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Goethals–Seidel difference families with

symmetric or skew base blocks

Dragomir Ž. D̄oković1, Ilias S. Kotsireas2

Abstract

We single out a class of difference families which is widely used in some constructions
of Hadamard matrices and which we call Goethals–Seidel (GS) difference families. They
consist of four subsets (base blocks) of a finite abelian group of order v, which can be
used to construct Hadamard matrices via the well-known Goethals–Seidel array. We
consider the special class of these families in cyclic groups, where each base block is either
symmetric or skew.

We omit the well-known case where all four blocks are symmetric. By extending
previous computations by several authors, we complete the classification of GS-difference
families of this type for odd v < 50. In particular, we have constructed the first examples
of so called good matrices, G-matrices and best matrices of order 43, and good matrices
and G-matrices of order 45.

We also point out some errors in one of the cited references.

Keywords: Goethals–Seidel array; difference families; good matrices; G-matrices; best ma-
trices
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1 Introduction

The well-known Goethals–Seidel array (GS-array)







Z0 Z1R Z2R Z3R
−Z1R Z0 −ZT

3 R ZT
2 R

−Z2R ZT
3 R Z0 −ZT

1 R
−Z3R −ZT

2 R ZT
1 R Z0






, (1)

is a powerful tool for the construction of Hadamard matrices and in particular those of skew
type. The four blocks Zi of size v, needed to plug into the GS-array to obtain a Hadamard
matrix of order 4v, are usually constructed by using a suitable difference family in a finite
abelian group G of order v. (The matrix R will be defined later in the case when this abelian
group is cyclic.)

We recall that the subsets X1, X2, . . . , Xt ⊆ G form a difference family if for every c ∈ G\{0}
there are exactly λ ordered triples (a, b, i) ∈ G × G × {1, 2, . . . , t} such that {a, b} ⊆ Xi and
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a−b = c. We say that (v; k1, k2, . . . , kt;λ) is the set of parameters of that family, where ki = |Xi|
is the cardinality of Xi. In the Hadamard matrix community these difference families are better
known as supplementary difference sets, see e.g. [16, Definition 1.5, p. 281]. Note that we must
have

t∑

i=1

ki(ki − 1) = λ(v − 1). (2)

We remark that if in a difference family (Xi) we replace one of the blocks Xi by its com-
plement G \Xi, then we still have a difference family; its parameter set is obtained from the
original one by replacing ki with v − ki and λ by λ+ (v − 2ki).

The difference families that we need have t = 4, i.e., they are ordered quadruples of four
base blocks X1, X2, X3, X4, such that their parameter sets satisfy the condition

4∑

i=1

ki = λ+ v. (3)

We say that the parameter sets, with t = 4, satisfying the conditions (2) and (3) are GS-
parameter sets and that the corresponding difference families are GS-difference families. While
the condition (2) is necessary for the existence of the difference family with the above mentioned
parameter set, the two additional conditions that t = 4 and (3) are required for the construction
of Hadamard matrices by using the GS-array. Indeed, assuming that t = 4, the condition (3)
is equivalent to the condition (sum-A) below, see [16, Lemma 1.20].

In this paper the group G will be cyclic, G = Zv = {0, 1, . . . , v − 1}, v > 1, and the
difference families will be of GS-type. Since we can permute the Xi and replace any Xi with
its complement, we shall assume that

v/2 ≥ k1 ≥ k2 ≥ k3 ≥ k4 ≥ 0. (4)

The blocks Zi will be circulant matrices while the matrix R in (1) will be the back-circulant
identity matrix of order v,

R =










0 0 · · · 0 1
0 0 1 0
...
0 1 0 0
1 0 0 0










.

We say that a subset X ⊆ Zv is symmetric if −X = X , and that it is skew if v is odd,
|X| = (v − 1)/2 and (−X) ∩X = ∅.

We consider only the GS-difference families (Xi), i = 1, 2, 3, 4, in Zv such that each Xi is
either symmetric or skew. We have four symmetry types for such families: (ssss), (ksss), (kkss),
(kkks). (The type (kkkk) will be dismissed below.) The letter “s” stands for “symmetric” and
“k” for “skew”. For instance, a difference family is of (kkss) type if two of the base blocks are
symmetric and the other two are skew.
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To any subset X ⊆ Zv we associate the binary sequence (i.e., a sequence with entries +1
and −1) of length v, say (x0, x1, . . . , xv−1), where xi = −1 if and only if i ∈ X . By abuse
of language, we shall use the symbol X to denote also the binary sequence associated to the
subset X . Further, let Ai be the circulant matrix having the sequence Xi as its first row.

For any GS-difference family (Xi) the four circulants Ai satisfy the equation

4∑

i=1

AT
i Ai = 4vIv, (5)

where Iv is the identity matrix of order v. This equation is used to verify that, after setting
Zi = Ai+1, i = 0, . . . , 3, into the GS-array, we obtain a Hadamard matrix. Thus the equality
(5) is an essential feature of the GS-families. For the sake of convenience, let us say that four
circulant {±1}-matrices (Ai) of order v are GS-matrices if they satisfy the equation (5).

Let (Ai) be GS-matrices. If they have the symmetry type (ssss) then they are the well-known
Williamson matrices (with four symmetric circulants). If they have symmetry type (ksss), with
A1 of skew type, i.e. A1 + AT

1 = 2Iv, then the quadruple consisting of the circulant A1 and
the back-circulants Bi = AiR, i = 2, 3, 4, are good matrices. Alternatively, for i = 2, 3, 4 one
can take Bi to be the back-circulant matrix having the same first row as Ai. (Note that each
back-circulant is a symmetric matrix.)

