
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Optimizing a particular real root of a
polynomial by a special cylindrical algebraic
decomposition

Gandy, Silvia
Tokyo Institute of Technology

Kanno, Masaaki
CREST, Japan Science and Technology Agency

Anai, Hirokazu
Fujitsu Laboratories Ltd |Kyushu University

Yokoyama, Kazuhiro
Rikkyo University

https://hdl.handle.net/2324/12553

出版情報：MI Preprint Series. 2008-8, 2008-11-10. 九州大学大学院数理学研究院
バージョン：
権利関係：



MI Preprint Series
Kyushu University

The Grobal COE Program
Math-for-Industry Education & Research Hub

Optimizing a particular real root

of a polynomial by a special

cylindrical algebraic

decomposition

S. Gandy,

M. Kanno, H. Anai &
K. Yokoyama

MI 2008-8

( Received November 10, 2008 )

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN



Optimizing a particular real root of a polyno-
mial by a special cylindrical algebraic decom-
position

Silvia Gandy, Masaaki Kanno, Hirokazu Anai and Kazuhiro
Yokoyama

Abstract. We study the problem of optimizing over parameters a particular
real root of a polynomial with parametric coefficients. We propose an efficient
symbolic method for solving the optimization problem based on a special
cylindrical algebraic decomposition algorithm, which asks for a semi-algebraic
decomposition into cells in terms of Number-of-Roots-invariant.

Mathematics Subject Classification (2000). Primary 26C10; Secondary 49N05.

Keywords. optimization of a real root, maximal real root, cylindrical algebraic
decomposition (CAD), Number-of-Roots(NoR)-invariant.

1. Introduction

In this work, an algorithm is presented to optimize a particular real root of a
polynomial with the help of a special cylindrical algebraic decomposition. This
real root optimization problem appears in a wide range of problems.

One example is the H∞/L∞-norm computation of parametric dynamical sys-
tems, where we want to optimize the H∞/L∞-norm of a system matrix G(s),
‖G(s)‖∞, or its frequency-restricted version ‖G(s)‖∞,[ω1,ω2]:

‖G(s)‖∞ := sup
ω∈R

σmax

[
G(jω)

]
,

‖G(s)‖∞,[ω1,ω2] := sup
ω∈[ω1,ω2]

σmax

[
G(jω)

]
.

Here, j is the imaginary unit (i.e., j =
√
−1) and σmax

[
G(jω)

]
denotes the maximal

singular value of G(jω). The maximal singular value is defined as the square root
of the maximal eigenvalue of GT (−jω)G(jω):

σmax

[
G(jω)

]
= maximal real root of det

(
λ2I −GT (−jω)G(jω)

)
.



2 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

Thus, we may transform the problem into an optimization problem of the maximal
real root of a polynomial.

Another example is the solution of Linear Matrix Inequalities (LMI) [7]. In
order to verify the positive-definiteness of a certain symmetric matrix, all eigen-
values need to be positive. Thus, solving

X ≻ 0 , AX +XAT +BBT

︸ ︷︷ ︸

symmetric

≻ 0,

is equivalent to showing that the minimal eigenvalue of AX + XAT + BBT is
positive for all “parameter values” X satisfying X ≻ 0.

The H2 control problem is also part of this problem class. Recently, Kanno et
al. [4] used the sum of roots, denoted by σ, to estimate the optimal cost of the H2

control problem via parametric polynomial spectral factorization. The quantity
σ can be represented as the maximal real root of a polynomial with parametric
coefficients. Additionally, the cost function of the H2 optimal control problem is
a polynomial in σ. More details will be given in Example 5.5 (Section 5, Com-
putational Results). Therefore, our method is applicable to a wide collection of
parametric control problems and possibly to various fields of science and engineer-
ing.

The straightforward approach to solve the problem using a numerical ap-
proach can fail when the problem is ill-conditioned and will not be able to give
an exact solution. Therefore a symbolic approach is of interest. We will present a
specialized cylindrical algebraic decomposition (CAD) that avoids the usage of the
Sturm-Habicht sequence that is usually being used when transforming the problem
setting into a quantifier elimination problem. To this end, a decision criterion, the
Number-of-Roots(NoR)-invariant, will be introduced.

The algorithm was implemented in the computer algebra system Maple1 and
then tested against a conventional QE approach using the Sturm-Habicht sequence
implemented on Qepcad b [1].

This paper is organized as follows. In Section 2, we will introduce a math-
ematical description of the optimization problem under consideration. Then, the
CAD algorithm is reviewed, together with its conventional application to solve
the quantifier elimination problem. In Section 4, we will present our algorithm
and introduce the NoR-invariant. Then, we will discuss examples in Section 5 and
compare the computation times of the Qepcad b and of our Maple implementa-
tion. A discussion of the connection of the Sturm-Habicht sequence and real root
counting can be found in the Appendix.

2. Problem Setting

In this paper, we study the following optimization problem:

1Maple is a registered trade mark of Waterloo Maple Inc. (Maplesoft).



Optimizing a particular real root by a special CAD 3

Problem 2.1. We consider a multivariate polynomial f :

f(x; q) ∈ Q[x, q], f : R × Rℓ 7→ R.

We will interpret f as an univariate polynomial in x being parameterized by the
parameter vector q, q = (q1, q2, . . . , qℓ). The parameter domain is taken as the ℓ-
dimensional interval Dq := [q, q] = [q1, q1]× [q2, q2]× . . . × [qℓ, qℓ] ⊂ Rℓ. However,

we need to impose that the vertices of Dq are rational numbers, q, q ∈ Qℓ, to
ensure that the roots of f are algebraic numbers for all vertices of Dq. In fact,
we can extend our approach without difficulties to a more general case where the
parameter domain is a closed connected set that is defined algebraically. However,
for the brevity of our discussion and also due to the fact that the ℓ-dimensional
interval frequently appear in practical engineering problems, we confine ourselves
to such interval.

The task is to determine the range of a particular real root (of f in x),
for example, the range of the maximal real root, in dependence of the parameter
vector q. The minimal real root or some k-th largest/smallest real root could also
be chosen. In particular, the minimal and the maximal value of the chosen real
root within the interval Dq are of special interest.

Now, we will start with the introduction of some notation which will be
necessary to identify a certain real root.

First, let us evaluate f(x; q) at a certain parameter vector q̂ ∈ Dq. Then, the
multivariate polynomial f becomes a univariate polynomial, fq̂(x) := f(x; q̂). This
polynomial has a certain degree in x, which we will denote by n(q̂).

