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Distances of Centroid Sets in a Graph-Based Construc-
tion for Information Security Applications

J. Abawajy, A.V. Kelarev, M. Miller and J. Ryan

Abstract. The aim of this paper is to prove that, for every balanced digraph, in every incidence
semiring over a semifield, each centroid set J of the largest distance also has the largest weight, and
the distance of J is equal to its weight. This result is surprising and unexpected, because examples
show that distances of arbitrary centroid sets in incidence semirings may be strictly less than their
weights. The investigation of the distances of centroid sets in incidence semirings of digraphs has
been motivated by the information security applications of centroid sets.
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1. Introduction
The investigation of the centroid sets in ring and semiring constructions based on digraphs has been
motivated by the information security applications of the centroid sets (cf., [1, 15, 17, 35]). These
applications rely on the sets of centroids with large distances (cf. [7, 27, 28, 30]). It is well known
and easy to verify that in every ring the distance of each centroid set is equal to its weight (cf.
[29, 22]). The notion of a weight is conceptually simpler than the distance, and so all previous
studies in the literature have so far only dealt with the weights of the centroid sets. Likewise, the
investigation of centroid sets in more general semiring constructions has initially focused on the
weights. However, in semiring constructions the value of a distance may be strictly less than the
weight and it is precisely the distance of a centroid set that is crucial for applications (see Section 3
for more details). Therefore it is important to consider the distances of centroid sets and compare
them to the weights of the sets.

This is the first article devoted to the distances of the centroid sets in semiring constructions. In-
cidence semirings of directed graphs are well known and have good relations to other constructions.
They have been considered previously with respect to other problems, for example, in [5, 6, 18].

We tackle the distances of the centroid sets in the incidence semirings of digraphs. Our main
theorem establishes that in every incidence semiring of a balanced digraph over a semifield, each
centroid set J of the largest distance also has the largest weight at the same time, and the distance
of J is equal to its weight (see Theorem 4.1 in Section 4). This result is surprising and unexpected,
because in general the distances of centroid sets in incidence semirings may be strictly less than their
weights (see Example 4).
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2. Preliminaries
We use standard notions and terminology and refer the readers to the books [19, 22, 23, 32] and
papers [9, 16, 27] for more detailed discussions. This section contains concise prerequisites required
for the main theorem and its proof. Here the word ‘digraph’ means a finite directed graph without
multiple parallel edges but possibly with loops. Let us also refer to the recent survey [2] and articles
[20, 21], where the readers can find additional background information. Throughout this paper, the
set of all positive integers is denoted by N, and N0 = N∪{0}. As explained in [5], in the investigation
of incidence semirings of digraphs it is convenient to include semirings without identity elements
into consideration. This means that we use the following definition of a semiring.

Definition 2.1. A semiring is a set R with two binary operations, addition + and multiplication ·,
such that the following conditions hold:

(S1) (R,+) is a commutative semigroup with zero 0,
(S2) (R, ·) is a semigroup,
(S3) multiplication distributes over addition,
(S4) zero 0 annihilates R, i.e., 0 ·R = R · 0 = 0.

A semifield is a semiring F such that the set of all nonzero elements of F forms a group
with respect to multiplication. An example of a semifield is the Boolean semiring, which is the set
B = {0, 1} with operations + = max and · = min. The identity element of a semifield F is denoted
by 1 or 1F . The notion of an incidence semiring is a generalization of an incidence ring (cf. [22,
§3.15], [26] and [32]).

Definition 2.2. Let D = (V,E) be a digraph, and let R be a semiring. The incidence semiring of
D over R is the set consisting of zero 0 and all finite sums

∑n
i=1 ri(gi, hi), where n ≥ 1, ri ∈

R, (gi, hi) ∈ E, equipped with the standard addition and multiplication defined by the distributive
law and the rule

(g1, h1) · (g2, h2) =

{
(g1, h2) if h1 = g2 and (g1, h2) ∈ E,
0 otherwise, (2.1)

for all (g1, h1), (g2, h2) ∈ E. Empty sums are assumed to be equal to zero. The incidence semiring
of D over R is denoted by ID(R).

