 18.35 36.35 1.08
71 33.4 210 27.70 0.10 36.50 36.57 1.08
71 33.4 211 28.95 0.10 72.42 37.13 1.10
76 49.4 29 34.20 0.10 16.62 55.48 1.10
76 49.4 210 37.55 0.10 33.15 55.76 1.10
76 49.4 211 40.30 0.10 66.15 55.83 1.10
81 37.3 29 28.70 0.10 20.06 41.08 1.09
81 37.3 210 30.55 0.10 40.09 41.30 1.10
81 37.3 211 31.70 0.10 79.63 41.75 1.10
86 34.6 29 25.05 0.10 16.22 37.77 1.09
86 34.6 210 27.00 0.10 32.31 37.91 1.09
86 34.6 211 28.40 0.10 63.93 38.35 1.10

Table 5. n = 20: Results averaged over 20 landscapes.

m N M βM γ(r) r N N/N
74 77.1 210 61.75 0.10 15.15 87.81 1.13
74 77.1 211 66.20 0.10 30.08 88.59 1.14
74 77.1 212 68.85 0.10 60.17 88.59 1.14
79 57.9 210 50.60 0.10 31.74 66.01 1.13
79 57.9 211 53.55 0.10 63.48 66.01 1.13
79 57.9 212 54.45 0.10 126.70 66.33 1.14
84 51.5 210 40.25 0.10 29.32 58.19 1.11
84 51.5 211 43.00 0.10 58.37 58.22 1.11
84 51.5 212 45.55 0.10 116.14 58.59 1.11
89 46.6 210 37.05 0.10 28.43 51.94 1.10
89 46.6 211 39.55 0.10 56.09 52.62 1.11
89 46.6 212 40.15 0.10 111.70 52.83 1.12
94 48.5 210 39.60 0.10 28.01 54.17 1.10
94 48.5 211 42.15 0.10 55.65 54.99 1.11
94 48.5 212 42.65 0.10 111.18 55.16 1.12

5. Local Maxima and k-CNF

For an arbitrary σ̃ ∈ {0, 1}n and F ∈ Fk(n,m), we set C0(F, σ̃) = {C|C ∈
C(F ) ∧ C(σ̃) = 0} and C1(F, σ̃) = {C|C ∈ C(F ) ∧ C(σ̃) = 1}. Thus, clauses
from C1(F, σ̃) have at least one literal among the k literals that returns 1 on σ̃.
Since in (2.1) we have d(σ̃, σ̃′)=1, clauses with at least two literals returning
1 on σ̃ do not affect the re-calculation of ZF in neighbourhood transitions
out of σ̃. We therefore partition C1(F, σ̃) into C

(1)
1 (F, σ̃) and C

(≥2)
1 (F, σ̃),
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i.e. C
(1)
1 (F, σ̃) contains all C∈C(F ) with exactly one literal that returns 1 on

σ̃. We note the following simple observation:

Lemma 5.1. The truth assignment σ̃ is a one-step local maximum in L(F ) iff
for all σ̃′∈N(σ̃):

|{C|C(σ̃′)=1∧C∈C0(F, σ̃)}| ≤ |{C|C(σ̃′)=0∧C∈C
(1)
1 (F, σ̃)}|. (5.1)

For a literal xη we use xη∈C to express that xη is part of the disjunctive
term C. Let X0(F ) = {x|∃C ∈C0(F, σ̃) ∧ xσ ∈C}| and p = |X0(F )| be the
number of variables that occur in clauses of C0(F, σ̃), where we employ σσ ≡
0. Furthermore, we set q = |C0(F, σ̃)|, r = |C(1)

1 (F, σ̃)|, and s = |C(≥2)
1 (F, σ̃)|.

Thus, we have for F ∈Fk(n,m)

m = q + r + s. (5.2)

For X1(F ) = {x|∃C ∈C
(1)
1 (F, σ̃) ∧ xσ ∈C}, t = |X1(F )|, and hu = |{C|C ∈

C
(1)
1 (F, σ̃) ∧ xσiuiu ∈C}| we have

t∑
u=1

hu = r, (5.3)

since the corresponding subsets of clauses have to be disjoint (otherwise, a
clause from the intersection would belong to C

(≥2)
1 (F, σ̃)).

Lemma 5.2. If xiu ∈ X1\X0 6= ∅, then the neighbourhood transition that
involves xiu diminishes ZF (σ̃) by hu.

This follows from the definitions of C0(F, σ̃) and C
(1)
1 (F, σ̃). For fu = |{C|C∈

C0(F, σ̃) ∧ xσiuiu ∈C}|, Lemma 5.1 can now be rewritten as

Lemma 5.3. The truth assignment σ̃ is a one-step local maximum in L(F ) iff
X0 ⊆ X1 and for xiu ∈X0:

1 ≤ fu ≤ hu. (5.4)

We note that by definition
p∑

u=1

fu = q · k, (5.5)

and (5.3) and (5.4) imply for a one-step local maximum

q · k ≤ r. (5.6)

The relations are illustrated by a small example for n > 5, k = 3, and q = 3,
where only the first five variables are shown: The matrix in Table 6 shows the
three 3-clauses (xσ1

1 ∨x
σ4
4 ∨x

σ5
5 ), (xσ2

2 ∨x
σ3
3 ∨x

σ4
4 ), and (xσ2

2 ∨x
σ4
4 ∨x

σ5
5 ), which

all return 0 on (σ1, ..., σ5) and belong to the set C0(F, σ̃). For C
(1)
1 (F, σ̃) and,

for example, x2 we need at least two clauses each with xσ2
2 and (k−1) = 2

literals of type xσjj , j 6= 2.
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Table 6. Matrix with “column sums” k and “row sums” fu.

x assignment f -values
x1 σ1 0 0 f1 = 1
x2 0 σ2 σ2 f2 = 2
x3 0 σ3 0 f3 = 1
x4 σ4 σ4 σ4 f4 = 3
x5 σ5 0 σ5 f5 = 2

In Table 7, elements of C
(1)
1 (F, σ̃) are represented by columns no 5 until

no 8. In column no 5, both remaining xσjj are drawn from the first five vari-
ables, i.e. the column represents (xσ1

1 ∨x
σ3
3 ∨x

σ5
5 ). We note that the selection

of xσjj is independent of the set of (k−1) variables defining the corresponding

clause from C0(F, σ̃). In column no 6, one one of the xσjj belongs to the first

five variables, and none of the xσjj is chosen from this subset of variables in
column no 7 and no 8.

Table 7. Matrix representing C0(F, σ̃) and part of C
(1)
1 (F, σ̃).

x C0(F, σ̃) C
(1)
1 (F, σ̃) h-values

x1 σ1 0 0 σ1 0 0 0 · · · h1 = 1 = f1

x2 0 σ2 σ2 0 σ2 σ2 σ2 · · · h2 = 3 > f2

x3 0 σ3 0 σ3 0 0 0 · · · · · ·
x4 σ4 σ4 σ4 0 σ4 0 0 · · · · · ·
x5 σ5 0 σ5 σ5 0 0 0 · · · · · ·

Let Mσ̃
k(n,m) ⊆ Fk(n,m) denote the set of k-CNF that have σ̃ as a one-

step local maximum for the neighbourhood defined by N(σ̃) and the objective
function defined by ZF , where we require ZF (σ̃) < m (σ̃ is a local maximum),
i.e. q ≥ 1 and σ̃ is not a satisfying assignment.