So, it has n(q̂) roots λ1, . . . , λn(q̂) (multiplicities counted), whereof r(q̂) shall
be real roots. We can sort the n(q̂) roots of fq̂(x) in such a way that λπ(i) ∈ R for
i ∈ {1, . . . , r(q̂)} and λπ(1) ≥ λπ(2) ≥ · · · ≥ λπ(r(q̂)) where π describes the index
permutation. We are not interested in the non-real roots of fq̂(x), which will be
labelled as λπ(r+1), . . . , λπ(n(q̂)).

By αk(q) := λπ(k) (k = 1, . . . , n(q)), we define a description of the roots
point-wisely. Then, we can consider αk(q) as a representation the k-th largest
real root for 1 ≤ k ≤ r(q). Figure 1 shows an example for the definition of the
functions αk.

Thus, for every parameter vector q, we obtain the following decomposition
of f(x; q):

f(x; q) = lc(q)

n(q)
∏

i=1

(x− αi(q)) , (2.1)

with αi(q) : Dq 7→ C and lc(q) denotes its leading coefficient (lc(q) is a piecewise
defined polynomial in q).

In the following, we will discuss the efficient computation of the maximal
and the minimal value that a certain root can attain in the parameter domain
Dq. Therefore, we will choose (fix) a real root, say the k-th largest real root αk

(multiplicities counted), and focus on it. The same approach can be used when



4 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

x

q

x

q

α1(q)

x

q

α2(q)

Figure 1.

Example showing the point-wise defined functions αk(q).
Let f(x; q) = 1

5

`

x2
− 8x + 17 + q

´ `

x2
− 12x + 37 − q

´

(x + 1)(5x − q − 10).
Left: Trace of f(x; q) = 0.

Middle: Maximal real root, described by α1.

Right: Second largest real root, described by α2.

λ2 ∈ R

2 real roots 0 real roots

λ1 ∈ R

∈ C \ R

λ3 = λ4 λ1 = λ2

∈ C \ R

λ1 = λ2

∈ C \ R

λ1 ∈ R

2 real roots 2 real roots
4 real roots

2 real roots

λ1

λ4 ∈ R

λ3 ∈ R λ2 → ∞

λq̂

λ2

2 real roots
fq̂(x) = 0

Figure 2.

Left: Root behaviour, that does not allow the definition of functions α1(q) and
α2(q).

Middle: Continuous functions α1(q) and α2(q) can be defined, yet α3(q) and
α4(q) are not continuous/can not be defined.

Right: Root behaviour that does not fulfill Assumptions (1) and (2): a) λ2 → ∞
and b) ∃q̂ ∈ Dq s.t. fq̂(x) = 0.

focusing on the k-th smallest real root of f(x; q) as this root corresponds to the
k-th largest real root of f(−x; q).

Assumptions: For our approach to the calculation of the largest and smallest values
of αk(q), f need to fulfill the following:

(1) αk(q) is a continuous function of q in Dq, and

(2) deg(f(x; q), x) is constant in Dq.



Optimizing a particular real root by a special CAD 5

The assumption (1) implies that, in the interval Dq, no real roots that are
larger than αk(q) become complex (in a locally continuous representation of the
roots) and that any complex-conjugated root pair that becomes real results in
real roots that are smaller than or equal to αk(q). Figure 2 illustrates some
scenarios. On the left, two roots become a conjugated-complex root pair and thus,
no continuous functions α1(q) and α2(q) can be defined for the entire parameter
domain. The middle figure shows what happens when two roots become real at
the same point where two other roots become complex. In such a setting, we can
define the (continuous) functions α1(q) and α2(q), but no continuous α3(q) and
α4(q) can be defined.
As Dq is a closed connected set, the k-th largest root will only take values in a
line segment. Also, the maximum and minimum of αk(q) are attained on Dq, and
therefore it is possible to calculate the corresponding parameter vectors q.

The assumption (2) forbids the leading coefficient lc(q) to become zero in the
admissible domain, i.e., lc(q) 6= 0, ∀q ∈ Dq. This assumption is imposed because a
vanishing leading coefficient corresponds to a drop in the degree of the polynomial
f(x; q), which needs to be excluded. So, the polynomial f(x; q) has a constant
degree (in x); thus, no root can go to ∞. Is is also not possible for fq̂ to become
identically 0 for some q̂ ∈ Dq. (Due to the constant degree assumption, f(x; q)
would have to be identically zero for all q ∈ Dq then.) This is illustrated in the
right part of Figure 2.
Using the notations for the real roots of f(x; q) together with the assumptions (1)
and (2), we can formalize Problem 2.1 as follows:

Problem 2.2. Let f(x; q) be as in Eqn. (2.1), fulfilling the assumptions (1) and (2).
For a given k ∈ N, determine the largest/smallest value the k-th largest root of
f(x; q) can attain and determine the corresponding parameter vector q.

In other words:
Determine qmax, qmin ∈ Dq and αk(qmax), αk(qmin) ∈ R that fulfill

αk(qmax) = max
q∈Dq

αk(q),

αk(qmin) = min
q∈Dq

αk(q).

Remark. Due to the assumptions (1) and (2), αk(q) is a continuous function defined
on a closed domain Dq. Therefore, the extremal values (minimum and maximum)
exist and are attained on Dq.

The assumptions seem to impose serious restrictions. However, recall the
function from Figure 1. In this example, α1(q) is not continuous, but we can
restrict the parameter range Dq such that α1(q) becomes continuous on the re-
stricted parameter range. Indeed, there is a systematic computation algorithm to
decompose the parameter range into cells in each of which α1(q) is continuous
with respect to q. This is in fact Cylindrical Algebraic Decomposition reviewed in
Section 4.



6 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

The representation as Problem 2.2 will be used by our proposed method.
As we want to compare our method to the conventional quantifier elimination
(QE) approach, we also state the following problem formulation, which is a direct
translation of Problem 2.1:

Problem 2.3 (Formulation as quantifier elimination (QE) problem). Find all values
x that fulfill

∃ q [ f(x; q) = 0 ∧ ψ(x; q) ∧ φ(q) ] ,

where ψ (x; q) is a formula that specifies the desired real root of f and φ(q) is a
formulation stating that q ∈ Dq.

The formula ψ(x; q) is obtained by utilizing the Sturm-Habicht sequence [3] of
f and consists of a number of polynomial inequalities in x and q. See appendix A for
a brief review of the Sturm-Habicht sequence. The formula φ(q) is a reformulation
of the constraints on the range of qi, i.e., qi ∈ [qi, qi], as inequalities.

