
Constructive D-module Theory with Singular

Daniel Andres Michael Brickenstein Viktor Levandovskyy
Jorge Mart́ın-Morales Hans Schönemann

Abstract

We overview numerous algorithms in computational D-module theory together
with the theoretical background as well as the implementation in the computer
algebra system Singular. We discuss new approaches to the computation of Bern-
stein operators, of logarithmic annihilator of a polynomial, of annihilators of rational
functions as well as complex powers of polynomials. We analyze algorithms for local
Bernstein-Sato polynomials and also algorithms, recovering any kind of Bernstein-
Sato polynomial from partial knowledge of its roots. We address a novel way to
compute the Bernstein-Sato polynomial for an affine variety algorithmically. All
the carefully selected nontrivial examples, which we present, have been computed
with our implementation. We address such applications as the computation of a
zeta-function for certain integrals and revealing the algebraic dependence between
pairwise commuting elements.

Mathematics Subject Classification (2010). 13P10, 14F10, 68W30.

Keywords. D-modules, non-commutative Gröbner bases, annihilator ideal, b-
function, Bernstein-Sato polynomial, Bernstein-Sato ideal.

1 Introduction

ConstructiveD-module theory has been dynamically developing throughout the last years.
There are new approaches, algorithms, implementations and applications. Our work
on the implementation of procedures for D-modules started in 2003, motivated among
other factors by challenging elimination problems in non-commutative algebras, which
appear e. g. in algorithms for computing Bernstein-Sato polynomials. We reported on
solving several challenges in [20]. A non-commutative subsystem Singular:Plural [14]
of the computer algebra system Singular provides a user with possibilities to compute
numerous Gröbner bases-based procedures in a wide class of non-commutative G-algebras
[22]. It was natural to use this functionality in the context of computational D-module
theory. Nowadays we present a D-module suite in Singular consisting of the libraries
dmod.lib, dmodapp.lib, dmodvar.lib and bfun.lib. There are many useful and flexible
procedures for various aspects of D-module theory. These libraries are freely distributed
together with Singular [11].

There are several implementations of algorithms for D-modules, namely the experi-
mental program kan/sm1 by N. Takayama [38], the bfct package in Risa/Asir [31] by

1

M. Noro [30] and the package Dmodules.m2 inMacaulay2 by A. Leykin and H. Tsai [40].
We aim at creating a D-module suite, which will combine flexibility and rich functionality
with high performance, being able to treat more complicated examples.

In this paper we do not present any comparison between different computer algebra
systems in the realm of D-modules, referring to [20] and [1]. However, comparison in the
latter articles shows, that our implementation is superior to kan/sm1 and Macaulay2
and in many cases more powerful than Risa/Asir.

Here is the list of problems we address in this paper:

• s-parametric annihilator of f (Section 3, see also [20, 1]),

• annihilator of fα for α ∈ C (Section 4, see also [34]),

• annihilator of a polynomial function f and of a rational function f/g (Section 4),

• b-function with respect to weights for an ideal (Section 5, see also [1]),

• global and local Bernstein-Sato polynomials of f (Section 6),

• partial knowledge of Bernstein-Sato polynomial (Section 6.4, see also [20]),

• Bernstein operator of f (Section 7),

• logarithmic annihilator of f (Section 8),

• Bernstein-Sato ideals for f = f1 · . . . · fm (Section 9, see also [20]),

• annihilator and Bernstein-Sato polynomial for a variety (Section 10, see also [1]).

We describe both theoretical and implementational aspects of the problems above and
illustrate them with carefully selected nontrivial examples, computed with our implemen-
tation in Singular. In Section 3.3, we give yet another alternative proof for the algorithm
by Briançon-Maisonobe for computing AnnDn[s](f

s), presented in [1]. Notably, this de-
livers additional structural information. In Section 7, we compare several approaches for
the computation of Bernstein operators. Using the method of principal intersection, we
formalize several methods for computing Bernstein-Sato polynomials. Following Budur
et al. [7] and [1], we report on the implementation of two methods for the computa-
tion of Bernstein-Sato polynomials for affine varieties in a framework, which is a natural
generalization of our approach to the algorithm by Briançon-Maisonobe.

Notations. Throughout the article K is assumed to be a field of characteristic zero. By
R we denote the polynomial ring K[x1, . . . , xn] and by f ∈ R a non-constant polynomial.

We consider the n-th Weyl algebra as the algebra of linear partial differential operators
with polynomials coefficients. That is Dn = D(R) = K⟨x1, . . . , xn, ∂1, . . . , ∂n | {∂ixi =
xi∂i + 1, ∂ixj = xj∂i, i ̸= j}⟩. We denote by Dn[s] = D(R)⊗K K[s1, . . . , sn] and drop the
index n depending on the context.

The ring R is a natural Dn(R)-module with the action

xi • f(x1, . . . , xn) = xi · f(x1, . . . , xn), ∂i • f(x1, . . . , xn) =
∂f(x1, . . . , xn)

∂xi
.

2

Working with monomial orderings in elimination, we use the notation x≫ y for “x is
greater than any power of y”.

Given an associative K-algebra A and some monomial well-ordering on A, we denote
by lm(f) (resp. lc(f)) the leading monomial (resp. the leading coefficient) of f ∈ A.
Given a left Gröbner basis G ⊂ A and f ∈ A, we denote by NF(f,G) the normal form
of f with respect to the left ideal A⟨G⟩. We also use the shorthand notation h →H f
(and h → f , if H is clear from the context) for the reduction of h ∈ A to f ∈ A with
respect to the set H. If not specified, under ideal we mean left ideal. For a, b ∈ A, we
use the Lie bracket notation [a, b] := ab − ba as well as the skew Lie bracket notation
[a, b]k := ab− k · ba for k ∈ K∗.

It is convenient to treat the algebras we deal with in a bigger framework of G-algebras
of Lie type.

Definition 1.1. Let A be the quotient of the free associative algebra K⟨x1, . . . , xn⟩ by
the two-sided ideal I, generated by the finite set {xjxi − xixj − dij} ∀1 ≤ i < j ≤ n,
where dij ∈ K[x1, . . . , xn]. A is called a G–algebra of Lie type [22], if
• ∀ 1 ≤ i < j < k ≤ n the expression dijxk −xkdij +xjdik −dikxj +djkxi−xidjk reduces
to zero modulo I and,
• there exists a monomial ordering ≺ on K[x1, . . . , xn], such that lm(dij) ≺ xixj, ∀i < j.

G-algebras are also known as algebras of solvable type [17, 23] and PBW algebras [8].
We often use the following.

Lemma 1.2 (Generalized Product Criterion, [22]). Let A be a G-algebra of Lie type and
f, g ∈ A. Suppose lm(f) and lm(g) have no common factors, then spoly(f, g) →{f,g} [f, g].

2 Challenges for Gröbner bases engines of Singular

Since the very beginning of implementation of algorithms for D-modules in Singular
there have been intensive interaction with the developers of Singular. Numerous chal-
lenging examples and open problems from constructive D-module theory were approached
both on the level of libraries and in the kernel of Singular and Singular:Plural.
This resulted in several enhancements in kernel procedures and, among other, motivated
M. Brickenstein to develop and implement the generalization of his slimgb [6] (slim
Gröbner basis) algorithm to non-commutative G-algebras. Indeed slimgb is a variant
of Buchberger’s algorithm. It is designed to keep polynomials slim, that is short with
small coefficients. The algorithm features parallel reductions and a strategy to minimize
the weighted lengths of polynomials. A weighted length function of a polynomial can be
seen as measure for the intermediate expression swell and it can consider not only the
number of terms in a polynomial, but also their coefficients and degrees. Considering the
degrees of the terms inside the polynomials, slimgb can often directly (that is, without
using Gröbner Walk or similar algorithms) compute Gröbner bases with respect to e. g.
elimination orderings. The procedure slimgb demonstrated very good performance on
examples from the realm of D-modules [20], which require computations with elimination
orderings.

3

As it will be seen in the paper, various computational questions, arising in D-module
theory, use much more than Gröbner bases only. Among other, a transformation matrix
between two bases (called Lift in [15]), the kernel of a module homomorphism (called
Modulo in [15]) and so on must be applied for complicated examples. On the other
hand, the standard std routine for Gröbner bases, generalized to non-commutative G-
algebras, is used together with slimgb for a variety of problems. Since the beginning of
development of the D-module suite in Singular, these functions have been enhanced:
they became much faster and more flexible. The effect of the use of the generalized Chain
Criterion (cf. [15]) in Gröbner engines is even bigger in the non-commutative case, due
to the discarding of multiplications, which complexity is increased, compared with the
commutative case. On the contrary, the generalized Product Criterion (Lemma 1.2) plays
a minor role in the implementation, since the complete discarding of a pair generalizes to
the computation of a Lie bracket of the pair members.

The concept of ring list, introduced in Singular in 2004, enormously simplified the
process of creation and modification of rings (like changing the monomial module ordering,
regrouping of variables, modifying non-commutative relations, working with parameters
of the ground field etc.). Especially in the D-module setting we modify rings often, create
a new one from existing rings and equip a new ring with a new ordering. Thus, with ring
lists the development of such procedures became much easier and the corresponding code
became much more manageable.

We have to mention, that in the meantime the implementation of non-commutative
multiplication in the kernel of Singular:Plural has been improved as well.

3 s-parametric annihilator of f

Recall Malgrange’s construction for f = f1 · · · fp ∈ K[x1, . . . , xn]. Consider the algebra
Wp+n, being the (p+ n)-th Weyl algebra

K⟨{tj, ∂tj | 1 ≤ j ≤ p} | {[∂tj, tk] = δjk}⟩ ⊗K K⟨{xi, ∂i | 1 ≤ i ≤ n} | {[∂i, xk] = δik}⟩.

Moreover, consider the left ideal in Wp+n, called Malgrange ideal

If := ⟨ { tj − fj,

p∑
j=1

∂fj
∂xi

∂tj + ∂i | 1 ≤ j ≤ p, 1 ≤ i ≤ n} ⟩.

Then for s = (s1, . . . , sp) we denote f s := f s1
1 · · · f sp

p . Let us compute

If ∩K[{tj∂tj}]⟨xi, ∂xi | [∂i, xi] = 1⟩ ⊂ Dn[{tj∂tj}]

and furthermore, replace tj∂tj with −sj − 1. The result is known (e. g. [34]) to coincide
with the s-parametric annihilator of f s, AnnDn[s](f

s) = {Q(x, ∂, s) ∈ Dn[s] | Q • f s = 0}.
There exist several methods for the computation of s-parametric annihilator of f s.

4

3.1 Oaku and Takayama

The algorithm by Oaku and Takayama [32, 34] was developed in a wider context and
uses homogenization. Consider the K-algebras T := K[t1, . . . , tp], D

′
p := D(T) and H :=

Dn ⊗K D
′
p ⊗K K[u1, . . . , up, v1, . . . , vp]. Moreover, let I below be the (u, v)-homogenized

Malgrange ideal, that is the left ideal in H

I =

〈
{tj − ujfj,

p∑
k=1

∂fk
∂xi

uk∂tj + ∂i, ujvj − 1}

〉
.

Oaku and Takayama proved, that AnnDn[s](f
s) can be obtained in two steps. At first

{uj, vj} are eliminated from I with the help of Gröbner bases, thus yielding I ′ = I ∩
(Dn ⊗K D

′
p). Then, one calculates I ′ ∩ (Dn ⊗K K[{−tj∂tj − 1}]) and substitutes every

appearance of tj∂tj by −sj − 1 in the latter. The result is then AnnDn[s](f
s).

