
Arrangements on Parametric Surfaces I:
General Framework and Infrastructure

Eric Berberich, Efi Fogel, Dan Halperin,

Kurt Mehlhorn and Ron Wein

Abstract. We introduce a framework for the construction, maintenance, and
manipulation of arrangements of curves embedded on certain two-dimensional
orientable parametric surfaces in three-dimensional space. The framework ap-
plies to planes, cylinders, spheres, tori, and surfaces homeomorphic to them.
We reduce the effort needed to generalize existing algorithms, such as the
sweep line and zone traversal algorithms, originally designed for arrangements
of bounded curves in the plane, by extensive reuse of code. We have realized
our approach as the Cgal package Arrangement on surface 2. We define
a compact interface for our framework; only the operations in the interface
need to be implemented for a specific application. The companion paper [6]
describes concretizations for several types of surfaces and curves embedded on
them, and applications. This is the first implementation of a generic algorithm
that can handle arrangements on a large class of parametric surfaces.

Mathematics Subject Classification (2000). Primary 68U05; Secondary 14Q10.

Keywords. Computational Geometry, arrangement of curves, parametric sur-
face, Cgal, robust geometric computing.

1. Introduction

We are given a surface S in R
3 and a set C of curves embedded on this surface. The

curves divide S into a finite number of cells of dimension 0 (vertices), 1 (edges)
and 2 (faces). This subdivision is the arrangement A(C) induced by C on S. We
present a generic framework for the construction, maintenance, and manipulation
of arrangements embedded on two-dimensional orientable parametric surfaces such

This work has been supported in part by the Israel Science Foundation (grant no. 236/06),
by the German-Israeli Foundation (grant no. 969/07), and by the Hermann Minkowski–Minerva
Center for Geometry at Tel Aviv University. A preliminary version of this paper [7] was presented
at ESA 2007.

2 Berberich, Fogel, Halperin, Mehlhorn and Wein

as planes, cylinders, spheres, tori, and surfaces homeomorphic to them. Such ar-
rangements have many theoretical and practical applications [1, 6, 16, 20]. Our
work is conceptual — the definition of the framework — and practical — the
implementation of the framework. The latter is provided as the Cgal package
Arrangement on surface 2 [31] as of version 3.4.1 Cgal, the Computational Ge-
ometry Algorithms Library,2 is a generic and robust, yet efficient, implementa-
tion of geometric data-structures and algorithms [15]. Our package does not only
compute arrangements; it also provides useful further operations, such as point
location, insertion and removal of curves, overlay computation, iteration over all
features (vertices, edges, faces) and the features incident to a particular feature.
Other packages of Cgal based on the Arrangement on surface 2 package provide
additional functionality, such as Boolean set operations, envelope computation,
and Voronoi diagram construction. Our framework has a compact interface; only
the operations in the interface need to be implemented for a specific application.
In this way, the package can be conveniently adapted to different scenarios. The
algorithmic machinery is generic and provided by the package. We and others have
already instantiated the package for different surfaces and curves; see Section 6 and
the companion paper [6]. Examples are arrangement of lines in the plane, of arcs
of great circles on the sphere [17, 18], of intersection curves between quadric sur-
faces and a fixed quadric [7], and of intersection curves between arbitrary algebraic
surfaces and a fixed Dupin cyclide [9]. The torus is a Dupin cyclide.

The starting point for our work was the Cgal package for constructing and
maintaining arrangements of bounded curves in the plane [30]. It could not handle
unbounded curves directly. Rather, unbounded curves had to be clipped by the
user in a preprocessing phase, so that no essential information about the arrange-
ments (e. g., a finite intersection point) was lost. This solution is inconvenient.
For example, the minimization diagram of a set
of surfaces in R

3 results in a planar arrangement,
where each face is labeled with the lowest sur-
faces above it [28]. Such an arrangement has, in
general, several unbounded faces. However, an
arrangement of bounded curves has only a single
unbounded face. Of course, preprocessing (enclo-
sure in a bounding rectangle) and postprocess-
ing allows one to recover the unbounded faces
as shown in the figure to the right. However,
pre- and post-processing outside the package has
the consequence that many nice functions of the
package, for instance, point location or overlays, are no longer available.

1The manual of the Arrangement on surface 2 package in Cgal version 3.4 does not include
material for non-planar surfaces; thus, it can be used only privately. We expect that a nearby
future release will support all surfaces publicly.
2http://www.cgal.org

http://www.cgal.org

Arrangements on Parametric Surfaces I 3

Our initial goal was to extend the package so that unbounded curves in the
plane could be handled within the package and hence the full functionality of the
package would also be available for arrangements of such curves. Our solution
carries further than that; it can also deal with arrangements on certain surfaces,
such as spheres, cylinders, tori, and surfaces homeomorphic to them.

Following Cgal, our package adheres to the generic-programming paradigm,
making extensive use of C++ class- and function-templates [3]. The paradigm uses
a formal hierarchy of abstract requirements on data types called concepts. When
a concept extends the requirements of another concept, the former is said to be a
refinement of the latter. When a type meets the set of concept requirements, the
type is a model of the concept. For readers unfamiliar with generic programming
the following analogue should be useful: a group is a concept and a specific group,
for instance, Z, is a model of this concept. Concepts correspond to template param-
eters, and models correspond to types (typically classes) that instantiate template
parameters. We also make use of design patterns [19]. A design pattern is a general
solution to a commonly occurring problem in software design. The Arrangement -

on surface 2 package, for example, applies the observer pattern to automatically
notify a list of dependent components about structural changes of the arrangement
data-structure; see [30] for more details.

Effective algorithms for manipulating arrangements of curves have been a
topic of considerable interest in recent years, with an emphasis on exactness and
efficiency of implementation [16]. Mehlhorn and Seel [27] propose a general frame-
work for extending the sweep-line algorithm to unbounded curves; however, their
implementation can only handle lines in the plane. Andrade and Stolfi [2] develop
exact algorithms for manipulating circular arcs on a sphere. Halperin and Shel-
ton [22] incrementally construct arrangements of circles on a sphere. Berberich
et al. [8] construct arrangements of intersection curves of quadric surfaces with
a fixed reference quadric. They maintain two arrangements, one for the lower
part of the reference quadric and one for its upper part. This strategy requires a
postprocessing step, which is not implemented. Our approach avoids the need for a
postprocessing step. Cazals and Loriot [11] have developed a software package that
computes exact arrangements of circles on a sphere. Their software is specialized
for the spherical case. Hijazi and Breuel [24] compute arrangements induced by
implicit curves using a subdivision method and interval arithmetic, and Milenkovic
and Sacks [29] compute arrangements using approximations. In contrast, Eigen-
willig and Kerber [14] describe an exact and complete approach arrangements of
algebraic curves. Their most recent implementation uses our framework.

This paper is structured as follows. In Section 2 we review the arrangement
framework for bounded curves in the plane. In Section 3 we generalize the frame-
work and package to curves on parametric surfaces. We describe a theoretical
framework and survey the implementation. In particular, we explain how the adap-
tation to different surfaces and curves is encapsulated in a geometry and a topology
concept. We give the details for both concepts in Sections 4 and 5, respectively.

4 Berberich, Fogel, Halperin, Mehlhorn and Wein

Section 6 surveys already existing concretizations. We finally give some concluding
remarks and future-work directions in Section 7.

2. The Basic Arrangement Framework

Cgal’s Arrangement 2 framework separates between the topological and the geo-
metric aspects of the subdivision, that is, it separates the combinatorial, graph-like
structure (the topology) from the actual embedding on the surface (the geometry).
In our extension, this separation becomes even more evident.

2.1. The Arrangement on surface 2 Class Template

Our novel framework is implemented as a class template Arrangement on sur-

face 2 parameterized by template parameters geometry traits and topology traits,
that is,

Arrangement on surface 2<GeoTraits,TopTraits>.

A concretization is obtained by instantiating the class template with appropriate
models for the parameters. The geometry-traits class introduces the C++ type
names of the basic geometric objects (point, curve, monotone curve) and a small
set of operations on objects of these types, such as comparing two points in xy-
lexicographic order and computing intersections of curves; see Section 4 for the full
specification of this concept. The topology-traits class deals with the topology of
the surface; see Section 5 for details. In particular, it maintains a representation of
the arrangement graph in form of an extended doubly-connected edge list (eDcel)
data-structure as is suitable for the particular topology. An eDcel is a Dcel [12,
Section 2.2] with additional features for a topologically consistent representation.

2.2. The Bentley-Ottmann Sweep

Bentley and Ottmann [4] introduced the sweep algorithm for computing inter-
sections of line segments. It is usually formulated for inputs in general position.
Already the original paper states that it applies to general x-monotone curves.
The algorithm sweeps the plane with a vertical line starting from x = −∞ toward
x = +∞, while maintaining the set of curves intersecting this line. These curves
are ordered according to the y-coordinate of their intersection with the vertical
line and stored in a balanced search tree, called the status structure. Its content
changes only at a finite number of events, where an event corresponds to a curve’s
endpoint or to an intersection between curves. The events are processed in ascend-
ing xy-lexicographic order and stored in an event queue. This queue is initialized
with the endpoints of all curves. At an event, new curves are added to, and swept
curves are removed from the status structure, curves swap their position in the
status structure, newly adjacent curves are checked for intersections to the right
of the sweep line (= intersections having lexicographically larger coordinates), and
any such intersection is inserted into the event queue. The Cgal implementation

Arrangements on Parametric Surfaces I 5

of the sweep-line algorithm handles all degeneracies, such as multiple curves inter-
secting in the same point, overlapping curves, or co-vertical events. It is based on
the implementation described in [26].