By using a software tool for the solution of the QE problem, such as Qepcad

b [1], we can obtain an equivalent description of this problem, where all the quan-
tifiers concerning the parameters qi have been eliminated. The obtained equivalent
formulation is therefore a quantifier-free formula in x that describes the admissible
region of x for q ∈ Dq. Thus, we can determine the maximum and minimum of
the chosen real root of f .

If the considered optimization problem 2.1 is formulated as the QE problem
2.3 and solved, then the exact minimum/maximum can be obtained irrespective of
the convexity of the optimization problem. From this point of view, an optimization
algorithm using QE is a very powerful tool. However, as it is a method that uses
symbolic (exact) computation and verifies exhaustively all possibilities derived
from algebraic procedures, the computation cost tends to be high. Consequently
the size/class of problems that one can realistically solve is extremely limited.

In the sequel, we develop an algebraic approach for Problem 2.2. The ap-
proach introduces the notion of Number-of-Roots-invariant and avoids the use of
the Sturm-Habicht sequence so as to improve the efficiency without sacrificing the
exactness of the obtained result. As preparation, we will review in the next section
an algebraic tool, the Cylindrical Algebraic Decomposition, which is often used
to solve QE problems. We then devise our approach in Section 4 based on the
Number-of-Roots criterion.

3. CAD - Cylindrical Algebraic Decomposition (Sign-invariant)

An approach to solve Problem 2.3 is given by cylindrical algebraic decomposition
(CAD) [2]. This is a very fundamental concept in quantifier elimination theory.
We briefly review CAD in the sequel (See [2] for further details of the CAD).

The algorithm for performing CAD takes as input a set of multivariate poly-
nomials in n variables, say F ⊂ R[y1, . . . , yn], and calculates a decomposition of
Rn into components, so called sign-invariant cells, over which all the polynomials



Optimizing a particular real root by a special CAD 7

in F have constant signs. The algorithm for CAD also provides a point in each cell,
called a sample point, which can be used to determine the sign of the polynomials
in the cell.

3.1. CAD construction

The construction of CAD, in general, consists of three phases: the projection phase,
the base phase, and the lifting phase.

In the projection phase, sets of polynomials in n−1, n−2, . . . , 1 variables are
computed successively: Given the set of polynomial F = {fi(y)} ⊂ R[y1, . . . , yn],
compute a new set of polynomials PROJk(F ) by eliminating one variable at a
time in each step k = 1, . . . , n − 1. Consequently, the new set of polynomials
at each step lies in R[y1, . . . , yn−k]. Some concrete realizations of the projection
operator PROJk have been proposed, see [10]. Then, the base phase computes a
decomposition of R at the lowest level of projection, namely sample points for a
decomposition of R. This can be achieved by using a real root isolation method
[12]. Finally, in the lifting phase, the decomposition of R is first lifted to a decom-
position of R2, and then lifting R2 to R3,. . . , Rn−1 to Rn successively results in a
decomposition of the full Rn.

3.2. Solving Problem 2.3 by using CAD

Here, we explain in brief how CAD construction can be utilized for solving Problem
2.3.

In our case, we consider the set S ⊂ Q[x,q] of polynomials appearing in the
formula of Problem 2.3. The conventional CAD algorithm determines a decom-
position of the (x, q)-space into cells where the polynomials appearing in S have
constant signs. Thus, a cell boundary describes the zero-set of some polynomial in
the set.

In the projection phase, we eliminate parameters q by successive projections,
for example, in the projection order q1, q2, . . . , qℓ. The result is a resultant chain
of the following form:2

(h0(x; (q1, . . . , qℓ)), h1(x; (q2, . . . , qℓ)), . . . , hℓ−1(x; qℓ), hℓ(x)) , (3.1)

where h0(x; q) = f(x; q), and hi denotes the result of the i-th projection. The set
of real roots of hℓ(x) is the set Xcand of candidate values that includes the extremal
values of the desired real root of f . We note that the base phase usually computes
sample points for R (i.e., x-axis), which constits of the candidate points Xcand

and the intermediate points between adjoining two roots in Xcand. A parameter
vector q which realizes a candidate point is provided by the lifting phase. The
above resultant chain can be used to lift a candidate x-value to the parameter

2This form is only attained in the general case where no resultant hi−1(x; (qi, . . . , qℓ)) becomes
independant of qi. In the singular case where some resultant is free from qi, one can elimi-
nate/ignore the parameter qi and continue as in the general case. As the resultant does not

depend on qi, there are no restrictions on qi that can be deduced, therefore it can be choosen
freely in [qi, qi].



8 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

space. Such a (x; q)-tuple will solve the equation f(x; q) = h0(x; q) = 0, thereby
describing the cell boundaries. The lifting phase takes the following steps:

• Substitute x into Eqn. (3.1). Thus, we obtain

(
hx

0(q1, . . . , qℓ), h
x
1(q2, . . . , qℓ), . . . , h

x
ℓ−1(qℓ), const.

)
,

• Determine a parameter vector q that solves fx(q) = hx
0(q1, . . . , qℓ) = 0.

Such a solution has the property to be a solution of all equations hx
i = 0

simultaneously. Therefore, we can use the structure of these equations to
determine the set of solutions qi, i = {ℓ, ℓ − 1, . . . , 1} recursively that solve
hx

i−1(qi) = 0, where all qj with j > i are already fixed and substituted.
Thus, the task has been reduced to finding the roots of a set of univariate
polynomials instead of the roots of a multivariate polynomial.

4. Algorithms - Specialized CAD (NoR-invariant)

In the following, we will present an approach to reduce the computation cost
without losing the exactness of the optimal solution.

For this purpose, we will make use of the fact that we do not focus on all the
real roots but only on a particular real root of our interest. In order to be able to
take advantage of this, we will need the previously introduced conditions on the
behaviour of the real roots.

The approach that we will present solves Problem 2.2 and gives algebraic expres-
sions for αk(qmax) and αk(qmin). The main point will be to use a specialized CAD
algorithm that uses a Number-of-Root criterion in the lifting phase of CAD con-
struction.

The steps of the algorithm are as follows:

1. Projection & Base: Determine a finite set of candidate points Xcand that
contains the extremal values of αk(q) (i.e., Xcand ⊂ R, αk(qmax), αk(qmin) ∈
Xcand).

2. Partial lifting: Check from which parameter vector q the candidate point
originates and determine whether the candidate represents an extremum.
Avoid checking all candidates.

4.1. Projection & Base

There are two possibilities where an extremum of f(x; q) can be attained:

1. In the interior of the interval Dq, int(Dq).
2. For parameter vectors q on the boundary hyperplanes of the interval Dq,

Dq \ int(Dq). (We speak of hyperplanes, although we mean the intersection
of the hyperplane with Dq.)



