
Solving the Minimum Common String Partition

Problem with the Help of Ants

S. M. Ferdousa, M. Sohel Rahmana

aA`EDA Group, Department of CSE, BUET, Dhaka-1000, Bangladesh

Abstract

In this paper, we consider the problem of finding a minimum common parti-
tion of two strings. The problem has its application in genome comparison.
As it is an NP-hard, discrete combinatorial optimization problem, we em-
ploy a metaheuristic technique, namely, MAX-MIN ant system to solve this
problem. To achieve better efficiency we first map the problem instance into
a special kind of graph. Subsequently, we employ a MAX-MIN ant system to
achieve high quality solutions for the problem. Experimental results show the
superiority of our algorithm in comparison with the state of art algorithm
in the literature. The improvement achieved is also justified by standard
statistical test.

Keywords: Ant Colony Optimization, Stringology, Genome sequencing,
Combinatorial Optimization, Swarm Intelligence, String partitioning

1. Introduction

String comparison is one of the important problems in Computer Science
with diverse applications in different areas including Genome Sequencing,
text processing and compressions. In this paper, we address the problem
of finding a minimum common partition (MCSP) of two strings. MCSP
is closely related to genome arrangement which is an important topic in
computational biology. Given two DNA sequences, the MCSP asks for the
least-sized set of the common building blocks of the sequences.

In the MCSP problem, we are given two related strings (X, Y). Two
strings are related if every letter appears the same number of times in each
of them. Clearly, two strings have a common partition if and only if they are
related. So, the length of the two strings are also the same (say, n). Our goal

Preprint submitted to Elsevier August 21, 2018

ar
X

iv
:1

40
1.

45
39

v2
 [

cs
.A

I]
 2

1
M

ay
 2

01
4

is to partition each string into c segments called blocks, so that the blocks in
the partition of X and that of Y constitute the same multiset of substrings.
Cardinality of the partition set, i.e., c is to be minimized. A partition of a
string X is a sequence P = (B1, B2, · · ·, Bm) of strings whose concatenation
is equal to X, that is B1B2 · · ·Bm = X. The strings Bi are called the blocks
of P . Given a partition P of a string X and a partition Q of a string Y ,
we say that the pair π =< P,Q > is a common partition of X and Y if Q
is a permutation of P . The minimum common string partition problem is
to find a common partition of X, Y with the minimum number of blocks.
For example, if (X, Y) = {“ababcab”,“abcabab”}, then one of the minimum
common partition sets is π ={“ab”,“abc”,“ab”} and the minimum common
partition size is 3. The restricted version of MCSP where each letter occurs
at most k times in each input string, is denoted by k-MCSP.

MCSP has its vast application rooted in Comparative Genomics. Given
two DNA strings, MCSP answers the possibilities of re-arrangement of one
DNA string to another [1]. MCSP is also important in ortholog assign-
ment. In[2], the authors present a new approach to ortholog assignment
that takes into account both sequence similarity and evolutionary events at
a genomic level. In that approach, first, the problem is formulated as that
of computing the signed reversal distance with duplicates between the two
genomes of interest. Then, the problem is decomposed into two optimization
problems, namely minimum common partition and maximum cycle decom-
position problem. Thus MCSP plays an integral part in computing ortholog
assignment of genes.

1.1. Our Contribution

In this paper, we consider metaheuristic approaches to solve the problem.
To the best of our knowledge, there exists no attempt to solve the problem
with metaheuristic approaches. Only theoretical works are present in liter-
ature. Particularly we are interested in nature inspired algorithms. As the
problem is discrete combinatorial optimization problem, the natural choice
is Ant Colony Optimization (ACO). Before applying ACO, it is necessary
to map the problem into a graph. We have developed this mapping. In
this paper, we implement a variant of ACO algorithm namely MAX-MIN
Ant System (MMAS) to solve the MCSP problem. We conduct experiments
on both random and real data to compare our algorithm with the state of
the art algorithm in the literature and achieve excellent results. Notably, a
preliminary version of the paper appeared at [3].

2

2. Literature Review

MCSP is essentially the breakpoint distance problem [4] between two per-
mutations which is to count the number of ordered pairs of symbols that are
adjacent in the first string but not in the other; this problem is obviously
solvable in polynomial time [5]. The 2-MCSP is proved to be NP-hard and
moreover APX-hard in [5]. The authors in [5] also presented several approx-
imation algorithms. Chen et al. [2] studied the problem, Signed Reversal
Distance with Duplicates (SRDD), which is a generalization of MCSP. They
gave a 1.5-approximation algorithm for 2-MCSP. In [1], the author analyzed
the fixed-parameter tractability of MCSP considering different parametrs. In
[6], the authors investigated k-MCSP along with two other variants: MCSP c,
where the alphabet size is at most c; and x-balanced MCSP, which requires
that the length of the blocks must be within the range (n/d − x, n/d + x),
where d is the number of blocks in the optimal common partition and x is a
constant integer. They showed that MCSP c is NP-hard when c ≥ 2. As for
k-MCSP, they presented an FPT algorithm which runs in O∗((d!)2k) time.

Chrobak et al. [7] analyzed a natural greedy heuristic for MCSP: itera-
tively, at each step, it extracts a longest common substring from the input
strings. They showed that for 2-MCSP, the approximation ratio (for the
greedy heuristic) is exactly 3. They also proved that for 4-MCSP the ratio
would be log n and for the general MCSP, between Ω(n0.43) and O(n0.67).

Ant colony optimization (ACO) [8, 9, 10] was introduced by M. Dorigo
and colleagues as a novel nature-inspired metaheuristic for the solution of
hard combinatorial optimization (CO) problems. The inspiring source of
ACO is the pheromone trail laying and following behavior of real ants which
use pheromones as a communication medium. In analogy to the biological
example, ACO is based on the indirect communication of a colony of simple
agents, called (artificial) ants, mediated by (artificial) pheromone trails. The
pheromone trails in ACO serve as a distributed, numerical information which
the ants use to probabilistically construct solutions to the problem being
solved and which the ants adapt during the algorithm’s execution to reflect
their search experience.

Different ACO algorithms have been proposed in the literature. The
original algorithm is known as the Ant System(AS) [11, 12, 13]. The other
variants are, Elitist AS [12, 13], ANT-Q [14], Ant Colony System (ACS) [9],
MAX-MIN AS [15, 16, 17] etc.

Recently growing interest has been noticed towards ACO in the scientific

3

community. There are now available several successful implementations of
the ACO metaheuristic applied to a number of different discrete combina-
torial optimization problems. In [8] the authors distinguished among two
classes of applications of ACO: those to static combinatorial optimization
problems, and those to the dynamic ones. When the problem is defined and
does not change while the problem is being solved is termed as static combi-
natorial optimization problems. The authors list some static combinatorial
optimization problems those are successfully solved by different variants of
ACO. Some of the problems are, travelling salesperson, Quadratic Assign-
ment, job-shop scheduling, vehicle routing, sequential ordering, graph col-
oring etc. Dynamic problems are defined as a function of some quantities
whose values are set by the dynamics of an underlying system. The prob-
lem changes therefore at run time and the optimization algorithm must be
capable of adapting online to the changing environment. The authors listed
connection-oriented network routing and connectionless network routing as
the examples of dynamic problems those are successfully solved by ACO.