3.2 Briançon and Maisonobe

Consider Sp = K⟨{∂tj, sj} | ∂tjsk = sk∂tj − δjk∂tj⟩ (the p-th shift algebra) and S ′ =
Dn ⊗K Sp. Moreover, consider the following left ideal in S ′:

I =

〈
{sj + fj∂tj,

p∑
k=1

∂fk
∂xi

∂tk + ∂i}

〉
.

Briançon and Maisonobe proved [5] that AnnDn[s](f
s) = I ∩Dn[s1, . . . , sp] and hence the

latter can be computed via the left Gröbner basis with respect to an elimination ordering
for {∂tj}.

3.3 Another alternative proof of Briançon-Maisonobe’s method

Here we give yet another [1] computer algebraic proof for the method by Briançon and
Maisonobe.

Throughout this section, we assume 1 ≤ i ≤ n and 1 ≤ j ≤ p. Define

E := K⟨{tj, ∂tj, xi, ∂i, sj} | {[∂i, xi] = 1, [∂tj, tj] = 1, [tk, sj] = δjktj, [∂tk, sj] = −δjk∂tj}⟩.

Let B = Dn[s] be a subalgebra of E, generated by {xi, ∂i, sj}. Then the Briançon-
Maisonobe method requires to prove [1], that

⟨{tj − fj,

p∑
j=1

∂fj
∂xi

∂tj + ∂i, fj∂tj + sj}⟩ ∩Dn[s] = AnnDn[s](f
s).

Theorem 3.1. Let us define the following polynomials and sets:

gi := ∂i +

p∑
k=1

∂fk
∂xi

∂tk, G = {gi}, T = {tj − fj}, S = {sj + fj∂tj}.

Let Λ be a (possibly empty) subset of {1, . . . , p}. Define MΛ := G ∪ {tk − fk | k ∈
Λ} ∪ {sj + fj∂tj | j ∈ {1, . . . , p} \ Λ}.

5

(a) For any Λ, the elements of MΛ commute pairwise. In particular, so do G ∪ T
and G ∪ S.

(b) Consider an ordering ≺, satisfying {tj} ≫ {xi}, {∂i, sj} ≫ {xi, ∂tj}. Then any
subset of G∪T ∪S is a left Gröbner basis with respect to ≺. In particular, so is the
set MΛ for any Λ.

(c) The elements of MΛ are algebraically independent.

(d) For any Λ, the Krull (and hence the Gel’fand-Kirillov) dimension of K[MΛ] is n+p.

(e) For any Λ, K[MΛ] is a maximal commutative subalgebra of E.

Proof. (a) Computing commutators between elements, we obtain

[gi, gk] = ∂tj
∑
j

[∂i,
∂fj
∂xk

] + ∂tj
∑
j

[
∂fj
∂xi

, ∂k] = ∂tj
∑
j

([∂i,
∂fj
∂xk

]− [∂k,
∂fj
∂xi

]) = 0,

[tk − fk, gi] =
∑
j

∂fj
∂xi

[tk, ∂tj]− [fk, ∂i] = 0, [ti − fi, tk − fk] = 0,

[si + fi∂ti, sj + fj∂tj] = fj[si, ∂tj]− fi[sj, ∂ti] = 0, [sj + fj∂tj, gi] = [sj, ∂i]+

+∂tj[fj, ∂i] +

p∑
k=1

∂fk
∂xi

[sj, ∂tk] + [fj∂tj,

p∑
k=1

∂fk
∂xi

∂tk] =
∂fj
∂xi

∂tj − [∂i, fj]∂tj = 0.

The only nonzero commutator arises from

[tk − fk, sj + fj∂tj] = [tk, sj] + fj[tk, ∂tj]− [fk, sj]− [fk, fj∂tj] = δjk(tk − fk).

However, according to the definition, only one of these elements belongs to MΛ for any Λ.
(b) We run Buchberger’s algorithm by hands. Due to the ordering property, for each

pair the generalized Product Criterion is applicable. Hence using (a) we see, that most
s-polynomials reduce to commutators, which are zero except spoly(tk − fk, sj + fj∂tj) =
δjk(tk−fk), which reduces to zero modulo the first polynomial. Thus, any subset including
MΛ is indeed a Gröbner basis.

(c) Using pairwise commutativity, we employ the Commutative Preimage Theorem
from [19]. It states, that the ideal of algebraic dependencies between pairwise commuting
elements {hk | 1 ≤ k ≤ m} ⊂ E can be computed as

E ⊗K K[c1, . . . , cm] ⊃ ⟨{hi − ci}⟩ ∩K[c1, . . . , cm],

where ci are new commutative variables, adjoint to E. In this elimination problem one
requires an ordering on E ⊗K K[c], preferring variables of E to ci’s. For such an ordering,
one needs to compute a Gröbner basis. Now, take {hi} := MΛ, 1 ≤ i ≤ p + n, and run
Buchberger’s algorithm with respect to the same ordering as in (b). Thus we are again
in the situation, where the Product Criterion applies, hence [hi − ci, hk − ck] = 0 since
[hi, hk] = 0 by (b) and ci are central. Hence, {hi − ci} is a left Gröbner basis and by

6

the elimination property ⟨{hi − ci}⟩ ∩ K[c1, . . . , cm] = 0, that is {hi} are algebraically
independent.

(d) By (c), MΛ generates a commutative ring with no algebraic dependence between
its elements, so the Krull dimension is the cardinality of MΛ, that is n + p. Since MΛ is
isomorphic to a commutative polynomial ring by (c), its Gel’fand-Kirillov dimension over
the field K is n+ p as well.

(e) With respect to the ordering from (b), the leading monomials of the generators
are {∂1, . . . , ∂n} ∪ {tk | k ∈ Λ} ∪ {sj | j ̸∈ Λ}. Assume, that there exists an element
in E \ K[MΛ], which commutes with all elements in MΛ. Then its leading monomial
must belong to the subalgebra F , generated by {x1, . . . , xn} ∪ {sk | k ∈ Λ} ∪ {tj | j ̸∈
Λ}∪{∂t1, . . . , ∂tp}. Since the center of E isK, we consider centralizers of elements. Taking
F ′ = ∩k∈ΛC(tk − fk) ∩ F , we see that an element from it can have no {∂tk, sk | k ∈ Λ}.
Considering F ′′ = ∩iC(gi) ∩ F ′, we exclude {x1, . . . , xn}. Thus we are left with the
subalgebra, generated by F̃ = {∂tj, sj | j ̸∈ Λ}. But no element of it can commute with
{sj + fj∂tj | j ̸∈ Λ} except constants. Hence the claim.

We want to eliminate both {tj} and {∂tj} from an ideal, generated by G ∪ S ∪ T .
By using an elimination ordering for {tj} we proved in (b) above, that G ∪ S ∪ T is a
Gröbner basis. Hence, the elimination ideal is generated by G ∪ S and we can proceed
with eliminating {∂tj} from G∪S, which is exactly the statement of Briançon-Maisonobe
in Section 3.2.

3.4 Implementation

We use the following acronyms in addressing functions in the implementation: OT for
Oaku and Takayama, LOT for Levandovskyy’s modification of Oaku and Takayama [20]
and BM for Briançon-Maisonobe. Moreover, it is possible to specify the desired Gröbner
basis engine (std or slimgb) via an optional argument.

For the classical situation f = f1, the procedure Sannfs(f) computing AnnDn[s](f
s) ⊂

Dn[s] uses a “minimal user knowledge” principle and chooses one of three mentioned algo-
rithms. Alternatively, one can call the corresponding procedures SannfsOT, SannfsLOT,

SannfsBM directly.
For the annihilator of f = f1 · · · fp, see Section 9.

Example 3.2. We demonstrate, how to compute the s-parametric annihilator with
Sannfs. This procedure takes a polynomial in a commutative ring as its argument and
returns back a Weyl algebra of the type ring containing an object of the type ideal

called LD. Note, that the latter ideal is a set of generators and not a Gröbner basis in
general.

LIB "dmod.lib";

ring r = 0,(x,y),dp; // set up the commutative ring

poly f = x^3 + y^2 + x*y^2; // define the polynomial

def D = Sannfs(f); setring D; // call Sannfs and change to ring D

LD = groebner(LD); LD; // compute and print Groebner basis

==> LD[1]=2*x*y*Dx-3*x^2*Dy-y^2*Dy+2*y*Dx

==> LD[2]=2*x^2*Dx+2*x*y*Dy+2*x*Dx+3*y*Dy-6*x*s-6*s

7

==> LD[3]=x^2*y*Dy+y^3*Dy-2*x^2*Dx-3*x*y*Dy-2*y^2*s+6*x*s

==> LD[4]=x^3*Dy+x*y^2*Dy+y^2*Dy-2*x*y*s-2*y*s

==> LD[5]=2*y^3*Dx*Dy+3*x^3*Dy^2+x*y^2*Dy^2-4*x^2*Dx^2-8*x*y*Dx*Dy-2*x^2*Dx

-4*y^2*Dx*s+6*x*y*Dy+12*x*Dx*s-10*x*Dx-6*y*Dy+12*s

4 Annihilators of polynomial and rational functions

4.1 Annihilator of fα for α ∈ C
It is known (e. g. [34]) that for any α ∈ C, Dn/AnnDn(f

α) is a holonomic D-module.
In the procedure annfspecial from dmod.lib we follow Algorithm 5.3.15 in [34]. Given
f and α, we compute AnnDn[s](f

s) ⊂ Dn[s], the Bernstein-Sato polynomial of f (cf.
Section 6.1) and its minimal integer root s0. Then, if α − (s0 + 1) ∈ N, according
to Algorithm 5.3.15 in [34] we have to compute a certain syzygy module in advance.
Otherwise, AnnDn(f

α) = AnnDn[s](f
s) |s=α is obtained via substitution.

Example 4.1. In this example we show, how one computes the annihilator of 2xy.

LIB "dmod.lib"; option(redSB); option(redTail);

ring r = 0,(x,y),dp; poly g = 2*x*y;

def A = Sannfs(g); setring A; // compute Ann(g^s)

LD = groebner(LD); LD; // GB of the ideal Ann(g^s)

==> LD[1]=y*Dy-s

==> LD[2]=x*Dx-s

def B = annfs0(LD,2*x*y); setring B; // compute BS polynomial

BS; // the list of roots and multiplicities of BS polynomial

==> [1]:

==> _[1]=-1

==> [2]:

==> 2

// so, the minimal integer root is -1

setring A; // need to work with Ann(g^s) again

ideal I = annfspecial(LD,2*x*y,-1,1);

// the last argument 1 indicates that we want to compute f^1

print(matrix(I)); // condensed presentation

==> Dy^2, y*Dy-1, Dx^2, x*Dx-1

4.2 Alternative for an annihilator of fm

Computing a syzygy module in the previous algorithm can be expensive. Therefore we
note, that for α = m ∈ N we better use an easier approach.

Lemma 4.2. Let g ∈ K[x1, . . . , xn]. Consider the homomorphism of left Dn-modules
ψ : Dn → Dn/⟨∂1, . . . , ∂n⟩, ψ(1) = g. Then AnnDn(g) = kerψ.

Proof. Note, that K[x1, . . . , xn] ∼= Dn/⟨∂1, . . . , ∂n⟩ as left Dn-modules. Hence we can view
g as the image of 1 under ψ. Then AnnDn(g) = {a ∈ Dn | a • g = 0} = {a ∈ Dn | ag ∈
⟨∂1, . . . , ∂n⟩} = kerψ.