The canonical output of the sweep-line algorithm consists of the events in
lexicographic order along with adjacency information, that is, which events are
connected by a (sub)curve. The Cgal implementation decouples the “bare sweep”
procedure from the construction of the actual output using the visitor design pat-
tern [19]. Examples of visitors [30] are: A visitor that reports all intersections, a
visitor that converts the canonical output into an eDcel representing the arrange-
ment, a visitor that inserts a set of curves into an existing arrangement, a visitor
that overlays two arrangements, a visitor that performs batched point-location,
or a visitor that reports the vertical decomposition of the arrangement (see, e.g.,
[20]). Users may introduce their own sweep-based algorithms by implementing an
appropriate visitor class.

The actual sweep is preceded by a preprocessing phase that subdivides in-
put curves into x-monotone subcurves and isolated points and ensures further
conditions that might be required by the geometry traits class.

2.3. The Zone Traversal

The sweep-line algorithm is mainly used to create a new arrangement from a set
of input curves, but it can also be used for adding a set of input curves to an
arrangement. A different approach is to add the input curves one by one to a
growing arrangement traversing the zone of the new curve in the arrangement.
The zone [20] of an x-monotone curve C in an arrangement is the set of cells
intersected by it. The zone of a curve C is computed by locating the left endpoint
of C in the arrangement, and then “walking” along the curve towards its right
endpoint, keeping track of the vertices, edges, and faces crossed on the way (see,
e. g., [12, Section 8.3] for the computation of the zone of a line in an arrangement of
lines). The zone-traversal algorithm relies on the same geometric primitives as the
sweep-line algorithm. It also produces a canonical output, which can be further
processed by an appropriate visitor. Again a variety of zone-related visitors is
available, for instance, a visitor that only lists the zone of a curve and a visitor
that inserts the curve into a given arrangement.

3. Sweeping and Zoning Over Surfaces

We generalize the framework from the plane to parametric surfaces such as half-
planes, cylinders, tori, etc., and surfaces homeomorphic to these (see Figure 1).
We aim for an implementation that maximizes code reuse. We mainly discuss the
sweep-line algorithm because it is more complex than the zone algorithm. In Sec-
tion 3.1, we define the class of permissible surfaces and curves, and in Section 3.2,
we show how to generalize the algorithms to them.

6 Berberich, Fogel, Halperin, Mehlhorn and Wein

Sphere Cylinder Cone Ellipsoid Torus Paraboloid

Figure 1. Various two-dimensional parametric-surfaces.

3.1. Parametric Surfaces and Curves Embedded into Them

We use R
∗ to denote the compactified real line R ∪ {−∞, +∞}. The mapping

x 7→ x/(1−x2) is a homeomorphism between (−1, +1) and R and between [−1, +1]
and R

∗. So the reader may also think of finite intervals instead of the (compactified)
real line in what follows.

Definition 3.1 (Parametric Surface). A parametric surface S is given by a con-
tinuous function φS : Φ → R

3, where the domain Φ = U × V is a rectangular
two-dimensional parameter space; S = φS(Φ). U and V are open, half-open, or
closed intervals with endpoints in R

∗. We use umin, umax, vmin, and vmax to denote
the endpoints of U and V , respectively.

• The left side of the boundary of Φ consists of the points (umin, v) with v ∈ V .
It is open, if umin 6∈ U , and closed, otherwise. The right side is defined analo-
gously. The bottom side consists of the points (u, vmin) with u ∈ (umin, umax);
the top side is defined analogously. Bottom and top side can also be open.
Note that the “corners” of the parameter space belong to the vertical sides;
this asymmetry corresponds to the fact, that we sweep u-monotone curves,
and not v-monotone curves. The four sides together form the boundary ∂Φ.

• A point p ∈ S is regular if it has only one pre-image. All pre-images of a
non-regular point lie in the boundary of Φ, in particular, φS is bijective on
(umin, umax)× (vmin, vmax). Moreover, a non-regular point has either exactly
two pre-images and then these pre-images lie on opposite sides of the do-
main or all points of exactly one side of the domain are mapped to it; see
Definitions 3.2 and 3.3.

Rectangles, strips, quadrants, half-planes, and planes can be modeled with
φS being the identity mapping. For example, fS(u, v) = (u, v, 0) with U = V =
(−∞, +∞) parameterizes the plane. Surfaces such as paraboloids can be mod-
eled through continuous and bijective parameterizations, for example, fS(u, v) =
(u, v, u2 + v2), where U = V = (−∞, +∞), defines a paraboloid of revolution.
Cylinders, tori, spheres, and surfaces homeomorphic to them, require more gen-
eral parameterizations. For example, the unit sphere is commonly parameterized
as φS(u, v) = (cosu cos v, sinu cos v, sin v), where Φ = [−π, π] × [−π

2
, π

2
]. With re-

spect to this parameterization, the north and the south pole and all points on the
opposite Prime (Greenwich) Meridian are non-regular. The north pole (0, 0, 1) has

Arrangements on Parametric Surfaces I 7

infinitely many pre-images (u, π/2) with −π < u < π and so does the south pole
(0, 0,−1). The points on the opposite Prime Meridian have two pre-images each,
namely (−π, v) and (π, v) with −π/2 ≤ v ≤ π/2. We say that the upper and lower
side of the domain are contracted and the left and right sides are identified. These
are exactly the kinds of non-injectivity that we allow.

Definition 3.2 (Contraction). A side of the domain is contracted, if φS is constant
on it. The image of the side is called a contraction point of S.

Definition 3.3 (Identification). The bottom and top side of the domain (similarly
for left and right side) are identified, if φS(u, vmin) = φS(u, vmax) for all u ∈ U .
The curve u 7→ φS(u, vmin) is called an identification curve.

We give more examples. A triangle with corners (a1, b1), (a2, b2), and (a3, b3)
can be parameterized via Φ = [0, 1] × [0, 1] with φS(u, v) = (a1 + u(a2 − a1) +
uv(a3 − a2), b1 + u(b2 − b1) + uv(b3 − b2), 0). The left side of the rectangular
domain contracts to a point. An open or closed cylinder is modelled by identifying
the vertical sides and having V open or closed, respectively. A torus is modelled
by identifying the vertical sides and the horizontal sides. A paraboloid or half-
cone may be modelled by identifying the vertical sides and contracting one of
the horizontal sides to a point. More elegantly, they are modelled by a bijective
parameterization as given above. A sphere is modelled by identifying the vertical
sides and contracting both horizontal sides. A croissant, a torus with one pinch
point, is modelled by identifying the vertical and the horizontal sides and, in
addition, contracting one of the pairs. The croissant is excluded by our definitions.
All surfaces supported by our framework are locally homeomorphic to a disk and
hence an eDcel data-structure suffices for representing arrangements on these
surfaces. The croissant is, at the pinch point, not locally homeomorphic to a disk
and hence a more general data structure would be needed, such as a cell-tuple
structure [10]. This cannot be handled by our framework.

We next turn to curves on S. As usual, a curve is a continuous mapping from
a one-dimensional domain. We use the open, half-open, or closed unit interval as
the one-dimensional domain, that is, a “curve-end” may or may not belong to the
curve. If a curve-end does not belong to the curve, the pre-image of the curve
must emanate from an open side of Φ. Curves must have only a finite number of
self-intersections.

Definition 3.4 (Curve). A parameterizable curve γ is a continuous function γ :
I → Φ, where I is an open, half-open, or closed interval with endpoints 0 and 1,
and γ is injective except for a finite number of points. If 0 6∈ I, limt→0+ γ(t) exists
(in the closure of Φ) and lies in an open side of the boundary. Similarly, if 1 6∈ I,
limt→1− γ(t) exists and lies in an open side of the boundary. A curve C in S is the
image of a curve γ in the domain.

A curve is closed in the domain if γ(0) = γ(1); in particular, 0 ∈ I and 1 ∈ I.
A curve is closed in the surface S (or simply closed) if φS(γ(0)) = φS(γ(1)). A

8 Berberich, Fogel, Halperin, Mehlhorn and Wein

curve γ has two ends, the 0-end 〈γ, 0〉 and the 1-end 〈γ, 1〉. If d ∈ I, the d-end has
a geometric interpretation. It is a point in Φ. If d 6∈ I, the d-end has no geometric
interpretation. You may think of it as a point on an open side of the domain or
an initial or terminal segment of γ. If d 6∈ I, we say that the d-end of the curve is
open. The equator curve on the sphere in standard parameterization is given by
γ(t) = (π(2t − 1), 0) for t ∈ [0, 1]. The 0-end of γ is the point (−π, 0) in Φ and a
point on the equator of the sphere. It is closed on the sphere, but non-closed in Φ.
The diagonal (u, u) in the plane is, for example, given by γ(t) = (u(t), v(t)) and
u(t) = v(t) = (t − 1/2)/(t(1 − t)). Both ends of this curve are open. The d-end of
a curve γ is incident to the left side if either d ∈ I and γ(d) lies on the left side or
d 6∈ I and limt→d γ(t) lies on the left side, which is then an open side. (Similarly
for the other sides).