We are now going to derive an upper bound for Mσ̃ = |Mσ̃
k(n,m)|. As

will be seen later, the ratio 2n ·Mσ̃/|Fk(n,m)|, when approximated by using
an upper bound of Mσ̃, then provides some information about typical values
for the number of one-step local maxima for k-CNF in terms of parameters
(k, n,m).

For fixed (q, r, s), we consider the number of potential sets C0(F, σ̃),
C

(1)
1 (F, σ̃), and C

(2)
1 (F, σ̃) under the assumption that the fixed truth assign-

ment σ̃ is a one-step local maximum.
We set

C0(σ̃) =
⋃

F∈Mσ̃
k (n,m)

C0(F, σ̃); (5.7)

C
(1)
1 (σ̃) =

⋃
F∈Mσ̃

k (n,m)

C
(1)
1 (F, σ̃); (5.8)
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C
(2)
1 (σ̃) =

⋃
F∈Mσ̃

k (n,m)

C
(2)
1 (F, σ̃). (5.9)

Note: here we define sets of sets of clauses, and subsets of the sets corre-
sponding to fixed (q, r, s) are indicated by an index.

For a fixed C0(F, σ̃) we have to ensure that each of the p elements of
X0(F ) is present in at least one of the clauses from C0, and we therefore need

q · k ≥ p ≥ k and
(
p

k

)
≥ q. (5.10)

Let A(p, q) denote the number of pairwise different sets H of size q
consisting of k-selections S = {xi1 , ..., xik} out of p variables of X0(F ) such
that ∀x

(
x ∈X0 → ∃S(S ∈ H ∧ x ∈ S)

)
. Since the q selected clauses might

depend on a smaller number p′ < p of variables, we have

A(p, q) ≤
((p

k

)
q

)
(5.11)

to upper bound the number of sets C0(F, σ̃) depending on p variables, and
for fixed q obviously |C0(σ̃)q| = A(n, q).

The selection of C0(F, σ̃) out of A(p, q) ≤
((pk)
q

)
candidates implies fur-

ther conditions on C
(1)
1 (F, σ̃) and the associated set X1: for fu clauses from

C0(F, σ̃) with x
σiu
iu

we have hu ≥ fu clauses from C
(1)
1 (F, σ̃) with x

σiu
iu

, if σ̃
is a one-step local maximum. In each of the hu clauses, the literals different
from xσiiu are of the same type xσjj as in C0(F, σ̃), due to the definition of

C
(1)
1 (F, σ̃).

There are
(
n
k

)
k-clauses that return the value 0 on (σ1, ..., σn). Each of

the k positions in the
(
n
k

)
k-clauses can be altered from x

σiu
iu

to xσiuiu in order
to generate a candidate for C

(1)
1 (F, σ̃). Therefore, given r = k · q + ∆ and

∆ ≥ 0, the number of sets |C(1)
1 (F, σ̃)r| consisting of r clauses is given by

|C(1)
1 (F, σ̃)r| = B(n, r) =

(
k ·
(
n
k

)
r

)
. (5.12)

Finally, we consider for C
(≥2)
1 (σ̃) the set of all

(
n
k

)
·2k clauses: since σ̃

is fixed, among the set of all clauses there are
(
n
k

)
k-clauses that return 0 on

σ̃ (the clauses of C0(σ̃) are drawn from this subset); as mentioned before,
there are k·

(
n
k

)
k-clauses with exactly one literal of type xσiuiu (the clauses of

C
(1)
1 (σ̃) are drawn from this subset). Therefore, the number of different sets
|C(≥2)

1 (σ̃)s| consisting of sets of s clauses is given by

|C(≥2)
1 (σ̃)s| = C(n, s) =

(
(2k−k−1) ·

(
n
k

)
s

)
. (5.13)

Apart from s = m−q−r, no further restrictions apply to C(n, s). There-
fore, we focus on A(p, q) and B(n, r).
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Due to one of the Vandermonde identities, namely
∑h
c=0

(
a
c

)
·
(
b−a
h−c
)

=
(
b
h

)
,

the (partial) summation over products A(p, q) ·B(n, r) ·C(n, s) results in an
upper bound below but close to

(
2k·(nk)
m

)
, which can be immediately seen from

a simplified version A(n, q)·B(n, r)·C(n, s).
We first identify the range of q and r where the summands in the fol-

lowing simplified upper bound for Mσ̃ = |Mσ̃
k(n,m)| are relatively small:

Mσ̃ <

bm/(k+1)c∑
q=1

m−q∑
r=k·q

A(n, q)·B(n, r)·C(n,m−q−r). (5.14)

The upper bound will be improved in successive steps.
Since we are interested in the average number of k-CNF having σ̃ as a

one-step local maximum, we introduce the inverse value of
(

2k·(nk)
m

)
and set

P (q, r) =
A(n, q)·B(n, r)·C(n,m−q−r)(

2k·(nk)
m

) ; D =
(
n

k

)
. (5.15)

In the sum

m−q∑
r=k·q

P (q, r) =
m−q∑
r=k·q

A(n, q)·B(n, r)·C(n,m−q−r)(
2k·(nk)
m

) (5.16)

we analyse a single summand, which is given by(
D
q

)
·
(
k·D
r

)
·
(

(2k−k−1)·D
m−q−r

)(
2k·D
m

)
=

D· · ·
(
D−q+1

)
·k ·D· · ·

(
k ·D−r+1

)
q!·r!

×

×
(2k−k−1)·D· · ·

(
(2k−k−1)·D−m+q+r+1

)
·m!

(m−q−r)!·2k ·D· · ·
(
2k ·D−m+1

)
=

(
m

q

)
·
(
m−q
r

)
·D· · ·

(
D−q+1

)
·k ·D· · ·

(
k ·D−r+1

)
×

×
(2k−k−1)·D· · ·

(
(2k−k−1)·D−m+q+r+1

)
2k ·D· · ·

(
2k ·D−m+1

) . (5.17)

The factors D, k·D, (2k−k−1)·D, and 2k ·D are taken out and (5.17) turns
to (

D
q

)
·
(
k·D
r

)
·
(

(2k−k−1)·D
m−q−r

)(
2k·D
m

)
=

(
m
q

)
·
(
m−q
r

)
2k·q

·
( k

2k
)r ·(2k−k−1

2k
)m−q−r

·Z, (5.18)
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where

Z =

q−1∏
u=1

(
1− u

D

)
·
r−1∏
u=1

(
1− u

k·D
)
·
m−q−r−1∏
u=1

(
1− u

(2k−k−1)·D
)

m−1∏
u=1

(
1− u

2k·D
) . (5.19)

The products have the same structure and we apply (1 + z)z < e as well as
(1 + 1/z)z+1 > e. This way we obtain:

Z <
e

m−1∑
u=1

u

2k·D−u

e

q−1∑
u=1

u
D · e

r−1∑
u=1

u
k·D · e

m−q−r−1∑
u=1

u

(2k−k−1)·D

. (5.20)

We introduce the condition

m ≤

√
2k+1 ·

(
n

k

)
, (5.21)

which roughly means that m is upper bounded by ∼ nk/2. From (5.21) we
have

Z <
e

m−1∑
u=1

u

(2k−1)·D

e

q−1∑
u=1

u
D · e

r−1∑
u=1

u
k·D · e

m−q−r−1∑
u=1

u

(2k−k−1)·D

=
e

m·(m−1)
2·(2k−1)·D

e
q·(q−1)