Optimizing a particular real root by a special CAD 9

The projection function is the usual projection function of the CAD algorithm.
However, the inputs for the two cases described above are as follows:

1 ) The candidate points from the interior of the interval are obtained by project-
ing f(x; q) iteratively onto the elements of q = (q1, . . . , qℓ). Thus, after (in general)
ℓ projection steps, we arrive at a univariate polynomial in x. The set of real roots
of this polynomial is the set of candidate values Xcand. Here it is important to
note that this operation gives all candidate points as given by f(x; q), without any
restriction on the parameters. Therefore, the set of candidate values also contains
values that correspond to parameter vectors q /∈ Dq. Candidates originating from
other roots (irrelevant extrema of real roots other than αk(q)) are included in the
set as well.

The set of real roots is represented as a set of isolating intervals of a specified
(small) width, thus introducing interval arithmetics. However, once the extremum
is identified, the value can be represented as a certain root of the computed uni-
variate polynomial in x, and an algebraic expression is thus obtained.

2 ) A boundary hyperplane is defined by the condition that one of the parameter
vector coefficients qi, i ∈ {1, . . . , ℓ} takes an extremal value q̂i ∈ {qi, qi}. Thus, the
parameter space is reduced to ℓ− 1 dimensional. In order to obtain the candidate
points that lie on these hyperplanes, we specialize f to these hyperplanes and define
the 2ℓ functions f(i,q̂i) := f(x; q) |qi=q̂i

. The candidate points are the projection
results after projecting each f(i,q̂i) ℓ− 1 times.

Apart from these points, we evaluate f(x; q) at a particular set of points in
order to obtain a good starting point for partial lifting. For this, we evaluate at
each extremal q-values qvertex, i.e., the vertices of Dq, qvertex ∈ Qvertex := {q =
(q1, q2, . . . , qℓ) | qi ∈ {qi, qi}, ∀i}. The vertices are chosen, because, in many cases,
the maximal value and the minimal value of αk(q) are attained at these vertices.
Thus, we evaluate at 2ℓ extra points corresponding to all the 2ℓ vertices.

4.2. Partial Lifting

We can obtain a set of candidate points Xcand ⊂ R as the union of the set of roots
of the projection factors and the set of roots of polynomials arising from the vertex
points. This candidate point set has the advantageous property that it contains
the optimal values αk(qmax) and αk(qmin) that are being searched. Therefore, we
can limit the search (optimization) on this set of candidate points. In order to
find the optimal values efficiently, the idea is to further discard as many candidate
points as possible prior to checking them.

As we have determined the values of the real roots at the vertex points, we
can determine the maximal (minimal) value of αk(qvertex). Then, all candidates
smaller (larger) than this value can be discarded. Thus, we can start the search
of the optimum from the the maximum (minimum) of the sample points at the
vertices and devide the search space (−∞,∞) into

(−∞, min
q∈Qvertex

(αk(q))] and [ max
q∈Qvertex

(αk(q)) ,∞).



10 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

Figure 3. Left: Trace of the maximal real root α1(q).
Right: Reduction of the search space due to the sample points at
the vertices of Dq.

This division of the search space is shown exemplarily (Figure 3) for the
calculation of the maximal real root.

Due to the continuity assumption of αk(q), the selected root can only change
within a line segment. Thus, αk(q) has the range

[αk(qmin), αk(qmax)] .

Combining these two range conditions, we obtain
[

αk(qmin), min
q
vertex

(αk(q))

]

and

[

max
q
vertex

(αk(q)) , αk(qmax)

]

,

for the minimal value and the maximal value of αk(q), respectively.
So, what we need is a criterion to decide whether a candidate point lies in

the inside or on the outside of these intervals. Then, we can start from the known
interval boundary and – by subsequently testing the candidate points according to
size – determine the other interval boundary. We will use the following approach
(compare Figure 4):

αk(qmin) = min
xcand

{xcand ≥ αk(qmin)} ,

αk(qmax) = min
xcand

{xcand ≥ αk(qmax)} .

The introduction of the Number-of-Roots(NoR)-invariant in the next subsection
will provide such a test criterion. Thus, we can use the following search pattern to
obtain the maximal value of αk(q) in Dq:

Search pattern (maximum):

• Check the candidate points xcand in increasing order,
starting with the candidate point maxq∈Qvertex

(αk(q))
• Is xcand ≥ αk(qmax)? If yes, stop. The maximal value is found.

The search pattern for the minimum follows the same line of reasoning.



Optimizing a particular real root by a special CAD 11

αk(qmax)

: candidate points

max(αk(q))αk(qmin) min(αk(q))
q ∈ Qvertex q ∈ Qvertex

Figure 4. Intervals bounded by the searched values αk(qmin)
and αk(qmax) (dotted interval boundaries).

Search pattern (minimum):

• Check the candidate points xcand in decreasing order,
starting with the candidate point minq∈Qvector

(αk(q))
• Is xcand < αk(qmax)? If yes, stop. The minimal value is found. It is the last valid

candidate that was checked in this process.

4.3. Decision Criterion: Number-of-Roots (NoR)

We will now introduce the quantity on which we will base our algorithm. This
quantity, which we call the number of roots, is invariant on each cell of the decom-
position such that its value does not depend on the chosen sample point in each
cell.

Definition 4.1 (Number-of-Roots, NoR). Let f(x; q) be a multivariate polynomial
depending on a parameter vector q (as in Problem 2.1). When evaluating f(x; q)
at some q̂ ∈ Dq, this polynomial only depends on x, i.e., for a fixed q̂, we have
that fq̂(x) = f(x; q̂) is a univariate polynomial in x. This polynomial fq̂(x) has a
certain number of real roots in R.
Define NoR(z, q̂) to be the number of real roots of fq̂(x) in the open interval
(z,∞), multiplicities of the roots being counted. This definition of NoR(z, q̂) is
valid for each q̂ ∈ Dq. Thus, NoR(z, q) becomes a function in z and q, being
defined point-wisely for all q ∈ Dq.

In short, NoR(z, q) gives the number of real roots of the polynomial fq(x) that are
larger that z.

Example:

Consider f(x; q) = (x− 1)(x− q1)
2(x+ q1q2)(x

2 + 1) and fix q = (q1, q2) = (2, 3).
Then, fq(x) evaluates to f(2,3)(x) = (x− 1)(x− 2)2(x+ 6)(x2 + 1). Thus,

NoR(z, (2, 3)) =







4 z ∈ (−∞,−6]
3 z ∈ (−6, 1]
2 z ∈ (1, 2]
0 z ∈ (2,∞)

NoR(z, q) can be determined via the evaluation of the sign variations of the
Sturm sequence [11] of fq(x). Note that a minor change is necessary to accommo-
date the counting of the multiplicity of a root.