We can now formally state the goal of our work: compute the arrangement
defined by a set of curves on a surface. The surface must be parameterizable as
defined above and the curves must be decomposable into parameterizable curves.
Any two curves in the set intersect only a finite number of times and overlap
only in a finite number of sections.3 We also need that our curves are nice in the
sense that all geometric operations defined in Section 4 can be defined for them.
We do not define this notion formally, but only state that, for instance, algebraic
curves are nice, while most curves based on trigonometric functions are not. Since
we require subcurves to be u-monotone and sweepable curves, then such function
graphs (for trigonometric functions for example) must be decomposed into an
infinite number of subcurves, for which we need the following notion:

Definition 3.5 (u-monotone curve). A strongly u-monotone curve is the image of
a curve γ, such that if t1 < t2, then u(γ(t1)) < u(γ(t2)) for t1 < t2. A vertical
curve is the image of a curve γ, such that u(γ(t)) = c for all t ∈ I and some
c ∈ U and v(γ(t1)) < v(γ(t2)) for t1 < t2. For instance, every Meridian curve of a
sphere parameterized as above is vertical. A u-monotone curve is either vertical or
strongly u-monotone. A curve is sweepable if it is u-monotone and does not touch
the boundary in its interior, that is, γ(t) ∈ Φ \ ∂Φ for all t ∈ (0, 1).

In a preprocessing step all input curves are decomposed into sweepable sub-
curves; see also Section 3.2.2. Sweepable curves are parameterizable.

3.2. The Generalization of the Algorithms

The standard sweep-line algorithm sweeps the plane containing bounded curves.
How do we sweep a surface and curves embedded on it? We (conceptually) sweep
the parameter space Φ with a vertical line ℓ from umin to umax. The sweep of Φ
induces a sweep of the surface through the parameterization φS . At any time of
the sweep, φS(ℓ) is a curve in S. This curve sweeps S. The advantage of formu-
lating the sweep for parameter space is that we are on well-known grounds, for
example, we have the familiar lexicographic order of points and we process events

3In this paper, we do not discuss overlap between curves. The implementation handles them.

Arrangements on Parametric Surfaces I 9

v

u
−π −π

2
0 π

2
π

−π
2

0

π
2

π
6

−π
6

(a) (b) (c)

Figure 2. (a) A sphere with two great circles passing through the poles

and two circles parallel to the equator. The identification curve is shown

in grey. (b) The curves’ pre-images in parameter space. (c) The eDcel.

Observe that we have two vertices on the identification curve.

in lexicographic increasing order. However, we also need to take care of additional
issues; see Figure 2 for an illustration of the second and third item.

(1) A curve-end may or may not correspond to a point on S. Since a curve-end
is an event, we need a more general notion of event. We also need to extend
the notion of lexicographic order.

(2) The surface may have non-regular points. Such points have more than one
pre-image and thus are swept more than once in parameter space.

(3) Curves incident to a non-regular point are discovered at unrelated events.
Our framework has to correlate these events and make the appropriate con-
tractions or identifications.

(4) We use the language of parameterization in our arguments and definitions.
We do not assume that either the surface or the input curves are given through
their parameterization and hence the implementations of the geometry-traits
and topology-traits classes usually work entirely over S. We will make our
definitions such that non-regular points can mimic their multiple pre-images.

In the following, we describe how these issues are resolved.

3.2.1. Events. The events in the standard sweep are endpoints, intersection points,
and isolated points. We generalize endpoints to curve-ends and so our events are
now curve-ends, intersection points, and isolated points. A curve-end corresponds
either to a point in S or is open. In the latter case, the respective part of the
curve emanates from a side of the domain. An intersection point in the interior of
a curve is necessarily regular, as we sweep only sweepable curves. We will define
the lexicographic ordering on events in Section 3.2.3.

3.2.2. Non-Injectivity on the Boundary. Points of contraction and points on an
identification curve have multiple pre-images. Instead of sweeping over the entire
parameter space Φ, we sweep over its interior Φ \ ∂Φ, or alternatively viewed,

10 Berberich, Fogel, Halperin, Mehlhorn and Wein

h1

ℓ2

ℓ1
h2

p

Cr

1
Cℓ

2

Cℓ

1

p

Cr

2

C2

C1

(a) (b) (c)

Figure 3. Comparing sweep events. (a) The order of the events is:

minimal end of ℓ1, minimal end of ℓ2, minimal end of h1 (all left side of

boundary), maximal end of h1 (top side of boundary), intersection of ℓ1 and

ℓ2 at p (interior), minimal end of h2 (bottom side of boundary), maximal

end of h2, maximal end of ℓ2, and maximal end of ℓ1 (all right side of

boundary). (b) Comparing near the identification curve: Cℓ

2 < Cℓ

1 right

of red point. (c) Comparing near a point of contraction: maximal end of

vertical C1 is smaller than maximal end of vertical C2

over the modified surface S̃ = φS(Φ\∂Φ). This way our algorithm handles only u-
monotone curves, the interior of which is disjoint from the boundaries of Φ. Isolated
points and curves that lie in ∂Φ are handled separately. In the preprocessing
stage we split the input curves into sweepable subcurves. In the example shown
in Figure 3(b), the curves C1 and C2 cross the curve of identification. Their pre-
images in parameter space are curves γ1 and γ2 having their 0-end on the left side
and their 1-end on the right side. A curve in S that winds around the cylinder
several times will give rise to several curves in parameter space that extend from
the left side to the right side. For each sweepable curve, we have the 0-end and
the 1-end event. We remark that breaking curves into sweepable curves may result
in additional vertices in the eDcel. These vertices are induced by the chosen
parameterization of S rather than by the original input curves.

3.2.3. Comparing Events. Events in the standard sweep-line procedure are associ-
ated with points. Now curve-ends are also events. We extend the geometric opera-
tions used by the standard sweep and add new ones to accomplish this task. These
operations, like all other geometric operations, are provided by the geometry-
traits class. How are curve-ends and points compared? We distinguish cases, many
of which are handled in a straightforward manner. For example, it is clear that
a curve-end that emanates from the left side is smaller than any point lying in
the interior of the parameter space which in turn is smaller than any curve-end
going to the right side. We compare two curve-ends emanating from the left side
by considering their intersections with a vertical line u = u0 for small enough u0

Arrangements on Parametric Surfaces I 11

and return the v-order of these points; “small enough” means that the result does
not depend on the choice of u0. Similar rules apply to the other situations; see
Figure 3 for illustrations and Section 4 for details.

The sweep now proceeds almost unchanged. We initialize the event queue
with the events for curve-ends and isolated points. However, instead of processing
the first event in the queue and proceeding one at a time, we consider the initial
segment of the event queue that consists of curve-ends emanating from the left
side. We insert them into the status structure, copying the order from the event
queue, avoiding further geometric comparisons. Similarly, towards the end of the
process, when the event queue contains only curve-ends ending in the right side,
we remove all these events in one blow from the event queue.

3.2.4. Constructing and Maintaining the eDcel. Dcel is a popular data struc-
ture for representing graphs embedded into an orientable surface. For such an
embedded graph, the edges incident to any vertex are ordered in a natural way,
namely in clockwise order around the vertex. Two vertices p and q are linked
by twin halfedges (p, q) and (q, p) that are oriented opposite to each other. Each
halfedge has a successor; the successor of the halfedge (p, q) is the half-edge (q, r)
where (q, r) is the edge following (q, p) in the counterclockwise ordering of edges
around q. The vertices and halfedges of the Dcel form a directed graph. Two
vertices belong to the same (connected) component of this graph if they are con-
nected by a path. Isolated vertices form trivial components. Any non-trivial com-
ponent decomposes into cycles of halfedges induced by the successor relation. The
halfedges in each such cycle have the same face to their left. This face is stored
with each halfedge. The boundary of each face consists of a number of such cycles;
we call them the CCBs (connected components of the boundary) of the face. A face
stores a pointer to one halfedge of each of its CCBs. The CCBs contained in any
component of the Dcel contribute to the boundaries of the faces incident to the
component.

The topology-traits class knows about the topology of the surface, that is,
for each side of its parameter space, whether it is open, closed, contracted, or
identified. It maintains the representation of the arrangement as an eDcel. It
also maintains fictitious nodes and edges representing open boundaries (see be-
low), vertices for contraction points and, for each identification curve, the sorted
sequence of Dcel records representing points on this curve. All of this (and some
more on nesting; see below) constitutes the prefix e in eDcel. The algorithms and
the topology-traits class communicate with each other through methods provided
by the latter. For example, when two sweep-events correspond to the same point
in S, the sweep algorithm is not aware of this effect and the topology-traits class
deals with it.

Events taking place in the interior of Φ bring nothing new. They are handled
as usual; appropriate eDcel records are constructed and properly linked.

Contractions and Identifications: Consider a sweep of the sphere with some circles
embedded into it; see Figure 2. In parameter space, a great circle passing through

12 Berberich, Fogel, Halperin, Mehlhorn and Wein

the poles is a pair of vertical segment having their curve-ends on the lower and
upper side and a circle parallel to the equator is a horizontal line having its curve-
ends on the left and right side. So in the sweep of the parameter space, we would
have several copies of the north pole and south pole and the circles parallel to
the equator would appear as non-closed curves. In the eDcel, we want only one
copy of each pole and the circles parallel to the equator be represented as a closed
sequence of edges. The topology-traits class makes the required contractions and
identifications.