In 2010 a non-exhaustive list of applications of ACO algorithms grouped
by problem types is presented in [18]. The authors categorized the problems
into different types namely routing, assignment, scheduling, subset machine
learning and bioinformatics. In each type they listed the problems those are
successfully solved by some variants of ACO.

There are not too many string related problems solved by ACO in the lit-
erature. In [19], the authors addressed the reconstruction of DNA sequences
from DNA fragments by ACO. Several ACO algorithms have been proposed
for the longest common subsequence (LCS) problem in [20, 21]. Recently
minimum string cover problem is solved by ACO in [22]. Finally, we note
that a preliminary version of this work was presented at [23].

3. Preliminaries

In this section, we present some definitions and notations that are used
throughout the paper.

Definition 1. Related string: Two strings (X, Y), each of length n, over an
alphabet

∑
are called related if every letter appears the same number of

times in each of them.

Example 1. X = “abacbd” and Y = “acbbad”, then they are related. But
if X1 = “aeacbd” and Y = “acbbad”, they are not related

4

Definition 2. Block : A block B = ([id, i, j]), 0 ≤ i ≤ j < n, of a string
S is a data structure having three fields: id is an identifier of S and the
starting and ending positions of the block in S are represented by i and j,
respectively. Naturally, the length of a block [id, i, j] is (j − i + 1). We use
substring([id, i, j]) to denote the substring of S induced by the block [id, i, j].
Throughout the report we will use 0 and 1 as the identifiers of X(i.e., id(X))
and Y (i.e., id(Y)) respectively. We use [] to denote an empty block.

Example 2. If we have two strings (X, Y) = {“abcdab”,“bcdaba”}, then
[0, 0, 1] and [0, 4, 5] both represent the substring “ab” of X. In other words,
substring([0, 0, 1]) = substring([0, 4, 5]) = “ab”.

Two blocks can be intersected or unioned. The intersection of two blocks
(with same ids) is a block that contains the common portion of the two.

Definition 3. Intersection of blocks : Formally, the intersection operation of
B1=[id, i, j] and B2=[id, i′, j′] is defined as follows:

B1 ∩B2 =

[] if i′ > j or i > j′

[id, i′, j] if i′ ≤ j
[id, i, j′] else

(1)

Example 3. If, B1 = [0, 1, 5] and B2 = [0, 3, 6], then B1 ∩B2 = [0, 3, 5]. On
the other hand, if B1 = [0, 1, 5] and B2 = [0, 6, 8], then B1 ∩B2 = []

Definition 4. Union of blocks : Union of two blocks (with same ids) is either
another block or an ordered (based on the starting position) set of blocks.
Without the loss of generality we suppose that, i ≤ i′ for B1=[id, i, j] and
B2=[id, i′, j′]. Then, formally the union operation of B1 and B2 is defined as
follows:

B1 ∪B2 =

[id, i, j] if j′ ≤ j
[id, i, j′] if j′ > j or i′ = j + 1
{B1, B2} else

(2)

Example 4. If, B1 = [0, 1, 5] and B2 = [0, 3, 6], then B1 ∪ B2 = [0, 1, 6].
On the other hand, if B1 = [0, 1, 5] and B2 = [0, 6, 8], then B1 ∪ B2 =
{[0, 1, 5], [0, 6, 8]}

The union rule with an ordered set of blocks, Blst and a block, B′ can be
defined as follows. We have to find the position where B′ can be placed in
Blst, i.e., we have to find Bk ∈ Blst after which B′ can be placed. Then, we
have to replace the ordered subset {Bk, Bk+1} with Bk ∪B′ ∪Bk+1.

5

Example 5. As an example, suppose we have three blocks, namely, B1 =
[0, 5, 7],B2 = [0, 11, 12] andB3 = [0, 8, 10]. ThenB1∪B2 = B′lst = {[0, 5, 7], [0, 11, 12]}.
On the other hand, B′lst ∪ B3 = [0, 5, 12], which is basically identical to
B1 ∪B2 ∪B3.

Two blocks B1 and B2 (in the same string or in two different strings)
match if substring(B1) = substring(B2). If the two matched blocks are in
two different strings then the matched substring is called a common substring
of the two strings denoted by cstring(B1, B2).

Definition 5. span: Given a list of blocks with same id, the span of a block,
B = [id, i, j] in the list denoted by, span(B) is the length of the block (also in
the list) that contains B and whose length is maximum over all such blocks
in the list. Note that a block is assumed to contain itself. More formally,
given a list of blocks, listb, span(B ∈ listb) = max{` | ` = length(B′), B ⊆
B′,∀B′ ∈ listb}.

Example 6. If listb = {[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 4, 5]} then span([0, 0, 0]) =
span([0, 0, 1]) = span([0, 0, 2]) = 3 where as, span([0, 4, 5]) = 2. In other
words, span of a block is the maximum length of the super string than con-
tains the substring induced by the block.

Definition 6. Partition: A partition of a string X is a list of blocks all with
id(X) having the following two properties:

(a) Non Overlapping: The blocks must be be disjoint, i.e., no block should
overlap with another block. So the intersection of any two blocks must
be empty.

(b) Cover: The blocks must cover the whole string.

In other words, a partition of a stringX is a sequence P = (B1, B2, . . . , Bm)
of strings whose concatenation is equal to X, that is B1B2 . . . Bm = X. where
Bi’s are blocks.

3.1. Basics of ACO

In ACO, a combinatorial optimization (CO) problem is solved by iterat-
ing the following two steps. At first, solutions are constructed using a pa-
rameterized probability distribution over the solution space which is called
pheromone model. The second step is to modify the pheromone values us-
ing the solutions that were constructed in earlier iterations in a way that is
deemed to bias the search towards the high quality solutions.

6

3.2. Ant Based Solutions Construction

The basic ingredient of an ACO algorithm is a constructive heuristic
that constructs solutions probabilistically. Sequences of solution components
taken from a finite set of solution components C = {c1, c2, ...cn} is assem-
bled by a constructive heuristic. Starting with an empty partial solution
sp = ∅ a solution is constructed. Then at each construction step the cur-
rent partial solution sp is extended by adding a feasible solution component
from the solution space C. The definition of feasible solution component is
problem specific. Typically a problem is mapped into a construction Graph
Gc = (C,E) whose vertices are the solution components C and the set E are
the connections (i.e., edges). The process of constructing solutions can be
regarded as a walk (or a path) on the construction graph.