As the reader may not be familiar with the good matrices, let us define them precisely. We
say that two matrices M,N of order v are amicable if MNT = NMT . Let (Mi) be a quadruple
of {±1}-matrices of order v. We say that the Mi are Willamson type matrices if they are
pairwise amicable and satisfy the equation (5). Finally, we say that the matrices Mi are good
matrices if they are Williamson type matrices, one of which is of skew type and the other three
symmetric.

The G-matrices over a finite abelian group have been introduced long ago by J. Seberry
Walis [12, p. 154]. (The condition (iii) of that definition is redundant as any two matrices of
type 1 commute.) In the case that we consider, the group G is cyclic and G-matrices are simply
the GS-matrices having the symmetry type (kkss).

Similarly, the GS-matrices of symmetry type (kkks) have been given the name of best ma-
trices (see [7]).

By eliminating the parameter λ from the equations (2) and (3), we obtain that

4∑

i=1

(v − 2ki)
2 = 4v. (6)

It is also true that equations (2) and (6) imply the equation (3).
Hence, if all Xi are skew then necessarily v = 1. For that reason we have omitted the (kkkk)

type. Note also that if k4 = 0 then (6) implies that v ≤ 4. Since the Williamson matrices are
treated extensively in [9], we omit the (ssss) type as well.

In order to find GS-matrices of a given order v, one has to compute first the possible GS-
parameter sets. This is easily accomplished by solving the Diophantine equation (6) subject to
the conditions (4).
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Our main objective is to extend and complete the classification (up to equivalence) of the
GS-difference families of types (ksss), (kkss) and (kkks) for odd v < 50. See Table 1 in section
5 for the summary of old and new results in this range.

2 GS-parameter sets

The following proposition follows immediately from the equation (6).

Proposition 1 The GS-parameter sets (v; k1, k2, k3, k4;λ) with v/2 ≥ k1 ≥ k2 ≥ k3 ≥ k4 ≥ 0
are parametrized by four-odd-square decompositions 4v =

∑
4

i=1
s2i when v is odd, and by four-

square decompositions v =
∑

4

i=1
s2i when v is even. In both cases we require that 0 ≤ s1 ≤ s2 ≤

s3 ≤ s4.

The parameter sets needed for the construction of GS-difference families of symmetry types
(ksss), (kkss) and (kkks) always exist. We treat the three cases separately.

Proposition 2 For a given odd v ≥ 1, there is at least one GS-parameter set with (v− 1)/2 =
k1 ≥ k2 ≥ k3 ≥ k4.

Proof By setting k1 = (v − 1)/2 the equation (6) reduces to

4∑

i=2

(v − 2ki)
2 = 4v − 1.

Since v is odd, 4v−1 ≡ 3 (mod 8). It is known that every positive integer congruent to 3 modulo
8 is a sum of three odd squares. Indeed, this claim is equivalent to the well-known theorem of
Gauss that every positive integer is a sum of at most three triangular numbers [4]. Thus there
exist integers k2, k3, k4 satisfying the above equation and such that (v−1)/2 ≥ k2 ≥ k3 ≥ k4 ≥ 0.
Consequently, the ki, i = 1, . . . , 4, satisfy the equation (6) which implies that λ ≥ 0.

In the case (ksss) there are only finitely many known GS-difference families, namely for odd
v ≤ 39 and v = 127. The cases v = 43, 45 are new and appear here for the first time. Our
exhaustive search did not find any GS-difference families of type (ksss) for v = 41, 47, 49.

In the case (kkss) there is an infinite series of GS-difference families constructed by E.
Spence [14].

For type (kkss), the GS-parameter sets are given by the following proposition.

Proposition 3 The GS-parameter sets with (v− 1)/2 = k1 = k2 ≥ k3 ≥ k4 exist if and only if
2v − 1 is a sum of two squares. They have the form

(v; k1 = k2 = (v − 1)/2, (v − r + s)/2, (v − r − s)/2; v − r − 1),

where r, s are integers, r > s ≥ 0 and r2 + s2 = 2v − 1.
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Proof Assume first that k1 = k2 = (v−1)/2. The equation (3) gives λ = k3+k4−1 and from
the equation (2) we obtain that

k3(k3 − 1) + k4(k4 − 1) = (v − 1)

(

k3 + k4 −
v − 1

2

)

.

This equation can be written as (v − 2k3)
2 + (v − 2k4)

2 = 2(2v − 1). This implies that 2v − 1
is a sum of two squares.

Conversely, assume that 2v − 1 = r2 + s2 where r ≥ s ≥ 0 are integers. In fact we must
have r > s. If v = 3 we have r = 1 and s = 0. If v = 5 we have r = 3 and s = 0. So, the
assertion holds in these two cases. We may assume that v > 5. We claim that r ≤ (v − 1)/2.
Otherwise we would have 2r ≥ v + 1 and 4(2v − 1) = 4r2 + 4s2 ≥ (v + 1)2 which gives the
contradiction (v−1)(v−5) ≤ 0. As r and s have different parity, we can set k3 = (v− r+ s)/2,
k4 = (v−r−s)/2 and λ = v−r−1 ≥ 0. It is easy to verify that we obtain a valid GS-parameter
set.

For type (kkks), the GS-parameter sets are given by the following proposition.

Proposition 4 The GS-parameter sets with (v − 1)/2 = k1 = k2 = k3 ≥ k4 have the form

(v = r2 + r + 1; k1 = k2 = k3 = r(r + 1)/2, k4 = r(r − 1)/2;λ = r2 − 1),

where r is a positive integer.

Proof Set v = 2s + 1, and so k1 = k2 = k3 = s. From (3) we obtain that k4 = λ − s + 1.
Since

∑
ki(ki − 1) = λ(v − 1) = 2sλ, we deduce that λ satisfies the quadratic equation λ2 −

(4s− 1)λ+4s(s− 1) = 0. The discriminant 8s+1 must be an odd square, say (2r+1)2. Thus,
s = r(r + 1)/2. The two roots of the quadratic equation are r2 − 1 and 2r + r2. We omit the
second root because it gives that k4 > s = (v − 1)/2. This completes the proof.