Every element x in ID(R) has a unique representation as a sum x =
∑

e∈E xee, where xe ∈ R
for all e ∈ E, and where only a finite number of the coefficients xe are nonzero. If e is an edge in
E and 1 is the identity element of R, then the element 1e of ID(R) can be also written down using
the notation e = 1e. A digraph D = (V,E) is said to be balanced if, for all g1, g2, g3, g4 ∈ V with
(g1, g2), (g2, g3), (g3, g4), (g1, g4) ∈ E, the following equivalence holds:

(g1, g3) ∈ E ⇔ (g2, g4) ∈ E,

see [22, §3.15].

Definition 2.3. For each balanced digraph D and every semiring R, any set of elements g1, . . . , gk ∈
ID(R)1 = ID(R) ∪ {1} generates the centroid set C(g1, . . . , gk) consisting of all sums of these
elements and their multiples, i.e.,

C(g1, . . . , gk) =

=


m1∑
j=1

`1,jg1r1,j + · · ·+
mk∑
j=1

`k,jgkrk,j

∣∣∣∣∣∣∣ `i,j , ri,j ∈ ID(R)1

m1, . . . ,mk ∈ N

 . (2.2)
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For a pair of elements x, y ∈ ID(R), where x =
∑

e∈E xee and y =
∑

e∈E yee, the distance
from x to y is denoted by d(x, y) and is defined as the number of edges e in E such that xe 6= ye.
The distance of a subset S of ID(R) is the minimum nonzero distance d(x, y) between elements
x, y ∈ S. The weight of an element x =

∑
e∈E xee ∈ ID(R) is denoted by wt(x) and is defined as

the number of nonzero coefficients xe in the sum. The weight of a subset S of ID(R) is the minimum
weight of a nonzero element in S. Let us refer to [22, 27, 29] for more details and the definitions of
other standard terms not defined in the paper.

Our examples use the concept of a semigroup semiring (cf. [22, §3.2] and [23, Chapter 10]).

Definition 2.4. Let R be a semiring, and let S be a semigroup. The semigroup semiring is the set

R[S] =

{
n∑

i=1

risi

∣∣∣∣∣ n ∈ N, ri ∈ R, si ∈ S

}
(2.3)

equipped with addition and multiplication defined by the associative and distributive laws and the
rules r1s1 + r2s1 = (r1 + r2)s1 and (r1s1)(r2s2) = (r1r2)(s1s2), for all r1, r2 ∈ R, s1, s2 ∈ S.

An element x of a semigroup is called an idempotent if x = x2. A commutative semigroup
entirely consisting of idempotents is called a semilattice. Every semilattice is a partially ordered set
with respect to the natural order defined by x ≤ y ⇔ xy = x. This makes it possible to represent
and define semilattices using diagrams.

3. Motivation
Efficient classifiers play crucial roles in information security (cf. [1, 15, 24, 30, 35]), as well as
other application areas (cf. [4, 3, 25, 33]). Ring and semiring constructions can be used in order to
generate convenient sets of centroids for centroid-based classifiers and to design combined multiclass
classifiers capable of correcting the errors of individual initial classifiers. Accordingly, centroid sets
in semiring constructions defined by graphs can be applied in the following two ways.

First, centroid sets are valuable for the design of centroid-based classifiers. They conduct the
classification process as illustrated in Figure 1. After selecting appropriate attributes, all instances of
data are representated as sequences of a fixed number m of attributes (a1, . . . , am), where ai ∈ F
and F can be regarded as a semifield. The set of all sequences of length m with entries in F is
denoted by Fm. Every centroid-based classifier selects special elements c1, . . . , ck in Fm. These
special elements are called centroids (see, for example, [7, 27, 28, 30]). Each centroid ci, where
i = 1, . . . , k, defines its own class N(ci) that consists of all vectors v such that ci is the nearest
centroid of v. This means that every vector is assigned to the class of its nearest centroid.