12 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

NoR in the different cells Check of NoR(xcand + ǫ, qsp),
for each cell sample point qsp

Figure 5. Cell decomposition showing NoR(z, q) in each cell
(f(x; q) is taken from Example 5.1 in Section 5)

For every cell of the decomposition, we can determine the number of roots
that lie at higher values of x. The left part of Figure 5 illustrates this. The lines
correspond to the traces of the roots of the polynomial f(x; q) under consideration.
The cells of the decomposition are bounded by these traces and contain the number
of roots that lie above the cell.
Due to the continuity assumption of αk(q), we will be able to show that the decision
is independent of the sample point. Therefore, we need to show why NoR(z, q)
cannot change within a cell and how it is related to αk(q).

Lemma 4.2. If αk(q) is continuous in Dq, then αi(q) is continuous in Dq for

i ∈ {1, 2, . . . , k − 1}.
This is due to f(x; q) being a multivariate polynomial in x and q. Note: a

change in the NoR-value within a cell occurs, when two roots become complex/real.

Lemma 4.3. For q ∈ Dq, we immediately get from the definition of αk(q) that

NoR(z, q) ≥ k, ∀z < αk(q).

Also,

αk(qmax) = min{z | NoR(z, q) < k ∀q ∈ Dq}. (4.1)

Therefore, the first candidate xcand which is contained in the right hand side
of Eqn. (4.1) corresponds to the maximum that is being searched, i.e., xcand =
αk(qmax). Remember that the candidate points are checked in increasing order.

An example for the evaluation of NoR(z, q) (in the case of the computation
of the minimum, k = 1) is shown in the right part of Figure 5.

This concludes the description of our proposed NoR-based special cylindrical
algebraic decomposition. Using the described NoR criterion to check the individual
candidate points during the lifting, we obtain an algorithm that does not need the
conditions of the Sturm-Habicht sequence.



Optimizing a particular real root by a special CAD 13

SH conditions added Extraction of the maximal real root

Figure 6. Left: Trace of the input polynomial and the Sturm-
Habicht (SH) conditions of Example 5.1 (Sect. 5).
Right: The shaded area (originating from the SH-conditions) ex-
tracts the maximal real root.

4.4. Advantage over the conventional QE approach

The proposed algorithm (NoR criterion based) uses as input only the polynomial
f(x; q) to construct the projection factors that lead to the set of candidate points.
Thereby, the algorithm constructs a (sub-)set of the cells (regions) shown in the
left part of Figure 5. The direct QE-approach, however, employs a set of ad-
ditional polynomial conditions to identify the root of interest. These conditions
originate from the Sturm-Habicht sequence of input polynomial f . An outline of
the Sturm-Habicht sequence can be found in the Appendix. In short, the number
of polynomial conditions increases, because we need to identify the chosen real
root. As a consequence, the number of candidate points will increase considerably.
To give an example, see Figure 6, which derives from the same input polynomial
as the example in Figure 5 (input polynomial as in Example 5.1 of Section 5).
The largest real root α1 is chosen in this example. On the left side, you see the
input polynomial together with the additional conditions, dividing the plane into
a far greater number of cells than in Figure 5. On the right part of the figure, the
area restrictions from the Sturm-Habicht conditions are coloured. The only part
of the root traces that lies in this area is exactly the maximal real root α1. This
shows examplarily the increase in candidate points due to the increase of cells in
the decomposition of the parameter vector space.

The main advantage of our proposed method is to solve the problem without
increasing the number of conditions (polynomials) prior to the projection phase.
The additional computation to check the individual candidates is by far outweight
by this advantage. The examples computed in Section 5 support this asserton.

5. Computational Results

In order to confirm the improvement of the aforementioned specialization of the
CAD, we developed a Maple-based prototype program implementing our approach



14 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

as described in Section 4. By comparing the computation times of this prototype
to those resulting from an existing Qepcad b implementation, we can confirm
that the computation time is reduced significantly, as soon as the problem reaches
a size where implementation issues can be ignored.

The computation times for a set of 6 examples were measured. The compu-
tations were executed on a personal computer equipped with an Intel Core Solo
CPU U1500, 1.33 GHz processor, with 2 GB of memory. The existing implementa-
tion uses a Linux based Qepcad b (ver. 1.50), whereas the prototype uses a Linux
based Maple 9.5.

The computation times in Table 1 are the times spent to calculate the
smallest and the largest value of the specified real root of the polynomial fk(x; q)
in Dq. The input of the Qepcad b program consisted of three parts, the condition
fk(x; q) = 0, the conditions ψ(x; q) coming from the Sturm-Habicht sequence, and
the conditions φi(qi) indicating the domains of the qi’s. The input of the prototype
consisted only the two condition sets fk(x; q) = 0 and φi(qi).

The Qepcad b input parameter “N” that controls the memory allocation in
the initialization process of the program was chosen as the minimal value where the
memory suffices and no garbage collection occurs during computation. We used as
measured computation time the “System time after the initialization” that appears
in the Qepcad b output.

We will now present the examples we used, Examples 5.1-5.6. Note that the
examples were not used in factorized form when used as input to the program,
although being presented in factorized form below to facilitate understanding.

Example 5.1. The first example is a simple example of a polynomial containing
only one parameter q1:

f1(x; q1) := (x− q1)(x− (q1 − 1)2)(x− (
q1
4

+
2

3
)) , q1 ∈ [−1, 3].

From the factorization of f1(x; q1), it is evident that the 3 roots have the values

λ1 = q1, λ2 = q21 , λ3 =
q1
4

+
2

3
.

The maximal real root takes values in the interval
[

1

96
(91 −

√
537), 4

]

≈ [0.7065, 4].

The minimum is attained for q1min = 9
8 − 1

24

√
537 ≈ 0.159 and the maximum for

q1max = −1.
The values for x and q1 are algebraic numbers, so we represent them internally by
intervals. These intervals are obtained as the isolating intervals of the real roots
of a defining polynomial. The tolerance, i.e., the size of the isolating intervals,
can be adjusted and was set to 2−27 in the example runs. In the discussion of
the examples, we will only give the decimal representation of the results as the
defining polynomials would take up too much space.



Optimizing a particular real root by a special CAD 15

The computation time was 116 ms for the Qepcad b program and 180 ms
for our Maple program. The Qepcad b program is faster, but as it is a compiled
program (whereas Maple uses an interpreted language), we should regard the result
as the consequence of implementation issues rather than the complexities of the
algorithms.