We observe that the formula v = r2 + r + 1 implies that 4v − 3 is an odd square (see also
[7]).

It is not known whether for each of these parameter sets there exists a GS-difference family
of type (kkks). They exist for the first six values of r, r = 1, 2, . . . , 6.

3 Elementary transformations and equivalence relation

Let (Xi) be a difference family over a finite abelian group G of odd order v (written additively).
We fix a GS-parameter set such that (4) holds. The set of GS-families with this parameter set
is invariant under the following elementary transformations:

(a) For some i replace Xi by a translate g +Xi, g ∈ G.
(b) For some i replace Xi by −Xi.
(c) For all i replace Xi by its image α(Xi) under an automorphism α of G.
(d) Exchange Xi and Xj provided that |Xi| = |Xj|.
In the case G = Zv, α is just the multiplication modulo v by some integer k relatively prime

to v.
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Definition 1 We say that two difference families with the same parameter set satisfying (4)
are equivalent if one can be transformed to the other by a finite sequence of elementary trans-
formations.

Note that the symmetry properties of the base blocks Xi may be destroyed by operations
(a), and changed by operations (d). Nevertheless we shall use the above definition of equivalence
for the classification of GS-difference families with symmetry.

The definition of equivalence for the special case of cyclic GS-difference families of type
(ksss), (kkss), and (kkks) given in [6, 7, 8] uses only elementary transformations of type (c).
Apparently their GS-difference families (also known as supplementary difference sets) are non-
ordered quadruples, in which case they do not need the elementary operations of type (d). For
convenience, we shall refer to their equivalence classes as small classes. If Xi is symmetric
then −Xi = Xi but this fails in the case when Xi is skew. Hence, for GS-difference families
of type (ksss) the elementary operation (b) can be viewed as a special case of (c). However,
this is not the case for GS-difference families of type (kkss) or (kkks). For that reason, our
equivalence class may contain more than one small class. In the (kkss) case an equivalence class
may contain two small classes, and in the (kkks) case it may contain up to four small classes.

Table 1 of [6] contains the list of representatives of the small equivalence classes of supple-
mentary difference sets (i.e., GS-difference families) of type (kkss) for all odd v ≤ 33. It should
be used with care as it contains several errors. For example, let us consider the very first item
in that table, namely the parameter set (3;1,1,2,0;1). It is claimed there that there is only one
small equivalence class, namely the one with the base blocks S0 = {1}, S1 = {1}, S2 = {1, 2},
S3 = ∅. However, if we replace S0 with −S0 = {2} then, according to the definition given in
[6, p. 207], the families −S0, S1, S2, S3 and S0, S1, S2, S3 are not equivalent. Note that they are
equivalent according to our Definition 1. For more examples see our comment at the end of
subsection 7.1 of the appendix.

4 Algorithmic issues

All computations for GS-difference families (X1, X2, X3, X4) with parameters (v; k1, k2, k3, k4;λ),
v odd, in this paper have been performed via a two-phase algorithmic scheme. The first phase
is the data collection phase. The second phase is the matching phase. We provide a more
detailed description of these two phases below.

4.1 Data collection

During the data collection phase, we collect four data files F1, F2, F3, F4, corresponding to
the four base blocks X1, X2, X3, X4 of the GS-difference family. Each data file contains positive
integers arranged in k columns where k = (v − 1)/2. Each data file is typically made up of
several millions of rows, and corresponds to an exhaustive search for sequences arising from the
corresponding base block. The usual power spectral density filtering (see [5]) is applied, during
the data collection phase. The positive integers in the four data files represent the multiplicities
of the various differences arising from the corresponding base blocks. More specifically, a
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combinatorial generation algorithm is used to generate exhaustively all possible base blocks
that are not eliminated from the power spectral density filtering. If we denote by X1,i the ith
candidate for the first base block X1, the ith row of file F1 contains a list of how often each
group element is represented as a difference g1 − g2 where g1, g2 ∈ X1,i. The same principle
applies to files F2, F3, F4 as well. Here is a schematic representation of the four data files:

file F1
︷ ︸︸ ︷

F11,1 . . . F11,k
...

...
...

F1l1,1 . . . F1l1,k

file F2
︷ ︸︸ ︷

F21,1 . . . F21,k
...

...
...

F2l2,1 . . . F2l2,k

file F3
︷ ︸︸ ︷

F31,1 . . . F31,k
...

...
...

F3l3,1 . . . F3l3,k

file F4
︷ ︸︸ ︷

F41,1 . . . F41,k
...

...
...

F4l4,1 . . . F4l4,k

where l1, l2, l3, l4 are the total numbers of lines of the files F1, F2, F3, F4. Due to the fact that
the differences d and v − d have the same multiplicity, we record these multiplicities only for
d = 1, 2, . . . , k where k = (v − 1)/2.

4.2 Matching

During the matching phase, we process the four data files F1, F2, F3, F4, with the aim to
find quadruples of lines (one in each file), so that the k element-wise sums are all equal to the
constant λ, defined in the beginning of the Introduction. More specifically, we are looking for
a line ℓ1 in file F1, a line ℓ2 in file F2, a line ℓ3 in file F3, a line ℓ4 in file F4, such that the
following k conditions are satisfied:







F1ℓ1,1 + F2ℓ2,1 + F3ℓ3,1 + F4ℓ4,1 = λ
...

F1ℓ1,k + F2ℓ2,k + F3ℓ3,k + F4ℓ4,k = λ

It may be the case that such quadruples do not exist, which proves the non-existence of the
corresponding GS-difference families. If such quadruples do exist, then we compute all of them
by using a bins-based technique and a parallel backtracking algorithm [11]. We use two different
algorithms and two different implementations, to validate the results.