3.3. Heuristic Information

In most ACO algorithms the transition probabilities, i.e., the probabilities
for choosing the next solution component, are defined as follows:

p(ci|sp) =
τi
α · η(ci)

β∑
cj∈N(sp) τj

α · η(cj)β
,∀ci ∈ N(sp) (3)

Here, ci is a candidate component, sp is the partial solution. The current
partial solution sp is extended by adding a feasible solution component from
the set of feasible neighbors N(sp) ⊆ C. η is a weight function that con-
tains heuristic information and α, β are positive parameters whose values
determine the relation between the pheromone information and the heuristic
information. The pheromones deployed by the ants are denoted by τ .

3.4. Pheromone Update

The pheromone update consists of two parts. The first part is pheromone
evaporation, which uniformly decreases all the pheromone values . From a
practical point of view, pheromone evaporation prevents too rapid conver-
gence of the algorithm toward a sub-optimal region. Thus it helps to avoid
the local optimal solutions and favors the exploration of new areas in the
search space. Then, one or more solutions from the current or from ear-
lier iterations (the set is denoted by Supd)are used to increase the values of
pheromone trail parameters on solution components that are part of these
solutions:

τi ← (1− ε)× τi + ε×
∑

s∈Supd|ci∈s

F (s), i = 1, 2, ..., n (4)

7

Let W (.) is the cost function. Here, Supd is the set of local best or global
best solution, ε ∈ (0, 1] is a parameter called the evaporation rate, and F :
G→ R+ is a function such that W (s) < W (ś)⇒ F (s) ≥ F (ś), s 6= ś,∀s ∈ G.
The function F (.) is commonly called the Fitness Function.

In general, different versions of ACO algorithms differ in the way they
update the pheromone values. This also holds for the two currently best-
performing ACO variants in practice, namely, the Ant Colony System (ACS)
[9] and the MAX-MIN Ant System (MMAS) [17]. Since in our algorithm we
hybridize ACS with MMAS, below we give a brief description of MMAS.

3.5. MAX-MIN Ant System (MMAS)

MMAS algorithms are characterized as follows. First, the pheromone
values are limited to an interval [τMIN , τMAX] with 0 < τMIN < τMAX .
Pheromone trails are initialized to τmax to favor the diversification during
the early iterations so that premature convergence is prevented. Explicit
limits on the pheromone values ensure that the chance of finding a global
optimum never becomes zero. Second, in case the algorithm detects that the
search is too much confined to a certain area in the search space, a restart
is performed. This is done by initializing all the pheromone values again.
Third, the pheromone update is always performed with either the iteration-
best solution, the restart-best solution (i.e., the best solution found since the
last restart was performed), or the best-so-far solution.

4. Our Approach: MAX-MIN Ant System on the Common Sub-
string Graph

4.1. Formulation of Common Substring Graph

We define a common substring graph, Gcs(V,E, id(X)) of a string X with
respect to Y as follows. Here V is the vertex set of the graph and E is the edge
set. Vertices are the positions of string X, i.e., for each v ∈ V , v ∈ [0, |X|−1].
Two vertices vi ≤ vj are connected with and edge, i.e, (vi, vj) ∈ E, if the
substring induced by the block [id(X), vi, vj] matches some substring of Y .
More formally, we have:

(vi, vj) ∈ E ⇔ cstring([id(X), vi, vj], B
′) is not empty ∃B′ ∈ Y

In other words, each edge in the edge set corresponds to a block satisfying
the above condition. For convenience, we will denote the edges as edge blocks

8

Figure 1: Construction of Gcs(V,E, id(X)) of (X,Y). (a) Vertex 0 is connected with itself
because “a” is common string of X and Y (b) An edge between vertices 0 and 1 as “ab”
is a common string of X and Y . (c) vertex 1 is connected with itself (d) vertex 1 and 2
are connected with (e) Vertex 3 is connected with itself.

and use the list of edge blocks (instead of edges) to define the edgeset E.
Notably, each edge block on the edge set of Gcs(V,E, id(X)) of string (X, Y)
may match with more than one blocks of Y . For each edge block B a list is
maintained containing all the matched blocks of string Y to that edge block.
This list is called the matchList(B).

For example, suppose (X, Y) = {“abad”,“adab”}. Now consider the
corresponding common substring graph, Gcs(V,E, id(X)). Then, we have
V = {0, 1, 2, 3} and E = {[0, 0, 0], [0, 0, 1], [0, 1, 1], [0, 2, 2], [0, 2, 3]}. The con-
struction steps are shown in figure 1.

To find a common partition of two strings (X, Y) we first construct the
common substring graph of (X, Y). Then from a vertex vi on the graph we
take an edge block [id(X), vi, vj]. Suppose Mi is the matchList of this block.
We take a block B′i from Mi. Then we advance to the next vertex that is
(vj + 1) MOD |X| and choose another corresponding edge block as before.
We continue this until we come back to the starting vertex. Let partitionList
and mappedList are two lists, each of length c, containing the traversed edge
blocks and the corresponding matched blocks. Now we have the following
lemma.

9

Lemma 1. partitionList is a common partition of length c iff,

Bi ∩Bj = [] ∀Bi, Bj ∈ mappedList, i 6= j (5)

and
B1 ∪B2 ∪ · · · ∪Bc = [id(Y), 0, |Y | − 1] (6)

Proof. By construction, partitionList is a partition of X. We need to prove
that mappedList is a partition of Y and with the one to one correspondence
between partitionList and mappedList it is obvious that partitionList would
be the common partition of (X, Y). Equation 5 asserts the non overlapping
property of mappedList and Equation 6 assures the cover property. So,
mappedList will be a partition of Y if Equation 5 and 6 are satisfied.

On the other hand let partitionList along with mappedList is a common
partition of (X, Y). According to construction, partitionList satisfies the
two properties of a partition. Let, mappedList is a partition of Y . We
assume mappedList does not follow the Equation 5 or 6. So, there might be
overlapping between the blocks or the blocks do not cover the string Y , a
contradiction. This completes the proof.

4.2. Heuristics

Heuristics (η) contain the problem specific information. We propose two
different (types of) heuristics for MCSP. Firstly, we propose a static heuristic
that does not change during the runs of algorithm. The other heuristic we
propose is dynamic in the sense that it changes between the runs.