2·D · e
r·(r−1)
2·k·D · e

(m−q−r)·(m−q−r−1)
2·(2k−k−1)·D

< e, (5.22)

and (5.18) turns to(
D
q

)
·
(
k·D
r

)
·
(

(2k−k−1)·D
m−q−r

)(
2k·D
m

) <
e·
(
m
q

)
2k·q

·
(
m−q
r

)
·
( k

2k
)r
×

×
(2k−k−1

2k
)m−q−r

. (5.23)

Therefore, by taking into account the full binomial sum, (5.16) and (5.23)
lead to:

m−q∑
r=k·q

P (q, r)

e·
(
m
q

)
·2−k·q

<
( k

2k
+

2k−k−1
2k

)m−q
−

−
k·q−1∑
r=0

(
m−q
r

)
·
( k

2k
)r
·
(

1− k+1
2k

)m−q−r
,
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and we finally have

m−q∑
r=k·q

P (q, r)

e·
(
m
q

)
·2−k·q

<
(

1− 1
2k
)m−q

−

−
k·q−1∑
r=0

(
m−q
r

)
·
( k

2k
)r
·
(

1− k+1
2k

)m−q−r
. (5.24)

Let E(m−q) be defined as

E(m−q) =
k·q−1∑
r=0

(
m−q
r

)
·
( k

2k
)r
·
(

1− k+1
2k

)m−q−r
, (5.25)

and (5.24) can then be written as

m−q∑
r=k·q

P (q, r)

e·
(
m
q

)
·2−k·q

<
(

1− 1
2k
)m−q

−E(m−q). (5.26)

Based on (5.16) and (5.23) until (5.26), we analyse the upper bound

Mσ̃ < e·
(

2k ·
(
n
k

)
m

)
·
bm/(k+1)c∑

q=1

(
m
q

)
2k·q
·
{(

1− 1
2k
)m−q

−Em−q
}

< e·
(

2k ·
(
n
k

)
m

)
·
bm/(k+1)c∑

q=1

(
m

q

)
·
( 1

2k
)q
·
(

1− 1
2k
)m−q

. (5.27)

If the factor e is discarded and the summand for q = 0 is added, the sum on
the RHS of (5.27) can be treated as a Poisson process and Chernoff bounds
[13] can be applied: Let Xi denote independent random variables and Pr[Xi =
1] = 1

2k
and Pr[Xi = 0] = 1− 1

2k
. For X =

∑r
i=1Xi we then have

Pr[X = q] =
(
m

q

)
·
( 1

2k
)v
·
(

1− 1
2k
)m−q

, (5.28)

which represents exactly summands on the RHS of (5.27). Thus, depending
on the relative position of q to the expected value µ = E[X] = m/2k, one
can apply Chernoff bounds for the lower and upper tail, respectively:

Pr[X < (1−δ)·µ] <

(
e−δ

(1−δ)(1−δ)

)µ
< e−

δ2
2 ·µ (5.29)

Pr[X > (1+δ)·µ] <

(
eδ

(1+δ)(1+δ)

)µ
< e−

δ2
3 ·µ. (5.30)
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For q1 = m/2k−h1 = (1−δ1)·m/2k and q2 = m/2k+h2 = (1+δ2)·m/2k we
therefore obtain:

Pr[X < (1−δ1)·m
2k

] < e−
h2
1
2 ·

2k
m (5.31)

Pr[X > (1+δ2)·m
2k

] < e−
h2
2
3 ·

2k
m . (5.32)

Thus, if h1, h2 >>
√
m/2k, we obtain exponentially small upper bounds. In

order to fix the values, we set

h1 = b1
2
·m
2k
c and h2 = d1

2
·m
2k
e; (5.33)

q1 = b m
2k+1
c and q2 = d3· m

2k+1
e, (5.34)

and we finally have

Pr[X < (1−δ1)·m
2k

] < e−
1
8 ·
m

2k (5.35)

Pr[X > (1+δ2)·m
2k

] < e−
1
12 ·

m

2k . (5.36)

In the same way we can analyse a modified upper bound of (5.16) and
(5.24), where we incorporate (5.23):

m−q∑
r=k·q

P (q, r)

e·
(
m
q

)
·2−k·q

<

m−q∑
r=1

(
m−q
r

)
·
( k

2k
)r
·
(

1− k+1
2k

)m−q−r
<

m−q∑
r=1

(
m−q
r

)
·
( k

2k
)r
·
(

1− k

2k
)m−q−r

. (5.37)

Again, the RHS is treated as a Poisson process with µ = E[X] = (m−q)·k/2k.
For r1 = (m−q)·k/2k−h′1 = (1−δ′1)·(m−q)·k/2k and q2 = (m−q)·k/2k+h′2 =
(1+δ′2)·(m−q)·k/2k we obtain

Pr[X < (1−δ′1)· k
2k
·(m−q)] < e−

1
8 ·

k

2k
·(m−q) (5.38)

Pr[X > (1+δ′2)· k
2k
·(m−q)] < e−

1
12 ·

k

2k
·(m−q), (5.39)

where we use the setting

h′1 = b1
2
· k
2k
·(m−q)c and h′2 = d1

2
· k
2k
·(m−q)e; (5.40)

r1(q) = b k

2k+1
·(m−q)c and r2(q) = d3· k

2k+1
·(m−q)e, (5.41)
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Finally, (5.27) can be simplified to

Mσ̃ < e·
(

2k ·
(
n
k

)
m

)
·
{

1

e
1
8 ·
m

2k
+

1

e
1
12 ·

m

2k
+

q2∑
q=q1

( 1

e
1
8 ·

k

2k
·(m−q)

+
1

e
1
12 ·

k

2k
·(m−q)

)
+

+
q2∑
q=q1

r2(q)∑
r=r1(q)

P (q, r)
}

< e·
(

2k ·
(
n
k

)
m

)
·
{

2

e
1
12 ·

m

2k
+

20·2k

k
· 1

e
1
12 ·

k

2k
·(m−q2)

+
q2∑
q=q1

r2(q)∑
r=r1(q)

P (q, r)
}

< e·
(

2k ·
(
n
k

)
m

)
·
{

21·2k

k
· 1

e
1
12 ·

m

2k
+

q2∑
q=q1

r2(q)∑
r=r1(q)

P (q, r)
}
. (5.42)

We now focus on improved upper bounds with respect to A(n, q)·B(n, r)·
C(n, s) for the range of values q1 ≤ q ≤ q1 and r1(q) ≤ r ≤ r2(q). Since any
subset of clauses counted by C(n, s) can be combined with clauses counted
by A(p, q) and B(n, r), an improvement significantly below A(n, q)·B(n, r)·
C(n, s) has to come from a detailed analysis of the combination of clauses
counted by A(p, q) and B(n, r). A natural way would be to look at binary
matrices derived from representations as presented in Table 6 and Table 7.
By definition, each of the B(n, r) selections Sr = C

(1)
1 (F, σ̃) of r k-clauses is

characterized by the subset X1(F ) ⊆ {x1, ..., xn} of variables that appear as
literals xσ in disjunctive clauses of Sr, whereas xσ is element of at least one
clause in some Sq = C0(F, σ̃). We note that a single Sr can be combined with
several Sq: the clauses in Sr can be “ordered” and counted with respect to
each of the xσ, and for the t variables from X1 we then have

∑t
u=1 hu = r for

hu ≥ 1, u = 1, ..., t, see (5.3); out of the values hu, i.e. the vector [h1, ..., ht],
p ≤ t values fv ≤ hv can be chosen such that

∑p
v=1 fv = k ·q and fv ≥ 1,

v = 1, ..., p; each of the vectors [f1, ..., fp] then defines the row numbers and
the “row sum values” for a binary matrix (if there is a binary matrix for
this vector). The set of sets of k-clauses Sq is determined by the number of
solutions as binary matrices with a row sum vector [f1, ..., fp] and column
sums equal to k, subject to permutations of columns.

