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Abstract

In this paper, we generalize the concept of super edge-magic graph by intro-

ducing the new concept of super edge-magic models.
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1 Introduction

By a graph we mean a simple graph, that is to say, a graph without loops or multiple
edges. In general, for the terminology and notation found in this paper we follow either
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[2] or [5].

In 1998 Enomoto, Lladó, Nakamigawa and Ringel defined super edge-magic labelings
of graphs [3] inspired by the concept of edge-magic graphs introduced by Kotzig and
Rosa in [6].

Let G = (V, E) be a graph of order p and size q. A bijective function f : V ∪ E −→
{i}p+q

i=1 is an edge-magic labeling of G if the sum f(x)+f(xy)+f(y) = k for all xy ∈ E.
In this case G is called an edge-magic graph and k is called either the valence or the
magic sum of f . If f has the extra property that f(V ) = {i}p

i=1, then f is called a
super edge-magic graph.

It is worthwhile mentioning that Achyra and Hedge introduced in 1991 the concept
of strongly indexable graph, see [1], that turns out to be equivalent to the concept of
super edge-magic graph, although the motivation for the definition is different, since
while Enomoto et al. thought about constant sums, Achyra and Hegde thought about
arithmetic progressions.

The next Lemma found in [4] shows how the concept of super edge-magic labeling can
be thought in terms of arithmetic progressions and will be useful for the rest of the
paper.

Lemma 1.1 A graph G = (V, E) of order p and size q is super edge-magic if and only

if there is a bijective function g : V −→ {i}p
i=1 such that the set S = {g(x) + g(y) :

xy ∈ E} is a set of exactly q consecutive integers.

Generalizations of super edge-magic graphs (other than edge-magic graphs) can be
found in the literature. For instance see [7]. In this paper we propose a different
direction to generalize super edge-magic graphs. We do this by defining the concept
of super edge-magic model. Before introducing this concept we need the following
definition. Let G be a graph of order p and size q. A proper edge coloring of G with n

different colors consists to assign n colors to the edges of G, so that if two edges have
a common vertex then they receive different colors. If G is a graph with a proper edge
coloring then H is a rainbow subgraph of G if it is found in G so that each edge of H

receives a different color.

2 Super edge-magic models

Consider n points on the plane, no three of them colineal, numbered with the numbers
from 1 up to n. Join these n points with

(

n

2

)

line segments, obtaining the complete
graph Kn. Consider the function g : E(Kn) −→ {3, 4, . . . , 2n− 1} that assigns to each
edge of Kn the sum of the values of two points incident with the edge. Then if we color
these edges with 2n−3 different colors, so that two edges receive the same color if and
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only if they have the same image under g, we obtain a proper coloring of the edges
of Kn. Finally we order these colors with a 2n − 3 ordered tuple, according with the
numerical value associated with that color. That is to say, the color associated with
3 is the first color of the tuple, the color associated with 4 is the second color of the
tuple and so on until the color associated with 2n − 1 which is the last color of the
tuple. Then the following observation is trivial:

Observation 2.1 A graph of order n is super edge-magic if and only if it can be found

as a rainbow subgraph of Kn colored as described above, when the colors of the edges

are consecutive in the tuple.

Let us see the next example that appears in Figure 1.

1

2

3 4

5

(7)

(5) (9)

(6)(3)

(7)

(4) (5)

(6) (8)

b b

b

b

b

1

2

3 4

5

b

b

b

b

b

Figure 1: A proper edge-coloring of K5 with an order in the colors.

Then, for instance, C5 is super edge-magic, see Figure 2.
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Figure 2: C5 as a rainbow subgraph of K5 with consecutive colors.
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The goal of this section is to generalize this idea to the concept of super edge-magic
model.

Let m, n ∈ N. A super edge-magic m-model of order n is a proper edge coloring of the
edges of Kn with m colors, together with a m-ordered tuple of the m colors used in the
coloring. A graph G of order n is super edge-magic with respect to a super edge-magic
m-model if and only if G can be found as a rainbow subgraph of Kn and the colors of
the edges of G are consecutive in the m-tuple of the model.

Example 2.2 Let us see an example of an m-model. The next Figure shows a super

edge-magic 5-model of order 6 with the order in the left side, and a super edge-magic

triangle with respect to it on the right side.
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Figure 3: A super edge-magic 5-model and a super edge-magic C3 with respect to it.

The following are two easy observations:

Observation 2.3 If a graph G = (V, E) is super edge-magic with respect to an m-

model then the size of the graph is at most the number of different colors. That is,

|E| ≤ m.

Observation 2.4 Every rainbow subgraph of size m of a super edge-magic m-model is

super edge-magic with respect to the model.

3 Results on super edge-magic m-models

Let m be an even number. In this section we answer the following question: can we
find a super edge-magic m-model of order m such that no 2-regular graph of order m

is super edge-magic with respect to this model?.
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We answer this question in an affirmative way. We begin by describing the model,
and once we have the description, we will prove that it does not contain any 2-regular
rainbow spanning subgraph.

Description of the model

Let n be an even number. Place n points forming the vertices of a regular n-gon in
the plane, and join these vertices with

(

n

2

)

straight line segments forming the complete
graph Kn. The coloring of the edges is given in the following way:

Two edges receive the same color if and only if they belong to parallel lines.