8

Remark 4.3. Hence, given any element f ∈ K[x1, . . . , xn], AnnDn(f) can be computed
via the kernel of a module homomorphism (algorithm Modulo) which amounts to just one
Gröbner basis computation. Moreover, it does not use elimination and hence is clearly
more efficient in the special case g = fn for f ∈ R, n ∈ N, than the more general method
in Section 4.1. Notably this method can be generalized to various other operator algebras,
see [35] for details. The corresponding procedure in dmodapp.lib is called annPoly.

Remark 4.4. Yet another improvement can be achieved in the computation of the min-
imal integer root of the Bernstein-Sato polynomial with the algorithms from Theorem
6.6 below. Namely, since we know, that for an integer root, say α, of the Bernstein-Sato
polynomial of a polynomial in n ≥ 2 variables −n + 1 ≤ α ≤ −1 holds (by [33, 41]) and
−1 is always a root, we can run the checkRoot procedure (which is just one Gröbner
basis computation with an arbitrary ordering, see Section 6.4) starting from α = −n+ 1
to α = −2. We stop at the first affirmative answer from checkRoot or output −1 if no
positive answer appears. Thus, one executes checkRoot at most n− 2 times.

Algorithm 4.5 (Heuristic for AnnDn(f
α)).

Input: f ∈ C[x1, . . . , xn], α ∈ C
Output: AnnDn(f

α)
if α ∈ C \ (Z ∩ [−n+ 1,−1]) then

AnnDn(f
α) =

⟨∂1, . . . , ∂n⟩ if α = 0,

ker(Dn
1 7→fm

−→ Dn/⟨∂1, . . . , ∂n⟩) if α = m ∈ N, (cf. 4.2),

AnnDn[s](f
s) |s=α if α ∈ (C \ Z) ∪ (Z ∩ (−∞,−n]),

else (that is α ∈ Z ∩ [−n+ 1,−1])
µ := min{β ∈ Z<0 | bf (β) = 0}

AnnDn(f
α) =

{
Procedure 4.1 with 4.4 if µ+ 1 ≤ α ≤ −1,

Procedure 4.4 andAnnDn[s](f
s) |s=α if − n+ 1 ≤ α ≤ µ.

end if
return AnnDn(f

α)

4.3 Annihilator of a rational function

In order to compute the annihilator I of a rational function f
g
(it is known that Dn/I is

holonomic) we use the following lemma.

Lemma 4.6. Let f, g ∈ K[x1, . . . , xn] \ {0}. Consider the homomorphism of left Dn-
modules τ : Dn → Dn/AnnDn(g

−1), q 7→ qf . Then AnnDn(
f
g
) = ker τ .

Proof. For q ∈ ker τ = {q ∈ Dn | qf ∈ AnnDn(g
−1)}, (qf) • g−1 = q • (fg−1), hence

AnnDn(
f
g
) = ker τ .

We compute AnnDn(g
−1) with Algorithm 4.5 above. Although in the case, when −1

is not the minimal integer root of the Bernstein-Sato polynomial of g, we have to use
expensive algorithms like 4.1, we know no other methods to compute the annihilator in
Weyl algebras. Also, no general algorithm for computing a complete system of operator

9

equations (with operators including along partial differentiation also partial (q-)differences
et cetera) with polynomial coefficients, annihilating a rational function, is known to us. In
our opinion, the existence of an algorithm for AnnDn(g

−1) shows the intrinsic naturality
of D-modules compared with other linear operators acting on K[x]. The algorithm is
implemented in dmodapp.lib and the corresponding procedure is called annRat.

Example 4.7. In this example we demonstrate the computation of annihilators of a ra-
tional function. The procedure annRat takes as arguments polynomials in a commutative
ring and returns a Weyl algebra (of type ring) together with an object of type ideal

called LD (cf. Example 3.2). Note, that LD is given in a Gröbner basis.

LIB "dmodapp.lib";

ring r = 0,(x,y),dp;

poly g = 2*x*y; poly f = x^2 - y^3; // we will compute Ann(g/f)

option(redSB); option(redTail); // get reduced minimal GB

def B = annRat(g,f); setring B;

LD; // Groebner basis of Ann(g/f)

==> LD[1]=3*x*Dx+2*y*Dy+1

==> LD[2]=y^3*Dy^2-x^2*Dy^2+6*y^2*Dy+6*y

==> LD[3]=9*y^2*Dx^2*Dy-4*y*Dy^3+27*y*Dx^2+2*Dy^2

==> LD[4]=y^4*Dy-x^2*y*Dy+2*y^3+x^2

==> LD[5]=9*y^3*Dx^2-4*y^2*Dy^2+10*y*Dy-10

5 b-function with respect to weights for an ideal

Let 0 ̸= w ∈ Rn
≥0 and consider the V -filtration V = {Vm | m ∈ Z} onDn with respect to w,

where Vm is spanned by
{
xα∂β | −wα + wβ ≤ m

}
over K. That is, xi and ∂i get weights

−wi and wi respectively. Note that then the relation ∂ixi = xi∂i + 1 is homogeneous of
degree 0. It is known that the associated graded ring

⊕
m∈Z Vm/Vm−1 is isomorphic to

Dn, which allows us to identify it with the Weyl algebra.
From now on we assume, that I ⊂ Dn is an ideal such that Dn/I is a holonomic

module. Since holonomic D-modules are cyclic (e. g. [10]), for each holonomic D-module
M there exists an ideal IM such that M ∼= Dn/IM as D-modules.

Definition 5.1. Let 0 ̸= w ∈ Rn
≥0. For a non-zero polynomial

p =
∑

α,β∈Nn
0

cαβx
α∂β ∈ Dn with all but finitely many cαβ = 0

we put m = maxα,β{−wα + wβ | cαβ ̸= 0} ∈ R and define the initial form of p with
respect to the weight w as follows:

in(−w,w)(p) :=
∑

α,β∈Nn
0 : −wα+wβ=m

cαβx
α∂β.

For the zero polynomial, we set in(−w,w)(0) := 0. Additionally, the ideal in(−w,w)(I) :=
K · {in(−w,w)(p) | p ∈ I} is called the initial ideal of I with respect to w.

10

Definition 5.2. Let 0 ̸= w ∈ Rn
≥0 and s :=

∑n
i=1wixi∂i. Then in(−w,w)(I) ∩ K[s] is a

principal ideal in K[s]. Its monic generator bI,w(s) is called the global b-function of I with
respect to the weight w.

Theorem 5.3. The global b-function is nonzero.

We will give a proof of this well-known result in Section 5.2.
Following its definition, the computation of the global b-function of I with respect

to w can be done in two steps:

1. Compute the initial ideal I ′ of I with respect to w.

2. Compute the intersection of I ′ with the subalgebra K[s].

We will discuss both steps separately, starting with the initial ideal. It is important
to mention, that although this procedure has been described in [34], this approach was
completely treated by Noro in [30], accompanied with a very impressive implementation
in Risa/Asir.

5.1 Computing the initial ideal

In order to compute the initial ideal, the method of weighted homogenization is proposed
in [30], which we will describe below.

Let u, v ∈ Rn
>0. The G-algebra D

(h)
(u,v) := K⟨x1, . . . , xn, ∂1, . . . , ∂n, h | {xjxi = xixj, ∂j∂i

= ∂i∂j, xih = hxi, ∂ih = h∂i, ∂jxi = xi∂j + δi,jh
ui+vj}⟩ is called the n-th weighted homoge-

nized Weyl algebra with weights u, v, i. e. xi and ∂i get weights ui and vi respectively.
For p =

∑
α,β cαβx

α∂β ∈ Dn we define the weighted homogenization of p as follows:

H(u,v)(p) =
∑
α,β

cαβh
deg(u,v)(p)−(uα+vβ)xα∂β.

This definition naturally extends to a set of polynomials. Here, deg(u,v)(p) denotes the
weighted total degree of p with respect to weights u, v for x, ∂ and weight 1 for h.

For a monomial ordering ≺ on Dn, which is not necessarily a well-ordering, we define
an associated homogenized global ordering ≺(h) in D

(h)
(u,v) by setting h ≺(h) xi, h ≺(h) ∂i

for all i and,

p ≺(h) q if deg(u,v)(p) < deg(u,v)(q)

or deg(u,v)(p) = deg(u,v)(q) and p|h=1
≺ q|h=1

.

Note that for u = v = (1, . . . , 1) this is exactly the standard homogenization as in [34]
and [9]. Analogue statements of the following two theorems can be found in [34] and [30]
respectively.

Theorem 5.4. Let F be a finite subset of Dn and ≺ a global ordering. If G(h) is a
Gröbner basis of ⟨H(u,v)(F)⟩ with respect to ≺(h), then G(h)

|h=1
is a Gröbner basis of ⟨F ⟩

with respect to ≺.

11

Theorem 5.5. Let ≺ be a global monomial ordering on Dn and ≺(−w,w) the non-global
ordering defined by

xα∂β ≺(−w,w) x
γ∂δ if −wα + wβ < −wγ + wδ

or −wα + wβ = −wγ + wδ and xα∂β ≺ xγ∂δ.

If G(h) is a Gröbner basis of H(u,v)(I) with respect to ≺(h)
(−w,w), then the set {in(−w,w,0)(g) |

g ∈ G(h)} is a Gröbner basis of in(−w,w,0)(H(u,v)(I)) with respect to ≺(h).

Proof. Let f ′ ∈ in(−w,w,0)(H(u,v)(I)) be (−w,w, 0)-homogeneous. There exist f ∈ H(u,v)(I)
and g ∈ G(h) such that f ′ = in(−w,w,0)(f) and lm≺(h)

(−w,w)

(g) | lm≺(h)
(−w,w)

(f). Since f, g are

(u, v)-homogeneous, we have

lm≺(h)
(−w,w)

(g) = lm≺(h)(in(−w,w,0)(g)), lm≺(h)
(−w,w)

(f) = lm≺(h)(in(−w,w,0)(f)),

which concludes the proof.

Summarizing the results from this section, we obtain the following algorithm to com-
pute the initial ideal.

Algorithm 5.6 (InitialIdeal). Input: I ⊂ Dn a holonomic ideal, 0 ̸= w ∈ Rn
≥0, ≺ a

global ordering on Dn, u, v ∈ Rn
>0

Output: A Gröbner basis G of in(−w,w)(I) with respect to ≺
≺(h)

(−w,w):= the homogenized ordering as defined in theorem 5.5

G(h) := a Gröbner basis of H(u,v)(I) with respect to ≺(h)
(−w,w)

return G = in(−w,w)(G
(h)

|h=1
)

5.2 Intersecting an ideal with a principal subalgebra

We will now consider a much more general setting than needed to compute the global
b-function. Let A be an associative K-algebra. We are interested in computing the
intersection of a left ideal J ⊂ A with the subalgebra K[s] of A where s ∈ A is an arbitrary
non-constant element. This intersection is always generated by one element since K[s] is
a principal ideal domain. In other words, we want to find the monic generator b ∈ A such
that ⟨b⟩ = J ∩K[s].

For this section, we will assume that there is an ordering on A such that there exists
a finite left Gröbner basis G of J .

Then we can distinguish between the following four situations:

1. No leading monomials of elements in G divide the leading monomial of any power
of s.

2. There is an element in G whose leading monomial divides the leading monomial of
some power of s. In this situation, we have the following sub-situations.

12

2.1. J · s ⊂ J and dimK(EndA(A/J)) <∞.

2.2. One of the two conditions in 2.1. does not hold.

2.2.1. The intersection is zero.

2.2.2. The intersection is not zero.

Lemma 5.7. If there exists no g ∈ G such that lm(g) divides lm(sk) for some k ∈ N0,
then J ∩K[s] = {0}.

The lemma covers the first case above. In the second case however, we cannot in
general state whether the intersection is trivial or not as the following example illustrates.