Thus, a potential way would be to take an r-selection of clauses counted
by B(n, r) and to multiply B(n, r) by the number of binary matrices that
produce a fixed row sum [f1, ..., fp],

∑p
v=1 fv = k·q, with all column sums equal

to k, i.e. here one would “count from C
(1)
1 (F, σ̃) to C0(F, σ̃).” Unfortunately,

there are no tight upper bounds that improve on A(n, q). The study of such
matrices has a long history, but asymptotic upper bounds refer to enumerated
rows and columns under restrictions on maximal row and column sum values
(sparse matrices and almost square matrices), see the fundamental papers
[6, 8] that utilise sophisticated combinatorial methods.

Therefore, we choose a second way, where we consider all A(n, q) selec-
tions of sets C0(F, σ̃) individually, with each selection producing a row sum
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vector [f1, ..., fp], i.e. “counting from C0(F, σ̃) to C
(1)
1 (F, σ̃).” The next step

is to identify the number of C
(1)
1 (F, σ̃) of size r that can be combined with

[f1, ..., fp].
Given f̃ = [f1, ..., fp],

∑p
v=1 fv = k · q and f̃ induced by a fixed ele-

ment Sq (which is a set of q k-clauses) of C0(σ̃)q, we denote by X0(Sq) the
set {xi1 , ..., xip} of variables that appear as literals in Sq (similar to X0(F )
defined before, but here for selections out of C0(σ̃)q).

Furthermore, let E(q, r, f̃) denote the number of all elements Sr ∈
C

(1)
1 (σ̃)r such that for fv occurrences of xσiv , xiv ∈ X0(Sq), the number of

occurrences hv of xσiv in Sr satisfies hv ≥ fv, v = 1, ..., p ≤ n.
By using these notations, we then have

E(q, r, f̃) ≤
r−k·q∑
a=0

(
p ·
(
n−1
k−1

)
a+ k ·q

)
·
(

(n−p) ·
(
n−1
k−1

)
r−a

)
. (5.43)

Indeed, the first factors ensures that at least k · q elements are drawn for
variables from X0(Sq) (all r ≥ k · q elements are not excluded), and the
second factor makes sure that the upper bound is not further overestimated
by restricting the selections to variables outside X0(Sq). Here, we employ that
for a fixed xσiv , there are

(
n−1
k−1

)
different ways to select xσiu , u 6= v, for k-clauses

of Sr. We note that
(
n−1
k−1

)
= k

n·
(
n
k

)
and therefore p ·

(
n−1
k−1

)
+(n−p) ·

(
n−1
k−1

)
= k·

(
n
k

)
,

as has been used in (5.12).
Obviously, (5.43) overestimates E(q, r, f̃), and, based on the Vander-

monde identity, for small q

r−k·q∑
a=0

(
p ·
(
n−1
k−1

)
a+ k ·q

)
·
(

(n−p) ·
(
n−1
k−1

)
r−a

)
∼

(
k ·
(
n
k

)
r

)
= B(n, r), (5.44)

which leads back to A(n, q) ·B(n, r) ·C(n, s). The problem is produced by(p·(n−1k−1)
a+k·q

)
, since it relates to all partitions into p summands generating k ·q,

and not to a particular f̃ . Therefore, we finally focus on an improvement of
this particular upper bound.

Let G(q, p, a, f̃) denote the number of all elements Sb ∈ C
(1)
1 (σ̃)b such

that for fv occurrences of xσiv , xiv ∈ X0(Sq) and v = 1, ..., p ≤ n:

1. the number of occurrences gv+fv of xσiv in Sb satisfies gv ≥ 0;
2. b =

∑p
v=1(gv+fv) = a+k ·q;

3. only xσiv with xiv ∈ X0(Sq) are literals in clauses of sets Sb consisting of
b k-clauses.

For G(q, p, a, f̃) we then have

G(q, p, a, f̃) =
∑

g1+···+gv=a

p∏
v=1

( k
n ·
(
n
k

)
gv+fv

)
. (5.45)
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Since we are interested in the improvement over
(p·(n−1k−1)
a+k·q

)
, we analyse the

following ratio:

Q(q, p, a) = max
f̃

G(q, p, a, f̃)(p·(n−1k−1)
a+k·q

) ≤

∑
g1+···+gv=a

p∏
v=1

( k
n ·(nk)

gv+d k·qp e

)
(p·(n−1k−1)
a+k·q

) , (5.46)

where we employ that x > y implies
(
A
x

)
·
(
A
y

)
≤
(
A
x−1

)
·
(
A
y+1

)
. We note that

p∏
v=1

( k
n ·
(
n
k

)
gv+fv

)
=

p∏
v=1

1
(gv+fv)!

·
p∏
v=1

k

n
·D ·
(k
n
·D−1

)
· · ·
(k
n
·D−gv−fv+1

)
=

p∏
v=1

1
(gv+fv)!

·
(k
n
·D
)a+k·q

·
p∏
v=1

gv+fv−1∏
u=1

(
1− u

k
n ·D

)
<

p∏
v=1

1
(gv+fv)!

·
(k
n
·D
)a+k·q

·
p∏
v=1

e
−

∑gv+fv−1
u=1

u
k
n
·D

=
p∏
v=1

·D
)a+k·q 1

(gv+fv)!
·
p∏
v=1

e
− (gv+fv)·(gv+fv−1)

2·k
n
·D

<
(k
n
·D
)a+k·q

·
p∏
v=1

1
(gv+fv)!

. (5.47)

Furthermore,{(
p ·
(
n−1
k−1

)
a+ k · q

)}−1

=
{

1
(a+k · q)!

· p·k
n
·D · · ·

(p·k
n
·D−a−k ·q+1

)}−1

=
{

1
(a+k · q)!

·
(
p· k
n
·D
)a+k·q

·
a+k·q−1∏
u=1

(
1− u

p·k
n ·D

)}−1

<

{
1

(a+k · q)!
·
(
p· k
n
·D
)a+k·q

·e
−

∑a+k·q−1
u=1

u
p·k
n
·D−u

}−1

≤
{

1
(a+k · q)!

·
(
p· k
n
·D
)a+k·q

·e
−

∑a+k·q−1
u=1

u
p·k
n
·D−m

}−1

≤
{

1
(a+k · q)!