4.2.1. The Static Heuristic for MCSP

We employ an intuitive idea. It is obvious that the larger is the size of
the blocks the smaller is the partition set. To capture this phenomenon,
we assign on each edge of the common substring graph a numerical value
that is proportional to the length of the substring corresponding to the edge
block. Formally, the static heuristic (ηs) of an edge block [id, i, j] is defined
as follows:

ηs([id, i, j]) ∝ length([id, i, j]) (7)

4.2.2. The Dynamic Heuristic for MCSP

We observe that the static heuristic can sometimes lead us to very bad
solutions. For example if (X, Y) = {“bceabcd”,“abcdbec”} then accord-
ing to the static heuristic much higher value will be assigned to edge block

10

[0, 0, 1] than to [0, 0, 0]. But if we take [0, 0, 1], we must match it to the
block [1, 1, 2] and we further miss the opportunity to take [0, 3, 6] later.
The resultant partition will be {“bc”,“e”,“a”,“b”,“c”,“d”} but if we would
take [0, 0, 0] at the first step, then one of the resultant partitions would be
{“b”,“c”,“e”,“abcd”}. To overcome this shortcoming of the static heuristic
we define a dynamic heuristic as follows. The dynamic heuristic (ηd) of an
edge block (B = [id, i, j]) is inversely proportional to the difference between
the length of the block and the minimum span of its corresponding blocks in
its matchList. More formally, ηd(B) is defined as follows:

ηd(B) ∝ 1

|length(B)−minSpan(B)|+ 1
, (8)

where
minSpan(B) = min{span(B′) | B′ ∈ matchList(B)} (9)

In the example, minSpan([0, 0, 0]) is 1 as follows: matchList([0, 0, 0]) =
{[1, 1, 1], [1, 4, 4]}. span([1, 1, 1]) = 4 and span([1, 4, 4] = 1). On the other
hand, minSpan([0, 0, 1]) is 4. So, according to the dynamic heuristic much
higher numeral will be assigned to block [0, 0, 0] rather than to block [0, 0, 1].

We define the total heuristic (η) to the linear combination of the static
heuristic (ηs) and the dynamic heuristic (ηd). Formally, the total heuristic of
an edge block B is,

η(B) = a · ηs(B) + b · ηd(B) (10)

where a, b are any real valued constant. The algorithms of static and
dynamic heuristics are shown in Algorithm (1 - 2)

Algorithm 1 addDynamicHeuristic(Gcs)

E ← edge blocks of E
for all Block B in E do

minspan ← find minimum free span of B by Equation 9
dynamicHeuristic(E) = 1

(length(E)−minspan+1)

end for

4.3. Initialization and Configuration

Given two strings (X, Y), we first construct the common substring graph
Gcs = (V,E, id(X)). We use the following notations. Local best solution

11

Algorithm 2 addStaticHeuristic(Gcs)

E ← edge blocks of Gcs

max ← maximum length edgeblock of Gcs

for all Block B in E do
staticHeuristic(B) = length(B)/max

end for

Algorithm 3 addHeuristic(Gcs,a,b)

E ← edge blocks of Gcs

addStaticHeuristic(Gcs)
addDynamicHeuristic(Gcs)
for all Block B in E do

heuristic(B) ← a · staticHeuristic(B) + b · dynamicHeuristic(B)
end for

(LLB) is the best solution found in each iteration. Global best solution (LGB)
is the best solution found so far among all iterations. The pheromone of the
edge block is bounded between τmax and τmin. Like [17], we use the follow-

ing values for τmax and τmin: τmax = 1
ε·cost(LGB)

, and τmin =
τmax(1− n

√
pbest)

(avg−1) n
√
pbest

.

Here, avg is the average number of choices an ant has in the construction
phase; n is the length of the string; pbest is the probability of finding the
best solution when the system converges and ε is the evaporation rate. Ini-
tially, the pheromone values of all edge blocks (substring) are initialized to
initPheromone which is a large value to favor the exploration at the first
iteration [17]. The steps of the initialization is shown in Algorithm 4

Algorithm 4 initialize(Gcs)

initialize LLB
initialize LGB
set Parameters
E ← edge blocks of Gcs

for all Block B in E do
pheromone(B) ← initPheromone

end for

12

4.4. Construction of a Solution

Let, nAnts denotes the total number of ants in the colony. Each ant is
deployed randomly to a vertex vs of Gcs. A solution for an ant starting at a
vertex vs is constructed by the following steps:

step 1 : Let vi = vs. Choose an available edge block starting from vi by
the discrete probability distribution defined below. An edge block is available
if its MatchList is not empty and inclusion of it to the partitionList and
mappedList obeys Equation 11. The probability for choosing edge block
[0, vi, vj] is:

p([0, vi, vj]) =
τ([0, vi, vj])

α · η([0, vi, vj])
β∑

` τ([0, vi, v`])α · η([0, vi, v`])β
,∀` such that[0, vi, vl] is an available block.

(11)
step 2 : Suppose, [0, vi, vk] is chosen according to Equation 11 above.

We choose a match block Bm from the matchList of [0, vi, vk] and delete Bm

from the matchList. We also delete every block from every matchList of
every edge block that overlaps with Bm. Formally we delete a block B if

Bm ∩B 6= [] ∀Bi ∈ E,B ∈ matchList(Bi).

We add [0, vi, vk] to the partitionList and Bm to the mappedList.
step 3 : If (vk + 1) MOD length(X) = vs and the mappedList obeys

Equation 6, then we have found a common partition of X and Y . The size
of the partition is the length of the partitionList. Otherwise, we jump to
the step 1.

The construction is shown in Algorithm 5.

4.5. Intelligent Positioning

For every edge block of Gcs in X, we have a matchList that contains the
matched block of string Y . In construction (step 1), when an edge block is
chosen by the probability distribution, we take a block from the matchList
of the chosen edge block. We can choose the matched block randomly. But
we observe that random choosing may lead to a very bad partition. For
example, if (X, Y) = {“ababc”,“abcab”} then the matchList([0, 0, 1]) =
{[1, 0, 1], [1, 3, 4]}. If we choose the first match block then eventually we
will get the partition as {“ab”,“ab”,“c”} but a smaller partition exists and
that is {“ab”,“abc”}.

13

Algorithm 5 constructSolution(i,Gcs)

blockList = empty list of blocks
mappedList = empty list of blocks
startpos = bn/mc ∗ i
k = startpos
repeat

addHeuristics(Gcs,a,b)
constructPDF(k,Gcs) using Equation 11
B = choose an edge block from PDF
M = choose a match block from matchList(B) . Intelligent

Positioning
Update matchList(B)
add B to blockList
add M to the mappedList
k = B.j + 1

until k 6= startpos

To overcome this problem, we have imposed a rule for choosing the
matched block. We will select a block from the matchList having the lowest
possible span. Formally, for the edge block, Bi, a block B′ ∈ matchList(Bi)
will be selected such that span(B′) is the minimum.

In our example span([1, 0, 1]) = 3 where as span([1, 3, 4]) = 2. So it is
better to select the second block so that we do not miss the opportunity to
match a larger block.

4.6. Pheromone Update

When each of the ants in the colony construct a solution (i.e., a common
partition), an iteration completes. We set the local best solution as the best
partition that is the minimum length partition in an iteration. The global
best solution for n iterations is defined as the minimum length common
partition over all the n iteration.