Second, centroid sets are often used in information security for analysis of data to combine
initial binary classifiers (see, for example, [17, 35]). Recall that a classifier is said to be binary if it
divides all data into two classes. Initially, several individual binary classifiers are trained on a data
set. Then they are combined into one unified classification scheme with several classes as depicted
in Figure 2. This method is often recommended for various applications, because of its effectiveness
and ability to correct errors of the individual initial classifiers (cf. [34], Section 7.5).

If the number of individual binary classifiers is equal to m and the set of their outputs can be
endowed with operations to turn it into a semifield, then every collection of outputs of the initial
classifiers can be represented as a vector (o1, . . . , om) ∈ Fm. To define the unified multiclass classi-
fier a set of centroids c1, . . . , ck is chosen in Fm. The class N(ci) of the centroid ci is defined as the
set of all output vectors that have ci a nearest vector among all the centroids selected. This procedure
of defining unified multiclass classifiers by combining initial binary classifiers is also often used in
information security.
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FIGURE 1. Centroid-based classifier.
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FIGURE 2. Combined multiclass classifier.

4. Main Result
Our main theorem shows that, in every incidence semiring over a semifield, each centroid set J of
the largest distance has the largest possible weight, and the distance of J is equal to its weight.

Theorem 4.1 (Main Theorem). Let D be a balanced digraph, F a semifield, and let ID(F ) be an
incidence semiring. If J is a centroid set with the largest distance among the distances of all centroid
sets in ID(F ), then J also has the largest weight among the weights of all centroid sets in ID(F )
and the distance of J is equal to its weight.

An example of a centroid set J in an incidence semiring such that the distance d(J) is strictly
less than the weight wt(J) is shown in Figure 3.

Example. Let n be a positive integer, F a semifield, and let D0 = (V0, E0) be the digraph with
the set V0 = {a0, b0, c0} of vertices and the set E0 = {(a0, b0), (a0, c0)} of edges. For a positive
integer n and i = 1, . . . , n, let Di = (Vi, Ei) be the digraph with the set Vi = {ai, bi} of vertices
and the set Ei = {(ai, bi)} of edges. Let D = (V,E) = D0 ∪D1 ∪ · · · ∪Dn be the union of these
digraphs, i.e., V = V0 ∪ V1 ∪ · · · ∪ Vn and E = E0 ∪ E1 ∪ · · · ∪ En. Put x =

∑n
i=0(ai, bi) and

y = (a0, c0) +
∑n

i=1(ai, bi). Then it is easily seen that the centroid set C(x, y) coincides with the
set {fx | f ∈ F} ∪ {fy | f ∈ F}. Therefore d(C(x, y)) = 1 and wt(C(x, y)) = n+ 1.
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FIGURE 3. Digraphs D0, D1, D2 such that ID0×D1×D2(F ) has a centroid set J
with d(J) < wt(J).

A semiring R is said to be zero-divisor-free, if xy = 0 implies x = 0 or y = 0, for any
x, y ∈ R. Clearly, every semifield is zero-divisor-free. On the other hand, there exist zero-divisor-
free semirings which are not semifields.

Example. Let S = {s0, s1} be a semilattice such that s0s1 = s0, as shown in Figure 4. Consider the
semigroup semiring B[S] over the Boolean semiring B = {0, 1}. It is routine to verify that R = B[S]
is zero-divisor-free. However, (1s0)(1s1) = 1s0 in B[S]. Therefore R is not a semifield.

 

s1 

s0 

FIGURE 4. The semilattice S = {s0, s1} of Example 4 as a partially ordered set.

Our next example shows that it is impossible to generalize our main theorem by weakening the
hypothesis that F is a semifield and replacing it with the requirement that F be a zero-divisor-free
semiring with identity element. This example uses the notation GL defined in the next section, and
relies on Lemma 5.3 also proved in the next section. We keep the proofs, technical lemmas and def-
initions in the next section, but present the next example here, since it is essential for understanding
the role of conditions included in our main theorem.