·
(
p· k
n
·D
)a+k·q

·e
− (m)·(m−1)

2·( p·k
n
·D−m)

}−1

< e·p−(a+k·q) ·
(k
n
·D
)−(a+k·q)

·(a+k ·q)!, (5.48)

where we utilise (5.21) again. We now have for (5.46):

Q(q, p, a) < e· (a+k ·q)!
pa+k·q

·
∑

g1+···+gv=a

p∏
v=1

1
(gv+fp)!

, (5.49)
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where for simplicity of notations we keep fp for fp = dk·qp e. The upper bound
is further analysed later, where we apply a technique that is used several
times for identifying regions of fast convergence.

Let Q̃(q, p, a) denote the value of the RHS of (5.49). From (5.45) and
(5.46) we obtain for (5.43):∑

f̃

E(q, r, f̃) <
∑
f̃

{r−k·q∑
a=0

Q̃(q, p, a)×

×
(
pf̃ ·

(
n−1
k−1

)
a+k ·q

)
·
(

(n−pf̃ )·
(
n−1
k−1

)
r−a

)}
. (5.50)

We recall that f̃ is induced by one of the A(n, q) selections of C0(σ̃)q. For
p ≥ p0 (the value of p0 is specified later) we set

Q̃(q, r) =


1, if k ·q ≤ a+k ·q < r1(q);
max Q̃(q, pf̃ , a) if r1(q) ≤ a+k ·q ≤ r2(q);
1, if r2(q) < k ·q ≤ a+k ·q.

(5.51)

where r1 and r2 are from (5.40) and (5.41). We then have from (5.50):∑
f̃

E(q, r, f̃) < Q̃(q, r)·
∑
f̃

r−k·q∑
a=0

(
pf̃ ·

(
n−1
k−1

)
a+ k ·q

)
·
(

(n−pf̃ ) ·
(
n−1
k−1

)
r−a

)
≤ Q̃(q, r)·

∑
f̃

B(n, r)·1

≤ Q̃(q, r)·A(n, q)·B(n, r)

= A(n, q)·
(
Q̃(q, r)·B(n, r)

)
, (5.52)

where we emphasise the fact that through the ratio (5.46) we aim at a smaller
value of

(
Q̃(q, r)·B(n, r)

)
compared to B(n, r). Therefore, we obtain

Lemma 5.4. For fixed (q, r, s), the number of feasible pairs [Sq,Sr] of sets of
clauses from C0(σ̃)q and C

(1)
1 (σ̃)r, respectively, is upper bounded by A(n, q)·(

Q̃(q, r)·B(n, r)
)

.

Based on (5.15), (5.42), and Lemma 5.4, we obtain for Mσ̃ = |Mσ̃
k(n,m)|

the upper bound

Mσ̃ < e·
(

2k ·
(
n
k

)
m

)
·
{

21·2k

k
· 1

e
1
12 ·

m

2k
+

+
q2∑
q=q1

r2(q)∑
r=r1(q)

A(n, q)·Q̃(q, r)·B(n, r)·C(n,m−q−r)
}
. (5.53)

However, the value of Q̃(q, p, a) from (5.51) that determines Q̃(q, r) is defined
for k ≤ p ≤ n. Furthermore, in (5.52), the value of Q̃(q, r) is multiplied
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by A(n, q), based on the counting argument that a single selection of Sq ∈
C0(σ̃)q that produces f̃ defined by p variables can be combined with at most
Q̃(q, r) ·B(n, r) r-selections of type Sr ∈ C

(1)
1 (σ̃)r. But, how many of the

potentially A(n, q) selections of Sq can produce f̃ depending only on p < n
variables? Therefore, we are now going to specify p0 from (5.51).

Let H(p, q) denote the number of pairwise different Sq that induce f̃
depending exactly on p < n variables. We now proceed in two steps: (i) we
try to identify p0 such that

∑p0
p=kH(p, q) is small compared to A(n, q); (ii) the

value of Q̃(q, p, a) from (5.51) is further analysed later only for p0 < p ≤ n.
We recall that k ≤ p ≤ k ·q according to (5.10) and q ≤

(
p
k

)
. We set

X = {x1, ..., xn} and XP = {xi1 , ..., xip}. Let H(Xp, q) denote the number of
Sq that depend on exactly the p variables of Xp:

PrX(d1∧· · ·∧dq) =
{
x|x∈X ∧ ∃dj(xσh ∈dj)

}
; (5.54)

H(Xp, q) = |
{
d1∧· · ·∧dq|PrX(d1∧· · ·∧dq) = Xp

}
|. (5.55)

Here, we use the informal notation xσ ∈ d for being part of a disjunctive
clause of a CNF d1 ∧ · · · ∧ dq, as mentioned before. Since we consider a fixed
σ̃ and only literals of type xσ constitute clauses in (5.54) and (5.55), we have

Lemma 5.5.

H(p, q) = H(Xp, q) = H(X ′p, q) for each pair Xp and X ′p.

Lemma 5.6. For fixed q ≤
(
p
k

)
and k ≤ p < k·q, H(p, q) does not decrease for

increasing p.

Proof. We assume that for some p there is H(p, q) > H(p+1, q). Given a CNF
Fp = d1∧· · ·∧dq with PrX(d1∧· · ·∧dq) = Xp, and w.l.o.g. Xp = {x1, ..., xp}
and Fp = d

(p)
1 ∧ · · · ∧ d(p)

t ∧ dt+1 ∧ · · · ∧ dq, where d(p)
j indicates that xσpp is

part of the clause. We consider two cases:

1. t ≥ 2: If xσpp is substituted by x
σp+1
p+1 in each clause of subsets T ⊂

{d(p)
1 , ..., d

(p)
t } of size |T | = 1, ..., t−1, then the corresponding CNFs

Fp+1 are pairwise different, depend on p+1 variables, and are therefore
counted by H(p+1, q). Thus, Fp induces by this procedure 2t−2 different
Fp+1.

2. t = 1:
(a) If d(p)

1 and at least one clause out of d2, ..., dq have at least one
literal xσhh in common, then substituting xσhh in d(p)

1 by xσp+1
p+1 creates

a CNF F ′p+1 that has not been generated in the first case, since the

new clause d
(p+1)
1 depends on xp as well as on xp+1, and F ′p+1 is

counted by H(p+1, q).
(b) d

(p)
1 and d2, ..., dq do not have literals in common. If d2, ..., dq to-

gether depend on k · (q−1) variables, then Fp depends on k · (q−
1)+k = k · q variables, which contradicts p < k · q. Therefore,
there exists xh with the smallest index h among the variables with
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the smallest number u ≥ 2 of occurrences as literals in d2, ..., dq.
Substituting xσuu by x

σp
p in one clause (w.l.o.g. in d2) leads to

d
(p)
1 ∧ d′2 ∧ d3 · · · ∧ dq counted by H(p, q), where
(i) d

(p)
1 and d′2 are indeed different, since the variables from d

(p)
1

do not occur in d2, ..., dq;
(ii) d

(p)
1 ∧d′2∧d3 · · · ∧dq has been considered in the first case and

generated 22−2 = 2 different Fp+1, namely F
(1)
p+1 = d

(p+1)
1 ∧

d′2∧d3 · · ·∧dq and F (2)
p+1 = d

(p)
1 ∧d

(p+1)
2 ∧d3 · · ·∧dq. On clauses

with k literals one can impose an order, e.g. by an order of
literals according to ascending indices, and then by a position
representation to the basis (p+2). Therefore, one can identify
predecessor and successor with respect to d

(p+1)
1 and d

(p+1)
2

according to the imposed order, which can be extended to
F

(1)
p+1 and F

(2)
p+1, since only d

(p+1)
1 and d

(p+1)
2 depend on xp+1,

and the remaining clauses a are the same. We then decide
to count the CNF that appears first in the imposed order in
Step 1, whereas the second CNF is counted in Step 2.