We define the fitness F (L) of a solution L as the reciprocal of the length
of L. The pheromone of each interval of each target string is computed
according to Equation 4 after each iteration. The pheromone values are
bounded within the range τMIN and τMAX . We update the pheromone val-
ues according to LLB or LGB. Initially for the first 50 iterations we update
pheromone by only LLB to favor the search exploration. After that we de-

14

velop a scheduling where the frequency of updating with LLB decreases and
LGB increases to facilitate exploitation. The pheromone update algorithm is
listed in Algorithm 8

Algorithm 6 decreasePheromone(Blocklist E))

for all Block B in E do
pheromone(B) ← pheromone(B) - ε · pheromone(B)

end for

Algorithm 7 increasePheromone(Blocklist E))

for all Block B in E do
pheromone(B) ← pheromone(B) + ε · 1

|E|
end for

4.7. The Pseudocode

The pseudocode of our approach for solving MCSP is given in Algorithm
9.

5. Experiments

We have conducted our experiments in a computer with Intel Core 2
Quad CPU 2.33 GHz. The available RAM was 4.00 GB. The operating sys-
tem was Windows 7. The programming environment was java. jre version
is“1.7.0 15”. We have used JCreator as the Integrated Development Envi-
ronment. The maximum allowed time for test case instance was 120 minutes.

5.1. Datasets

We have conducted our experiments on two types of data: randomly
generated DNA sequences and real gene sequences.

5.1.1. Random DNA sequences:

We have generated 30 random DNA sequences each of length at most
600 using [24]. The fraction of bases A, T , G and C is assumed to be 0.25
each. For each DNA sequence we shuffle it to create a new DNA sequence.
The shuffling is done using the online toolbox [25]. The original random
DNA sequence and its shuffled pair constitute a single input (X, Y) in our

15

Algorithm 8 updatePheromoneSchedule(iterationCounter,Gcs,LLB,LGB)

E ← edge blocks of Gcs

decreasePheromone(E)
if iterationCounter ≤ 50 then

increasePheromone(LLB)
else if iterationCounter ≤ 100 then

if iterationCounterMOD5 == 0 then
increasePheromone(LLB)

else
increasePheromone(LGB)

end if
else if iterationCounter ≤ 200 then

if iterationCounterMOD4 == 0 then
increasePheromone(LLB)

else
increasePheromone(LGB)

end if
else if iterationCounter ≤ 400 then

if iterationCounterMOD3 == 0 then
increasePheromone(LLB)

else
increasePheromone(LGB)

end if
else if iterationCounter ≤ 800 then

if iterationCounterMOD2 == 0 then
increasePheromone(LLB)

else
increasePheromone(LGB)

end if
else

increasePheromone(LLB)
end if
Update taumax and taumin
for all Block B in E do

Bound pheromone(B) between taumax and taumin
end for

16

Algorithm 9 MMAS(X,Y)

Gcs ← construct common substring graph of string X and Y
for run = 1→ nRun do . nRun ← number of Runs

initialize(Gcs)
interationCounter = 0
repeat

iterationCounter = iterationCounter + 1;
Initialize local best
for i = 1→ nAnts do

constructSolution(i,Gcs)
update localBest (LLB)

end for
update globalBest (LGB)
updatePheromoneSchedule(iterationCounter,Gcs)

until time reaches maxAllowedT ime or No update found for
maxAllowedIteration
end for

experiment. This dataset is divided into 3 classes. The first 10 have lengths
within [100-200] bps (base-pairs), the next 10 have lengths within [201, 400]
and the rest 10 have lengths within [401, 600] bps.

5.1.2. Real Gene Sequences:

We have collected the real gene sequence data from the NCBI GenBank1.
For simulation, we have chosen Bacterial Sequencing (part 14). We have
taken the first 15 gene sequences whose lengths are within [200, 600].

5.2. Parameter Tuning

There are several parameters which have to be carefully set to obtain
good results. To obtain a good set of parameters we have done a preliminary
experiment. In our experiment we have chosen 3 values for each of the
parameters. so there are 243 possible permutations of the 5 parameters. The
values of the parameters used in our experiment is listed in Table 1. We
have chosen 2 input cases from each of the groups (group1, group2, group3
and realgene). The time limits are set to 10, 20, 30 and 20 minutes for the 4

1http://www.ncbi.nlm.nih.gov

17

Table 1: List of Parameters. The first column represents the name, the second column
represents the symbol of the parameter and the third column represent the set of values
used for tuning

Name Symbol value set
Pheromone information α {1,2,3}
Heuristic information β {3,5,10}

Evaporation rate ε {0.02,0.04,.05}
Number of Ants nAnts {20,60,100}

Probability of best solution pbest {0.005,0.05,0.5}

Table 2: Best found values of the parameters. The first column is the symbol of the
parameter and the second column is the best found value

Parameters Value
α 2.0
β 10.0

Evaporation rate, ε 0.05
nAnts 100
pbest 0.05

initPheromone 10.0
Maximum Allowed Time 120 min

groups, respectively. The algorithm is run for 4 times and the average result
is recorded. Let the partition size of each of the case is denoted by Ai where
i ∈ [1, 8]. With these settings, we find rank of a permutation by the following
rule:

Rj =
∑
i∈[1,8]

Aij/max(Ai) ∀j ∈ [1, 243]

After computing the Rank, R, we find the permutation of the parameters
for which the rank is minimum. The best found parameters are reported in
Table 2.

5.3. Results and Analysis

We have compared our approach with the greedy algorithm of [7] because
none of the other algorithms in the literature are for general MCSP: each of
the other approximation algorithms put some restrictions on the parameters.
As it is expected the greedy algorithm runs very fast. All of the result by
greedy algorithm presented in this paper outputs within 2 minutes.

18

5.3.1. Random DNA sequence:

Table 3, Table 4 and Table 5 present the comparison between our ap-
proach and the greedy approach [7] for the random DNA sequences. For a
particular DNA sequence, the experiment was run 15 times and the average
result is reported. The first column under any group reports the partition
size computed by the greedy approach, the second column is the average
partition size found by MMAS, the third and fourth column report the worst
and best results among 15 runs, the fifth column represents the difference
between the two approaches. A positive (negative) difference indicates that
the greedy result is better (worse) than the MMAS result by that amount.
The sixth column reports the standard deviation of 15 runs of MMAS, the
seventh column is the average time in second by which the reported parti-
tion size is achieved. The first 3 columns summarize the t-statistic result
for greedy vs. MMAS. The first column reports the t-value of two sample t-
test. A positive t-value indicate significant improvement. The second column
presents the p-value. A lower p-value represent higher significant improve-
ment and the third column reports whether the null hypothesis is rejected
or accepted. Here the null hypothesis is that the two random population
(partition sizes from greedy and MMAS) have equal means. We have used
+,−,≈ to denote improvement, deteriotion and almost equal respectively.
According to t-statistic value with 5% significance value we have found bet-
ter solution in 28 cases for MMAS. For the other 2 case we got worse result
in 5% significance level.