We describe the mechanism for identification curves, points of contraction
being simpler. The topology traits maintains a sorted sequence of eDcel vertices
for each identification curve. Assume for concreteness that the left and right sides
are identified. The first node at a certain v-value is created as usual and also
recorded in the sorted sequence. When this node is to be created for the second
time because its second pre-image is encountered by the sweep, the topology-
traits class notices that the node already exists and hence do not create a new
node. Rather, the already existing node is used instead. In this way, the proper
identifications are made.

Open Boundaries: The Dcel data-structure is designed for representing bounded
arrangements in the plane and related topological structures. It was not designed
to deal with open curve-ends. We have to treat open curve-ends, for instance,
Voronoi diagrams have rays going off to infinity. We want to handle open curve-
ends with as little additional code as possible, for example, the traversal of the
boundary of a face in a Voronoi diagram should not depend on whether the face
is bounded or unbounded.

We first describe two solutions for the plane and then comment on other
surfaces. For the plane, one solution is to add a single vertex at infinity and the
other solution is to add a rectangle (or cycle) at infinity. More consistent solutions
exist and we have experimented with more. Both solutions have a simple geometric
interpretation.

In the first solution (single vertex at infinity) we view the plane as the image
of a punctured sphere (= sphere with the north pole removed) under stereographic
projection. The north pole itself gives rise to a single vertex at infinity, say Vinf . All
unbounded curves are incident to it and the cyclic ordering of these curves around
Vinf is well-defined. So in our eDcel, any unbounded face would have an extra
vertex, namely Vinf . The traversal algorithms for faces work essentially without
change. The only change is that they must report whether a traversed vertex is
real or fictitious, Vinf being fictitious.

In the second solution (implicit bounding rectangle) we essentially view the
plane as the image of a lower hemisphere under projection from the center. The
equator maps to a circle at infinity. For technical reasons, we prefer a rectangle at
infinity. There are fictitious vertices corresponding to the corners of the implicit
rectangle and one for each curve-end at infinity. The fictitious vertices are linked
into a cycle by fictitious edges. The insertion of an open curve requires splitting

Arrangements on Parametric Surfaces I 13

a fictitious edge. Traversals must filter out fictitious all vertices and edges. In
this representation, there is also a fictitious face, the “outside” of the fictitious
rectangle. It stands for the upper hemisphere in the projection from the center of
the sphere. The face traversal must filter out this face.

The discussion above readily extends to other surfaces. For example, in the
case of a cylinder, one would have two fictitious circles. In Figure 3(b), we would
have a fictitious circle for the upper and lower rim of the cylinder, respectively. In
the case of the paraboloid z = x2 + y2, we would have one circle at infinity.

The topology-traits class decides for each open side how to represent curves
approaching it, and whether to have a joint representation for neighboring (open)
sides. We remark that our solution for open sides also applies to closed sides. In
particular, there is no need for the user to add an artificial curve that runs along
the boundary. In fact, such an additional curve would foreclose the possibility to
have a face incident to the boundary which does not contain a curve along the
image of the domain’s boundary.

Face Types, Nesting, Inner and Outer CCBs: The faces in an arrangement will
have different homeomorphism types. For the surfaces considered in this paper,
we have faces homeomorphic to punctured disks (disk-like faces), punctured cylin-
ders (cylinder-like faces), punctured spheres (sphere-like faces), and punctured tori
(torus-like faces). In the plane, there is a natural notion of nesting of faces. We
extend this notion to all surfaces under consideration and will also classify the
CCBs incident to a face into outer or inner CCBs. Nesting is exploited in a num-
ber of algorithms, for example point location and face traversal. We will see below
how the knowledge of face types and nesting simplifies the update step after the
addition of a curve to the arrangement.

Recall that the eDcel-graph decomposes into connected components. An
isolated vertex is a component of its own. A face can be incident to more than one
component. The face-component graph has the faces and components as vertices.
A face and a component are adjacent in this graph if they are incident to each
other in the arrangement. The face-component graph is connected. Below, we will
classify the CCBs of any face as outer and inner. This information can be encoded
into the face-component graph by directing the edges accordingly. Assume F and
K are incident. We direct the edge from K to F if K contains an outer CCB of F
and from F to K if K contains an inner CCB of F .

For a component K, we call the maximal connected subsets of S \K regions.
Any face of our arrangement is contained in one of these regions. For any face F
incident to K, one or more CCBs of F are contained in K.

Let us start with the familiar case of bounded curves in the plane and let K
be any component. According to Jordan’s curve theorem, one region is unbounded,
say R0, and all others, say R1 to Rk are bounded. The bounded regions are nested
in the unbounded region; see Figure 4. We extend nestedness to faces. For each i,
there is a unique face Fi in our arrangement that is incident to K and contained
in Ri. Then, the Fi, i ≥ 1, are nested in F0. Let Bi be the CCB of Fi contained

14 Berberich, Fogel, Halperin, Mehlhorn and Wein

K1

K2

F0

F1

F2

F3

F0

K1

F1 F2

K2

F3

Figure 4. A planar embedded graph and the corresponding directed

face-component incidence graph.

in K. B0 is an inner CCB of F0 and Bi, i ≥ 1, is an outer CCB of Fi. The face-
component graph is a tree and the arrangement has a unique unbounded face. The
unbounded face is the root of the directed face-component graph.

On a sphere, there is no natural distinction between the regions incident to
a component. However, there is a well-known remedy. We fix a reference point on
the sphere (not lying on any edge or vertex), and call the region containing the
reference point “unbounded”. In this way, we have a well-defined notion of nesting.
The reference point is commonly refered to as the north pole. Since we use the
north pole as a point of contraction, we use a different point as our reference
point. We designate the face containing the area near (umax, vmax) as the special
face. There is another natural way of defining the nesting. We select an arbitrary
component as outermost, declare the CCBs contained in it as outer, and have all
other faces and components nested within them.

Let us next consider an unbounded component in the plane. There are natural
ways of defining a nesting, corresponding to our ways of handling edges going to
infinity. Having a single point of infinity corresponds to viewing the plane as the
stereographic projection of a sphere. So we are in the situation discussed in the
preceding paragraph. One of the unbounded faces is special and all other faces
are nested in it. Having a circle at infinity corresponds to viewing the plane as
the projection of the lower hemisphere; the circle at infinity is the projection of
the equator and the upper hemisphere projects into a fictitious face outside the
circle at infinity. We choose the fictitious face as the special face and again have
a nesting. The same strategies are applicable to bounded surfaces homeomorphic
to an (open) disc.

We turn to the torus; see Figure 5. A closed curve on a surface is called
contractible, if it can be continuously contracted to a point. On a surface homeo-
morphic to a disc or sphere, all closed curves are contractible. On the torus, being
a surface of genus one, there are two essentially different types of non-contractible
curves. The identification curves are examples for them. For a closed curve C it is

Arrangements on Parametric Surfaces I 15

K1 K2

F3 F0 F1 F5 F6

K3K4

F7 F2 F4

outer

outer

outer outer

inner

F1

F2 F4

K1

K2

Figure 5. A graph embedded on a (partially displayed) torus and the

corresponding directed face-component incidence graph. F0 and F1 are

cylinder-like and all other faces are disk-like. F0 and F1 are have two outer

CCBs each, one contained in K1 and one contained in K2; F1 also has

one inner CCB. The lower drawing on the right shows a close-up view of

the CCBs of F1, F2 and F4.

easy to decide whether it is contractible. We simply count its number of intersec-
tions with the curves of identification. Then, C is non-contractible if and only if
this number is odd.

We call a component contractible, if no non-contractible closed curve is con-
tained it it. Consider now the torus and the components of the arrangement graph.
If all components are contractible, all faces of the arrangement except for one are
punctured disks and one face, say F0, is a punctured torus. The disk-like faces
are nested in F0 and all CCBs of F0 are inner. So assume that there are non-
contractible components K1, K2, . . . , Kℓ. If some component contains both kinds
of non-contractible closed curves, ℓ = 1 and all regions of S \K1 are disk-like. The
CCBs contained in K1 are outer CCBs for these faces. Within each such face, we
have the situation of the plane with bounded components. So assume that no com-
ponent contains both kinds of non-contractible cycles. Then, all non-contractible

16 Berberich, Fogel, Halperin, Mehlhorn and Wein

components contain the same kind of non-contractible cycle, as instances of differ-
ent kinds necessarily cross. S \(K1∪ . . .∪Kℓ) consists of disk-like and cylinder-like
regions. Disk-like regions are incident to exactly one of the Ki’s and cylinder-like
regions are incident to two. For the faces corresponding to disk-like regions, the
unique CCB contained in one of the Ki’s is called outer. For the faces incident
to two Ki’s, we call the CCBs contained in both Ki’s outer. The face-component
graph consists of a cycle containing the non-contractible Ki’s and the cylinder-like
faces and trees attached to these components and faces. In the directed component-
face graph, the Ki’s form the top level, the cylinder-like faces have two parents,
and the disk-like faces have one.

The treatment of the cylinder is a special case of the discussion of the torus. In
the face-component graph, the cylinder-like faces and the components separating
them form a chain instead of a cycle as in the case of the torus. We mention that
one might also view the sphere as being punctured at the poles and then treat it
like a cylinder.

Maintaining CCBs: The addition of an isolated vertex p creates a trivial com-
ponent nested in the face containing p. The addition of an edge {p, q} to the
arrangement graph adds half-edges (p, q) and (q, p) to the eDcel. The CCBs are
easily updated. The updating of the nesting is more demanding. We only discuss
the torus, the other surfaces being simpler.