Example 5.2. The next example is a more complicated version of Example 5.1.
We introduce an additional parameter q2 and added its square to each root of
f1(x; q1). So, we define f2(x; (q1, q2)) := f1(x− q22 ; q1), which factorizes as

f2(x; (q1, q2)) = (x− (q1 + q22))(x− ((q1 − 1)2 + q22))(x− (
q1
4

+
2

3
+ q22)) .

We consider the following domain:

q1 ∈ [−1, 3], q2 ∈ [−1, 1].

The maximal real root takes values in the interval [0.7065, 5]. The minimum is
attained for (q1, q2)min = (0.159, 0), which lies in the interior of D(q1,q2). The
maximum is attained for (q1, q2)max = (−1,−1), a vertex point of D(q1,q2).

The computation time for this example was 5.036 s for the Qepcad b pro-
gram vs. 4.384 s for our Maple implementation. This time, we can observe the
positive effect of our approach. On the one hand, the usage of the NoR criterion
makes it unnecessary to project any additional polynomials due to the Sturm-
Habicht sequence. On the other hand, the maximum is attained at a vertex point,
which enables us to efficiently use partial lifting.

Example 5.3. In the second example, Example 5.2, the roots of x depended on the
square of q2. In this example, we change the parametrization by substituting β for
q22 . By inserting this change, we will see the strong dependency of the computation
time w.r.t. the parametrization:

f3(x; (q1, β)) := (x− (q1 + β))(x− ((q1 − 1)2 + β))(x− (
q1
4

+
2

3
+ β)) ,

q1 ∈ [−1, 3], β ∈ [0, 1]

The behaviour of the maximal real root does not change due to the change of
parametrization. It still takes values in the interval [0.7065, 5]. The minimum is
now attained for (q1, β)min = (0.159, 0) which lies on the boundary hyperplane,
whereas the maximum is attained for (q1, β)max = (−1, 1), a vertex point ofD(q1,β).

This change of parametrization greatly affects the computation times. Two
effects can be observed. First, the degree of f3 in the second parameter changed
from degree 2 (q22) to degree 1 (β). Therefore, the projection and base phase
contains polynomials of lower degree, speeding up the computation. Second, the
size of the parameter domain decreases and the optimal point moves from the
interior of D(q1,q2) to the boundary of D(q1,β). In this particular example, the
number of candidate points that are checked for the minimum thereby decreased
and the partial lifting is very efficient.



16 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

The computation time for this example was 4.816 s for the Qepcad b pro-
gram, whereas we measured 1.220 s for our Maple implementation. So, an efficient
parametrization can make a great difference for the computations. In this setting,
our prototype finishes after one fourth of the time spent by the Qepcad b program.

Example 5.4 (Computation of the second largest root α2). The next example is
an artificially constructed problem, which contains 3 parameters and a varying
leading coefficient, lc(q) = (q1 − 10). Essentially, it is identical to Example 5.3
with two additional roots and a varying leading coefficient. The leading coefficient
becomes zero at q1 = 10 which lies outside of the parameter domain D(q1,β,γ).

We will consider the problem of calculating the second largest real root of
f4(x; (q1, β, γ)). One of the two additional roots is a constant root x = 6, which
is larger than all real roots of f3. The other root we added, γ, does not interfere
with the largest real root of f3. Thus, the range of the second largest root of f4
equals the range of the maximal real root of f3:

f4(x; (q1, β, γ)) := (q1 − 10) (x− 6) (x− γ)(x− (q1 + β))

× (x− ((q1 − 1)2 + β)) (x− (
q1
4

+
2

3
+ β)) ,

q1 ∈ [−1, 3], β ∈ [0, 1], γ ∈ [−1, 1]

So, the second largest root takes values in the interval [0.7065, 5]. The minimum
is attained for (q1, β, γ)min = (0.159, 0, 0) and the maximum for (q1, β, γ)max =
(−1, 1,−1).

The computation time for this example was 7.860 s for our Maple implemen-
tation. We didn’t prepare the input for the Qepcad b program containing the
condition “second largest root”, and thus we skipped this computation.

Example 5.5 (H2 regulation problem). The next example originates from the H2

regulation problem [6]. It describes the optimization of tuning parameters of a plant
from an admissible region to minimize the optimal performance level. A detailed
description can be found in [5]. In Figure 7, P (s) is the transfer function of the
SISO continuous-time, linear, time-invariant plant, whereas K(s) is the transfer
function of the controller. The signals r(t), u(t), y(t), d(t), and e(t) := r(t)−u(t)
are the reference input, the control input, the control output, the disturbance in-
put, and the error signal, respectively. In the case of the H2 regulation problem,
it is assumed that there is no reference input, i.e., r(t) ≡ 0, and that the distur-
bance input takes the form of an impulse signal, i.e., d(t) = δ(t). The controller is
designed to regulate the plant output to zero. The function

E(P,K) :=

∫
∞

0

(
|y(t)|2 + |u(t)|2

)
dt



Optimizing a particular real root by a special CAD 17

K(s) P (s)
y

d

ur e

Figure 7. Unity feedback system configuration

is used to measure its performance. The best (minimal) performance level is thus
given by

E∗(P ) := inf
K stabilizing

E(P,K).

In [5], it is shown that the best H2 regulation performance E∗ can be expressed
explicitly in terms of two sums of roots, when the plant P is a) strictly proper,
and b) minimum phase (yet possibly unstable).

The sum of roots expression for E∗(P ) can then be used to design an optimal
plant P ∗, which – when used in conjunction with its optimal controller Kopt(P

∗)
– achieves the best possible E∗(P ), i.e., P ∗ = argminP {E∗(P )}.
Here we consider the following plant:

P (s) :=
(3 − 2q1)(1 + q22)

s(s− 2q21 + q2)
, q1 ∈ [0, 1], q2 ∈

[
9

10
,

11

10

]

.

The minimal performance level is given by the value of the maximal real root of
the polynomial f5(x; (q1, q2)) [5], as defined below:

f5(x; (q1, q2)) := x4 + (−8 q21 + 4 q2)x
3 + (16 q41 − 16 q21 q2 + 4 q22)x2 − 36 + 96 q1 q

2
2

+48 q1 − 72 q22 − 16 q21 − 36 q42 + 48 q1 q
4
2 − 32 q21 q

2
2 − 16 q21 q

4
2 ,

q1 ∈ [0, 1], q2 ∈
[

9

10
,

11

10

]

(5.1)

The maximal real root takes values in the interval [2.301, 3.298]. The minimum is
attained for (q1, q2)min = (0.393, 9

10 ) and the maximum for (q1, q2)max = (1, 9
10 ).