5.3.2. Effects of Dynamic Heuristics:

In Section 4.2.2, we discussed the dynamic heuristic we employ in our al-
gorithm. We conducted experiments to check and verify the effect of this
dynamic heuristic. We conducted experiments with two versions of our
algorithm- with and without applying the dynamic heuristic. The effect
is presented in Table 6, where for each group the average partition size with
dynamic heuristic and without dynamic heuristic is reported. The positive
difference depicts the improvement using dynamic heuristic. Out of 30 cases
we found positive differences on 27 cases. This clearly shows the significant
improvement using dynamic heuristics. It can also be observed that with the
increase in length, the positive differences are increased. Figures 2, 3, and
4 show the case by case results. The blue bars represent the partition size
using dynamic heuristic and the red bars represent the partition size without
the dynamic heuristic.

19

T
ab

le
3:

C
om

p
ar

is
on

b
et

w
ee

n
G

re
ed

y
ap

p
ro

ac
h

[7
]

a
n

d
M

M
A

S
o
n

ra
n

d
o
m

D
N

A
se

q
u

en
ce

s
(G

ro
u

p
1
,

[1
0
0
-2

0
0
]

b
p

s)
.

H
er

e,
D

iff
er

en
ce

=
M

M
A

S
(A

v
g.

)
-

G
re

ed
y.

B
es

t
an

d
W

o
rs

t
re

p
o
rt

th
e

m
a
x
im

u
m

a
n

d
m

in
im

u
m

p
a
rt

it
io

n
si

ze
a
m

o
n

g
1
5

ru
n

s
u

si
n

g
M

M
A

S
.

G
re

e
d
y

M
M

A
S
(A

v
g
.)

W
o
rs

t
B

e
st

D
iff

e
re

n
ce

S
td

.D
e
v
.(

M
M

A
S

T
im

e
in

se
c(

M
M

A
S
)

ts
ta

t
p
-v

a
lu

e
si

g
n
ifi

ca
n
ce

46
42

.8
66

7
43

42
-3

.1
33

3
0.

35
19

11
4.

62
43

34
.4

88
6

0.
00

00
+

56
51

.8
66

7
52

51
-4

.1
33

3
0.

51
64

10
0.

82
3

31
0.

00
00

+
62

57
58

55
-5

0.
65

47
20

7.
52

53
29

.5
80

4
0.

00
00

+
46

43
.3

33
3

43
43

-2
.6

66
7

0.
48

8
16

8.
30

98
21

.1
66

0.
00

00
+

44
42

.9
33

3
43

43
-1

.0
66

7
0.

25
82

42
.7

05
8

16
0.

00
00

+
48

42
.8

43
42

-5
.2

0.
41

4
75

.2
03

3
48

.6
41

5
0.

00
00

+
65

60
.6

60
60

-4
.4

0.
50

71
13

1.
94

78
33

.6
05

6
0.

00
00

+
51

46
.9

33
3

47
47

-4
.0

66
7

0.
45

77
20

1.
22

92
34

.4
08

6
0.

00
00

+
46

45
.5

33
3

46
45

-0
.4

66
7

0.
51

64
17

2.
68

09
3.

5
0.

00
16

+
63

59
.7

33
3

60
59

-3
.2

66
7

0.
70

37
28

8.
42

26
17

.9
78

1
0.

00
00

+

20

T
ab

le
4:

C
om

p
ar

is
on

b
et

w
ee

n
G

re
ed

y
ap

p
ro

ac
h

[7
]

a
n

d
M

A
X

-M
IN

o
n

ra
n

d
o
m

D
N

A
se

q
u

en
ce

s
(G

ro
u

p
2
,

[2
0
1
-4

0
0
]

b
p

s)
.

H
er

e,
D

iff
er

en
ce

=
M

M
A

S
(A

v
g.

)
-

G
re

ed
y.

B
es

t
an

d
W

o
rs

t
re

p
o
rt

th
e

m
a
x
im

u
m

a
n

d
m

in
im

u
m

p
a
rt

it
io

n
si

ze
a
m

o
n

g
1
5

ru
n

s
u

si
n

g
M

M
A

S

G
re

e
d
y

M
M

A
S

W
o
rs

t
B

e
st

D
iff

e
re

n
ce

S
td

.D
e
v
.(

M
M

A
S
)

T
im

e
in

se
c(

M
M

A
S
)

ts
ta

t
p
-v

a
lu

e
si

g
n
ifi

ca
n
ce

11
9

11
3.

93
33

11
6

11
1

-5
.0

66
7

1.
33

45
15

34
.1

01
5

14
.7

04
2

0.
00

00
+

12
2

11
8.

93
33

12
1

11
7

-3
.0

66
7

0.
96

12
16

83
.1

14
6

12
.3

57
2

0.
00

00
+

11
4

11
2.

53
33

11
4

11
1

-1
.4

66
7

0.
83

38
13

98
.5

31
5

6.
81

26
0.

00
00

+
11

6
11

6.
4

11
7

11
5

0.
4

0.
73

68
17

39
.3

47
8

-2
.1

02
6

0.
04

46
-

13
5

13
2.

2
13

5
13

0
-2

.8
1.

32
02

18
14

.7
26

4
8.

21
43

0.
00

00
+

10
8

10
6.

06
67

10
7

10
5

-1
.9

33
3

0.
88

37
14

80
.2

37
8

8.
47

31
0.

00
00

+
10

8
98

.4
10

1
96

-9
.6

1.
24

21
12

95
.2

48
5

29
.9

33
3

0.
00

00
+

12
3

11
8.

4
12

0
11

7
-4

.6
0.

73
68

11
25

.2
35

3
24

.1
80

2
0.

00
00

+
12

4
11

9.
46

67
12

1
11

7
-4

.5
33

3
1.

06
01

10
44

.4
14

1
16

.5
62

2
0.

00
00

+
10

5
10

1.
86

67
10

3
10

1
-3

.1
33

3
0.

74
32

13
60

.1
52

9
16

.3
28

0.
00

00
+

21

T
ab

le
5:

C
om

p
ar

is
on

b
et

w
ee

n
G

re
ed

y
ap

p
ro

ac
h

[7
]

a
n

d
M

A
X

-M
IN

o
n

ra
n

d
o
m

D
N

A
se

q
u

en
ce

s
(G

ro
u

p
3
,

[4
0
1
-6

0
0
]

b
p

s)
.

H
er

e,
D

iff
er

en
ce

=
M

M
A

S
(A

v
g.

)
-

G
re

ed
y.