Example. Let D = (V,E) be the digraph with the set V = {u1, u2, v, w} of vertices and the set E =
{(u1, v), (u2, v), (u1, w), (u2, w), (v, w)} of edges, and let F be the semiring of Example 1. Con-
sider the element x = s1(u1, v)+s0(u2, v) in ID(F ). It is straightforward to verify that x belongs to
GL, and so Lemma 5.3 tells us that d(C(x)) = wt(x). However, xs1(v, w) = s1(u1, w)+s0(u2, w)
and xs0(v, w) = s0(u1, w)+s0(u2, w) imply that d(C(x)) = 1 < wt(x). This example shows that
it is impossible to generalize our main theorem by weakening the hypothesis that F is a semifield
and replacing it with the requirement that F be a zero-divisor-free semiring with identity element.

It would be interesting to study the distances of centroid sets in the incidence semirings of
various important special classes of graphs. For example, Moore graphs are important and have been
investigated by many authors. Recall that a Moore graph or digraph is a graph or digraph that meets
the Moore bound or directed Moore bound, respectively. Let us refer to the survey [31] and articles
[8, 10, 11, 12, 14] for more information pertaining to the Moore graphs.
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Problem 1. For each positive integer n, find the largest possible integer m such that there exists a
Moore graph D with n vertices, a semifield and a centroid set J in ID(F ) such that d(C) = m.

5. Proof of the main theorem
Let us begin with an easy lemma, included for completeness.

Lemma 5.1. If C is a centroid set in a semiring, then d(C) ≤ wt(C).

Proof. Take x1, x2 in C such that d(C) = d(x1, x2). Then d(x1, x2) is the minimal nonzero
distance between a pair of elements in C(x). Let x be an element of C such that wt(x) = wt(C).
Then wt(x) = d(x, 0). Therefore d(x1, x2) ≤ wt(x) = wt(C). �

The following definitions are required for the proof of the main theorem. An element of ID(F )
is said to be homogeneous if it belongs to the union ∪e∈EFe. Following [6], for any vertex v ∈ V ,
we define the sets of vertices

In(v) = {w ∈ V | (w, v) ∈ E},
Out(v) = {w ∈ V | (v, w) ∈ E}.

Let us define the sets of edges

Ein = {(u, v) ∈ E | ∃w ∈ V : (w, u), (w, v) ∈ E},
Eout = {(u, v) ∈ E | ∃w ∈ V : (u,w), (v, w) ∈ E}.

For any pair of elements x =
∑

e∈E xee and y =
∑

e∈E yee in ID(F ), put

diff(x, y) = {e ∈ E | xe 6= ye}, (5.1)
supp(x) = {e ∈ E | xe 6= 0}. (5.2)

For a positive integer m ∈ N, denote by Pm the set of all pairs (U, v), where v ∈ V and U ⊆ In(v)
are such that |U | = m, (u, v) /∈ Ein for all u ∈ U , and the intersection Out(v)∩ Out(u) is equal to
the same set for all vertices u in U . Let WL be the largest positive integer such thatPWL

is not empty,
or zero if such integers do not exist. Denote by GL the set of all elements x =

∑
u∈U xu(u, v), for

all pairs (U, v) ∈ PWL
.

For the proof we need [6, Theorem 4.1], which gives a description of all centroid sets of the
largest weight. For convenience of the readers we include it as a separate lemma.

Lemma 5.2. ([6, Theorem 4.1]) Let R be a zero-divisor-free semiring with identity element, D a
balanced graph, and let C = C(g1, . . . , gk) be an ideal with the largest weight in ID(R). Then the
following conditions hold:

(i) wt(C) = max{1,WL,WR,WZ};
(ii) C contains an element of weight wt(C) belonging to the union of GZ , GL and GR;

(iii) wt(C(r)) = wt(r) = WZ , for all r ∈ GZ;
(iv) wt(C(r)) = wt(r) = WL, for all r ∈ GL;
(v) wt(C(r)) = wt(r) = WR, for all r ∈ GR.

Lemma 5.3. If x ∈ GL, then d(C(x)) = wt(x).