If p and q both have degree one after the addition, we have a new CCB
consisting of the two new half-edges. It is nested in some face. If exactly one of p
and q has degree one after the addition, say q, we only have to insert (p, q) into the
right position in the cyclic order of edges around p. This will insert (p, q) followed
by (q, p) into one of the existing CCBs.

e1

e2

p

e2 e1

e′2e′1

p

q

It remains to discuss the case that both p and q have
degree at least two after the addition, p = q is possible. We
first show how to update the CCBs and then how to update
the face-component graph.

Consider the situation at p and q. If p = q, and p was
an isolated node before the addition, we create two new
CCBs, both consisting of a single half-edge (p, p). They have
opposite directions. If p = q, and p was not an isolated node
before the addition, two cases can occur. Either an existing
CCB is split into two (this is as the case p 6= q discussed
below) or one copy of (p, p) is inserted into an existing CCB
and the other one forms a CCB of its own. In the figure on
the left, one copy of (p, p) is inserted between e1 and e2 into
an existing CCB and the other copy of (p, p) forms a CCB
of its own. In general, we will have p 6= q and there will
be edges incident to p and q before the addition. Assume
that (p, q) becomes the successor of half-edge e1 and (q, p)

becomes the successor of e′1. The old successor, say e2, of e1 becomes the successor

Arrangements on Parametric Surfaces I 17

F

q

p

B

F1

F2

q

p

(a) (b)

(c) (d)

Figure 6. The number of CCBs increases by the addition of {p, q}. (a)

and (b) illustrate the case where the type of the component containing

p and q does not change. In (b), a cylinder-like face F is split into a

cylinder-like F2 and a disk-like face F1. In (c), a cylinder-like face is split

into two cylinder-like faces, and in (d), a torus-like face is converted into

a cylinder-like face.

of (q, p) and the old successor, say e′2, of e′1, becomes the successor of (p, q). After
the addition of {p, q}, we have e1 → (p, q) → e′2 and e′1 → (q, p) → e2 as part of
CCBs.

For the update of the face-component graph, we distinguish cases according
to whether the addition of {p, q} increases or decreases the number of CCBs.

Assume first that the number of CCBs increases. This is either the case when
p = q and p was an isolated vertex before the addition or one copy of (p, p) forms a
CCB of its own after the addition, or when e1 and e′1 exist and belong to the same
CCB before the addition. Let F be the face containing p in case of an isolated
vertex and the face to the left of e1 in the other cases. The new halfedges (p, q)
and (q, p) are added to the component that contained e1 (or form a component
of their own, if p was an isolated vertex). Call it K. We need to know whether
K became non-contractible by the addition. So assume that K was contractible
before the addition. We consider any closed cycle in K containing (p, q). If the
cycle intersects the identification curves an odd number of times, we have created
a non-contractible component. Otherwise, we have not. Observe, that this deci-
sion is independent of how the closed cycle is formed because any closed cycle in
the component before the addition of (p, q) had an even number of intersections
with the identification curves. We distinguish cases according to whether K is
contractible after the addition, contractible before and non-contractible after, or
non-contractible before the addition.

18 Berberich, Fogel, Halperin, Mehlhorn and Wein

p

q

q p

Figure 7. Two CCBs are joined into one by the addition of {p, q}. Four

cases can arise. We either join an outer and an inner CCB, or two inner

CCBs, or two outer CCBs. In the latter case, the two outer CCBs either

belong to distinct components or to the same component.

We discuss the second case in detail, the other cases being simpler. If K stays
contractible or K was already non-contractible, F is split into two faces F1 and
F2, one being disk-like, the other having the same type as F . For the disk-like
face we create an outer boundary, for the face inheriting the type of F , the type
(inner, outer) of the CCB is also inherited. We have to assign the new CCBs to
F1 and F2. If F is disk-like, the assignment is arbitrary. If F is cylinder-like and
we split one of its outer CCBs, one of the resulting CCBs is contractible and one
is non-contractible. The non-contractible CCB is assigned to the cylinder-like face
and the other one is assigned to the disk-like face. If F is cylinder-like and we split
one of its inner CCBs, we locate a point on one of F ’s outer CCBs with respect to
the new CCBs. It will lie to the left of exactly one of them. This CCB becomes an
inner CCB of the cylinder-like face. The other new CCB becomes an outer CCB
of the disk-like face. We also have to redistribute the inner CCBs of F over F1 and
F2. For this it suffices to locate one point of each CCB with respect to F1 and F2.

If the component becomes non-contractible, a torus-like F becomes cylinder-
like or a cylinder-like F is split into two cylinder-like faces F1 and F2. In the former
case, both new CCBs are outer CCBs of the now cylinder-like F . In the latter case,
the two outer CCBs of F plus the two new CCBs become the outer CCBs of F1

and F2. We also have to distribute the inner CCBs of F over F1 and F2. For this
it suffices to locate one point of each CCB with respect to F1 and F2. How do we
assign the outer CCBs to F1 and F2? Let B and B′ be the outer CCBs of F . Both
of them have an odd number of intersections with the identification curves. Since
they have the same type, there is one identification curve that is crossed an odd
number of times by both. For ease of exposition, assume that this identification
curve corresponds to the vertical sides. Assume that B crosses the identification
curve more often from left to right then from right to left, say c times more often.
Then B′ has c more crossings from right to left. We simply count the number of
crossings for each one of the new CCBs. One must have c more crossing from left
to right and the other c more crossings from right to left. We pair the former with
B′ and the latter with B.

Arrangements on Parametric Surfaces I 19

Assume next that e1 and e′1 belong to distinct CCBs before the addition, say
B and B′, respectively; see Figure 7. Let K and K ′ be the components containing
them; K = K ′ is possible. The two CCBs are joined into one. Let F be the face
to the left of e1 and e′1. We distinguish cases and will see that the case distinction
can be made knowing the kinds (inner or outer) of B and B′ and whether K 6= K ′

or not. If B is an outer CCB and B′ is an inner CCB of F (or vice versa), the new
edge joins two components that were nested within each other before the addition.
The joined CCB is an outer CCB of F . If B and B′ are inner CCBs of F , two
components nested in F join, and the joined CCB is an inner CCB of F . If B and
B′ are outer CCBs of F and K 6= K ′, the cylinder-like face F turns into a disk-like
face. The joined CCB is an outer CCB of F . If B and B′ are outer CCBs of F and
K = K ′, F is the only cylinder-like face. It turns into a disk-like face and now all
faces are disk-like. The joined CCB is an outer CCB of F .

3.2.5. Inserting a curve via zone traversal. Recall that inserting a curve using
zone traversal requires as first step locating the eDcel-record (i. e., face, edge, or
vertex) that representing the minimal end of the given curve. In case of bounded
curves in the plane, this is achieved by a point-location query. Now, the minimal
end might be an open end or lie on a side of the domain. So we postulate a specific
point-location strategy for these situations. The rest of the algorithm is carried
out using the same geometric and topological operations needed by the sweep-line
algorithm.

4. The Geometry-Traits Concept

The refinement hierarchy of the geometry-traits concepts is defined according to
the identified minimal requirements imposed by different algorithms that operate
on arrangements. The requirements listed by the geometry-traits concepts include
only the utterly essential types and operations, and fully specify all the precon-
ditions that the input must satisfy, as these may simplify the implementation of
models of these concepts.

The basic concept OnlyInteriorTraits suffices to deal with bounded curves in
the plane. The deeper levels of the hierarchy (see Figure 8 deal with more complex
situations such as objects contained or approaching open, closed, contracted, and
identified sides. We use u and v for the coordinates in parameter space, and x, y,
z for the coordinates in the ambient space for S.

The root concept OnlyInteriorTraits matches the original ArrangementTraits 2

concept; it is sufficient for constructing and manipulating arrangements of planar
bounded curves in U = V = (−∞, +∞), and homeomorphic situations. It requires
the definition of the three types: general curve, u-monotone curve, and point. Gen-
eral curves are used only as input curves. They are not necessarily u-monotone,
may comprise several disconnected branches, or contain self-intersections. For in-
stance, the polynomial (u2 + v2)(u2 + v2 − 1) = 0 induces an algebraic curve
comprising two u-monotone circular arcs, which together form the unit circle, and

20 Berberich, Fogel, Halperin, Mehlhorn and Wein

a singular isolated point at the origin. The concept contains an operation that sub-
divides any general curve into a collection of u-monotone and sweepable curves
and isolated points. All further operations, presented next, involve only such curves
and also points. Those operations serve as the basis for our generalization.

The functions cmpu() and cmpv() accept pairs of regular points in S and
compare them by their u-coordinate and by their v-coordinate, respectively. In the
original concept, a point p is simply a pair (u, v) and hence the implementation
can be direct. Now, they accept regular points in S. Such points have unique pre-
images in Φ and hence the comparison is well-defined. The implementation might,
however, be non-trivial. We use the following notation. For a point p, (up, vp)
denotes a pre-image, and for a curve C, γ denotes a pre-image, that is, p =
φS(up, vp) and C(t) = φS(γ(t)) for all t ∈ I.

Compare u: Compare the u-coordinates of two regular points p1 and p2; return
cmpu(p1, p2)

Compare uv: Compare two regular points lexicographically, first by their u-
coordinates, and in case they are equal, by their v-coordinates. This predicate
is used to maintain the order of regular event points.