In light of the last observation of the previous section, we do not need to specify any
ordered tuple for the colors, since it is clear that this coloring uses exactly n colors. It
is also clear that the coloring is a proper coloring.

From now on we will denote this coloring of order n by µn.

Example 3.1 The proper coloring of µ4 and µ6 are showed in Figure 4.

b b
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b b

b
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b

Figure 4: The 4-model µ4 and the 6-model µ6,

Next, we prove the following result:

Theorem 3.2 Let n be an even number. No 2-regular graph of order n is super edge-

magic with respect to µn.

Proof.

Consider the model µn. Label the vertices of µn with the numbers from 1 up to
n in increasing order in the counterclockwise sense. Then consider the function g :
E(Kn) −→ N that assigns to each edge the sum of the labels of its terminal vertices,
and assume that H is any 2-regular spanning subgraph of µn. Then :

∑

e∈E(H)

g(e) = 2
n

∑

i=1

i = n(n + 1)
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since each vertex belongs to exactly two edges of H .

Next, we will describe the possible values that the labeling g assigns to edges of the same
colors. We can see this in the next table, where we denote the colors by c1, c2, . . . , cn.

Colors Possible values for edges of color ci assigned by g

c1 3, 3 + n

c2 4, 4 + n

c3 5, 5 + n
...

...
...

cn−3 n − 1, 2n − 1
cn−2 n

cn−1 n + 1
cn n + 2

Assume to the contrary that H is a rainbow 2-regular spanning subgraph of µn. Then
the sum of the values assigned by g to the edges of H is obtained adding the numbers
n, n +1, n + 2 and exactly one number in each of the following sets: {3, 3+n}, {4, 4+
n}, . . . , {n − 1, 2n − 1}. Assume that this sum contains exactly k numbers in the set
{n + 3, n + 4, . . . , 2n − 1}. Then we have the following equality:

n(n + 5)

2
+ kn = n(n + 1) =⇒ 2k = 2(n + 1) − (n − 1) − 6

Hence we have that an odd number is equal to an even number, and therefore the
desired contradiction has been reached. 2

From the previous discussion it is easy to obtain the following.

Let n be an even number. Consider n points in the plane that are placed forming
the vertices of a regular n-gon. Assume that with this configuration, we create not
necessarily simple polygons, by joining all n vertices with straight segments, so that
each vertex belongs to exactly one of these polygons formed. Call a configuration of
this type C(n). Then we have.

Corollary 3.1 For n even, any C(n) contains at least two sides that belong to parallel

lines.

4 Conclusions and open problems

In this paper we have generalized the concept of super edge-magic graphs to the concept
of super edge-magic graphs with respect to a model. For n even, we have found an n
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model of order n, namely µn, so that no 2-regular graph of order n is super edge magic
with respect to µn.

Many different lines of research may be followed from the concept of super edge-magic
graphs with respect to a model, and next we propose some questions that we feel may
be interesting to consider for further research.

Question 4.1 For n even, find an n-model of order n, namely νn, so that at least one

2-regular graph of order n is super edge-magic with respect to νn, or prove that such

model νn does not exist.

Question 4.2 For n even, find an n-model of order n so that each 2-regular graph of

order n is super edge-magic with respect to the model.

Question 4.3 For n ∈ N, find an n-model of order n that maximizes the number of

spanning 2-regular rainbow subgraphs that the model contains. Find this maximum.

Question 4.4 Let G be a graph of order p and size q. Find, when possible, a q-model

of order p that does not contain any rainbow subgraphs isomorphic to G.

Question 4.5 Let G be a graph of order p and size q. Find a q-model of order p that

maximizes the number of rainbow subgraphs isomorphic to G.

Next we make a remark about Question 1 and Question 2. For p = 4, the only 2-regular
graph of order 4 is the cycle C4. Next we show all possible proper edge colorings of the
edges of K4 with 4 colors, and it is easy to check that none of these colorings contain
a rainbow C4.

b bb bb b

bb bb bb

Figure 5: All possible proper edge colorings of the edges of K4 with 4 colors

However for general even n this is not true. For instance the proper coloring of the
edges of K6 with 6 colors that appears in Figure 6 contains a C6 as a rainbow subgraph.
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Figure 6: A proper edge coloring of K6.

Furthermore, by exploring all cases, we have checked that, up to isomorphisms, this
is the only proper coloring of the edges of K6 with six colors that contains a rainbow
subgraph C6 and no such coloring contains 2C3 as a rainbow subgraph.

In order to conclude this section, we observe that the idea of relating labelings with
rainbow subgraphs can be extended to other types of labelings. For instance when
we think about graceful labelings of trees (see [5] for further information on graceful
labelings and the graceful tree conjecture), then we notice that they can be thought
of rainbow spanning subtrees of the following coloring (not necessarily proper) of the
complete graph Kn.

Label the vertices of Kn with the numbers 0, 1, 2, . . . , n− 1 and assign to each edge of
Kn the value |i − j|, where i, j are the labels of the vertices incident with each edge.
Color each edge of Kn with a color corresponding to the assigned value. It is clear that
a tree of order n is graceful if and only if it can be found as a rainbow subgraph of this
colored Kn. Therefore, we also propose to find and explore other relations of this type
for further research.
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[7] Lladó, A. and Gutiérrez, Magic coverings, J. Comb. Math. and Comb 55

(2005), 43-56.

9