B
es

t
an

d
W

o
rs

t
re

p
o
rt

th
e

m
a
x
im

u
m

a
n

d
m

in
im

u
m

p
a
rt

it
io

n
si

ze
a
m

o
n

g
1
5

ru
n

s
u

si
n

g
M

M
A

S

G
re

e
d
y

M
M

A
S

W
o
rs

t
B

e
st

D
iff

e
re

n
ce

S
td

.D
e
v
.(

M
M

A
S
)

T
im

e
in

se
c(

M
M

A
S
)

ts
ta

t
p
-v

a
lu

e
si

g
n
ifi

ca
n
ce

18
2

17
9.

93
33

18
1

17
7

-2
.0

66
7

1.
70

99
17

73
.0

39
8

4.
68

10
0.

00
01

+
17

5
17

6.
20

00
17

7
17

5
1.

20
00

0.
86

19
39

66
.8

29
3

-5
.3

92
3

0.
00

00
-

19
6

18
7.

86
67

18
9

18
7

-8
.1

33
3

0.
74

32
15

89
.2

95
3

42
.3

83
3

0.
00

00
+

19
2

18
4.

26
67

18
5

18
4

-7
.7

33
3

0.
45

77
24

31
.1

58
0

65
.4

32
8

0.
00

00
+

17
6

17
1.

53
33

17
3

17
1

-4
.4

66
7

0.
91

55
12

24
.8

94
3

18
.8

96
5

0.
00

00
+

17
0

16
3.

46
67

16
5

16
0

-6
.5

33
3

1.
84

65
18

26
.1

43
8

13
.7

03
6

0.
00

00
+

17
3

16
8.

46
67

17
0

16
7

-4
.5

33
3

1.
18

72
18

02
.1

65
5

14
.7

88
6

0.
00

00
+

18
5

17
6.

33
33

17
7

17
5

-8
.6

66
7

0.
81

65
18

38
.5

60
3

41
.1

09
6

0.
00

00
+

17
4

17
2.

80
00

17
5

17
2

-1
.2

00
0

1.
56

75
48

97
.4

68
8

2.
96

49
0.

00
61

+
17

1
16

7.
20

00
16

8
16

7
-3

.8
00

0
0.

56
06

18
86

.2
09

8
26

.2
52

3
0.

00
00

+

22

Table 6: Comparison between MMAS with and without dynamic heuristic on random dna
sequence

Group 1 (200 bps) Group 2 (400 bps) Group 3 (600 bps)
MMAS MMAS(w/o heuristic) Difference MMAS MMAS(w/o heuristic) Difference MMAS MMAS(w/o heuristic) Difference
42.7500 43.2500 0.5000 114.2500 115.5000 1.2500 180.0000 183.2500 3.2500
51.5000 50.7500 -0.7500 119.0000 121.0000 2.0000 176.2500 183.2500 7.0000
56.7500 56.5000 -0.2500 112.2500 113.5000 1.2500 188.0000 193.7500 5.7500
43.0000 44.0000 1.0000 116.2500 120.5000 4.2500 184.2500 189.2500 5.0000
43.0000 42.7500 -0.2500 132.2500 134.0000 1.7500 171.7500 173.5000 1.7500
42.2500 42.5000 0.2500 105.5000 107.7500 2.2500 163.2500 168.0000 4.7500
60.0000 60.5000 0.5000 99.0000 99.7500 0.7500 168.5000 170.5000 2.0000
47.0000 47.5000 0.5000 118.0000 121.7500 3.7500 176.2500 178.7500 2.5000
45.7500 46.0000 0.2500 119.5000 120.7500 1.2500 172.7500 179.2500 6.5000
59.2500 61.5000 2.2500 101.7500 103.7500 2.0000 167.2500 172.2500 5.0000

Figure 2: Comparison between MMAS with and without dynamic heuristic (Group 1)

23

Figure 3: Comparison between MMAS with and without dynamic heuristic (Group 2)

24

Figure 4: Comparison between MMAS with and without dynamic heuristic (Group 3)

25

5.3.3. Real Gene Sequence:

Table 7 shows the minimum common partition size found by our approach
and the greedy approach for the real gene sequences. Out of 15 cases positive
improvement is found in 10 cases in 5% significance level.

6. Conclusion

Minimum Common String Partition problem has important applications
in computational biology. In this paper, we have described a metaheuristic
approach to solve the problem. We have used static and dynamic heuristic
information in this approach with intelligent positioning. The simulation is
conducted on random DNA sequences and real gene sequences. The results
are significantly better than the previous results. The t-test result also shows
significant improvement. As a future work different other metaheuristic tech-
niques may be applied to present better solutions to the problem.

References

[1] Damaschke, P.: Minimum common string partition parameterized. In
Crandall, K., Lagergren, J., eds.: Algorithms in Bioinformatics. Volume
5251 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2008) 87–98

[2] Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang,
T.: Assignment of orthologous genes via genome rearrangement.
IEEE/ACM Trans. Comput. Biol. Bioinformatics 2(4) (October 2005)
302–315

[3] Ferdous, S.M., Rahman, M.S.: Solving the minimum common string
partition problem with the help of ants. In Tan, Y., Shi, Y., Mo, H.,
eds.: ICSI (1). Volume 7928 of Lecture Notes in Computer Science.,
Springer (2013) 306–313

[4] Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome
inversion problem. Journal of Theoretical Biology 99(1) (1982) 1 – 7

[5] Goldstein, A., Kolman, P., Zheng, J.: Minimum common string parti-
tioning problem: Hardness and approximations. The Electronic Journal
of Combinatorics 12(R50) (2005)

26

T
ab

le
7:

C
om

p
ar

is
on

b
et

w
ee

n
G

re
ed

y
ap

p
ro

ac
h

[7
]

a
n

d
M

M
A

S
o
n

re
a
l

g
en

e
se

q
u

en
ce

.H
er

e,
D

iff
er

en
ce

=
M

M
A

S
(A

v
g
.)

-
G

re
ed

y.
B

es
t

an
d

W
or

st
re

p
or

t
th

e
m

ax
im

u
m

a
n

d
m

in
im

u
m

p
a
rt

it
io

n
si

ze
a
m

o
n

g
1
5

ru
n

s
u

si
n

g
M

M
A

S

G
re

e
d
y

M
M

A
S

W
o
rs

t
B

e
st

D
iff

e
re

n
ce

S
td

.D
e
v
(M

M
A

S
)

T
im

e
in

se
c(

M
M

A
S
)

ts
ta

t
p
-v

a
lu

e
si

g
n
ifi

ca
n
ce

95
87

.6
66

66
66

7
88

87
-7

.3
33

33
33

33
0.

48
79

50
03

6
86

3.
80

83
33

3
58

.2
06

5
0.

00
00

+
16

1
15

6.
33

33
33

3
16

2
15

4
-4

.6
66

66
66

67
2.

35
02

78
60

6
17

48
.3

4
7.

69
01

0.
00

00
+

12
1

11
7.