The computation time for this example was 18.241 s for the Qepcad b pro-
gram vs. 1.220 s for our Maple implementation.

Example 5.6 (H∞-norm computation). As described in Section 1, the H∞-norm
computation problem can be reformulated as a root optimization problem.

Consider the transfer function matrix

G(s) :=








2
(
1 − 50α2

)

s2 + 1/10 s+ 1

2 s+ 5 + α

s2 + 1/10 s+ 1

1

s2 + (1/4 + α) s+ 10

30 (1 + 7α)

s2 + (1/4 + α) s+ 10







.



18 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

We want to calculate the frequency-restricted H∞-norm of G(s):

‖G(s)‖∞,[0,3] = sup
ω∈[0,3]

[G(jω)] ,

where σmax is the maximal real root of det
(
λ2I −GT (−jω)G(jω)

)
.

To reduce the degree, we set λ̃ = λ2 and write f6(λ̃; (α, ω)) := det
(
λ̃I−GT (−jω)G(jω)

)
.

Thus we get:

f6(λ̃; (α, ω)) :=
(
160000 − 350300ω + 1600ω3 α2 + 800ω3 α+ 800αω

+1600α2 ω − 1592αω2 − 3184α2 ω2

+225081ω2 − 35084ω3 + 1600ω4
)
· λ̃2

+
(
319638400α4 ω + 303200ω α3 − 16000000α6 ω + 127631900α2 ω

−8000000α5 ω − 1600000000α4 + 3153884ω − 6400ω3

−69928000α2 ω2 − 20179200αω2 + 40414200αω − 21760000α

−16000000α4 ω2 − 6720000α2 − 6081600 − 1360400ω2
)
· λ̃

+4840000 − 13756800000α4 + 201600000000α5 + 73744000α

−7718400000α3 + 705600000000α6 + 6400ω − 247102400α2.

We optimize the maximal real root of f6(λ̃; (α, ω)) for parameter values α ∈
[−0.15, 0.15] and ω ∈ [0, 3] to compute the largest and smallest values for ‖G(s)‖2

∞,[0,3].

The trace of the roots of f6(λ̃; (α, ω)) can be seen in the left part of Figure 8. In
the right part, the logarithm of the roots is plotted to show more clearly the two
surfaces formed by the two roots of f6(λ̃; (α, ω)). Also, the roots are shown for a
wider parameter range, ω ∈ [0, 9].

With the use of our prototype program, we can determine the range of the
maximal root of f6(λ̃; (α, ω)). This is equal to the range of the square of the
frequency-restricted H∞-norm of G(s),

range(‖G(s)‖2
∞,[0,3]) = [min(σ2

max),max(σ2
max)] = [8.878, 3324.7].

In fact, the output of our prototype gives the minimum value min(σ2
max) = 8.878

as belonging to the interval min(σ2
max) ∈ [ 892459525321268435456 , 446229762661

134217728 ]. An algebraic
description as some root of a defining polynomial is also available. The same is
valid for the maximum of max(σ2

max).
The corresponding parameter values are (α, ω)min = (−0.15, 3) for min(σ2

max) and
(α, ω)max = (0.0146, 0.996) for max(σ2

max).
For this example, the computation with the Qepcad b program exits with

the error “prime list exhausted”. This is an error occurring in the saclib2.2.0 library
when too many cells are needed.
The computation with our Maple implementation obtained the answer in 65.632 s.
When comparing this time with the computation time from Examples 5.1-5.5,
the growth is significant. The long computation time is due to the high order
dependency of f6(λ; (α, ω)) on the parameters α and ω.



Optimizing a particular real root by a special CAD 19

-0.15
-0.1

-0.05
alpha0

0.05
0.1

0.15
00.51

omega

1.522.53
0

500

1000

1500

2000

2500

3000

-0.15
-0.1

-0.05
alpha0

0.05
0.1

0.15
0246 omega8

-4

-2

0

2

Figure 8. Graph of the roots of f6(λ̃; (α, ω))

Left: Trace of the roots of f6(λ̃; (α, ω)). The maximum of the largest real root
attains a value > 3000, whereas the minimum is close to 0.

Right: Logarithm (log10) of the left graph, showing the function for a larger

parameter range. The two roots of f6(λ̃; (α, ω)) form two surfaces in the
parameter domain.

Qepcad b Prototype

Example 5.1 0.116 0.180

Example 5.2 5.036 4.384

Example 5.3 4.816 1.220

Example 5.4 not computed 7.860

Example 5.5 18.241 0.844

Example 5.6 failed 65.632

Table 1. Comparison of computation times (sec)

The computation times measured for Examples 5.1-5.6 are summarized in
Table 1. Our prototype program computed the optimal values faster than the
Qepcad b in all examples apart from Example 5.1 (due to implementation issues)
and Example 5.4 (not computed with the Qepcad b program, so no comparison



20 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

possible). Therefore, we can say that in spite of an unfavourable implementation,
our prototype program outperformed the conventional approach that employs con-
ditions from the Sturm-Habicht sequence.

6. Concluding Remarks

In this work, we presented an algorithm to optimize a particular real root of a
polynomial. We used the fact, that we do not focus on all real roots but only
on one particular real root. Via introducing the Number-of-Root (NoR) criterion,
we were able to propose a specialized cylindrical decomposition that does not
require any additional condition sets obtained from the Sturm-Habicht sequence.
Combining this approach with partial lifting techniques, we reduced the problem
size to a far more manageable size. We implemented the algorithm in Maple and
tested it against a conventional implementation in Qepcad b .

Our prototype program outperformed the conventional approach that em-
ploys conditions from the Sturm-Habicht sequence. Therefore, our approach rep-
resents a significant advancement; we were able to cut down the computation time
while enlarging the size of the problems that are tangible for our algorithm. Also,
the exactness of the problem solution remains guaranteed.

Appendix A. Real Root Counting — Sturm-Habicht Sequence

In Problem 2.3, we introduced an algebraic expression ψ(x; q) that describes the
chosen root. In order to obtain such an algebraic expression, the Sturm-Habicht
sequence SH (f(x))[3] of a polynomial f(x) can be used. It is defined as

SH (f(x)) :=
{
g0(x), . . . , gs−1(x)

︸ ︷︷ ︸

f ′(x)

, gs(x)
︸ ︷︷ ︸

f(x)

}
,

where g0(x), . . . , gs−2(x) is the subresultant chain of f and f ′ (changed signs).