Thus, we obtain a contradiction to the assumption H(p, q) > H(p+1, q). �

Since H(p, q) does not decrease for fixed q and increasing p, we have
H(p, q) ≤ H(k ·q, q). For H(k ·q, q), the q k-clauses do not have literals in
common, and therefore

H(p, q) ≤ H(k ·q, q) =

(
k·q
k

)
·
(
k·q−k
k

)
· · ·
(
k·q−(q−1)·k

k

)
q!

=
(k ·q)!

(k!)q ·q!
. (5.56)

There are
(
n
p

)
≤
(
n
k·q
)

different p-selections of variables, and we note that
H(k·q, q) from (5.56) monotonically increases for increasing q, i.e. increasing
k ·q. Thus, we assume p ≤ k ·q = p0 = n−1:

k·q∑
p=k

H(p, q) ≤ k ·(q−1)·
(
n

k ·q

)
· (k ·q)!
(k!)q ·q!

. (5.57)

For the crucial ratio from Step (i) on p. 21 we obtain(
n
k·q
)

A(n, q)
· (k ·q)!
(k!)q ·q!

=

(
n
k·q
)

((nk)
q

) · (k ·q)!
(k!)q ·q!

=
1

(k!)q
·
n!·
((
n
k

)
−q
)
!(

n
k

)
!·
(
n−k ·q

)
!

=
1

(k!)q
· n·(n−1) · · · (n−k ·q+1)(
n
k

)
·
((
n
k

)
−1
)
· · ·
((
n
k

)
−q+1

)
=

1
(k!)q

·n·(n−1) · · · (n−k ·q+1){(
n
k

)}q · q−1∏
u=1

(1− u

(nk)
)

. (5.58)
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As in (5.22), we have from (5.21):(
n
k·q
)

A(n, q)
· (k ·q)!
(k!)q ·q!

< e·n·(n−1) · · · (n−k ·q+1)
(k!)q ·

{(
n
k

)}q
= e·

q−1∏
t=1

(n− t·k) · · · (n− t·k−k+1)
n·(n−1) · · · (n−k+1)

= e·
q−1∏
t=1

k−1∏
u=0

(
1− t·k

n−u

)
. (5.59)

In case that q is large enough, the product is split into two parts:(
n
k·q
)

A(n, q)
· (k ·q)!
(k!)q ·q!

< e·
(

χ(q)

2
n−k+1

2·k
+
q′−1∏
t=1

k−1∏
u=0

(
1− t·k

n−u

))
, (5.60)

where q′ = min{q, n
2·k} and χ(q) = 1 for q′ < q, χ(q) = 0 otherwise. We then

obtain (
n
k·q
)

A(n, q)
· (k ·q)!
(k!)q ·q!

< e·
(

χ(q)

2
n−k+1

2·k
+
q′−1∏
t=1

e−t·k·
∑k−1
u=0

1
n−u

)

< e·
(

χ(q)

2
n−k+1

2·k
+
q′−1∏
t=1

e−t·k·ln
n

n−k+1

)
< e·

(
χ(q)

2
n−k+1

2·k
+e−(k−1)·(q′−1)· k·q

′
2·n

)
.

We now have that n/2 ≤ k ·q ≤ n−1 implies
k·q∑
p=k

H(p, q)

A(n, q)
< e·k ·(q−1)·2−

n−k+1
2·k . (5.61)

In case of k ·q < n/2, we introduce the following lower bound

√
2·n·(lnn+ϕ(n)) < k ·q ⇒

k·q∑
p=k

H(p, q)

A(n, q)
< e−ϕ(n). (5.62)

Eqn. (5.62) provides a lower bound on m: We recall that r ≥ k · q and
m = q+r+s, and therefore

m ≥
√

2·n·(lnn+ϕ(n))·
(
1+

1
k

)
, (5.63)

where ϕ(n) → ∞ with n → ∞. We note that k · q ≤ n− 1, but above
O
(√

n·ϕ(n)
)
, implies a diminishing factor of e−ϕ(n).

The upper bound (5.62) implies that for k ≤ p ≤ k · q ≤ n−1 and
ϕ(n) < ln 2·n/(2 · k)−O

(
lnn

)
the upper bound in (5.52) can be substituted

in the following way:
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Lemma 5.7. For fixed (q, r, s) and m ≥ O
(√

n·ϕ(n)
)
, the number of feasible

pairs [Sq,Sr] of sets of clauses, where the clauses in Sq depend on at most

p ≤ p0 = n−1 variables, is upper bounded by
(
e−ϕ(n)·A(n, q)

)
·
(
Q̃(q, r)·B(n, r)

)
,

where 1 < ϕ(n) < n·ln 2/(2 · k)−O
(
lnn

)
.

We note that, based on (5.61), the analysis of (5.49) in accordance with
Step (ii) from page 21 can be restricted to k ·q ≥ n. Therefore, we re-define
(5.51):

Q(q, r) =
{

0, if k ·q ≤ n−1;
Q̃(q, r) if k ·q ≥ n. (5.64)

Therefore, Q(q, r) = 0 for q < n/k, which means that in (5.53) the summation
over q may at least partially lead to summands equal to zero, if relatively
small values of m imply values for q1 and q2, as defined in (5.34), below n/k.

Thus, from (5.53), (5.64), and Lemma 5.7 we obtain

Lemma 5.8. If m satisfies (5.63) for 1 < ϕ(n) < n·ln 2/(2 · k)−O
(
lnn

)
, then

Mσ̃ < e·
(

2k ·
(
n
k

)
m

)
·
{

21·2k

k
· 1

e
1
12 ·

m

2k
+

1
2ϕ(n)

+

+
q2∑
q=q1

r2(q)∑
r=r1(q)

A(n, q)·Q(q, r)·B(n, r)·C(n,m−q−r)
}
. (5.65)

In accordance with (5.64) and (5.65), we have to find a tight upper
bound for Q(q, r), where r is within the range defined in (5.41) and q within
the range defined in (5.34), with the additional condition q ≥ n/k. Therefore,
we finally return to (5.49), which means executing Step (ii) from page 21 for
p̃ with p0 = (n−1) < p̃ = n.

The upper bound (5.49) is analysed by induction and independent of
the particular values of p, i.e. we include value p = 2, which is below the
lower bound p ≥ k ≥ 3, cf. (5.10). Since the case p = 2 is analysed in the
same way as the general case, we immediately switch to the inductive step.
Based on (5.46) and (5.49), our aim is to prove

S(a, p) =
∑

g1+···+gv=a

p∏
v=1

1
(gv+fp)!

≤ pa+k·q

(a+k ·q)!
·
p∏
v=2

ρv, (5.66)

where ρv < 1 and fp = dk·qp e ≥ 1, since (5.61) implies p ≤ k ·q and (5.64)
together with Lemma 5.8 imply k ·q ≥ n. By definition we have

S(a, p) =
a∑
t=0

P (a−t, p−1)
(t+fp)!