Remark 5.8. The converse of the previous lemma is wrong. For instance, consider K[x, y]
and J = ⟨y2 + x⟩. Then J ∩ K[y] = {0} while {y2 + x} is a Gröbner basis of J for any
ordering.

In situation 2.1. though, the intersection is not zero as the following lemma shows,
inspired by the sketch of the proof of Theorem 5.3 in [34].

Lemma 5.9. Let J · s ⊂ J and dimK(EndA(A/J)) <∞. Then J ∩K[s] ̸= {0}.
Proof. Consider the right multiplication with s as a map A/J → A/J which is a well-
defined A-module endomorphism of A/J as a− a′ ∈ J implies that (a− a′)s ∈ J · s ⊂ J ,
which holds by assumption for all a, a′ ∈ A. Since EndA(A/J) is finite dimensional,
linear algebra guarantees that this endomorphism has a well-defined non-zero minimal
polynomial µ. Moreover, µ is precisely the monic generator of J ∩ K[s] as µ(s) = [0] in
A/J , hence µ(s) ∈ J ∩K[s], and deg(µ) is minimal by definition.

Remark 5.10. In particular, the lemma holds if A/J itself is a finite dimensional A-
module. In the case where A is a Weyl algebra and A/J is a holonomic module, we know
that dimK(EndA(A/J)) is finite (cf. [34]).

For situation 2.1., we have reduced our problem of intersecting an ideal with a sub-
algebra generated by one element to a problem from linear algebra by the proof of the
lemma, namely to the one of finding the minimal polynomial of an endomorphism.

Proof of Theorem 5.3. Let 0 ̸= w ∈ Rn
≥0, J := in(−w,w)(I) for a holonomic ideal I ⊂ Dn

and s :=
∑n

i=1wixi∂i. Without loss of generality let 0 ̸= p =
∑

α,β cα,βx
α∂β ∈ J be

(−w,w)-homogeneous. Then we obtain for every monomial in p by using the Leibniz rule

xα∂βxi∂i = xα+ei∂β+ei + βix
α∂β = (∂ix

αi+1
i − (αi + 1)xαi

i)
xα

xαi
i

∂β + βix
α∂β

= (∂ixi − (αi + 1) + βi)x
α∂β = (xi∂i − αi + βi)x

α∂β.

Put m = −wα + wβ for some term cα,βx
α∂β in p where cα,β is non-zero. Since p is

(−w,w)-homogeneous, m does not depend on the choice of this term. Hence,

p · s = p

n∑
i=1

wixi∂i =
n∑

i=1

wi

∑
α,β

(xi∂i − αi + βi)cα,βx
α∂β

= s · p+
n∑

i=1

∑
α,β

wi(−αi + βi)cα,βx
α∂β = (s+m) · p ∈ J.

13

Since Dn/J is holonomic (cf. [34]) and J · s ⊂ J , Remark 5.10 and Lemma 5.9 yield the
claim.

If one knows in advance that the intersection is not zero, the following algorithm
terminates.

Algorithm 5.11 (principalIntersect).

Input: s ∈ A, J ⊂ A a left ideal such that J ∩K[s] ̸= {0}.
Output: b ∈ K[s] monic such that J ∩K[s] = ⟨b⟩
G := a finite left Gröbner basis of J (assume it exists)
i := 1
loop
if there exist a0, . . . , ai−1 ∈ K such that NF(si, G) +

∑i−1
j=0 aj NF(s

j, G) = 0 then

return b := si +
∑i−1

j=0 ajs
j

else
i := i+ 1

end if
end loop

Note that because NF(si, G)+
∑i−1

j=0 aj NF(s
j, G) = 0 is equivalent to si+

∑i−1
j=0 ajs

j ∈
J , the algorithm searches for a monic polynomial in K[s] that also lies in J . This is done
by going degree by degree through the powers of s until there is a linear dependency.
This approach also ensures the minimality of the degree of the output. The algorithm
terminates if and only if J ∩K[s] ̸= {0}. Note that this approach works over any field.

The check whether there is a linear dependency over K between the computed normal
forms of the powers of s is done by the procedure linReduce in our implementation.

5.2.1 An enhanced computation of normal forms

When computing normal forms of the form NF(si, J) like in algorithm 5.11 we can speed
up the reduction process by making use of the previously computed normal forms.

Lemma 5.12. Let A be a K-algebra, J ⊂ A a left ideal and let f ∈ A. For i ∈ N put
ri = NF(f i, J), qi = f i − ri ∈ J and ci =

lc(qir1)
lc(r1qi)

provided r1qi ̸= 0. For r1qi = 0 we put
ci = 0. Then we have for all i ∈ N

ri+1 = NF(fri, J) = NF([f i − ri, r1]ci + rir1, J).

As a consequence, we obtain the following result for some K-algebras of special im-
portance.

Corollary 5.13. If A is a G-algebra of Lie type (e. g. a Weyl algebra), then

ri+1 = NF(fri, J) = NF([f i − ri, r1] + rir1, J) holds.

If A is commutative, we have ri+1 = NF(rir1, J) = NF(r1, J)
i+1 = NF(ri+1

1 , J).

Note, that computing Lie bracket [f, g] both in theory and in practice is easier and
faster, than to compute [f, g] as f · g − g · f , see e. g. [22].

14

5.2.2 Applications

Apart from computing global b-functions, there are various other applications of Algo-
rithm 5.11.

Solving Zero-dimensional Systems. Recall that an ideal I ⊂ K[x1, . . . , xn] is called
zero-dimensional if one of the following equivalent conditions holds:

• K[x1, . . . , xn]/I is finite dimensional as a K-vector space.

• For each 1 ≤ i ≤ n there exist 0 ̸= fi ∈ I ∩K[xi].

• The cardinality of the zero-set of I is finite.

In order to compute the zero-set of I, one can use the classical triangularization
algorithms. These algorithms require to compute a Gröbner basis with respect to some
elimination ordering (like lexicographic one), which might be very hard.

By Algorithm 5.11, a generator of I ∩K[xi] can be computed without these expensive
orderings. Instead, any ordering, hence a better suited one, may be freely chosen.

A similar approach is used in the celebrated FGLM algorithm (cf. [12]).

Computing Central Characters and Algebraic Dependence. Let A be an asso-
ciative K-algebra. Intersection of a left ideal with the center of A, which is isomorphic to
a commutative ring, is important for many algorithms, among other for the computation
of central character decomposition of a finitely presented module (cf. [19] for the theory
and [1] for an example with Principal Intersection). In the situation, where the center
of A is generated by one element (which is not seldom), we can apply Algorithm 5.11
to compute the intersection (known to be often quite nontrivial) without engaging much
more expensive Gröbner basis computation, which use elimination.

Example 5.14. Consider the quantum algebra U ′
q(so3) (as defined by Fairlie and Odesskii)

for q2 being the n-th root of unity. It is known, that then, in addition to the single gen-
erator C of the center present over any field, three new elements Zi, depending on n will
appear. Since U ′

q(so3) has Gel’fand-Kirillov dimension 3, four commuting elements in it
obey a single polynomial algebraic dependency (the ideal of dependencies in principal).
Computing such a dependency is a very tough challenge for Gröbner bases. But as we
see, it is quite natural to apply Principal Intersection.

LIB "ncalg.lib"; LIB "bfun.lib";

def A = makeQso3(5); // below Q^2 is the 5th root of unity

setring A;

// central elements, depending on Q in their classical form:

ideal I = x5+(Q3-Q2+2)*x3+(Q3-Q2+1)*x, y5+(Q3-Q2+2)*y3+(Q3-Q2+1)*y,

z5+(Q3-Q2+2)*z3+(Q3-Q2+1)*z;

I = twostd(I); // two-sided Groebner basis

poly C = 5*xyz+(4Q3-3Q2+2Q-1)*x2+(-Q3+2Q2-3Q+4)*y2+(4Q3-3Q2+2Q-1)*z2;

poly v = vec2poly(pIntersect(C,I),1); // present vector as poly

poly t = subst(v,x,C); t; // t as a polynomial in C of size 42

==> 3125*x5y5z5+(3125Q3-3125Q2+6250)*x5y5z3+(3125Q3-3125Q2+6250)*x5y3z5+ ...

15

// present matrix of cofactors of t as an element of I:

matrix T = lift(I,t);

poly a = 125*(25*I[1]*I[2]*I[3]+(Q3-7Q2+8Q-4)*(I[1]^2+I[2]^2+I[3]^2));

a-t; // a expresses t in the subalgebra gen. by I[1..3]

==> 0

// define univariate ring over algebraic extension:

ring r = (0,Q),c,dp; minpoly = Q4-Q3+Q2-Q+1;

poly v = fetch(A,v); // map v from A to a univariate poly in c

factorize(v);

The latter factorization delivers the final touch to the answer: the algebraic depen-
dency is described by the equation C2 · (C +4q3− 3q2− 3q+4) · (C +3q3− q2− q+3)2 =
3125 · Z1Z2Z3 + 125 · (q3 − 7q2 + 8q − 4) · (Z2

1 + Z2
2 + Z2

3).

6 Bernstein-Sato polynomial of f

6.1 Global Bernstein-Sato polynomial

One possibility to define the Bernstein-Sato polynomial of a polynomial f ∈ K[x1, . . . , xn]
is to apply the global b-function for specific weights.

Definition 6.1. Let bIf ,w(s) denote the global b-function of the univariate Malgrange
ideal If of f (cf. Section 3) with respect to the weight vector w = (1, 0, . . . , 0) ∈ Rn+1,

that is the weight of ∂t is 1. Then bf (s) = (−1)deg(bIf ,w)bIf ,w(−s − 1) is called the global
b-function (Bernstein-Sato polynomial) of f .

By Theorem 5.3, bf (s) ̸= 0 holds. Moreover, it is known that all roots of bf (s)
are negative rational numbers. Kashiwara proved this result for local Bernstein-Sato
polynomials over C [18]. This fact together with Theorem 6.3 below and classical flatness
properties imply the claim for the global case over an arbitrary field of characteristic 0.

The following theorem gives us another option to define the Bernstein-Sato polynomial.

Theorem 6.2 ([4], see also [34, Lemma 5.3.11]). The Bernstein-Sato polynomial bf (s) of
f is the unique monic polynomial of minimal degree in K[s] satisfying the identity

P • f s+1 = bf (s) · f s for some operator P ∈ Dn[s].

Since P · f − bf (s) ∈ AnnDn[s](f
s) holds, bf (s) is the monic polynomial satisfying

⟨bf (s)⟩ = AnnDn[s](f
s) + ⟨f⟩ ∩K[s]. (1)

Summarizing, there are several choices for computing the Bernstein-Sato polynomial:

1. Compute either
(a) J = in(−w,w)(If) or
(b) J = AnnDn[s](f

s) + ⟨f⟩.

2. Intersect J with K[s] by
(a) the classical elimination-driven approach or
(b) using Algorithm 5.11.

16

It is very interesting to investigate the approach for the computation of Bernstein-Sato
polynomial, which arises as the combination of the two methods:

1. AnnDn[s](f
s) via Briançon-Maisonobe (cf. [20]),

2. (Ann(Dn[s]f
s) + ⟨f⟩) ∩K[s] via Algorithm 5.11.

For an efficient computation of in(−w,w)(If) using the method of weighted homog-
enization as described in Section 5.1, Noro proposes [30] to choose the weights û =
(degu(f), u1, . . . , un), v̂ = (1, degu(f)−u1+1, . . . , degu(f)−un+1), such that the weight
of t is degu(f) and the weight of ∂t is 1. Here, u ∈ Rn

>0 is an arbitrary vector and degu(f)
denotes the weighted total degree of f with respect to u. The vector u may be chosen
heuristically in accordance to the shape of f or by default, one can set u = (1, . . . , 1).