Proof. The definition of the set GL tells us that there exists a pair (U, v) ∈ PWL
such that |U | = WL

and
x =

∑
u∈U

xu(u, v) ∈ ID(F ), (5.3)

where 0 6= xu ∈ F . Therefore wt(x) = |U | = WL.
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To prove that d(C(x)) = wt(x), pick any pair of elements x(1), x(2) in C(x) such that
d(C(x)) = d(x(1), x(2)). Then d(x(1), x(2)) is nonzero and is the minimal distance between a
pair of elements that belong to C(x). Therefore d(x(1), x(2)) ≤ wt(x), because wt(x) = d(0, x)
and 0, x ∈ C(x). It remains to verify that the reversed inequality d(x(1), x(2)) ≥ wt(x) holds.

For i = 1, 2, it follows from (2.2) that x(i) can be represented in the form

x(i) =

k(i)∑
j=1

`
(i)
j xr

(i)
j , (5.4)

for some k(i) ∈ N0 and `
(i)
j , r

(i)
j ∈ ID(F ) ∪ {1}. We may assume that only nonzero summands

`
(i)
j xr

(i)
j have been included in the representation (5.4) for x(i). Since x was chosen in GL, we have

(U, v) ∈ PWL
. Therefore U is a subset of In(v) such that (u, v) /∈ Ein, for all u ∈ U . It follows

from (2.1) that ID(F )(u, v) = 0, for all u ∈ U . Therefore ID(F )x = 0. Hence `
(i)
j x = 0 for all

`
(i)
j ∈ ID(F ). Since only nonzero terms have been included in (5.4), further we may assume that all

the `
(i)
j are equal to 1 in the expression (5.4) for x(i). This means that

x(i) =

k(i)∑
j=1

xr
(i)
j , (5.5)

where k(i) ∈ N0 and r
(i)
j ∈ ID(F ) ∪ {1}. We can collect all similar terms with coefficients r

(i)
j

equal to 1 into one summand, and assume that from the very beginning x(i) has been rewritten in the
form

x(i) = m(i)x+

k(i)∑
j=1

xr
(i)
j , (5.6)

where k(i),m(i) ∈ N0 and r
(i)
j ∈ ID(F ).

Every element r(i)j ∈ ID(F ) =
⊕

e∈E Fe can be represented as a sum

r
(i)
j =

∑
e∈E

(r
(i)
j )ee, (5.7)

where (r
(i)
j )e ∈ F and where only a finite number of the coefficients (r(i)j )e are nonzero. Now we

substitute all expressions (5.7) for r(i)j in (5.6) and apply the distributive law. This rewrites x(i) in the

form similar to (5.6) with all the general elements r(i)j replaced by homogeneous elements (r(i)j )ee.

To simplify notation we may assume that from the very beginning all the elements r(i)j in (5.6) have

been chosen homogeneous, that is r(i)j = f
(i)
j (u

(i)
j , v

(i)
j ) for some f

(i)
j ∈ F , (u(i)

j , v
(i)
j ) ∈ E.

Since we have already assumed that xr(i)j 6= 0 in (5.6), it follows from (5.3) and (2.1) that

u
(i)
j = v, for all j = 1, . . . , k(i). Besides, (U, v) ∈ PWL

implies that the intersection Out(v) ∩
Out(u) is equal to one and the same set T for all u in U . Given that xr(i)j 6= 0, there exists w ∈ U

such that (w, v)(v, v(i)j ) 6= 0. Hence (w, v)(v, v
(i)
j ) = (w, v

(i)
j ) ∈ E by (2.1). In particular, v(i)j ∈

Out(v) ∩ Out(w) = T . Therefore v
(i)
j ∈ Out(v) ∩ Out(u) = T for all u ∈ U . By (2.1), we get

(u, v)(v, v
(i)
j ) = (w, v

(i)
j ) ∈ E, for all u ∈ U . Therefore, substituting the expression (5.3) for x in

(5.6) and applying (2.1), we get

x(i) = m(i)
∑
u∈U

xu(u, v) +

k(i)∑
j=1

(∑
u∈U

xuf
(i)
j (u, v

(i)
j )