A.1. Sturm–Habicht Sequence and Real Root Counting

The identification of a real root is done via counting the number of real roots. This
is done as follows. The function WSH(f ;α) denotes the number of sign variations
of the number sequence obtained when evaluating SH (f(x)) at α. The function
WSH(f ;α, β) then gives the difference between WSH(f ;α) and WSH(f ;β).
Namely,

WSH(f ;α) := # sign variations in {g0(α), . . . , gs(α)},
WSH(f ;α, β) := WSH(f ;α) −WSH(f ;β); α, β∈R ∪ {−∞,+∞}.

The important result is that the value of this function, WSH(f ;α, β), gives the
number of roots of f(x) in the interval (α, β):

WSH(f ;α, β) = # real roots of f(x) in (α, β).



Optimizing a particular real root by a special CAD 21

A.2. Algebraic representation of the maximal real root

Thus, we can give the following algebraic representation of the maximal real root:

A value x0 is the maximal real root in f

⇔ f(x0) = 0 ∧ there is no other zero of f in (x0,∞)

⇔ f(x0) = 0 ∧WSH(f ;x0,∞) = 0

These Sturm-Habicht conditions tend to be complicated conditions of high
degree. Thus, the introduction of these additional constraints to identify a root
results in a large number of additional cells in the cylindrical algebraic decom-
position. The following example will illustrate this increased complexity of the
conditions.

Example A.1.

f(x; (q1, q2)) =
(
x− (q1 + q22)

)(
x− ((q1 − 1)2 + q22)

)(
x− (q1/4 + 2/3 + q22)

)
,

D(q1,q2) = [−1, 3] × [−1, 1].

The corresponding condition set

∃(q1, q2)
[
f(x; (q1, q2)) = 0 ∧ ψ(x; (q1, q2)) ∧ φ(q1, q2)

]

is given as

∃q1 ∃q2
[
q1 ≥ −1 ∧ q1 ≤ 3 ∧ q2 ≥ −1 ∧ q2 ≤ 1 ∧

(
x− (q1 + q22)

)(
x− ((q1 − 1)2 + q22)

)(
x− (q1/4 + 2/3 + q22)

)
= 0∧

36x2 + (18q1 − 40 − 24q21 − 72q22)x

+ 7q1 − 19q21 + 15q31 + 40q22 + 8 + 36q42 + 24q21q
2
2 − 18q1q

2
2 > 0∧

(288q41 − 1512q31 + 2490q21 − 1224q1 + 224)x

− 288q41q
2
2 + 1512q31q

2
2 − 160 − 339q31 − 1057q21 + 796q1

− 224q22 − 2490q21q
2
2 + 1224q1q

2
2 − 180q51 + 687q41 > 0

]
,

where the last two inequalities represent the conditionWSH(f(x; q);x,∞) = 0 that
identifies the maximal real root of f(x; q).

References

[1] Brown,C. W.: Qepcad b: A program for computing with semi-algebraic sets using
CADs, ACM SIGSAM Bulletin, Vol. 37, No. 4, pp. 97–108, 2003.

[2] Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic de-
composition, Proceedings Second GI Conference on Automata Theory and Formal
Languages, volume 33 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1975, 134–183.



22 S. Gandy, M. Kanno, H. Anai and K. Yokoyama

[3] González-Vega, L., Recio, T., Lombardi, H., and Roy, M.-F.: Sturm-Habicht se-
quences determinants and real roots of univariate polynomials, Quantifier Elimina-
tion and Cylindrical Algebraic Decomposition, (Caviness, B. F., and Johnson, J. R.,
eds.), Texts and Monographs in Symbolic Computation, Springer, Wien, New York,
1998, 300–316.

[4] Kanno, M., Yokoyama, K., Anai, H., and Hara, S.: Parametric optimization in control
using the sum of roots for parametric polynomial spectral factorization, Proceedings
of the International Symposium on Symbolic and Algebraic Computation, ISSAC
2007 (Brown, C. W., ed.), ACM, New York, 2007, 211–218.

[5] Kanno, M., Hara, S., Anai, H., and Yokoyama,K.: Sum of Roots, Polynomial Spectral
Factorization and Control Performance Limitations, Proceedings of the 46th IEEE
Conference on Decision and Control LA, USA, Dec. 12-14, 2007.

[6] Chen, J., Hara, S., and Chen,G.: Best tracking and regulation performance under
control energy constraint, IEEE Transactions on Automatic Control 48(8):1320-
1336, August 2003.

[7] Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V.: Linear Matrix Inequalities
in System and Control Theory, SIAM Studies in Applied Mathematics vol. 15, 1994.

[8] Anai, H. and Parrilo, P. A.: Convex Quantifier Elimination for Semidefinite Pro-
gramming, Proceedings of the 6th International Workshop on Computer Algebra in
Scientific Computing (CASC) 2003, 3-11, 2003.

[9] Anai, H. and Hara, S. and Kanno, M. and Yokoyama,K.: Parametric Polynomial
Spectral Factorization Using the Sum of Roots and Its Application to a Control
Design Problem, Journal of Symbolic Computation (to appear).

[10] Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and mono-
graphs in symbolic computation, (Caviness, B.F., and Johnson, J.R., eds.), Springer-
Verlag, 1998.

[11] Gantmacher, F. R.: The Theory of Matrices, Chelsea Publishing Company, 1960,
vol.2, New York, NY.

[12] Akritas, A. G.: Elements of Computer Algebra with Applications, John Wiley & Sons,
1989, New York, NY.

Silvia Gandy
Tokyo Institute of Technology
Meguro-ku, Ookayama 2-12-1-S3-60,
152-8550 Tokyo, Japan

e-mail: gandy@comm.ss.titech.ac.jp

Masaaki Kanno
CREST, Japan Science and Technology Agency
4-1-8 Honcho,
Kawaguchi-shi, Saitama
332-0012, Japan

e-mail: M.Kanno.99@cantab.net



Optimizing a particular real root by a special CAD 23

Hirokazu Anai
Fujitsu Laboratories Ltd/ Kyushu University
4-1-1 Kamikodanaka,
Nakahara-ku, Kawasaki
211-8588, Japan
e-mail: anai@jp.fujitsu.com

Kazuhiro Yokoyama
Rikkyo University
3-34-1 Nishi Ikebukuro,
Toshima-ku, Tokyo
171-8501, Japan
e-mail: yokoyama@rkmath.rikkyo.ac.jp



List of MI Preprint Series, Kyushu University
The Grobal COE Program

Math-for-Industry Education & Research Hub

MI

2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost
Hermitian manifolds

2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-
curve finite element scheme

2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-
adic field

2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI, & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical al-
gebraic decomposition