6.2 Implementation

For the computation of Bernstein-Sato polynomials, we offer the following procedures in
the Singular library bfun.lib:

bfct computes in(−w,w)(If) using weighted homogenization with weights û, v̂ for an
optional weight vector u (by default u = (1, . . . , 1)) as described above, and then uses Al-
gorithm 5.11, where the occurring systems of linear equations are solved by the procedure
linReduce.

bfctAnn computes AnnDn[s](f
s) via Briançon-Maisonobe and intersects AnnDn[s](f

s)+
⟨f⟩ with K[s] analogously to bfct.

bfctOneGB computes the initial ideal and the intersection at once using a homogenized
elimination ordering, a similar approach has been used in [16].

For the global b-function of an ideal I ⊂ Dn, bfctIdeal computes in(−w,w)(I) using
standard homogenization, i. e. weighted homogenization where all weights are equal to 1,
and then proceeds the same way as bfct. Recall that Dn/I must be holonomic as in [34].

All these procedures work as the following example illustrates for bfct and the hyper-
plane arrangement xyz(z − y)(y + z).

LIB "bfun.lib";

ring r = 0,(x,y,z),dp; // commutative ring

poly f = x*y*z*(z-y)*(y+z);

list L = bfct(f);

print(matrix(L[1])); // the roots of the BS-polynomial

==> -1,-5/4,-3/4,-3/2,-1/2

L[2]; // the multiplicities of the roots above

==> 3,1,1,1,1

6.3 Local Bernstein-Sato Polynomial

Here we are interested in what kind of information one can obtain from the local b-
functions for computing the global one and conversely. In order to avoid theoretical
problems we will assume in this paragraph that the ground field K = C.

Several algorithms to obtain the local b-function of a hypersurface f have been known
without any Gröbner bases computation but under some conditions on f . For instance,

17

it was shown by Malgrange [24] that the minimal polynomial of −∂tt acting on some
vector space of finite dimension coincides with the reduced (local) Bernstein polynomial,
assuming that the singularity is isolated.

The algorithms of Oaku [32] used Gröbner bases for the first time. Recently, Nakayama
presented some algorithms, which use the global b-function as a bound and obtain a local
b-function by Mora resp. approximate division [27], see also the work of Nishiyama and
Noro [29].

Theorem 6.3 (Briançon-Maisonobe (unpublished), Mebkhout-Narváez [26]). Let bf,P (s)
be the local b-function of f at the point P ∈ Cn and bf (s) the global one. Then it is ver-
ified that bf (s) = lcmP∈Cn bf,P (s) = lcmP∈Σ(f) bf,P (s), where Σ(f) = V (⟨f, ∂f

∂x1
, . . . , ∂f

∂xn
⟩)

denotes the singular locus of V (f).

Remark 6.4. Assume, that Σ(f) consists of finitely many isolated singular points (the
dimension of the corresponding defining ideal is 0). Then the computation of the global
b-function with Theorem 6.3 becomes effective. Moreover, one needs just an algorithm
for computing the local b-function of a hypersurface, having an isolated singularity at the
origin.

The Singular library gmssing.lib, developed and implemented by M. Schulze [36],
contains the procedure bernstein, which computes the local b-function at the origin. It
returns the list of roots and corresponding multiplicities.

Example 6.5. Let C be the curve in C2 given by f = (x3 − y2)(3x − 2y − 1)(x + 2y).
This curve has three isolated singular points p1 = (0, 0), p2 = (1, 1) and p3 = (1/4,−1/8).

LIB "gmssing.lib";

// note that one must use a local ordering for calling ’bernstein’

ring r = 0,(x,y),ds; // ds stands for a local degrevlex ordering

poly f = (x^3-y^2)*(3x-2y-1)*(x+2y);

list L = bernstein(f); // local b-function at the origin p_1

print(matrix(L[1]));

==> -11/8,-9/8,-1,-7/8,-5/8

L[2];

==> 1,1,2,1,1

Moving to the corresponding points we also compute bf,P2(s) and bf,P3(s).

bf,P1(s) = (s+ 1)2(s+ 5/8)(s+ 7/8)(s+ 9/8)(s+ 11/8)

bf,P2(s) = (s+ 1)2(s+ 3/4)(s+ 5/4)

bf,P3(s) = (s+ 1)2(s+ 2/3)(s+ 4/3)

From this information and using Theorem 6.3, the global b-function is

bf (s) = (s+2/3)(s+5/8)(s+3/4)(s+7/8)(s+1)2(s+4/3)(s+5/4)(s+9/8)(s+11/8).

Moreover, gmssing.lib, allows one to compute invariants related to the Gauss-Manin
system of an isolated hypersurface singularity.

18

In the non-isolated case the situation is more complicated. For computing the local b-
function in this case (which is important on its own) we suggest using two methods: Take
the global b-function as an upper bound and a local version of the checkRoot algorithm,
see below. Another method is to use a local version of principalIntersect, which is
under development. Despite the existence of many algorithms, the effectiveness of the
computation of local b-functions is still to be drastically enhanced.

6.4 Partial knowledge of Bernstein-Sato polynomial

As we have mentioned, several algorithms for computing the b-function associated with
a polynomial have been known. However, in general it is very hard from computational
point of view to obtain this polynomial, and in the actual computation a limited number
of examples can be treated. For some applications only the integral roots of bf (s) are
needed and that is why we are interested in obtaining just a part of the Bernstein-Sato
polynomial.

Recall the algorithm checkRoot for checking whether a rational number is a root of
the b-function of a hypersurface from [20]. Equation (1) was used to prove the following
result.

Theorem 6.6. ([20]) Let R be a ring whose center contains K[s] as a subring. Let
us consider q(s) ∈ K[s] a polynomial in one variable and I a left ideal in R satisfying
I ∩K[s] ̸= 0. Then (I + R⟨q(s)⟩) ∩K[s] = I ∩K[s] +K[s]⟨q(s)⟩. In particular, using the
above equation (1), we have(

AnnDn[s](f
s) +Dn[s] · ⟨f, q(s)⟩

)
∩K[s] = ⟨bf (s), q(s)⟩.

As a consequence, let mα be the multiplicity of α as a root of bf (−s) and let us consider
the ideals Ji = AnnDn[s](f

s) + ⟨f, (s + α)i+1⟩ ⊆ Dn[s], i = 0, . . . , n, then [mα > i ⇐⇒
(s+ α)i /∈ Ji].

Once we know a system of generators of the annihilator of f s in Dn[s], the last theorem
provides an algorithm for checking whether a given rational number is a root of the b-
function of f and for computing its multiplicity, using Gröbner bases for differential
operators.

This algorithm is much faster, than the computation of the whole Bernstein polynomial
via Gröbner bases, because no elimination ordering is needed for computing a Gröbner
basis of Ji, once one knows a system of generators of AnnDn[s](f

s). Also, the element
(s + α)i+1, added as a generator, seems to simplify tremendously such a computation.
Actually, when i = 0 it is possible to eliminate the variable s in advance and we can
perform the whole computation in Dn. Let us see an example.

Example 6.7. Let A be the matrix given by

A =

 x1 x2 x3 x4
x5 x6 x7 x8
x9 x10 x11 x12

 .

19

Let us denote by ∆i, i = 1, 2, 3, 4, the determinant of the minor resulting from deleting the
i-th column of A, and consider f = ∆1∆2∆3∆4. The polynomial f defines a non-isolated
hypersurface in C12. Therefore, from [33] (see also [41]), the set of all possible integral roots

of bf (−s) is {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}. It is known that AnnDn[s](f
s) = Ann

(1)
Dn[s]

(f s)

(see Section 8) and this fact can be used to simplify the computation of the annihilator.

LIB "dmod.lib";

ring R = 0,(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12),dp;

matrix A[3][4] = x1,x2,x3,x4, x5,x6,x7,x8, x9,x10,x11,x12;

poly Delta1 = det(submat(A,1..3,intvec(2,3,4)));

... // analogous for Delta2 ... Delta4

poly f = Delta1*Delta2*Delta3*Delta4;

def D = Sannfslog(f); setring D; // logarithmic annihilator

poly f = imap(R,f); number alpha = 11;

checkRoot1(LD1,f,alpha);

==> 0

Using the algorithm checkRoot we have proved that the minimal integral root of bf (s)
is −1. This example was suggested by F. Castro-Jiménez and J. M. Ucha for testing the
Logarithmic Comparison Theorem. A nice introduction to this topic can be found, for
instance, in [39].

Let g be the polynomial resulting from f by substituting x1, x2, x3, x4, x5, x9 with 1.
One can show that bg(s) divides bf (s) (see [21] for details). Using the checkRoot algorithm
we have found that (s + 1)4(s + 1/2)(s + 3/2)(s + 3/4)(s + 5/4) is a factor of bg(s) and
therefore a factor of bf (s).

Remark 6.8. Using the notation from Section 5, given a holonomic D-module D/I,
it is verified that (in(−w,w)(I) + ⟨q(s)⟩) ∩ K[s] = ⟨bI,w(s), q(s)⟩, although Theorem 6.6
cannot be applied, since s =

∑
wixi∂i does not commute with all operators. For some

applications like integration and restriction the maximal and the minimal integral root
of the b-function of I with respect to some weight vector have to be computed, see [34].
However, the above formula cannot be used to find the set of all integral roots, since no
upper/lower bound exists in advance. For instance, as it was suggested by N. Takayama,
I = ⟨t∂t+ k⟩, k ∈ Z is D1-holonomic and one has in(−1,1)(I)∩C[s] = ⟨s+ k⟩ with s = t∂t.

We close this section by mentioning that there exist some well-known methods to
obtain an upper bound for the Bernstein-Sato polynomial of a hypersurface singularity
once we know, for instance, an embedded resolution of such singularity [18]. Therefore
using this result by Kashiwara and the checkRoot algorithm, it is possible to compute
the whole Bernstein-Sato polynomial without elimination orderings, see Example 1 in
[20]. We investigate different methods in conjunction with the further development of the
checkRoot family of algorithms in [21].

7 Bernstein operator of f

We define the Bernstein-Sato polynomial bf (s) to be the monic generator of a principal
ideal, hence it is unique. But the so-called B-operator P (s) ∈ Dn[s] from Theorem 6.2 is
not unique.

20

Proposition 7.1. Let G be a left Gröbner basis of AnnDn[s](f
s+1) and define a Bernstein

operator to be the result of the reduced normal form NF(P (s), G) of some B-operator
P (s). Then, for a fixed monomial ordering on Dn[s], the Bernstein operator is uniquely
determined.

Proof. Suppose that there is another Q(s) ∈ Dn[s], such that the identities

P (s)f s+1 = bf (s)f
s and Q(s)f s+1 = bf (s)f

s hold in the module Dn[s]/AnnDn[s](f
s).

Then (P (s) − Q(s))f s+1 = 0, that is P (s) − Q(s) ∈ AnnDn[s](f
s+1). Hence, the set

{R(s) ∈ Dn[s] | R(s)f s+1 = bf (s)f
s} can be viewed as an equivalence class and we

can take the reduced normal form of any such operator (with respect to G) to be the
canonical representative of the class. Since the reduced normal form with respect to a
fixed monomial ordering on Dn[s] is unique, so is the Bernstein operator NF(R(s), G).

Note, that we can obtain the left Gröbner basis of AnnDn[s](f
s+1) via substituting s

with s+ 1 in the left Gröbner basis of AnnDn[s](f
s).

One can compute the Bernstein operator from the knowledge of AnnDn[s](f
s) and bf (s)

by the following methods.