)
, (5.8)
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where m(i), k(i) ∈ N0, 0 6= xu ∈ F , v(i)j ∈ V and 0 6= f
(i)
j ∈ F . Next, we show that two more

simplifications can be made to the expression (5.8).
First, suppose that v(i)j1

= v
(i)
j2

, for some 1 ≤ j1 < j2 ≤ k(i). Then the equality

xuf
(i)
j1

(u, v
(i)
j1
) + xuf

(i)
j2

(u, v
(i)
j2
) = xu(f

(i)
j1

+ f
(i)
j2

)(u, v
(i)
j1
)

implies(∑
u∈U

xuf
(i)
j1

(u, v
(i)
j1
)

)
+

(∑
u∈U

xuf
(i)
j2

(u, v
(i)
j2
)

)
=

(∑
u∈U

xu

(
f
(i)
j1

+ f
(i)
j2

)
(u, v

(i)
j1
)

)
.

Applying this we can combine the likely terms in (5.8). Therefore to simplify notation we may
assume that in the sum (5.8) from the very beginning all the v

(i)
j are pairwise distinct.

Second, suppose that v(i)j = v, for some 1 ≤ j ≤ k(i). Then we get (m(i)1F + f
(i)
j ) ∈ F and

m(i)xu(u, v) + xuf
(i)
j (u, v

(i)
j ) = (m(i)1F + f

(i)
j )xu(u, v

(i)
j ).

Therefore

m(i)
∑
u∈U

xu(u, v) +

(∑
u∈U

xuf
(i)
j (u, v

(i)
j )

)
=
(
m(i)1F + f

(i)
j

)(∑
u∈U

xu(u, v
(i)
j )

)
.

Applying this to combine similar terms in (5.8), we may assume that m(i) = 0 whenever there exists
j such that v(i)j = v.

In order to make it easier to compare x(1) and x(2), we are going to rewrite (5.8) in another
form. For i = 1, 2, put V (i) = {v(i)1 , . . . , v

(i)

k(i)}. Set V = V (1) ∪ V (2). Denote the elements of V
by v1, . . . , vk so that V = {v1, . . . , vk}. For i = 1, 2 and j = 1, . . . , k, if there exists ` such that
vj = v

(i)
` , then we put h(i)

j = f
(i)
` . If there does not exist ` such that vj = v

(i)
` , then we put h(i)

j = 0.

Using these new coefficients h(i)
j , we can rewrite (5.8) as follows

x(i) = m(i)
∑
u∈U

xu(u, v) +

k∑
j=1

(∑
u∈U

xuh
(i)
j (u, vj)

)
, (5.9)

where m(i), k ∈ N0, 0 6= xu ∈ F , vj ∈ V , h(i)
j ∈ F , and where all elements v1, . . . , vk are pairwise

distinct.
By the choice of the pair x(1), x(2), we have x(1) 6= x(2). Therefore there exists an element

(u0, v0) in diff(x(1), x(2)). Hence (5.9) implies

diff(x(1), x(2)) ⊆ supp(x(1)) ∪ supp(x(2)) ⊆ ∪{(u,w) | u ∈ U,w ∈ {v} ∪ V }.
Therefore u0 ∈ U and v0 ∈ {v} ∪ V . Consider two possible cases.

Case 1. v0 ∈ V . Without loss of generality we may assume that v0 = v1 and v1 ∈ V (1),
because V = V (1) ∪ V (2). Then h

(1)
1 6= 0. Clearly, the edge (u0, v0) occurs in the expressions (5.9)

for x(1) and x(2) with coefficients xu0
h
(1)
1 and xu0

h
(2)
1 , respectively. It follows from (u0, v0) ∈

diff(x(1), x(2)) that h(1)
1 6= h

(1)
2 . Given that F is a semifield, we get xuh

(1)
1 6= xuh

(1)
2 , for all

u ∈ U . (Notice that in this step of the proof we have to use the fact that F is a semifield. It is
impossible to weaken this condition by requiring that F be a zero-divisor-free semiring with identity
element. Indeed, there exist zero-divisor-free semirings with elements xu0