Obtain minimum (resp. maximum) endpoint: For a given curve C, return the
lexicographically smaller (resp. larger) endpoint of a u-monotone curve, if the
curve is closed at this end.

Is vertical: Determine whether a u-monotone curve is vertical.
Compare v at u: Given a u-monotone curve C in S and a regular point p in S

such that up lies in the u-range of γ, determine whether p is above, below, or
lies on C. More precisely, if C is vertical, determine vp > v(γ(1)), vp > v(γ(1))
or in between. Otherwise, since u(γ(0)) ≤ up ≤ u(γ(1)) and γ is u-monotone,
there is a unique t′ ∈ [0, 1] with u(γ(t′)) = up. Return cmpv(vp, γ(t′)). This
predicate is used to insert a new curve with minimal end at p into the status
structure.

Compare v to right of u: Given two u-monotone curves C1 and C2 that share
a common minimal end at p determine the order of the curves immediately
to the right of p. The construction coming next is typical for our approach.
In order to determine the ordering in which curves emanate from a point
p in increasing direction of u, we compare the curves infinitesimally to the
right of p. More precisely, return cmpv(γ1(ǫ1), γ2(ǫ2)), where ǫ1, ǫ2 > 0 are
infinitesimally small and u(γ1(ǫ1)) = u(γ2(ǫ2)). This predicate is used to
insert new curves into the status structure, when the minimal end lies on an
existing curve in the status structure.

Compare v to left of u: Symmetric to the preceding predicate. This predicate
is optional and, if implemented, increases efficiency of some algorithms.

Intersect: Compute the intersections of two u-monotone curves C1 and C2.
Split: Split a curve C at a regular point p which must lie in the interior of C.

This is used when a curve is inserted that has an endpoint p in the interior
of an already existing curve.

Arrangements on Parametric Surfaces I 21

OnlyInteriorTraits

HasSpecialSideTraits

OpenSideTraits

PointOnSideTraits ComparePointOnSideTraits

ContractedSideTraits ClosedSideTraits IdentifiedSideTraits

Figure 8. Top portion of the refinement hierarchy of the geometry-traits

concepts. The grey concepts factor out operations that are common to

their descendants. The black concepts correspond to application scenarios.

There are four copies of the concepts at the bottom — one fore each side;

see also Figure 9 and 10.

OpenLeftTraits OpenRightTraits OpenBottomTraits OpenTopTraits

OpenTraits

Figure 9. Bottom portion of the refinement hierarchy of the geometry-

traits concept for curves embedded on an open surface, for instance, the

unbounded plane.

IdentifiedLeftTr. IdentifiedRightTr. ContractedBottomTr. ContractedTopTr.

SphericalTraits

Figure 10. Bottom portion of the refinement hierarchy of the geometry-

traits concept for curves embedded on a spherical-like parameterized sur-

face.

Merge: Merge two mergeable curves C1 and C2 into a single curve C.
Are mergeable: Determine whether two curves C1 and C2 that share a common

endpoint can be merged into a single continuous curve representable by the
traits class.

We now come to the bottom level of the hierarchy. For each side of the
parameter space there are four concepts: OpenSideTraits, ContractedSideTraits,
ClosedSideTraits, and IdentifiedSideTraits.4 This makes for a total of 44 concepts.
Only a subset of them is meaningful, for instance, if a side is identified, the opposite

4Note that we explicitly distinguish closed-only, contracted, and identified sides sides, although
they latter two are closed in Φ as well.

22 Berberich, Fogel, Halperin, Mehlhorn and Wein

side must also be identified, and symmetry reduces the meaningful combinations
further. A suitable instantiation for unbounded curves in the unbounded plane
is the OpenTraits concept shown in Figure 9, while one for surfaces homeomor-
phic to a sphere can be a model of the combined concept SphericalTraits shown in
Figure 10.

The four concepts for a given side share operations. They are collected in
HasSpecialSideTraits, PointOnSideTraits, and ComparePointOnSideTraits shown grey
in Figure 8. The first concept collects the operations required by all refinements
and the second and third concept provide operations that handle points, curve-
ends, and curves that are contained in the boundary of the parameter domain.

Locate curve-end in u (resp. v): Given a curve C and an index d ∈ {0, 1}, de-
termine the location of the d-end of C with respect to the u-axes. More
precisely, determine whether limt→d u(γ(t)) is equal to umin, umax, or falls in
between. These predicates determine the location of a curve-end in parameter
space.5

The next two operations “compare near boundary” determine the order of curve
ends lying on the boundary with respect to regular points and among each other.
Figure 11 illustrates these comparisons. They return equal if and only if the curves
in question lie on top of each other in a neighborhood of the boundary.

Compare u near boundary: There are different predicates for u and v, due to
the asymmetry mentioned in Definition 3.1.
(1) Given a regular point p, a curve C, and an index d ∈ {0, 1}, com-

pare up and the “u-coordinate” of the d-end of C. More precisely, return
cmpu(p, γ(|d − ǫ|)), where ǫ > 0 is infinitesimally small.

(2) Given two curves C1 and C2 and indices d1, d2 ∈ {0, 1}, compare the
“u-coordinates” of the respective ends. More precisely, if the ends are
incident to the same horizontal side of the parameter domain, return
cmpu(γ1(|d1 − ǫ1|), γ2(|d2 − ǫ2|)), where ǫ1, ǫ2 > 0 are infinitesimally
small and v(γ1(|d1 − ǫ1|)) = v(γ2(|d2 − ǫ2|)). If they are incident to
different horizontal sides, consider the mirror image of one and proceed
as above. If only one is incident to a horizontal side, the outcome is
clear.

Compare v near boundary: Given two curves C1 and C2, and a single index d ∈
{0, 1} that identifies two ends of the curves’ pre-images γ1 and γ2, compare
the v-coordinates of two points along γ1 and γ2 respectively near the given
ends. More precisely, return cmpv(γ1(|d − ǫ1|), γ2(|d − ǫ2|)), where ǫ1, ǫ2 > 0
are infinitesimally small and u(γ1(|d1 − ǫ1|)) = u(γ2(|d2 − ǫ2|)).

OpenSideTraits requires one additional predicate:

5Note that we only give the definition with respect to the u-dimension, in case the v-version is
symmetric. Otherwise, we report additional details.

Arrangements on Parametric Surfaces I 23

C2

C5

C7

C6

C3

C1

C4

Figure 11. Compare curve-ends near boundary in parameter space: We

can assume that C1 and C7 are given by xy − 2 = 0, C2 and C6 by

xy − 1 = 0, C3 by y = 2, C4 and C5 are supported by x = 0. Then, we

have for sufficiently small and suited ǫi, ǫ
′

i > 0 the following orders near

the boundary. Left side: v(C1(ǫ1)) < v(C2(ǫ2)) < v(C3(ǫ3)). Right side:

v(C6(1 − ǫ′6)) < v(C7(1 − ǫ′7)) < v(C3(1 − ǫ′3)). Bottom and top side:

u(C2(ǫ2)) < u(C1(ǫ1)) < u(C4(1 − ǫ′4)) = u(C4(ǫ4)) = u(C5(1 − ǫ′5)) =

u(C5(ǫ5)) < u(C7(1 − ǫ′7)) < u(C6(ǫ
′

6)).

Is closed: Given a curve C and an index d ∈ {0, 1}, determine whether the pre-
image of C’s d-end belongs to the domain of γ or not. This predicate tells
whether the d-end of C is a point (closed) or open, otherwise.

A closed or contracted sides may contain points. PointOnSideTraits introduces one
additional predicate:

Locate point in u (resp. v): Given a point p determine its pre-image’s location
in the domain Φ along the u-dimension. More precisely, check whether up is
equal to umin or umax, or falls in between.6

ComparePointsOnSideTraits orders points on a boundary lexicographically; it is not
needed for contracted sides as they map to a single point on the surface:

6This function is only applied if one of the opposite vertical sides is contracted or closed. The
pre-image of a contracted point is the entire side and hence the outcome is independent of the
choice of a particular pre-image; the pre-image of a point in a closed side is unique.

24 Berberich, Fogel, Halperin, Mehlhorn and Wein

Compare v on boundary (resp. u): Given points p1 and p2 such that up1
, up2

∈
{umin, umax}, compare vp1

and vp2
.7

We are almost done. For a contracted boundary (ContractedSideTraits), no addi-
tional operation beyond PointOnSideTraits is needed. For a closed side, we have to
handle curves whose pre-image is fully contained in the boundary of the parameter
space. We therefore require:

Locate curve in u (resp. v): Locate a curve C along the u-dimension. More pre-
cisely, determine whether u(γ(t)) is equal to umin, umax, or falls in between
for all t ∈ (0, 1).

In contrast, identified boundary sides (IdentifiedSideTraits) demand a slightly dif-
ferent additional predicate:

Is on u-identification (resp. v): Given a point p (respectively a curve C), deter-
mine whether p (respectively C) lies in the image of the vertical and identified
sides of the boundary. More precisely, determine whether up ∈ {umin, umax}
for all pre-images of p. Similar for all points of C, respectively.