7.1 B-operator via lifting

The algorithm Lift(F,G) computes the transformation matrix, expressing the set of
polynomials G via the set F , provided ⟨G⟩ ⊆ ⟨F ⟩. It is a classical application of Gröbner
bases.

Lemma 7.2. Suppose, that AnnDn[s](f
s) is generated by h1, . . . , hm and bf (s) is known.

The output of Lift({f, h1, . . . , hm}, {bf (s)}) is the 1 × (m + 1) matrix (a, b1, . . . , bm).
Then a B-operator is computed as P (s) = NF(a,AnnDn[s](f

s)).

Proof. Because of Equation (1), if (a, b1, . . . , bm) is the output of Lift as in the statement,

bf (s) = af +
m∑
i=1

bihi holds,

hence the first element of such a matrix is a B-operator. Thus, the Bernstein operator is
obtained via NF(a,AnnDn[s](f

s+1)).

However, we have to mention, that the Lift procedure is quite expensive in general.
Note that another method for the computation of a B-operator using lifting techniques

is given by applying Algorithm 8 of [29] with a(x) = 1.

7.2 B-operator via kernel of module homomorphism

1. Consider the Dn[s]-module homomorphism

φ : Dn[s] −→ Dn[s]/(AnnDn[s](f
s) + ⟨bf (s)⟩), 1 7→ f,

21

then for u ∈ kerφ, uf ∈ AnnDn[s](f
s) + ⟨bf (s)⟩. That is, there exist a, bi ∈ Dn[s], such

that

uf = abf (s) +
m∑
i=1

bihi,

However, we are interested in such u, that a ∈ K. This is possible, but the 2nd method
above proposes a more elegant solution. Also one has to say, that in this case we have
to compute a Gröbner basis of AnnDn[s](f

s) + ⟨bf (s)⟩ as an intermediate step and also
the kernel of a module homomorphism with respect to the latter. This combination is,
in general, quite nontrivial to compute. In the Gröbner basis computation a monomial
ordering, preferring x, ∂x over s seems to be better because of numerous applications of
the Product Criterion.

2. Consider the Dn[s]-module homomorphism

ϑ : Dn[s]
2 −→ Dn[s]/AnnDn[s](f

s), ϵ1 7→ bf (s), ϵ2 7→ f.

Then kerϑ = {(u, v)T ∈ Dn[s]
2 | ubf (s) + vf ∈ AnnDn[s](f

s)} is a submodule of Dn[s]
2.

Indeed, kerϑ has many generators. In order to get a vector of the form (k, u(s)) for k ∈ K,
we perform another Gröbner basis computation for a submodule with respect to a module
monomial ordering, giving preference to the first component over the second one. Since
in the reduced basis there is a single element of the form (k, v(s)) ⊂ kerϑ with k ̸= 0, it
follows that P (s) = v(s)k−1.

This algorithm is implemented in dmod.lib as operatorModulo. The approach via
lifting is used in the procedure operatorBM, which computes all the Bernstein data. The
procedures can be used as follows.

Example 7.3. Consider the Reiffen curve f = x2 + y3 + xy2 ∈ K[x, y]. At first we use
operatorBM and compare the length of an B-operator computed via lift to the length of
the Bernstein operator.

LIB "dmod.lib";

ring r = 0,(x,y),dp;

poly F = x^2 + y^3 + x*y^2;

def A = operatorBM(F); setring A;

size(PS); // size of B-operator

==> 238

ideal LD2 = subst(LD,s,s+1); // Ann(F^{s+1})

LD2 = groebner(LD2); // LD is not a Groebner basis

poly PS2 = NF(PS,LD2); size(PS2); // size of Bernstein operator

==> 41

So, computing with lifting potentially computes much longer operators. Let us compare
with operatorModulo.

poly PS3 = operatorModulo(F,LD,bs); size(PS3);

==> 41

The size of the operator, returned by operatorModulo need not be minimal (e. g. by dis-
abling some of the interactive options of Singular one can get a polynomial of length 50
in this example), but it is in general much shorter, than the one, delivered by operatorBM.
Let us check the main property of the B-operator and print its highest terms:

22

NF(PS3*F - bs, subst(LD2,s,s-1));

==> 0

108*PS2; // i.e. the Bernstein operator

==> 6*x*Dx^2*Dy+9*y*Dx^2*Dy-2*x*Dx*Dy^2-4*y*Dx*Dy^2-y*Dy^3+ ...

In the last line we see the terms of highest degree with respect to ∂x, ∂y.

7.3 Gröbner free method

As a consequence of Theorem 6.2, one obtains that P · f − bf (s) ∈ AnnDn[s](f
s) and

P, bf (s) /∈ AnnDn[s](f
s). If we fix an ordering such that bf (s) = NF(bf (s),AnnDn[s](f

s))
holds, we may rewrite this relation to bf (s) = NF(P · f,AnnDn[s](f

s)). Hence, we can
compute P by searching for a linear combination of monomials m ∈ Dn[s] that satisfy this
equality when multiplied with f from the right side. Using the results from the beginning
of this section, one only needs to consider monomials which span Dn/AnnDn[s](f

s+1) as
K-vector space. We get the following algorithm.

Algorithm 7.4.

Input: f ∈ K[x1, . . . , xn], the Bernstein-Sato polynomial bf (s) of f
Output: P ∈ Dn[s], the Bernstein operator of f
d := 0
loop
Md := {m ∈ Dn[s] | m monomial, deg(m) ≤ d, lm(p) ∤ m∀ p ∈ AnnDn[s](f

s+1)}
if there exist am ∈ K such that bf (s) =

∑
m∈Md

am NF(m · f,AnnDn[s](f
s)) then

return P :=
∑

m∈Md

amm− bf (s)

else
d := d+ 1

end if
end loop

The search for the coefficients am can be done using linReduce (cf. Algorithm 5.11)
as one is in fact looking for a linear dependency between the Bernstein-Sato polynomial
and the elements m · f in the vector space Dn[s]/AnnDn[s](f

s).

Remark 7.5. Note, that Algorithm 7.4 can be extended to one searching for both B-
operator and Bernstein-Sato polynomial simultaneously. We have to mention, that both
algorithms of this kind are well suited for the search of operators and Bernstein-Sato
polynomials in the case, when both of them are of relatively low total degree.

7.4 Computing integrals and zeta functions

Given a simplex C ⊂ Kn (for K = R,C) and f ∈ K[x1, . . . , xn], we can define ζ(s) :=∫
C
f(x)sdx. Since P (s) • f s+1 = bf (s)f

s, we obtain

ζ(s) =

∫
C

f(x)sdx =
1

bf (s)

∫
C

P (s) • f(x)s+1dx

23

expanding the latter with e. g. the chain rule, we come to an in general inhomogeneous
recurrence relation for ζ(s), which involves coefficients in K[s]. Since P (s) is globally
defined (and is, of course, independent on C), one can obtain a generic formula for all
integrals of this type.

Example 7.6. Let f = x2 − x ∈ K[x]. Then the Bernstein operator reads as P (s) =
(2x− 1)∂x − 4(s+ 1) and bf (s) = s+ 1. Any simplex in K1 is the interval [a, b] =: C.

ζ(s) =

∫
C

f(x)sdx =
1

s+ 1

∫
C

((2x− 1)∂x − 4(s+ 1)) • f(x)s+1dx

=
1

s+ 1

∫
C

(2x− 1)∂x • f(x)s+1dx− 4ζ(s+ 1)

By the chain rule,
∫
C
(2x − 1)(∂x • f(x)s+1)dx = (2x − 1)f(x)s+1 |C −2

∫
C
f(x)s+1)dx,

hence

ζ(s) =
1

s+ 1
· (2x− 1)f(x)s+1 |C − 2

s+ 1
ζ(s+ 1)− 4ζ(s+ 1),

and thus

(4s+ 6)ζ(s+ 1) + (s+ 1)ζ(s) = (2b− 1)(b2 − b)s+1 − (2a− 1)(a2 − a)s+1

The right hand side, say R(s), satisfies the homogeneous recurrence R(s+ 2)− (a2 − a+
b2 − b)R(s+ 1) + (a2 − a)(b2 − b)R(s) = 0 of order 2. Substituting the left hand side into
it, we obtain a homogeneous recurrence with polynomial coefficients of order 3:

(a2 − a)(b2 − b)(s+ 1)ζ(s)− ((s+ 2)(a2 − a+ b2 − b)− (4s+ 6)(a2 − a)(b2 − b))ζ(s+ 1)

−((4s+ 10)(a2 − a+ b2 − b)− (s+ 3))ζ(s+ 2) + (4s+ 14)ζ(s+ 3) = 0.

To guarantee the uniqueness of a solution to this equation, we need to specify 3 initial
values, which can be easily done. However, such recurrences very seldom admit a closed
form solution, thus most information about ζ(s) is contained in the recurrence itself.

8 Logarithmic annihilator of f

Given a polynomial f ∈ K[x] = K[x1, . . . , xn], consider the left ideal Ann
(1)
Dn[s]

(f s) ⊆ Dn[s]

generated by those differential operators P (s) ∈ Dn[s] of total order (in the partials) less
than or equal to one, which annihilate f s. This ideal is clearly contained in AnnDn[s](f

s)
and can be generated by elements of the form

P (s) = a0(x, s) + a1(x, s)∂x1 + · · ·+ an(x, s)∂xn ∈ Dn[s],

where (a0, a1, . . . , an) ∈ syzK[x,s](f, s
∂f
∂x1
, · · · , s ∂f

∂xn
). Therefore, for each f ∈ K[x] one can

compute, by using Gröbner bases in K[x, s], a system of generators of Ann
(1)
Dn[s]

(f s). The
corresponding procedure in dmod.lib is called Sannfslog. Let us see the Reiffen curve
f = x4 + y5 + xy4 as an example with Singular.

24

LIB "dmod.lib";

ring R = 0,(x,y),dp;

poly f = x^4+y^5+x*y^4;

def A = Sannfslog(f); setring A; LD1;

==> LD1[1]=4*x^2*Dx+5*x*Dx*y+3*x*y*Dy-16*x*s+4*y^2*Dy-20*y*s

==> LD1[2]=16*x*Dx*y^2-125*x*Dx*y-4*x^2*Dy+4*Dx*y^3+5*x*y*Dy+12*y^3*Dy-100*y^2*Dy

-64*y^2*s+500*y*s

// now we compute the whole annihilator with Sannfs and compare

setring R; def B = Sannfs(f); setring B;

map F = A,x,Dx,y,Dy,s;

ideal LD1 = F(LD1);

LD1 = groebner(LD1);

simplify(NF(LD,LD1), 2);

==> _[1]=36*y^3*Dx^2-36*y^3*Dx*Dy+1125/4*x*y*Dx^2-315/4*x*y*Dx*Dy+ ...

And the latter polynomial is not an element of Ann
(1)
Dn[s]

(f s) but of Ann
(2)
Dn[s]

(f s) =

AnnDn[s](f
s).

8.1 The annihilator up to degree k

More generally, for a given k ≥ 1 one can consider the left ideal Ann
(k)
Dn[s]

(f s) ⊆ Dn[s]

generated by the differential operators P (s) ∈ Dn[s] of total order less than or equal to
k, such that P (s) annihilate f s. The tower of ideals

Ann
(1)
Dn[s]

(f s) ⊊ · · · ⊊ Ann
(k0)
Dn[s]

(f s) = AnnDn[s](f
s)

has been recently studied by Narváez in [28]. It is an open problem to find the minimal
integer k0 satisfying the above condition without computing the whole annihilator.