The bins-based technique works by performing a pre-processing step which consists in cal-
culating the different values that appear on the first column of each of the four data files, and
subsequently splitting the four data files in smaller parts, so that each part contains only those
rows that start with a specific number. Since we know that numbers in the first column must
sum to λ, we are able to compute all possible cases for which this can happen, given all the
possible values appearing in the first columns of F1, F2, F3, F4. This process typically estab-
lishes a few hundreds of possible cases Ci, each of which can then be processed in parallel. A
typical case Ci is identified by four numbers n1, n2, n3, n4 such that n1 + n2 + n3 + n4 = λ and
four files F1Ci

, F2Ci
, F3Ci

, F4Ci
, such that F1Ci

contains all lines in F1 that start with n1 and
similarly for the other three files. It is also possible that the number of cases is zero, and in
that case it is clear the problem does not have a solution. If the number of cases is not zero,
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then for each case Ci we examine the total numbers of lines in the corresponding four files,
F1Ci

, F2Ci
, F3Ci

, F4Ci
and if the following condition is satisfied

(#lines inF1Ci
)× (#lines inF4Ci

) < 107 & (#lines inF2Ci
)× (#lines inF3Ci

) < 107

then case Ci is dealt with by a serial C program. Note that this condition is checked, once
we have rearranged the files F1Ci

, F2Ci
, F3Ci

, F4Ci
in increasing order, according to their to-

tal numbers of lines. If the above condition is not satisfied for case Ci, then the four files
F1Ci

, F2Ci
, F3Ci

, F4Ci
are split in smaller parts, by using the bins based on the second column.

The threshold value 107 has been determined experimentally.

5 Summary of computational results and conclusions

There are several known infinite classes of difference families with four base blocks which can
be used to construct Hadamard matrices via the Goethals–Seidel array. For that reason we
refer to these families as GS-difference families. As an example let us mention one such family
constructed in [17] which is especially interesting as it gives skew Hadamard matrices. It was
observed recently (see [1]) that by using a different array (different from the GS-array) this
infinite series gives also symmetric Hadamard matrices of the same orders. We are not aware
of any GS-parameter set for which there is no cyclic difference family having the parameters
specified by this set.

The cyclic GS-difference families with parameter set (v; k1, k2, k3, k4;λ) of symmetry type
(ksss), (kkss) and (kkks) provide quadruples of matrices of order v known as good matrices,
G-matrices and best matrices, respectively. Some sporadic examples of such matrices are given,
and systematic exhaustive searches for some small values of v have been carried out in [2, 3, 6,
7, 8, 14, 15].

There are only finitely many good matrices that have been constructed so far. Their orders
are odd integers up to 39 and the integers 43, 45 and 127. The ones of orders 43 and 45 appear
first in this paper. The order 41 is the smallest odd integer for which there are no GS-families
of (ksss) symmetry type. Our exhaustive searches show that such difference families do not
exist also in cyclic groups of orders 47 and 49.

There is an infinite series of circulant G-matrices due to E. Spence [14]. This fact is not
well-known. For instance it is not mentioned in the paper [6] devoted to G-matrices. In that
paper the authors have classified the GS-difference families of symmetry type (kkss) for odd
v ≤ 33 and given a few examples for v = 37, 41. In the appendix (see subsection 7.1) we
point out that this classification has some errors. We have performed exhaustive searches for
v = 37, 41, 43, 45 and 49. We found that there are 7,3,4,1 equivalence classes for the first four
of these orders, and none for v = 49. There are no GS-parameter sets for G-matrices when
v = 35, 39, 47.

The GS-parameter sets for best matrices (symmetry type (kkks)) form an infinite series,
see Proposition 4. Apparently there is no known infinite series of best matrices so far. There
is a simple necessary arithmetic condition for the existence of best matrices of order v, namely
4v − 3 must be an odd square. For v = 3, 7, 13, 21, 31 the small equivalence classes are listed
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in [7]. However, we warn the reader that these lists may contain errors just like in the case of
G-matrices. For instance when v = 3 there are two small equivalence classes while only one is
recorded in [7]. Our exhaustive search for v = 43 found that there are five equivalence classes
of best matrices.

A short summary of the known facts about the existence of good matrices, G-matrices and
best matrices for odd orders v < 50 is given in Table 1 below. We write “yes” if the matrices
exist and “no” if the exhaustive search did not find any such matrices. The entry “×” means
that the parameter set is not suitable for the symmetry type specified for the column. The
entries that we obtained in this work are shown in boldface in Table 1.

v k1 k2 k3 k4 λ ksss kkss kkks v k1 k2 k3 k4 λ ksss kkss kkks
3 1 1 1 0 0 yes yes yes 31 15 15 15 10 24 yes yes yes
5 2 2 1 1 1 yes yes × 15 13 12 12 21 yes × ×
7 3 3 3 1 3 yes yes yes 33 16 16 15 11 25 yes yes ×

3 2 2 2 2 yes × × 16 16 13 12 24 yes yes ×
9 4 4 3 2 4 yes yes × 16 14 14 12 23 yes × ×
11 5 4 4 3 5 yes × × 35 17 16 16 12 26 yes × ×
13 6 6 6 3 8 yes no yes 17 16 14 13 25 yes × ×

6 6 4 4 7 yes yes × 37 18 18 16 13 28 yes yes ×
15 7 7 6 4 9 yes yes × 18 15 15 15 26 yes × ×

7 6 5 5 8 yes × × 39 19 18 17 14 29 yes × ×
17 8 7 7 5 10 yes × × 19 17 16 15 28 yes × ×
19 9 9 7 6 12 yes yes × 41 20 20 16 16 31 no yes ×