, xu1
, h

(1)
1 , h

(2)
1 such that

xu0
h
(1)
1 6= xu0

h
(2)
1 but xu1

h
(1)
1 = xu1

h
(2)
1 , see Example 4 in Section 4.) Hence

{(u, v1) | u ∈ U} ⊆ diff

(∑
u∈U

xu(u, v1)h
(1)
1 ,

∑
u∈U

xu(u, v1)h
(2)
1

)
, (5.10)
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because F is a semifield. Now, we look at two subcases.
Subcase 1.1. v0 6= v. Then expression (5.9) does not have any other summands that involve

edges ending in v1, with the exception of summands already listed in (5.10). Therefore (5.10) yields
us

{(u, v1) | u ∈ U} ⊆ diff(x(1), x(2)).

Thus, | diff(x(1), x(2))| ≥ |U | = wt(x), as required.
Subcase 1.2. v0 = v. Then v = v1, and so we can simplify (5.9) as follows. Note that m(i)1F+

h
(i)
1 ∈ F . Therefore m(i)xu(u, v) + xuh

(i)
1 (u, v1) = xu(m

(i)1F + h
(i)
1 )(u, v) implies that

m(i)
∑
u∈U

xu(u, v) +
∑
u∈U

xuh
(i)
1 (u, v1) =

∑
u∈U

xu(m
(i)1F + h

(i)
1 )(u, v).

Using this equality we can replace m(i) by 0 and at the same time replace h(i)
1 by (m(i)1F +xuh

(i)
1 )

in (5.9). In order to keep notation simple, this transformation allows us to assume that from the
very beginning m(i) = 0 in (5.9). This implies that expression (5.9) does not have any other nonzero
summands involving edges which end in v1, with the exception of summands already listed in (5.10).
Therefore (5.10) yields us {(u, v1) | u ∈ U} ⊆ diff(x(1), x(2)), and so | diff(x(1), x(2))| ≥ |U | =
wt(x), in this subcase, too.

Case 2. v0 = v /∈ V . Then m(1)xu0
6= m(1)xu0

. Therefore m(1)1F 6= m(1)1F in F . It follows
that m(1)xu 6= m(1)xu for each u ∈ U , because F is a semifield. Hence

{(u, v) | u ∈ U} ⊆ diff

(
m(1)

∑
u∈U

xu(u, v),m
(2)
∑
u∈U

xu(u, v)

)
. (5.11)

In this case other edges ending in v do not occur in any other summands from (5.9). Therefore (5.11)
implies

{(u, v) | u ∈ U} ⊆ diff(x(1), x(2)).

Hence | diff(x(1), x(2))| ≥ |U | = wt(x) in this case, too.
Thus, | diff(x(1), x(2))| ≥ wt(x) in all possible cases. This completes the proof. �

Example 4 demonstrates that the proof of Lemma 5.3 has to use the hypothesis that F is a
semifield.

For a positive integer m, let Qm denote the set of all pairs (v, U), where v ∈ V and U ⊆
Out(v) are such that |U | = m, (v, u) /∈ Eout for all u ∈ U , and the intersection In(v) ∩ In(u) is
equal to one and the same set for all vertices u in U . Denote by WR the largest positive integer such
that Qm is not empty, or zero if such positive integers do not exist. Let GR be the set of all elements
x =

∑
u∈U xu(v, u) ∈ IDout(F ), where 0 6= xu ∈ F and (v, U) ∈ QWR

.

Lemma 5.4. If x ∈ GR, then d(C(x)) = wt(x).

Proof. The proof is dual to that of Lemma 5.3, and so we omit it. �

Let GZ be the set of all elements x =
∑

(u,v)∈E\(Eout∪Ein)
xu,v(u, v) ∈ ID(F ) such that

0 6= xu,v ∈ F for all (u, v) ∈ E \ (Eout ∪ Ein). Put WZ = |E \ (Eout ∪ Ein)|.

Lemma 5.5. If x ∈ GZ , then d(C(x)) = wt(x).