Computationally the annihilator up to degree k can be obtained using Gröbner bases
in K[x, s] as follows. Consider P (s) =

∑
|β|≤k aβ∂

β ∈ Ann
(k)
Dn[s]

(f s) and let gβ(x, s) ∈
K[x, s] be the polynomial defined by the formula ∂β · f s = gβ · f s−|β|. Then (aβ)|β|≤k ∈
syz(gβf

k−|β|)|β|≤k. Eventually, the polynomials gβ(x, s) can be computed using the ex-
pression given in Lemma 8.1.

Given β = (β1, . . . , βn) ∈ Nn, as usual |β| = β1 + · · · + βn, β! = β1! · · · βn! and
∆β

x = 1
β!
∂βx . A partition of β is a way of writing β as a sum of integral vectors with

non-negative entries. Two sums which only differ in the order of their summands are
considered to be the same partition. If β = σ1 + . . . + σk with σi ̸= 0, then σ is said to
be a partition of length k. The set of all partitions of β (resp. of length k) is denoted by

P(β) (resp. P(β; k)). Obviously P(β) = ∪|β|
k=1P(β; k). Finally, we write ℓ(σ) := (ℓστ)τ ,

where ℓστ is the number of times that τ appears in σ.

Lemma 8.1. Using the above notation for all non-zero β ∈ Nn we have,

∆β
x · f s =

|β|∑
k=1

(
s

k

) ∑
σ∈P(β;k)

1

ℓ(σ)!
∆σ1

x (f) · · ·∆σk
x (f) · f s−k .

This formula was suggested by Narváez and can be proved by induction on |β|. Similar
expressions appear in [26, Prop. 5.3.5] and [25, Prop. 2.3.2].

25

However, despite this almost closed form, the set of polynomials, between which we
have to compute syzygies, is growing fast and the size of polynomials increases. This
results in quite hard computations even with the mentioned enhancements.

9 Bernstein-Sato ideals for f = f1 · . . . · fm
Using the results from [13], which we confirmed through intensive testing (cf. [20]),
it follows, that the method by Briançon-Maisonobe is the most effective one for the
computation of s-parametric annihilators where f = f1. Because of the structure of
annihilators in the situation f = f1 · · · fp, p > 1, basically the same principles stand
behind the corresponding algorithms. Hence, we decided to implement only Briançon-
Maisonobe’s method for the s-parametric annihilator AnnDn[s](f

s) ⊂ Dn[s], where s =
(s1, . . . , sp). The corresponding procedure in dmod.lib is called annfsBMI. It computes
both AnnDn[s] f

s ⊂ Dn[s] and the Bernstein-Sato ideal in K[s], which is defined as

B(f) = (AnnDn[s1,...,sp](f
s1
1 · · · f sp

p) + ⟨f1 · · · fp⟩) ∩K[s1, . . . , sp].

In contrary to the case f = f1, in general the ideal B(f) need not be principal. How-
ever, it is an open question to give a criterion for the principality of B(f). Armed with
such a criterion, one can apply a generalization of the method of Principal Intersection
5.11 to multivariate subalgebras [2] and thus replace expensive elimination above by the
computation of a minimal polynomial. Otherwise we still can apply the Principal Inter-
section, which, however, will deliver only one polynomial to us. As in the case f = f1 it is
an open question, which strategy and which orderings should one use in the computation
of the annihilator and of the Bernstein-Sato ideal in order to achieve better performance.

We reported in [20] on several challenges, which have been solved with the help of our
implementation. Namely, the products (x3 + y2)(x2 + y3) and (x2 + y2 + y3)(x3 + y2) give
rise to principal Bernstein-Sato ideals.

Example 9.1. Let us consider the following example from [3], which is quite challenging
to compute indeed.

LIB "dmod.lib"; ring r = 0,(x,y,z),dp;

ideal F = z, x^5 + y^5 + x^2*y^3*z;

def A = annfsBMI(F); setring A;

LD; // prints the annihilator in D[s1,s2]

BS; // prints the Bernstein-Sato ideal

We do not show the output here because of its size. But from the output one can see,
the Bernstein-Sato ideal is of dimension 1 in D3[s1, s2] since its Gröbner basis consists
of three elements {15625s1s82 +17 l.o.t., 3125s21s

7
2 +24 l.o.t., 625s51s

6
2 +42 l.o.t.}. Notably,

every generator factorizes into linear factors and each factor involves either s1 or s2, which
happens quite seldom in general.

In general, quite a little is known about Bernstein-Sato ideals. Their dimensions, prin-
cipality, factorization of generators and primary decomposition constitute open problems
from the theoretical side.

26

10 Bernstein-Sato polynomial for a variety

Now we proceed to the construction of the Bernstein-Sato polynomial of an affine algebraic
variety. We refer to [7] for the details of the complete construction for arbitrary varieties
and to [1] for the details about annihilator-driven algorithms.

Given two positive integers n and r, for the rest of this section we fix the indices i, j, k, l
ranging between 1 and r and an index m ranging between 1 and n.Let f = (f1, . . . , fr)
be an r-tuple in K[x]r. Here, s = (s1, . . . , sr),

1
f
= 1

f1···fr and f s = f s1
1 · · · f sr

r . Let us

denote by K⟨S⟩ the universal enveloping algebra U(gl r), generated by the set of variables
S = (sij), i, j = 1, . . . , r, with sii = si, subject to relations [sij, skl] = δjksil − δilskj. We
denote by Dn⟨S⟩ := Dn ⊗K K⟨S⟩, which is a G-algebra of Lie type by e. g. [22]. Then
the free K[x, s, 1

f
]-module of rank one generated by the formal symbol f s has a natural

structure of a left Dn⟨S⟩-module:

sij • (G(s) · f s) = si ·G(s+ ϵj − ϵi)
fj
fi

· f s ∈ K[x, s,
1

f
] · f s,

where G(s) ∈ K[x, s, 1
f
] and ϵj stands for the j-th standard basis vector.

Theorem 10.1 (Budur et al. [7]). For every r-tuple f = (f1, . . . , fr) ∈ K[x]r there
exists a non-zero polynomial in one variable b(σ) ∈ K[σ] and r differential operators
P1(S), . . . , Pr(S) ∈ Dn⟨S⟩ such that

r∑
k=1

Pk(S)fk · f s = b(s1 + · · ·+ sr) · f s ∈ K[x, s,
1

f
] · f s. (2)

The Bernstein-Sato polynomial bf (σ) of f = (f1, . . . , fr) is defined to be the monic
polynomial of lowest degree in the variable σ satisfying the equation (2). It turns out, that
every root of the Bernstein-Sato polynomial is rational, as in the case of a hypersurface.
Let I be the ideal generated by f1, . . . , fr and Z the affine algebraic variety associated
with I in Kn. Then it can be verified, that bf (σ) is independent of the choice of a system
of generators of I, and moreover that bZ(σ) = bf (σ − codimZ + 1) depends only on Z.

Now, let us denote by AnnDn⟨S⟩(f
s) the left ideal of all elements P (S) ∈ Dn⟨S⟩ such

that P (S) • f s = 0. We call this ideal the annihilator of f s in Dn⟨S⟩. From the definition
of the Bernstein-Sato polynomial it becomes clear that

(AnnDn⟨S⟩(f
s) + ⟨f1, . . . , fr⟩) ∩K[s1 + · · ·+ sr] = ⟨bf (s1 + . . .+ sr)⟩.

Since the final intersection can be computed with Principal Intersection 5.11, the above
formula provides an algorithm for computing the Bernstein-Sato polynomial of affine
algebraic varieties, once we know a Gröbner basis of the annihilator of f s in Dn⟨S⟩.

Theorem 10.2. Let f = (f1, . . . , fr) be an r-tuple in K[x]r and Dn⟨∂t, S⟩ the K-algebra
generated by Dn, ∂t and S with the non-commutative relations of Dn⟨S⟩, described above
and additional relations [sij, ∂tk] = δjk∂ti (∂ti commute mutually with the subalgebra Dn).
Then the annihilator of f s in Dn⟨S⟩ can be expressed as follows:[

Dn⟨∂t, S⟩
(
sij + ∂tifj , ∂m +

r∑
k=1

∂fk
∂xm

∂tk

∣∣∣∣ 1 ≤ i, j ≤ r
1 ≤ m ≤ n

)]
∩Dn⟨S⟩.

27

Note, that this result and its proof [1] can be presented as natural generalization of
the algorithm for computing AnnDn[s](f

s) with the method of Briançon-Maisonobe (cf.
Section 3).

As Budur et al. point out [7, p. 794], the Bernstein-Sato polynomial for varieties
coincides, up to shift of variables, with the b-function in [34, p. 194], if the weight vector
is chosen appropriately, see also [37]. Algorithms for computing the b-function have been
already discussed in Section 5, so the procedure bfctIdeal can be immediately applied to
this situation. Hence, like for the case of a hypersurface, we have two essentially different
ways to compute Bernstein-Sato polynomials for varieties. The comparison of these two
methods is the subject of further research.

In the new Singular library dmodvar.lib1, we present the implementations of the
following algorithms

SannfsVar, which computes AnnDn⟨S⟩(f
s) according to the Theorem 10.2,

bfctVarIn, which computes bf (s1 + . . .+ sr) using initial ideal approach,

bfctVarAnn, which computes bf (s1 + . . .+ sr) using annihilator-driven approach.

Example 10.3. Let TX = V (x20 + y30, 2x0x1 + 3y20y1) ⊂ C4 the tangent bundle of X =
V (x2+y3) ⊂ C2. Then the Bernstein-Sato polynomial of TX can be computed as follows:

LIB "dmodvar.lib";

ring R = 0,(x0,x1,y0,y1),Dp;

ideal F = x0^2+y0^3, 2*x0*x1+3*y0^2*y1;

bfctVarAnn(F); // annihilator-driven approach

// alternatiely, one can run

bfctVarIn(F); // approach via initial ideal

In both cases we obtain the polynomial

bTX(σ) = (σ + 1)2(σ + 1/3)2(σ + 2/3)2(σ + 1/2)(σ + 5/6)(σ + 7/6).