9 7 7 7 11 yes × × 43 21 21 21 15 35 no yes yes

21 10 10 10 6 15 yes yes yes 21 21 18 16 33 no yes ×
10 9 8 7 13 yes × × 21 19 19 16 32 yes × ×

23 11 11 10 7 16 yes yes × 21 20 17 17 32 no × ×
25 12 12 9 9 17 no yes × 45 22 22 21 16 36 yes yes ×

12 11 11 8 17 yes × × 22 21 19 17 34 yes × ×
12 10 10 9 16 yes × × 22 19 19 18 33 yes × ×

27 13 13 11 9 19 yes yes × 47 23 22 22 17 37 no × ×
13 12 10 10 18 yes × × 23 21 19 19 35 no × ×

29 14 13 12 10 20 yes × × 49 24 24 22 18 39 no no ×
24 22 21 19 37 no × ×

Table 1. Existence of GS-difference families with symmetry

More details, including the listing of representatives of equivalence classes of GS-difference
families for 33 ≤ v ≤ 49, are provided in the appendix.

For applications of the good, best and G-matrices to construction of the various combinato-
rial structures see [2, 6, 7, 8]. Let us just mention two of them. First, good matrices of order v
give the complex Hadamard matrices of order 2v. Second, by Theorems 1 and 2 of [7], if there
exist best matrices of order v, then there exist orthogonal designs OD(8v; 1, 1, 2, 2, 4v−3, 4v−3)
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and OD(4v; 1, 1, 1, 4v − 3). In particular, this holds for v = 43 as we have constructed best
matrices of order 43. For the definition of OD’s see the same paper or [13].
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7 Appendix

For the previous work on the classification of GS-families of type (ksss) see [8], for the type
(kkss) see [6], and for (kkks) see [7]. The paper [3] gives additional GS-families of all these
types, as well as some multi-circulant GS-families of type (ssss).
For each odd integer v in the range 33 ≤ v ≤ 49 and for each GS-parameter set (v; k1, k2, k3, k4;λ)
with k1 = (v−1)/2 ≥ k2 ≥ k3 ≥ k4 ≥ 0 we list below (or provide references for) the representa-
tives of the equivalence classes for GS-difference families having symmetry type (ksss), (kkss)
or (kkks).

7.1 v = 33

For the symmetry type (ksss), we have verified the claim made in [8] that there are 6, 4
and 5 equivalence classes of GS-difference families with parameter sets (33; 16, 16, 15, 11; 25),
(33; 16, 16, 13, 12; 24) and (33; 16, 14, 14, 12; 23), respectively.

On the other hand, our computations for type (kkss) do not agree with those in [6]. We
found that there are 20 equivalence classes. Their representatives are listed below.

(kkss) type:

(a) (33;16,16,15,11;25)

[2,4,6,10,13,14,15,16,21,22,24,25,26,28,30,32],

[3,4,5,6,7,8,9,12,15,16,19,20,22,23,31,32],

11



[0,2,7,8,12,13,14,16,17,19,20,21,25,26,31],

[0,2,5,8,10,11,22,23,25,28,31].

(b) (33;16,16,15,11;25)

[1,3,5,6,11,12,14,16,18,20,23,24,25,26,29,31],

[2,4,5,9,11,12,13,15,16,19,23,25,26,27,30,32],

[0,1,2,3,5,11,12,16,17,21,22,28,30,31,32],

[0,8,9,12,15,16,17,18,21,24,25].

(c) (33;16,16,15,11;25)

[4,5,7,8,9,10,12,14,16,18,20,22,27,30,31,32],

[3,7,8,9,10,12,13,15,16,19,22,27,28,29,31,32],

[0,1,6,7,8,10,11,14,19,22,23,25,26,27,32],

[0,7,10,12,15,16,17,18,21,23,26].

(d) (33;16,16,15,11;25)

[3,4,5,6,7,9,10,12,14,16,18,20,22,25,31,32],

[1,2,4,5,6,7,8,13,14,16,18,21,22,23,24,30],

[0,1,3,4,9,10,11,14,19,22,23,24,29,30,32],

[0,3,4,7,9,12,21,24,26,29,30].

(e) (33;16,16,15,11;25)

[2,4,6,8,11,12,13,16,18,19,23,24,26,28,30,32],

[2,3,4,5,8,11,16,18,19,20,21,23,24,26,27,32],

[0,1,2,3,7,8,10,11,22,23,25,26,30,31,32],

[0,4,6,9,10,16,17,23,24,27,29].

(f) (33;16,16,15,11;25)

[2,4,5,10,12,16,18,19,20,22,24,25,26,27,30,32],

[2,5,9,11,12,13,14,16,18,23,25,26,27,29,30,32],

[0,1,3,6,7,10,11,12,21,22,23,26,27,30,32],

[0,7,8,12,15,16,17,18,21,25,26].

(g) (33;16,16,13,12;24)

[1,3,5,7,8,10,11,13,14,15,16,21,24,27,29,31],

[1,3,7,9,10,11,15,16,19,20,21,25,27,28,29,31],

[0,3,4,5,7,10,11,22,23,26,28,29,30],

[3,8,9,11,12,13,20,21,22,24,25,30].

(h) (33;16,16,13,12;24)

[2,3,7,9,10,12,14,15,16,20,22,25,27,28,29,32],

[1,7,8,10,12,16,18,19,20,22,24,27,28,29,30,31],

[0,2,3,4,5,11,14,19,22,28,29,30,31],
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[5,7,8,11,12,16,17,21,22,25,26,28].

(i) (33;16,16,13,12;24)

[1,3,5,6,8,9,12,14,15,16,20,22,23,26,29,31],

[1,2,10,11,14,16,18,20,21,24,25,26,27,28,29,30],

[0,3,4,8,9,10,12,21,23,24,25,29,30],

[1,2,3,9,12,14,19,21,24,30,31,32].