Proof. The definition of the set GZ shows that

x =
∑

(u,v)∈E\(Eout∪Ein)

xu,v(u, v) ∈ ID(F ) (5.12)

where 0 6= xu,v ∈ F for all (u, v) ∈ E \ (Eout ∪ Ein). Therefore wt(x) = |E \ (Eout ∪ Ein)|.
To prove that d(C(x)) = wt(x), choose x(1), x(2) in C(x) such that d(C(x)) = d(x(1), x(2)).

Then d(x(1), x(2)) is the minimal nonzero distance between a pair of elements in C(x).
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For i = 1, 2, it follows from (2.2) that x(i) can be represented in the form

x(i) =

k(i)∑
j=1

`
(i)
j xr

(i)
j =

k(i)∑
j=1

 ∑
(u,v)∈E\(Eout∪Ein)

`
(i)
j xu,v(u, v)r

(i)
j

 (5.13)

for some k(i) ∈ N0 and `
(i)
j , r

(i)
j ∈ ID(F ) ∪ {1}. We may assume that only nonzero summands

`
(i)
j xr

(i)
j have been included in (5.13). For any edge (u, v) in (5.13), we have (u, v) /∈ Ein, and so

(2.1) implies that ID(F )(u, v) = 0. Hence `
(i)
j (u, v) = 0 for all `(i)j ∈ ID(F ). Since only nonzero

terms have been included in (5.13), further we may assume that all the `
(i)
j are equal to 1 in the

expression (5.13) for x(i). Similarly, (u, v) /∈ Eout and (2.1) yield us that (u, v)ID(F ) = 0. Hence
(u, v)r

(i)
j = 0 for all r(i)j ∈ ID(F ). Therefore we may also assume that all the r(i)j in (5.13) are equal

to 1. It follows that x(i) = m(i)x, for some m(i) ∈ N. Since x(1) 6= x(2), we get m(1)1F 6= m(2)1F ,
where 1F is the identity element of F . Therefore m(1)1Fxu 6= m(2)1Fxu, for each xu ∈ F , because
F is a semifield. Therefore d(x(1), x(2)) = E \ (Eout ∪ Ein) = wt(x), as required. �

Proof of Theorem 4.1. Choose a pair of elements x, y ∈ J such that d(x, y) = d(J). Let C be a
centroid set in ID(F ) such that the weight of K is the largest one among the weights of all centroid
sets in ID(F ). Condition (i) of Lemma 5.2 tells us that wt(C) = max{1,WZ ,WL,WR}. Therefore
the following cases are possible.

Case 1. wt(C) = 1. Since wt(J) ≤ wt(C), we get wt(J) = 1. Lemma 5.1 implies that
d(J) = 1. Hence wt(J) = d(J), as required.

Case 2. wt(C) = WR. By the definition of WR, there exists an element x ∈ GR satisfying
wt(x) = WR. Lemma 5.3 tells us that d(C(x)) = wt(x). The maximality of wt(C) implies
that wt(J) ≤ wt(C). Lemma 5.1 shows that the reversed inequality d(J) ≤ wt(J) holds. Thus
d(J) = wt(J) = wt(C) in this case, too.

Case 3. wt(C) = WL. By the definition of WL, there exists an element x ∈ GL satisfying
wt(x) = WL. Lemma 5.4 says that d(C(x)) = wt(x). Since wt(C) is the largest weight among the
weights of all centroid sets, we get d(J) = wt(C) > wt(J). Lemma 5.1 establishes the reversed
inequality. Hence d(J) = wt(J) = wt(C), as claimed.

Case 4. wt(C) = WZ . By the definition of WZ , there exists an element x ∈ GZ satisfying
wt(x) = WZ . Lemma 5.5 tells us that d(C(x)) = wt(x). The maximality of wt(C) implies
that d(J) = wt(C) > wt(J). The reversed inequality holds by Lemma 5.1. Therefore d(J) =
wt(J) = wt(C), again.

Thus, we see that d(J) = wt(J) = wt(C) in all possible cases. This completes the proof. �
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