5. The Topology-Traits Concept

We discuss the topology-traits concept. A model of this concept must define a
nested type for the eDcel. The topology traits maintains the eDcel and addi-
tional status information, in particular, the sorted sequence of vertices lying on
curves of identification, information about the kinds (open, closed, contracted,
identified) of the sides, and the fictitious/non-fictitious distinction for vertices,
halfedges and faces. An eDcel feature (vertex, halfedge, face) relates either to
the interior or the boundary of the parameter space. A vertex and half-edge re-
lates to the interior if its pre-image lies in the interior of the parameter space and
to the boundary otherwise. A face relates to the interior if all bounding half-edges
relate to the interior. Otherwise, it relates to the boundary. Features related to
the interior are handled as in the case of a bounded subdivision of the plane. New
functionality is needed for the features relating to the boundary.

Obtain boundary kind: Return information on whether a given side of the para-
meter-space boundary is closed, open, contracted, or identified.

Initialize: Construct an eDcel that represents an empty arrangement.
Return fictitiousness of vertices, halfedges, and faces: Recall that the eDcel

may contain features that have no geometric meaning. These functions re-
turn whether a feature has geometric meaning or not. It is needed to filter
out fictitious elements from traversals.

7This function is only used if one of the opposite vertical sides of the boundary is closed or both
vertical sides are identified. A point on the identification curve has two pre-images, one for umin

and one for umax. The v-coordinates of both pre-images are the same and so the operation is
well-defined.

Arrangements on Parametric Surfaces I 25

Place a curve-end: Given a curve-end whose pre-image lies on or emanates from
the boundary and a face that contains the interior of the curve, determine
the eDcel vertex or (fictitious) edge that contains the given curve-end, if
it exists. Otherwise, return NULL. The topology-traits class uses this method
and the next to implement open, closed, contracted, or identified boundaries.

Notify on boundary vertex creation: This is called by the Arrangement on -

surface 2 instance to notify its topology-traits instance about the creation
of a new eDcel vertex whose pre-image(s) belong to ∂Φ. It enables the
topology-traits class to keep its internal internal objects up-to-date, for in-
stance, the ordered sequence of eDcel records representing points on an
identification curve, while the arrangement class can still notify its observers
about the respective structural changes.

Locate a curve-end: Locate the eDcel feature that contains a given curve-end.
The pre-image of the curve-end lies on the boundary or emanates from the
boundary. The method returns a vertex, an edge, or a face and is used by
the point location operation.

Locate the halfedge around a boundary vertex: For a eDcel vertex whose pre-
images belong to ∂Φ return the predecessor halfedge that identifies where to
insert a given curve approaching this vertex. It may return NULL, if there is
no such halfedge.

Split fictitious edge: Splits a given fictitious edge into two and returns a handle
to one of them. It is the topology-traits class that implements this function,
as this is a structural change that relates to the boundary of the parameter
space. The method is used when a curve emanating from the boundary is
added to the arrangement. The next two functions are used when such a
curve is deleted.

Is redundant: Determines whether a given vertex whose pre-image is on the
boundary is redundant. A vertex becomes redundant after all non-fictitious
incident edges are removed.

Remove redundant vertex: Remove a redundant vertex from the internal struc-
tures. Subsequent to its call, the arrangement notifies its attached observers
about the removal of the vertex.

The next set of functions deals with faces:

Is unbounded: Determine whether a face is unbounded. This test is invoked
when an unbounded face is split by a bounded curve into two to decide
which of the resulting faces is still unbounded.

Is in face: Determine whether a given point belongs to the interior of a face,
while ignoring any of its inner components, that is, whether the point is
contained in the region to the left of the face’s outer CCBs. It is used for
point location in general, and relocating inner CCBs after a face has split in
particular.

Face split after edge insertion: This function and the next two update CCBs
and face types on the insertion of a subcurve such that an inner CCB B

26 Berberich, Fogel, Halperin, Mehlhorn and Wein

contained in some component K is split into two. This case has been discussed
in the paragraph “Maintaining CCBs” of Section 3.2.4 and illustrated in
Figure 6. The function determines two Boolean values.

• The first reports whether the face F incident to B splits into two, which
is usually the case. The exception is that F is torus-like and the new
subcurve makes the contractible component K non-contractible. We
check whether a cycle in K containing the new halfedge (p, q) or its
twin (q, p) crosses the identification curves an odd number of times.

• The second value is only relevant if F splits. It determines whether K
becomes non-contractible. If so, F is cylinder-like.

Is on new face: We are in the situation that a face F is split into faces F1 and
F2 and that the addition of the edge does not change the type (contractible
or non-contractible) of the incident component K. Then, F1 or F2 is disc-like.
The function determines which of the new CCBs becomes the outer CCB of
the new disc-like face.

Boundaries of same face: We are in the situation that a face F is split into faces
F1 and F2 and that the addition of the edge now makes the affected incident
component non-contractible. That is, both F1 and F2 are cylinder-like. This
function helps to assign the two new outer CCBs to F1 and F2 respecting the
two existing outer CCBs of F ; see Section 3.2.4 for details. More precisely,
given one of the old CCBs of F and one of the new CCBs, it checks whether
they belong to the same Fi.

Hole creation of edge deletion: This function can be seen as the inverse of the
face-split function. In this paper we only discuss the cases when inserting a
new curve. Similarly, upon the deletion of a curve being part of an outer CCB
and not forming an antenna,8 the number of components may increase. This
must be determined. That is, whether a new inner CCB is introduced.

In addition to these functions, a model of the topology-traits concept also has to
also define a set of visitors :

Construction sweep-line visitor: A sweep-line visitor class for constructing the
arrangement of a set of curves from scratch.

Insertion sweep-line visitor: A sweep-line visitor class for inserting a set of
curves into a non-empty arrangement.9

Overlay sweep-line visitor: A sweep-line visitor class for constructing a new ar-
rangement corresponding to the overlay of two input arrangements.

Insertion zone visitor: Used to insert a single curve into an existing arrange-
ment by traversing its zone.

8The curve described by two twin halfedges forms an antenna if both halfedges belong to the
same CCB.
9The concept also demands for visitors that inserting curves that are pairwise interior disjoint and
similar for the previous construction visitor. One can provide either a specialized implementation,
or one trivially uses the same as for intersecting curves knowing that their intersection predicate
is never invoked.

Arrangements on Parametric Surfaces I 27

Default point location: This point-location strategy is used as fall-back if no
other is selected when invoking the insertion of a curve using the zone traver-
sal. Recall that the initial step of the zone traversal is to locate the eDcel-
record in a given arrangement containing the minimal end of the given curve.

Since the visitor classes are defined by the topology-traits classes, it is possi-
ble to support generic functions that operate on the Arrangement on surface 2

class. For example, the function insert curves(arr, begin, end) accepts an
arrangement instance arr and a range of curves defined by [begin, end). If the
arrangement is empty, it uses the construction sweep-line visitor to sweep over
the input curves and construct their arrangement. Otherwise, it uses the insertion
sweep-line visitor to insert them into the existing arrangement.

Any topology-traits class is allowed to provide more (surface-specific) func-
tionality — beyond the described minimal concept. An example is to provide
methods that enable the access to all vertices lying on an identification curve.

6. Concretizations

Several concretizations of the framework already exist in terms of software. The
companion paper [6] discusses arrangements on spheres, quadrics, and ring Dupin
cyclides. The Arrangement on surface 2 package contains two topology-traits
classes for the plane: one for bounded curves, which maintains a single unbounded
face, and one for the unbounded plane, which uses an implicit bounding rectangle;
see Section 3.2.4 and [31] for more details. Most geometry-traits classes that used
to support only bounded planar curves in previous versions have been enhanced to
support unbounded curves as well, for instance, the prototypical implementation
for algebraic curves of any degree [5, 14]. New geometry-traits classes have been
developed from scratch, for example, for geodesic arcs embedded on the sphere,
and for segments, rays, and lines in the plane. With the latter, we are able to
compute lower envelopes of planes in three-dimensional space [28], and, through a
well-known transformation [13], Voronoi diagrams of points in the plane; see [21]
for details. The diagrams are represented as planar arrangements of unbounded
curves. Figure 12 shows some examples. We have chosen degenerate input sets to
highlight that our framework handles arbitrary degeneracies.

7. Conclusions and Future Work

We describe a general framework for the construction, maintenance, and manipu-
lation of arrangements induced by curves embedded on a class of two-dimensional
orientable parametric surfaces. We reuse existing code for arrangement of bounded
curves in the plane, generalize it, and complete the implementation by specific code
(encapsulated in traits classes) that handles the particular surface and curves.
Code reuse minimizes the effort required to develop traits classes for new families
of curves and new surfaces. Such developments benefit from a highly generic and

28 Berberich, Fogel, Halperin, Mehlhorn and Wein

(a) (b) (c) (d)

Figure 12. Voronoi diagrams of points in the unbounded plane.

(a) Points along a line segment. (b) Points on a grid inside a square.

(c) Points on a circle. (d) Points on the boundary of a square.

efficient code base for the main arrangement-related algorithms, which supports
a broad set of features. Clearly, developing surface-specific traits-classes is a rela-
tively small task compared to developing a full implementation from scratch. We
use advanced techniques from the generic and the object-oriented programming
paradigms [30] to achieve maximum efficiency, flexibility, and robustness.

Future work: With the topology concept, we successfully separated topological op-
erations for maintaining a surface-specific eDcel from surface-independent ones.
However, traits classes for different surfaces (see also [6]) show similarities. For
example, in case of an identification curve, they all maintain a sorted sequence of
points. Likewise, the decision with respect to face splits and their CCBs rely on
similar information. We therefore believe that a further unification should be possi-
ble. For example, we envision a model that can be configured for various topologies
by just naming what happens on the boundaries of the parameter space.