. (5.67)

If we assume that (5.66) is true, we need to show
a∑
t=0

1
(t+fp)!

· (p−1)a−t+
p−1
p ·k·q

(a−t+ p−1
p ·k ·q)!

≤ ρp ·
pa+k·q

(a+k ·q)!
. (5.68)
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We consider a single summand St when the LHS is divided by the RHS,
except for ρv:

St =
(a+k ·q)!

(a−t+ p−1
p ·k ·q)!·(t+fp)!

·
(p−1

p

)a−t+p−1p ·k·q ·(1
p

)t+fp
=

(
a+k ·q
t+fp

)
·
(p−1

p

)a+k·q−t−fp
·
(1
p

)t+fp
.

For the sum we need
∑a
t=0 St ≤ ρp and obtain:

a∑
t=0

St =
a∑
t=0

(
a+k ·q
t+fp

)
·
(p−1

p

)a+k·q−t−fp
·
(1
p

)t+fp
=

r∑
h=0

(
r

h

)
·
(p−1

p

)r−h
·
(1
p

)h
−
fp−1∑
u=0

(
r

u

)
·
(p−1

p

)r−u
·
(1
p

)u
−

−
r∑

v=r−p−1
p ·k·q+1

(
r

v

)
·
(p−1

p

)r−v
·
(1
p

)v

=
(p−1

p
+

1
p

)r
−
fp−1∑
u=0

(
r

u

)
·
(p−1

p

)r−u
·
(1
p

)u
−

−
r∑

v=r−p−1
p ·k·q+1

(
r

v

)
·
(p−1

p

)r−v
·
(1
p

)v

= 1−
fp−1∑
u=0

(
r

u

)
·
(p−1

p

)r−u
·
(1
p

)u
−

−
r∑

v=r−p−1
p ·k·q+1

(
r

v

)
·
(p−1

p

)r−v
·
(1
p

)v
. (5.69)

For an upper bound of
∑a
t=0 St we have to find lower bounds for the sums

on the RHS, i.e. Chernoff bounds do not apply. We note that

r

p
>

k ·q
p
−1

r+p > k ·q
a+k ·q+p > k ·q

a+p > 0. (5.70)

Therefore, we focus on the first sum

a∑
t=0

St < 1−
fp−1∑
u=0

(
r

u

)
·
(p−1

p

)r−u
·
(1
p

)u
, (5.71)

where we assume fp >> 1. In order to simplify calculations, we consider
u = fp instead of fp−1, and we analyse only a single summands. We note
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that the values of the corresponding summands differ by the factor

(p−1)·k ·q
p·(r+1)−k ·q

, (5.72)

which is later taken into account. We utilise in the following the tight form
of Stirling’s formula

n! =
√

2·π · nn+ 1
2 ·e−n+r(n), where

1
12·n+1

< r(n) <
1

12·n
, (5.73)

as presented in [24]. For u = fp = k ·q/p > 1 we now proceed with the lower
bound(
r

u

)
·
(p−1

p

)r−u
·
(1
p

)u
>

1
eε
·

√
2·π ·r

2·π ·u·2·π ·(r−u)
· rr

uu ·(r−u)r−u
×

×
(p−1

p

)r−u
·
(1
p

)u
=

1
eε
·
√

r

2·π ·u·(r−u)
·
( r
u

)u
·
(

1+
u

r−u

)r−u
×

×
(p−1

p

)r−u
·
(1
p

)u
=

1
eε
·
√

r

2·π ·u·(r−u)
·
( r

p·u

)u
·
(

1− r−p·u
p·(r−u)

)r−u
>

1√
2·π ·u

·
( r

p·u

)u
·
(

1− r−p·u
p·(r−u)

)r−u
=

1√
2·π ·u

·
( r

p·u

)u
·
(

1+
r−p·u

(p−1)·r

)−(r−u)

.

We have r−p·u < (p−1)·r, and therefore we continue with(
r

u

)
·
(p−1

p

)r−u
·
(1
p

)u
>

1√
2·π ·u

·
(a+k ·q

k ·q

)u
·e−

a
p−1 ·
(

1−ur
)

=
1√

2·π ·u
·
(

1+
a

k ·q

)u
·e−

a
p−1 ·
(

1−ur
)
.

We distinguish between a < k ·q and a ≥ k ·q. For a < k ·q we obtain(
r

u

)
·
(p−1

p

)r−u
·
(1
p

)u
>

1√
2·π ·u

·e
a

k·q+a ·u ·e−
a
p−1 ·
(

1−ur
)

=
1√

2·π ·u
·ea·ur ·e−

a
p−1 ·
(

1−ur
)

=
√

p

2·π ·k ·q
·e−

a
p−1 ·
(

1−p·ur
)

=
√

p

2·π ·k ·q
·e−

a
p−1 ·

a
r

>

√
p

2·π ·k ·q
·e−

a
p−1 , (5.74)
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which, apart from the the
√
· · ·-factor, comes close to an upper bound derived

by the Chernoff-method. For a ≥ k ·q we have(
r

u

)
·
(p−1

p

)r−u
·
(1
p

)u
>

1√
2·π ·u

·
(

1+
a

k ·q

)u
·e−

a
p−1 ·
(

1−ur
)

>
1√

2·π ·u
·eu·ln 2 ·e−

a
p−1 ·
(

1−ur
)

=
1√

2·π ·u
·e−

a
p−1 ·
(

1− (p−1)·ln 2
a −ur

)
.

Since ln 2 < 1 and a ≥ k·q > p−1 ≥ 1 in the present case, we obtain together
with e3 > 24(

r

u

)
·
(p−1

p

)r−u
·
(1
p

)u
>

1√
2·π ·u

·e−
a
p−1 ·
(

1−ln 2−ur
)

>
1√

2·π ·u
·e−

a
p−1 ·
(

1−ln 2− 1
4

)
=

√
p

2·π ·k ·q
·e−

a
p−1 ·
(

3
4−ln 2

)
, (5.75)

which is larger than the lower bound from (5.74). Taking into account (5.72),
we employ

(p−1)·k ·q
p·(r+1)−k ·q

·
√

p

2·π ·k ·q
>

√
p·k ·q

2·π ·r
. (5.76)

We note that we did not use k · q ≥ n so far, and for (5.71) not to
degenerate, we need k·q ≥ p+1. For ρp from (5.66) and (5.68) we now set in
accordance with (5.71), (5.74), and (5.76):

ρp =
{

1−
√
p·k·q

2·π·r · e
− a
p−1 , if 2 ≤ p ≤ n−1;

1, if p = n.
(5.77)

For the product of ρp we obtain
n−1∏
p=2

ρp =
n−1∏
p=2

(
1−αp ·e−

a
p−1

)
< e

−
∑n−1
p=2

αp

e
a
p−1 . (5.78)

We proceed with
n−1∑
p=2

αp

e
a
p−1

=
αn−1

e
a

n−2
·
(

1 +
n−3∑
u=1

αn−1−u

αn−1
·e−

u·a
(n−2)·(n−2−u)

)

>
αn−1

e
a

n−2
·
(

1 +
n−3∑
u=1

√
n−1− u
n−1

·e−
u·a

(n−2)·(n−2−u)

)
.