(j) (33;16,16,13,12;24)

[1,3,5,7,8,11,14,15,16,20,21,23,24,27,29,31],

[1,2,5,8,10,12,13,14,15,16,22,24,26,27,29,30],

[0,4,5,6,12,14,15,18,19,21,27,28,29],

[1,2,3,4,7,14,19,26,29,30,31,32].

(k) (33;16,16,13,12;24)

[2,3,5,7,10,14,15,16,20,21,22,24,25,27,29,32],

[2,4,5,6,11,12,14,15,16,20,23,24,25,26,30,32],

[0,2,4,7,8,9,10,23,24,25,26,29,31],

[5,8,9,12,13,15,18,20,21,24,25,28].

(l) (33;16,16,13,12;24)

[3,4,5,6,8,10,12,13,15,16,19,22,24,26,31,32],

[2,4,5,8,9,10,12,13,14,15,16,22,26,27,30,32],

[0,1,2,3,9,11,15,18,22,24,30,31,32],

[3,6,7,11,12,14,19,21,22,26,27,30].

(m) (33;16,16,13,12;24)

[1,2,4,5,6,8,10,12,13,15,16,19,22,24,26,30],

[1,2,3,4,6,7,8,11,13,14,16,18,21,23,24,28],

[0,4,6,9,10,15,16,17,18,23,24,27,29],

[3,4,12,13,15,16,17,18,20,21,29,30].

(n) (33;16,16,13,12;24)

[1,5,7,8,11,13,15,16,19,21,23,24,27,29,30,31],

[2,3,4,5,7,8,9,11,12,14,16,18,20,23,27,32],

[0,7,8,9,10,13,14,19,20,23,24,25,26],

[3,4,6,8,9,16,17,24,25,27,29,30].

(o) (33;16,16,13,12;24)

[4,5,7,11,13,15,16,19,21,23,24,25,27,30,31,32],

[1,2,3,4,5,6,9,11,12,13,16,18,19,23,25,26],

[0,6,9,11,12,13,16,17,20,21,22,24,27],

[2,6,7,9,11,12,21,22,24,26,27,31].
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(p) (33;16,16,13,12;24)

[2,3,6,11,13,15,16,19,21,23,24,25,26,28,29,32],

[1,3,4,5,9,16,18,19,20,21,22,23,25,26,27,31],

[0,3,5,9,12,13,14,19,20,21,24,28,30],

[4,6,9,10,15,16,17,18,23,24,27,29].

(q) (33;16,16,13,12;24)

[3,5,8,9,13,15,16,19,21,22,23,26,27,29,31,32],

[1,3,4,5,7,9,13,14,15,16,21,22,23,25,27,31],

[0,1,2,3,4,11,14,19,22,29,30,31,32],

[3,4,8,11,13,16,17,20,22,25,29,30].

(r) (33;16,16,13,12;24)

[3,4,6,7,9,12,13,14,16,18,22,23,25,28,31,32],

[2,3,4,5,7,9,10,11,12,15,16,19,20,25,27,32],

[0,1,2,4,6,13,16,17,20,27,29,31,32],

[3,4,7,9,15,16,17,18,24,26,29,30].

(s) (33;16,16,13,12;24)

[1,2,3,4,7,9,12,14,16,18,20,22,23,25,27,28],

[2,3,4,5,6,9,10,11,12,15,16,19,20,25,26,32],

[0,1,2,3,9,12,16,17,21,24,30,31,32],

[2,6,10,12,13,15,18,20,21,23,27,31].

(t) (33;16,16,13,12;24)

[2,6,8,10,11,12,13,16,18,19,24,26,28,29,30,32],

[1,3,4,5,7,8,9,10,12,15,16,19,20,22,27,31],

[0,7,8,10,12,13,16,17,20,21,23,25,26],

[4,5,6,8,13,14,19,20,25,27,28,29].

The parameter set for the first 6 equivalence classes (a-f) is (33;16,16,15,11;25) and for the
remaining 14 classes (g-t) is (33;16,16,13,12;24). Each of the equivalence classes (a-f) consists
of two small equivalence classes. Consequently, there should be 12 small classes in [6] for the
first parameter set. However, only 9 small classes have been listed in that paper. Similarly,
there are 28 small classes for the second parameter set, but only 22 are listed in [6].

7.2 v = 35

We have verified the claim made in [8] that, for the type (ksss), there are 4 and 2 equivalence
classes for the GS-parameter sets (35; 17, 16, 16, 12; 26) and (35; 17, 16, 14, 13; 25), respectively.
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7.3 v = 37

For (ksss) type, we have verified the claim made in [8] that there is only one equivalence class
of solutions for the parameter set (37; 18, 18, 16, 13; 28) and only one for (37; 18, 15, 15, 15; 26).

For (kkss) type, the family (a) below was constructed in [3] and the families (b-e) in [6].
We have completed the classification by constructing the families (f) and (g).

(kkss) type:

(a) (37;18,18,16,13;28)

[1,2,3,4,6,7,8,11,14,16,17,18,22,24,25,27,28,32],

[1,3,6,8,12,15,19,20,21,23,24,26,27,28,30,32,33,35],

[1,5,8,9,14,16,17,18,19,20,21,23,28,29,32,36],

[0,4,5,6,10,12,13,24,25,27,31,32,33].

(b) (37;18,18,16,13;28)

[1,2,3,4,5,13,18,20,21,22,23,25,26,27,28,29,30,31],

[1,2,4,6,8,9,12,14,15,18,20,21,24,26,27,30,32,34],

[1,5,6,7,8,11,15,16,21,22,26,29,30,31,32,36],

[0,1,4,6,9,13,17,20,24,28,31,33,36].