The annihilator ideal can be computed via executing, in addition to the first 3 lines of
the above code, the following code:

def S = SannfsVar(F); // returns a ring

setring S; // in this ring, ideal LD is the annihilator

option(redSB); LD = groebner(LD); // reduced GB of LD

There are 15 generators in the Gröbner basis of AnnF s:

3y20∂x1 − 2x0∂y1, 3y20∂x0 + 6y0y1∂x1 − 2x0∂y0 − 2x1∂y1, x0y0∂x1∂y0 − x0y0∂x0∂y1 +
x1y0∂x1∂y1−2x0y1∂x1∂y1, 3y0y1∂x

2
1−x0∂x1∂y0+x0∂x0∂y1−x1∂x1∂y1, 3x0y0y1∂x0∂x1∂y1+

6x0y
2
1∂x

2
1∂y1 − x20∂x1∂y

2
0 + x20∂x0∂y0∂y1 − 2x0x1∂x1∂y0∂y1 + x0x1∂x0∂y

2
1 − x21∂x1∂y

2
1 +

3x1y0∂x
2
1+3x0y1∂x

2
1−3y0y1∂x1∂y1, 6x0y

2
1∂x

2
1∂y0∂y1+3x0y0y1∂x

2
0∂y

2
1−3x1y0y1∂x0∂x1∂y

2
1+

6x0y
2
1∂x0∂x1∂y

2
1−x20∂x1∂y30+x20∂x0∂y20∂y1−2x0x1∂x1∂y

2
0∂y1+x0x1∂x0∂y0∂y

2
1−x21∂x1∂y0∂y21+

3x1y0∂x
2
1∂y0+3x0y1∂x

2
1∂y0+9x0y1∂x0∂x1∂y1−6y0y1∂x1∂y0∂y1+3y0y1∂x0∂y

2
1+6y21∂x1∂y

2
1+

1it will be distributed with the next release of Singular

28

3x1∂x
2
1 + 3y1∂x1∂y1, 6x0y

2
1∂x

3
1∂y1 − x20∂x

2
1∂y

2
0 + 2x20∂x0∂x1∂y0∂y1 − 2x0x1∂x

2
1∂y0∂y1 −

x20∂x
2
0∂y

2
1+2x0x1∂x0∂x1∂y

2
1−x21∂x21∂y21−3x0y0∂x0∂x

2
1+3x1y0∂x

3
1+3x0y1∂x

3
1−2x0∂x1∂y0∂y1+

x0∂x0∂y
2
1 −3x1∂x1∂y

2
1 +6y0∂x

2
1, s22−x1∂x1−y1∂y1, 6s21−3x0∂x1−2y0∂y1, 6s11−

3x0∂x0+3x1∂x1−2y0∂y0+4y1∂y1, s12x0+3y0y
2
1∂x1−x0x1∂x0+x21∂x1−x0y1∂y0, s12y0∂y1−

x1y0∂x1∂y0+2x1y1∂x1∂y1−y0y1∂y0∂y1+2y21∂y
2
1−y0∂y0+4y1∂y1, 3s12y

2
0+6x1y0y1∂x1−

3y20y1∂y0+6y0y
2
1∂y1−2x0x1∂y0, s12x1∂y

2
1−3s12y0∂x1+3x1y0y1∂x0∂x1∂y1+6x1y

2
1∂x

2
1∂y1−

3y0y
2
1∂x1∂y0∂y1+3y0y

2
1∂x0∂y

2
1+6y31∂x1∂y

2
1−x0x1∂x1∂y20+x0x1∂x0∂y0∂y1−2x21∂x1∂y0∂y1−

x1y1∂y0∂y
2
1+3x1y0∂x0∂x1+3x1y1∂x

2
1−6y0y1∂x1∂y0+9y0y1∂x0∂y1+18y21∂x1∂y1−2x1∂y0∂y1+

3y0∂x0, 3s12y0y1∂x1−s12x1∂y1−3x1y0y1∂x0∂x1−3y0y
2
1∂x0∂y1+x

2
1∂x1∂y0+x1y1∂y0∂y1−

3y0y1∂x0 + x1∂y0.

This ideal belongs to the K-algebra D4⟨S⟩ in 12 variables, as defined in the beginning of
this section. By executing

GKdim(LD);

we obtain, that the Gel’fand-Kirillov dimension of D4⟨S⟩/AnnF s is 6, the half of the
Gel’fand-Kirillov dimension of D4⟨S⟩. However, D4⟨S⟩/AnnF s is not a generalized holo-
nomic D4⟨S⟩-module, since the annihilator of this module contains a central element
s12s21 − s11s22 − s11 and hence is not zero.

References

[1] D. Andres, V. Levandovskyy, and J. Mart́ın-Morales. Principal intersection and
Bernstein-Sato polynomial of an affine variety. In J. P. May, editor, Proc. of the
International Symposium on Symbolic and Algebraic Computation (ISSAC’09), pages
231–238. ACM Press, 2009.

[2] D. Andres, V. Levandovskyy, and J. Mart́ın-Morales. Effective methods for the
computation of Bernstein-Sato polynomials for hypersurfaces and affine varieties.
http://arxiv.org/abs/1002.3644, 2010.

[3] R. Bahloul and T. Oaku. Local Bernstein-Sato ideals: algorithm and examples. J.
Symbolic Computation, 45(1):46–59, 2010.

[4] I. N. Bernstein. Modules over a ring of differential operators. An investigation of
the fundamental solutions of equations with constant coefficients. Functional Anal.
Appl., 5(2):89–101, 1971.

[5] J. Briançon and P. Maisonobe. Remarques sur l’idéal de Bernstein associé à des
polynômes. Preprint no. 650, Univ. Nice Sophia-Antipolis, 2002.

[6] M. Brickenstein. Slimgb: Gröbner Bases with Slim Polynomials. In Rhine Workshop
on Computer Algebra, pages 55–66, 2006. Proceedings of RWCA’06, Basel, March
2006.

[7] N. Budur, M. Mustaţǎ, and M. Saito. Bernstein-Sato polynomials of arbitrary vari-
eties. Compos. Math., 142(3):779–797, 2006.

29

[8] J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic methods in non-
commutative algebra. Applications to quantum groups. Kluwer Academic Publishers,
2003.

[9] F. Castro-Jiménez and L. Narváez-Macarro. Homogenising differential operators.
Prepublicación no. 36, Universidad de Sevilla, 1997.

[10] S. Coutinho. A primer of algebraic D-modules. Cambridge Univ. Press., 1995.

[11] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-1-1. A Com-
puter Algebra System for Polynomial Computations. Centre for Computer Algebra,
University of Kaiserslautern. http://www.singular.uni-kl.de, 2010.

[12] J. C. Faugere, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional Gröbner bases by change of ordering. J. Symbolic Computation,
16(4):329–344, 1993.

[13] J. Gago-Vargas, M. Hartillo-Hermoso, and J. Ucha-Enŕıquez. Comparison of theo-
retical complexities of two methods for computing annihilating ideals of polynomials.
J. Symbolic Computation, 40(3):1076–1086, 2005.

[14] G.-M. Greuel, V. Levandovskyy, and H. Schönemann. Plural. A Singular 3-1-0
Subsystem for Computations with Non-commutative Polynomial Algebras. Centre for
Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de,
2006.

[15] G.-M. Greuel and G. Pfister. A SINGULAR Introduction to Commutative Algebra.
Springer, 2nd edition, 2008. With contributions by O. Bachmann, C. Lossen and
H. Schönemann.

[16] M. I. Hartillo-Hermoso. About an algorithm of T. Oaku. In Ring theory and algebraic
geometry (León, 1999), volume 221 of Lecture Notes in Pure and Appl. Math., pages
241–250. Dekker, New York, 2001.

[17] A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner bases in algebras
of solvable type. J. Symbolic Computation, 9(1):1–26, 1990.

[18] M. Kashiwara. B-functions and holonomic systems. Rationality of roots of B-
functions. Invent. Math., 38(1):33–53, 1976/77.

[19] V. Levandovskyy. On preimages of ideals in certain non–commutative algebras. In
G. Pfister, S. Cojocaru, and V. Ufnarovski, editors, Computational Commutative and
Non-Commutative Algebraic Geometry. IOS Press, 2005.

[20] V. Levandovskyy and J. Mart́ın-Morales. Computational D-module theory with
singular, comparison with other systems and two new algorithms. In Proc. of the
International Symposium on Symbolic and Algebraic Computation (ISSAC’08). ACM
Press, 2008.

30

[21] V. Levandovskyy and J. Mart́ın-Morales. Algorithms for checking rational roots of
b-functions and their applications. http://arxiv.org/abs/1003.3478, 2010.

[22] V. Levandovskyy and H. Schönemann. Plural — a computer algebra system for
noncommutative polynomial algebras. In Proc. of the International Symposium on
Symbolic and Algebraic Computation (ISSAC’03), pages 176 – 183. ACM Press, 2003.

[23] H. Li. Noncommutative Gröbner bases and filtered-graded transfer. Springer, 2002.

[24] B. Malgrange. Le polynôme de Bernstein d’une singularité isolée. In Fourier inte-
gral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice,
1974), pages 98–119. Lecture Notes in Math., Vol. 459. Springer, Berlin, 1975.

[25] Z. Mebkhout. Sur le théorème de finitude de la cohomologie p-adique d’une variété
affine non singulière. Amer. J. Math., 119(5):1027–1081, 1997.

[26] Z. Mebkhout and L. Narváez-Macarro. Le théorème de continuité de la division dans
les anneaux d’opérateurs différentiels. J. Reine Angew. Math., 503:193–236, 1998.

[27] H. Nakayama. Algorithm computing the local b function by an approximate division

algorithm in D̂. J. Symbolic Computation, 44(5):449–462, 2009. Spanish National
Conference on Computer Algebra.

[28] L. Narváez-Macarro. Linearity conditions on the Jacobian ideal and logarithmic-
meromorphic comparison for free divisors. In Singularities I, Algebraic and Analytic
Aspects, pages 245–269. Contemporary Mathematics, 474, AMS, 2008.

[29] K. Nishiyama and M. Noro. Stratification associated with local b-functions. J.
Symbolic Computation, 45(4):462 – 480, 2010.

[30] M. Noro. An efficient modular algorithm for computing the global b-function. In
Mathematical software (Beijing, 2002), pages 147–157. World Sci. Publ., River Edge,
NJ, 2002.

[31] M. Noro, T. Shimoyama, and T. Takeshima. Risa/Asir, an open source general
computer algebra system. http://www.math.kobe-u.ac.jp/Asir, 2006.

[32] T. Oaku. Algorithms for the b-function and D-modules associated with a polynomial.
J. Pure Appl. Algebra, 117/118:495–518, 1997.

[33] M. Saito. On microlocal b-function. Bull. Soc. Math. France, 122(2):163–184, 1994.

[34] M. Saito, B. Sturmfels, and N. Takayama. Gröbner deformations of hypergeomet-
ric differential equations, volume 6 of Algorithms and Computation in Mathematics.
Springer-Verlag, Berlin, 2000.

[35] K. Schindelar, V. Levandovskyy, and E. Zerz. Exact linear modeling using Ore
algebras. J. Symbolic Computation, 2010. To appear.

31

[36] M. Schulze. A normal form algorithm for the Brieskorn lattice. J. Symbolic Compu-
tation, 38(4):1207–1225, 2004.

[37] T. Shibuta. An algorithm for computing multiplier ideals. http://arxiv.org/abs/
math/0807.4302, 2008.

[38] N. Takayama. kan/sm1, a Gröbner engine for the ring of differential and difference
operators. http://www.math.kobe-u.ac.jp/KAN/index.html, 2003.

[39] T. Torrelli. Logarithmic comparison theorem and D-modules: an overview. In Sin-
gularity theory, pages 995–1009. World Sci. Publ., Hackensack, NJ, 2007.

[40] H. Tsai and A. Leykin. D-modules package for Macaulay 2 – algorithms for D–
modules. http://www.ima.umn.edu/~leykin/Dmodules, 2006.

[41] A. N. Varchenko. Asymptotic Hodge structure on vanishing cohomology. Izv. Akad.
Nauk SSSR Ser. Mat., 45(3):540–591, 1981.

Acknowledgements

We would like to thank Francisco Castro-Jiménez, José-Maŕıa Ucha, Gert-Martin Greuel,
Enrique Artal, José-Ignacio Cogolludo and Luis Narváez for fruitful discussions and in-
sightful remarks concerning our work.

Daniel Andres
Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany
e-mail: Daniel.Andres@math.rwth-aachen.de

Michael Brickenstein
Mathematisches Forschungsinstitut Oberwolfach, Schwarzwaldstr. 9-11, 77709 Oberwolfach-
Walke, Germany
e-mail: brickenstein@mfo.de

Viktor Levandovskyy
Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany
e-mail: Viktor.Levandovskyy@math.rwth-aachen.de

Jorge Mart́ın-Morales
Department of Mathematics-I.U.M.A., University of Zaragoza, C/ Pedro Cerbuna, 12 -
50009, Zaragoza, Spain
e-mail: jorge@unizar.es

Hans Schönemann
Fachbereich Mathematik, TU Kaiserslautern, Erwin-Schrödinger-Str. 48, 67632 Kaiser-
slautern, Germany
e-mail: hannes@mathematik.uni-kl.de

32