For u ≤ (3/4)·(n−1) and n ≥ 24 we have 1/e(u·a)/((n−2)·(n−2−u)) > 1/e(4·a)/n

and
√

n−1−u
n−1 ≥ 1/2. Therefore, if n ≥ 24, then

n−1∑
p=2

αp

e
a
p−1

>
αn−1

e
a

n−2
·
(

1 +
3
4
·(n−1)· 1

2
·e− 4·a

n

)
. (5.79)
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We now incorporate (5.34) and (5.41). Since r = a+ k · q, we have from
r1(q) ≤ r ≤ r2(q) and q1 ≤ q ≤ q2:

a ≤ 2k+2−3
2k+1

· k
2k+1
·m <

k

2k
·m; (5.80)

a+k ·q ≤ 3· k
2k+1
·m. (5.81)

Therefore, (5.79) turns to
n−1∑
p=2

αp

e
a
p−1

>
2
k+1
2

6·π ·k
· 1√
m
· 1

e
k

2k
·mn
·
(

1 +
3
8
·(n−1)·e−

4·k
2k
·mn
)
. (5.82)

We now consider two cases:
1. m ≤ 2k

k ·n· α for 0 < α = const: from (5.82) we obtain
n−1∑
p=2

αp

e
a
p−1

>

√
2

6·π ·
√
α·k ·n

· 1
eα
·
(

1 +
3
8
·(n−1)·e−4·α

)
= O

(√n

k

)
. (5.83)

2. m = 2k

k ·n· β(n) for β(n)→∞: we then have
n−1∑
p=2

αp

e
a
p−1

> O
(√ n

k ·β(n)
· 1
e5·β(n)

)
. (5.84)

From (5.21), (5.49), (5.51), (5.64), (5.66), (5.78), (5.83), and (5.84) we finally
obtain

Lemma 5.9. If n ≥ 24, k ·q ≥ n, q1 ≤ q ≤ q1 and r1(q) ≤ r ≤ r2(q) for the
values defined in (5.34) and (5.41), then

Q(q, r) <


e−O

(√
n
k

)
, if m ≤ 2k

k ·n·const;

e
−O
(√

n
k·β(n) ·

1
e5·β(n)

)
, if m = 2k

k ·n· β(n) for

β(n) ≤ O
(
2−

k
2 ·
(
n·e
k

) k−2
2
)
.

where Q(q, r) is defined in (5.64).

We distinguish between the two cases in order to emphasise the be-
haviour of the upper bound for m ≤ O

(
2k

k ·n
)

. Furthermore, for slowly in-
creasing functions β(n), e.g. β(n) = ln lnn, the upper bound still decreases.

Taking into account the Vandermonde identity, Lemma 5.8, and Lemma
5.9 together with the lower bound (5.63), we finally arrive at

1. If O
(√

n·ϕ(n)
)
≤ m and m/n→ 0, i.e. O(lnn) ≤ ϕ ≤ O(

√
n), then

Mσ̃ <

(
2k ·
(
n
k

)
m

)
·O
(

1
2ϕ(n)

)
. (5.85)

Here, we employ that the upper bound on m implies k ·q < n.
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2. If m = 2k

k ·n· ψ(n), where ψ(n) ≥ const > 0, then

Mσ̃ <

(
2k ·
(
n
k

)
m

)
· 1

e
O
(√

n
k·ψ(n) ·

1
e5·ψ(n)

) . (5.86)

In Lemma 5.3 and (5.11) until (5.86) we exploit only information about
xσii vs. xσii , i.e. information about the actual values of σi has no impact on
Mσ̃ at all. Thus, Mσ̃ depends only on structural parameters (n, k,m):

Lemma 5.10. If σ̃, η̃ ∈ {0, 1}n, then Mσ̃ = Mη̃ for a given class Fk(n,m).

In accordance with Definition 2, we finally obtain

Theorem The average number N̂1
lm of one-step local maxima of Fk(n,m) is

upper bounded by

N̂1
lm <



O

(
2n

2ϕ(n)

)
, if O

(√
n·ϕ(n)

)
≤ m << n and

O(lnn) ≤ ϕ ≤ O(
√
n);

2n

e
O
(√

n
k·ψ(n) ·

1
e5·ψ(n)

) , if m = 2k

k ·n· ψ(n) and

0<const≤ψ(n)≤O
(
2−

k
2 ·
(
n·e
k

) k−2
2
)
.

The upper bounds imply that for m is in the region of 2k ·n/k the average
number of local maxima is bounded by 2n−O(

√
n/k).

6. Concluding Remarks

The Garnier/Kallel-approach requires a partition of the search space into
attraction basins, i.e. within each neighbourhood a single element with the
maximum value of the objective function is assumed. This assumption does
not apply to the neighbourhood in our study. Nevertheless, our computa-
tional experiments provide evidence that the sampling-based method for the
approximation of the number of local maxima seems to work in the context
of k-SAT instances. The quality of approximations is steady for an increas-
ing size of sampling information and the maximum deviation from the true
values is below 15%, with a typical value in the region of 10%. The theo-
retical analysis confirms a decreasing number of local maxima in the region
of the phase transion for increasing values m of the number of clauses. We
intend to analyse a variety of neighbourhood relations proposed in the lit-
erature [14, 28, 29], where it would be interesting to find out if the average
number of local maxima can be related to the quality of the associated local
search procedures. We intend to apply the Garnier/Kallel-method in a com-
pletely different context, namely to structure prediction problems in Com-
putational Biology, such as RNA secondary structure prediction and protein
folding simulation in various lattice models and for different types of the ob-
jective function. RNA secondary structure prediction with pseudo-knots as
well as protein folding simulation in various lattice models are known to be
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NP-complete and population-based heuristics are an obvious choice to tackle
these problems [12]. The standard method for identifying local minima in
folding landscapes are barrier trees [33]. As pointed out in [10], “... from a
practical point of view, the tree describing the repartition of local optima is
unknown and too expensive in terms of computational cost to determine for
a given landscape.” Thus, approximations as described in the present paper
might be helpful for the analysis of energy landscapes induced by structure
prediction problems.
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tion in the d-dimensional HP-model. Computational Biology and Chemistry
32 (2008) 248–255.

[6] A. Barvinok, On the number of matrices and a random matrix with prescribed
row and column sums and 0–1 entries. (2008), arXiv:0806.1480v2.

[7] T. Brueggemann, W. Kern, An improved local search algorithm for 3-SAT.
Theoretical Computer Science 329 (2004), 303–313.

[8] E.R. Canfield, C. Greenhill, B.D. McKay, Asymptotic enumeration of dense
0–1 matrices with specified line sums. J. Combinatorial Theory (Series A) 115
(2008), 32–66.

[9] E. Dantsin, A. Wolpert, An improved upper bound for SAT. Proc. SAT 2005,
LNCS 3569 (2005), 400–407.

[10] J. Garnier, L. Kallel, Efficiency of local search with multiple local optima. SIAM
J. Discrete Mathematics 15 (2002), 122–141.

[11] A. Gerevini, I. Serina, Planning as propositional CSP: From WalkSAT to local
search techniques for action graphs. Constraints 8 (2003), 389–413.

[12] H.J. Greenberg, W.E. Hart, G. Lancia, Opportunities for combinatorial opti-
mization in computational biology. INFORMS J. Computing 16 (2004), 211–
231.
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Department of Computer Science
King’s College London
Strand, London WC2R 2LS, UK
e-mail: Kathleen.Steinhofel@kcl.ac.uk