(c) (37;18,18,16,13;28)

[1,4,5,6,7,8,13,17,19,21,22,23,25,26,27,28,34,35],

[1,3,5,7,8,10,11,14,15,16,19,20,24,25,28,31,33,35],

[2,4,5,6,8,13,16,18,19,21,24,29,31,32,33,35],

[0,7,12,13,14,15,18,19,22,23,24,25,30].

(d) (37;18,18,16,13;28)

[1,4,7,10,11,12,15,17,19,21,23,24,28,29,31,32,34,35],

[1,3,4,7,9,11,12,16,17,19,22,23,24,27,29,31,32,35],

[3,7,8,14,15,16,17,18,19,20,21,22,23,29,30,34],

[0,5,7,9,10,11,18,19,26,27,28,30,32].

(e) (37;18,18,16,13;28)

[1,2,4,5,6,7,11,14,16,17,18,22,24,25,27,28,29,34],

[1,2,3,5,10,13,15,19,20,21,23,25,26,28,29,30,31,33],

[2,3,5,6,8,9,10,14,23,27,28,29,31,32,34,35],

[0,3,4,10,12,16,18,19,21,25,27,33,34].

(f) (37;18,18,16,13;28)

[1,2,3,4,5,6,8,9,10,12,14,17,19,21,22,24,26,30],

[1,2,3,4,6,8,10,11,14,15,18,20,21,24,25,28,30,32],

[3,5,6,11,13,14,17,18,19,20,23,24,26,31,32,34],

[0,3,10,11,12,15,16,21,22,25,26,27,34].
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(g) (37;18,18,16,13;28)

[1,2,3,4,6,7,9,10,11,14,16,18,20,22,24,25,29,32],

[1,2,3,4,5,8,9,10,11,13,14,16,18,20,22,25,30,31],

[2,3,4,6,7,15,16,18,19,21,22,30,31,33,34,35],

[0,2,5,8,12,13,18,19,24,25,29,32,35].

7.4 v = 39

For (ksss) type, we have verified the claim made in [8] that there are 3 equivalence classes of
solutions for the parameter set (39; 19, 18, 17, 14; 29) and two classes for (39; 19, 17, 16, 15; 28).

The classification of the GS-difference families for v = 41, 43, 45, 47, 49 and symmetry types
(ksss), (kkss), (kkks) was not carried out so far. The results of our computations are given
below.

7.5 v = 41

For (ksss) type and the parameter set (41; 20, 20, 16, 16; 31) our exhaustive search did not find
any solutions. For (kkss) type, there are 3 equivalence classes with representatives:

(kkss) type:

(a) (41;20,20,16,16;31)

[2,4,7,8,10,12,13,14,16,19,20,23,24,26,30,32,35,36,38,40],

[3,4,8,9,10,12,16,19,21,23,24,26,27,28,30,34,35,36,39,40],

[4,5,6,7,9,13,14,20,21,27,28,32,34,35,36,37],

[8,9,11,12,13,15,18,20,21,23,26,28,29,30,32,33].

(b) (41;20,20,16,16;31)

[2,4,6,7,8,10,11,14,15,17,20,22,23,25,28,29,32,36,38,40],

[1,2,4,6,9,10,14,16,17,18,19,20,26,28,29,30,33,34,36,38],

[3,4,5,6,7,10,11,16,25,30,31,34,35,36,37,38],

[2,4,7,8,9,12,14,15,26,27,29,32,33,34,37,39].

(c) (41;20,20,16,16;31)

[2,7,9,11,13,14,16,17,20,22,23,26,29,31,33,35,36,37,38,40],

[1,2,7,9,11,12,15,17,18,19,20,25,27,28,31,33,35,36,37,38],

[5,6,7,9,13,14,17,18,23,24,27,28,32,34,35,36],

[2,3,4,6,7,9,10,18,23,31,32,34,35,37,38,39].

The GS-difference family (b) above is equivalent to the one found in [6]. Our exhaustive
search found two more equivalence classes. Note that the second family listed in [6] for n = 41
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is not a difference family.

7.6 v = 43

There are four GS-parameter sets with v = 43 and k1 = 21 ≥ k2 ≥ k3 ≥ k4 ≥ 0. Three of them
have no GS-difference families of type (ksss). Only the GS-parameter set (43; 21, 19, 19, 16; 32)
has such families, they form just one equivalence class.

(ksss) type:

(a) (43;21,19,19,16;32)

[2,3,4,5,6,7,10,12,14,15,16,19,20,21,25,26,30,32,34,35,42],

[0,2,4,5,7,10,11,12,13,17,26,30,31,32,33,36,38,39,41],

[0,3,5,8,9,15,17,18,19,21,22,24,25,26,28,34,35,38,40],

[4,5,6,8,12,13,16,19,24,27,30,31,35,37,38,39].

(kkss) type:

(a) (43;21,21,21,15;35)

[1,3,5,9,11,13,14,16,17,21,23,24,25,28,31,33,35,36,37,39,41],

[4,5,6,9,14,15,16,17,18,19,21,23,30,31,32,33,35,36,40,41,42],

[0,1,3,4,6,7,8,10,14,15,20,23,28,29,33,35,36,37,39,40,42],

[0,1,4,5,6,14,17,20,23,26,29,37,38,39,42].

(b) (43;21,21,18,16;33)

[1,4,5,7,10,12,15,17,19,21,23,25,27,29,30,32,34,35,37,40,41],

[1,2,3,10,13,14,17,19,22,23,25,27,28,31,32,34,35,36,37,38,39],

[2,3,4,7,9,10,12,13,17,26,30,31,33,34,36,39,40,41],

[3,4,8,12,13,14,15,16,27,28,29,30,31,35,39,40].