06
66

66
7

11
8

11
6

-3
.9

33
33

33
33

0.
88

37
15

10
2

18
23

.4
92

2
17

.2
38

3
0.

00
00

+
17

3
16

4.
86

66
66

7
16

7
16

3
-8

.1
33

33
33

33
1.

18
72

33
67

9
18

23
.0

12
53

3
26

.5
32

5
0.

00
00

+
17

2
17

0.
33

33
17

2
16

9
1.

2
1.

20
71

21
72

4
22

10
.1

53
53

3
3.

85
01

0.
00

06
+

15
3

14
6

14
8

14
3

-7
1.

30
93

07
34

1
19

53
.8

38
26

7
20

.7
06

3
0.

00
00

+
14

0
14

1
14

2
14

0
1

0.
75

59
28

94
6

24
39

.0
34

6
-5

.1
23

5
0.

00
00

-
13

4
13

3.
13

33
33

3
13

6
13

0
-0

.8
66

66
66

67
1.

80
73

92
22

8
14

06
.8

04
53

3
1.

85
71

0.
07

38
≈

14
9

14
7.

53
33

33
3

15
0

14
5

-1
.4

66
66

66
67

1.
50

55
45

30
5

25
47

.5
19

26
7

3.
77

30
0.

00
08

+
15

1
15

0.
53

33
33

3
15

2
14

8
-0

.4
66

66
66

67
1.

59
76

17
27

3
16

19
.6

36
4

1.
13

13
0.

26
75

≈
12

6
12

5
12

7
12

3
-1

1
18

73
.3

86
8

3.
87

30
0.

00
06

+
14

3
13

9.
13

33
33

3
14

1
13

7
-3

.8
66

66
66

67
1.

24
59

45
80

6
24

73
.2

49
06

7
12

.0
19

4
0.

00
00

+
18

0
18

1.
53

33
33

3
18

4
17

9
1.

53
33

33
33

3
1.

35
57

63
71

29
31

.6
65

33
3

-4
.3

80
2

0.
00

02
-

15
2

14
9.

33
33

33
3

15
1

14
7

-2
.6

66
66

66
67

1.
29

09
94

44
9

22
24

.4
03

73
3

8.
00

00
0.

00
00

+
15

7
16

1.
6

16
4

16
0

4.
6

1.
24

21
18

00
7

17
39

.6
12

13
3

1-
14

.3
43

0
0.

00
00

-

27

[6] Jiang, H., Zhu, B., Zhu, D., Zhu, H.: Minimum common string parti-
tion revisited. In: Proceedings of the 4th International Conference on
Frontiers in Algorithmics. FAW’10, Berlin, Heidelberg, Springer-Verlag
(2010) 45–52

[7] Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the
minimum common string partition problem. ACM Trans. Algorithms
1(2) (October 2005) 350–366

[8] Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete
optimization. Artif. Life 5(2) (April 1999) 137–172

[9] Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative
learning approach to the traveling salesman problem. Trans. Evol. Comp
1(1) (April 1997) 53–66

[10] Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company,
Scituate, MA, USA (2004)

[11] Dorigo, M., Colorni, A., Maniezzo, V.: Positive feedback as a search
strategy. Technical Report 91-016, Dipartimento di Elettronica, Politec-
nico di Milano, Milan, Italy (1991)

[12] Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD
thesis, Politecnico di Milano, Italy (1992)

[13] Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by
a colony of cooperating agents. IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS-PART B 26(1) (1996) 29–41

[14] Gambardella, L., Dorigo, M.: Ant-q: A reinforcement learning approach
to the traveling salesman problem, Morgan Kaufmann (1995) 252–260

[15] Stützle, T., Hoos, H.: Improving the ant system: A detailed report on
the max-min ant system. Technical report (1996)

[16] Stützle, T., Hoos, H.: Max-min ant system and local search for
the traveling salesman problem. In: IEEE INTERNATIONAL CON-
FERENCE ON EVOLUTIONARY COMPUTATION (ICEC’97), IEEE
Press (1997) 309–314

28

[17] Stützle, T., Hoos, H.H.: Max-min ant system. Future Gener. Comput.
Syst. 16(9) (June 2000) 889–914

[18] Dorigo, M., Sttzle, T.: Ant colony optimization: Overview and recent
advances. In Gendreau, M., Potvin, J.Y., eds.: Handbook of Meta-
heuristics. Volume 146 of International Series in Operations Research &
Management Science. Springer US (2010) 227–263

[19] Blum, C., Vallès, M.Y., Blesa, M.J.: An ant colony optimization algo-
rithm for dna sequencing by hybridization. Comput. Oper. Res. 35(11)
(November 2008) 3620–3635

[20] Shyu, S.J., Tsai, C.Y.: Finding the longest common subsequence for
multiple biological sequences by ant colony optimization. Comput. Oper.
Res. 36(1) (January 2009) 73–91

[21] Blum, C.: Beam-aco for the longest common subsequence problem. In:
IEEE Congress on Evolutionary Computation, IEEE (2010) 1–8

[22] Ferdous, S., Das, A., M.S., R., M.M., R.: Ant colony optimization
approach to solve the minimum string cover problem. In: International
Conference on Informatics, Electronics & Vision (ICIEV), IEEE (2012)
741 – 746

[23] Ferdous, S., Rahman, M.: Solving the minimum common string parti-
tion problem with the help of ants. In Tan, Y., Shi, Y., Mo, H., eds.:
Advances in Swarm Intelligence. Volume 7928 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg (2013) 306–313

[24] Stothard, P.: The sequence manipulation suite: Javascript programs
for analyzing and formatting protein and dna sequences. Biotechniques
28(6) (2000) 1102

[25] Villesen, P.: Fabox: An online fasta sequence toolbox (2007)

29

	1 Introduction
	1.1 Our Contribution

	2 Literature Review
	3 Preliminaries
	3.1 Basics of ACO
	3.2 Ant Based Solutions Construction
	3.3 Heuristic Information
	3.4 Pheromone Update
	3.5 MAX-MIN Ant System (MMAS)

	4 Our Approach: MAX-MIN Ant System on the Common Substring Graph
	4.1 Formulation of Common Substring Graph
	4.2 Heuristics
	4.2.1 The Static Heuristic for MCSP
	4.2.2 The Dynamic Heuristic for MCSP

	4.3 Initialization and Configuration
	4.4 Construction of a Solution
	4.5 Intelligent Positioning
	4.6 Pheromone Update
	4.7 The Pseudocode

	5 Experiments
	5.1 Datasets
	5.1.1 Random DNA sequences:
	5.1.2 Real Gene Sequences:

	5.2 Parameter Tuning
	5.3 Results and Analysis
	5.3.1 Random DNA sequence:
	5.3.2 Effects of Dynamic Heuristics:
	5.3.3 Real Gene Sequence:

	6 Conclusion