In this work, we also restricted ourselves to the single-domain case, that is
Φ = U × V . Another future goal is to extend the framework to handle general
orientable surfaces, which can be conveniently represented by a collection of do-
mains, each of which supported by a rectangular parameter space. It is known
which polygonal maps give rise to orientable surfaces and each orientable surface
has a normal form, which already includes surfaces of higher genus [25]. In addi-
tion, one may wish to consider surfaces with singularities (e. g., the pinch point
of a double cone), which require to decompose them such that singularities only
appear on the boundary of the parameter spaces. Concerning the framework, the
different individually obtained parameter spaces are glued together according to
the topology of the surface and therefore will naturally be described in, and han-
dled by, an extension of the topological concept. A key step is to derive additional
geometric predicates for such stitched boundaries. Also, the eDcel needs to be
replaced by a more powerful data structure.

Arrangements on surfaces can also be a tool in other settings. Consider, for
example, the task of computing three-dimensional arrangements of surfaces. As
a first step, one could compute, for each surface, the arrangement defined by its
intersection curves with the other surfaces. This step is achieved by our package. As
a further step, one needs to identify equal vertices and edges on different surfaces.

Arrangements on Parametric Surfaces I 29

How to do this for quadrics has been shown in [23]. Their approach uses a direct
parameterization of the quadrics. However, the important subtask, namely the
equality-detection of vertices and edges can be formulated almost abstractly. We
want to explore whether this identification can be done for the surfaces for which
we can compute arrangements. It might be required to add additional geometric
primitives that determine the equality of two geometric objects on two different
surfaces.

Acknowledgments

The authors thank Michael Kerber and Ophir Setter for commenting on draft
versions of the paper.

References

[1] Pankaj K. Agarwal and Micha Sharir. Arrangements and their applications. In Jörg-
Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry,
chapter 2, pages 49–119. Elsevier Science Publishers, B.V. North-Holland, Amster-
dam, North-Holland, 2000.

[2] Marcus V. A. Andrade and Jorge Stolfi. Exact algorithms for circles on the sphere.
International Journal of Computational Geometry and Applications, 11(3):267–290,
June 2001.

[3] Matthew H. Austern. Generic Programming and the STL. Addison-Wesley, 1999.

[4] Jon L. Bentley and Thomas Ottmann. Algorithms for reporting and counting geo-
metric intersections. IEEE Transactions on Computers, 28(9):643–647, 1979.

[5] Eric Berberich and Pavel Emeliyanenko. Cgal’s Curved Kernel via Analysis. Tech-
nical Report ACS-TR-123203-04, Algorithms for Complex Shapes, 2008.

[6] Eric Berberich, Efi Fogel, Dan Halperin, Michael Kerber, and Ophir Setter. Arrange-
ments on parametric surfaces II: Concretization and applications, 2009. Submitted
to Mathematics in Computer Science.

[7] Eric Berberich, Efi Fogel, Dan Halperin, Kurt Mehlhorn, and Ron Wein. Sweeping
and maintaining two-dimensional arrangements on surfaces: A first step. In Pro-
ceedings of 15th Annual European Symposium on Algorithms (ESA), volume 4698 of
LNCS, pages 645–656. Springer-Verlag, 2007.

[8] Eric Berberich, Michael Hemmer, Lutz Kettner, Elmar Schömer, and Nicola Wolpert.
An exact, complete and efficient implementation for computing planar maps of
quadric intersection curves. In Proceedings of 21st Annual ACM Symposium on Com-
putational Geometry (SoCG), pages 99–106. Association for Computing Machinery
(ACM) Press, 2005.

[9] Eric Berberich and Michael Kerber. Exact arrangements on tori and Dupin cyclides.
In Proceedings of ACM Symposium on Solid and Physical Modeling (SPM), pages
59–66. Association for Computing Machinery (ACM) Press, 2008.

30 Berberich, Fogel, Halperin, Mehlhorn and Wein

[10] Erik Brisson. Representing geometric structures in d dimensions: topology and order.
In SCG ’89: Proceedings of the fifth annual symposium on Computational geometry,
pages 218–227, New York, NY, USA, 1989. ACM.

[11] Frederic Cazals and Sebastien Loriot. Computing the exact arrangement of circles
on a sphere, with applications in structural biology. Technical Report 6049, Inria

Sophia-Antipolis, 2006.

[12] Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany,
2nd edition, 2000.

[13] Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements.
Discrete & Computational Geometry, 1:25–44, 1986.

[14] Arno Eigenwillig and Michael Kerber. Exact and efficient 2D-arrangements of ar-
bitrary algebraic curves. In Proceedings of 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 122–131, Philadelphia, PA, USA, 2008. Society
for Industrial and Applied Mathematics (SIAM).

[15] Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven
Schönherr. On the design of Cgal a computational geometry algorithms library.
Software — Practice and Experience, 30(11):1167–1202, 2000.

[16] Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud, Ron Wein, and Nicola
Wolpert. Arrangements. In J.-D. Boissonnat and M. Teillaud, editors, Effective Com-
putational Geometry for Curves and Surfaces, chapter 1, pages 1–66. Springer-Verlag,
2007.

[17] Efi Fogel, Ophir Setter, and Dan Halperin. Exact implementation of arrangements of
geodesic arcs on the sphere with applications. In Abstracts of 24th European Work-
shop on Computational Geometry, pages 83–86, 2008.

[18] Efi Fogel, Ophir Setter, and Dan Halperin. Movie: Arrangements of geodesic arcs
on the sphere. In Proceedings of 24th Annual ACM Symposium on Computational
Geometry (SoCG), pages 218–219. Association for Computing Machinery (ACM)
Press, 2008.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
— Elements of Reusable Object-Oriented Software. Addison-Wesley, 1999.

[20] Dan Halperin. Arrangements. In Jacob E. Goodman and Joseph O’Rourke, edi-
tors, Handbook of Discrete and Computational Geometry, chapter 24, pages 529–562.
Chapman & Hall/CRC, 2nd edition, 2004.

[21] Dan Halperin, Ophir Setter, and Micha Sharir. Constructing two-dimensional
Voronoi diagrams via divide-and-conquer of envelopes in space. ACS technical report
ACS-TR-361601-01, TAU, 2008.

[22] Dan Halperin and Christian R. Shelton. A perturbation scheme for spherical arrange-
ments with application to molecular modeling. Computational Geometry: Theory and
Applications, 10:273–287, 1998.

[23] Michael Hemmer. Exact Computation of the Adjacency Graph of an Arrangements
of Quadrics. Ph.D. thesis, Johannes-Gutenberg-Universität, Mainz, Germany, 2008.

[24] Younis O. Hijazi and Thomas M. Breuel. Computing arrangements using subdivision
and interval arithmetic. In Proceedings of 6th International Conference on Curves
and Surfaces, pages 173–182, 2006.

Arrangements on Parametric Surfaces I 31

[25] Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust. Computing a
canonical polygonal schema of an orientable triangulated surface. In Proceedings of
17th Annual ACM Symposium on Computational Geometry (SoCG), pages 80–89,
2001.

[26] Kurt Mehlhorn and Stefan Näher. Leda: A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, Cambridge, UK, 2000.

[27] Kurt Mehlhorn and Michael Seel. Infimaximal frames: A technique for making lines
look like segments. International Journal of Computational Geometry and Applica-
tions, 13(3):241–255, 2003.

[28] Michal Meyerovitch. Robust, generic and efficient construction of envelopes of sur-
faces in three-dimensional space. In Proceedings of 14th Annual European Symposium
on Algorithms (ESA), volume 4168 of LNCS, pages 792–803. Springer-Verlag, 2006.

[29] Victor Milenkovic and Elisha Sacks. An approximate arrangement algorithm for
semi-algebraic curves. International Journal of Computational Geometry and Appli-
cations, 17(2):175–198, 2007.

[30] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. Advanced programming
techniques applied to Cgal’s arrangement package. Computational Geometry: The-
ory and Applications, 38(1–2):37–63, 2007. Special issue on Cgal.

[31] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. 2D arrangements. In
Cgal Editorial Board, editor, Cgal User and Reference Manual. 3.4 edition, 2008.

Eric Berberich
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
e-mail: ericb@post.tau.ac.il

Efi Fogel
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
e-mail: efif@post.tau.ac.il

Dan Halperin
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
e-mail: danha@post.tau.ac.il

Kurt Mehlhorn
Max-Planck-Institut für Informatik, Saarbrücken, Germany
e-mail: mehlhorn@mpi-inf.mpg.de

Ron Wein
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
e-mail: wein@post.tau.ac.il

	1. Introduction
	2. The Basic Arrangement Framework
	2.1. The Arrangement_on_surface_2 Class Template
	2.2. The Bentley-Ottmann Sweep
	2.3. The Zone Traversal

	3. Sweeping and Zoning Over Surfaces
	3.1. Parametric Surfaces and Curves Embedded into Them
	3.2. The Generalization of the Algorithms
	3.2.1. Events
	3.2.2. Non-Injectivity on the Boundary
	3.2.3. Comparing Events
	3.2.4. Constructing and Maintaining the eDcel
	3.2.5. Inserting a curve via zone traversal

	4. The Geometry-Traits Concept
	5. The Topology-Traits Concept
	6. Concretizations
	7. Conclusions and Future Work
	Acknowledgments
	References