(c) (43;21,21,18,16;33)

[2,4,6,9,10,15,16,18,21,23,24,26,29,30,31,32,35,36,38,40,42],

[4,7,8,9,11,12,15,17,22,23,24,25,27,29,30,33,37,38,40,41,42],

[6,7,9,13,14,15,17,18,19,24,25,26,28,29,30,34,36,37],

[7,8,9,11,13,16,17,20,23,26,27,30,32,34,35,36].

(d) (43;21,21,18,16;33)

[1,3,8,10,12,15,16,18,19,21,23,26,29,30,32,34,36,37,38,39,41],

[1,2,4,5,6,10,11,12,13,14,16,17,19,20,21,25,28,34,35,36,40],

[2,4,6,7,12,14,15,18,19,24,25,28,29,31,36,37,39,41],

[3,6,7,13,18,19,20,21,22,23,24,25,30,36,37,40].

(kkks) type:
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(a) (43;21,21,21,15;35)

[3,5,6,8,10,13,14,15,19,21,23,25,26,27,31,32,34,36,39,41,42],

[3,4,7,11,13,14,17,19,20,22,25,27,28,31,33,34,35,37,38,41,42],

[1,2,3,13,14,16,17,19,20,21,25,28,31,32,33,34,35,36,37,38,39],

[0,6,10,14,15,16,17,19,24,26,27,28,29,33,37].

(b) (43;21,21,21,15;35)

[1,3,4,6,9,10,13,14,19,21,23,25,26,27,28,31,32,35,36,38,41],

[1,3,7,8,10,13,14,15,17,18,19,21,23,27,31,32,34,37,38,39,41],

[2,4,5,6,13,14,15,16,17,20,21,24,25,31,32,33,34,35,36,40,42],

[0,1,2,4,5,10,12,18,25,31,33,38,39,41,42].

(c) (43;21,21,21,15;35)

[1,2,3,5,10,13,16,17,19,21,23,25,28,29,31,32,34,35,36,37,39],

[1,2,4,5,6,10,11,13,14,16,19,21,23,25,26,28,31,34,35,36,40],

[2,4,5,6,7,10,11,12,13,17,21,23,24,25,27,28,29,34,35,40,42],

[0,1,2,3,6,10,16,17,26,27,33,37,40,41,42].

(d) (43;21,21,21,15;35)

[2,4,5,6,8,9,11,12,13,17,19,21,23,25,27,28,29,33,36,40,42],

[2,5,6,7,8,11,13,15,16,17,18,20,21,24,29,31,33,34,39,40,42],

[4,5,6,9,10,11,13,14,16,17,18,19,20,21,28,31,35,36,40,41,42],

[0,3,10,11,13,14,15,20,23,28,29,30,32,33,40].

(e) (43;21,21,21,15;35)

[1,3,6,8,11,12,15,17,21,23,24,25,27,29,30,33,34,36,38,39,41],

[6,8,9,10,11,13,16,17,20,21,24,25,28,29,31,36,38,39,40,41,42],

[2,3,8,9,10,11,12,13,15,16,17,18,19,20,22,29,36,37,38,39,42],

[0,2,4,8,9,14,15,20,23,28,29,34,35,39,41].

7.7 v = 45

(ksss) type:

(a) (45;22,22,21,16;36)

[1,2,3,6,7,10,11,13,15,22,24,25,26,27,28,29,31,33,36,37,40,41],

[1,3,4,7,9,10,13,15,20,21,22,23,24,25,30,32,35,36,38,41,42,44],

[0,2,3,4,5,9,12,13,15,17,22,23,28,30,32,33,36,40,41,42,43],

[1,6,14,15,17,18,21,22,23,24,27,28,30,31,39,44].

(b) (45;22,22,21,16;36)
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[1,2,4,8,9,10,12,14,16,18,19,21,22,25,28,30,32,34,38,39,40,42],

[1,2,4,5,7,10,14,15,17,21,22,23,24,28,30,31,35,38,40,41,43,44],

[0,1,4,5,6,9,10,11,12,14,22,23,31,33,34,35,36,39,40,41,44],

[2,5,9,10,18,20,21,22,23,24,25,27,35,36,40,43].

(c) (45;22,21,19,17;34)

[1,3,6,7,9,12,16,18,21,22,25,26,28,30,31,32,34,35,37,40,41,43],

[0,1,2,4,8,9,10,11,12,15,19,26,30,33,34,35,36,37,41,43,44],

[0,2,3,5,10,13,14,18,19,20,25,26,27,31,32,35,40,42,43],

[0,3,4,5,7,9,17,21,22,23,24,28,36,38,40,41,42].

(d) (45;22,19,19,18;33)

[1,3,6,8,10,12,18,21,22,25,26,28,29,30,31,32,34,36,38,40,41,43],

[0,1,7,8,11,13,18,19,21,22,23,24,26,27,32,34,37,38,44],

[0,1,2,4,5,12,13,17,19,22,23,26,28,32,33,40,41,43,44],

[3,4,5,6,8,11,12,17,21,24,28,33,34,37,39,40,41,42].

(kkss) type:

(a) (45;22,22,21,16;39)

[1,2,5,7,8,12,13,15,17,19,21,22,25,27,29,31,34,35,36,39,41,42],

[2,3,4,5,6,9,11,12,13,17,18,20,21,22,26,29,30,31,35,37,38,44],

[0,1,2,3,4,6,10,11,13,19,21,24,26,32,34,35,39,41,42,43,44],

[3,4,7,8,17,19,20,22,23,25,26,28,37,38,41,42].

7.8 v = 47

In this case there are two GS-parameter sets with k1 = (v− 1)/2, namely (47; 23, 22, 22, 17; 37)
and (47; 23, 21, 19, 19; 35). Our exhaustive search did not find any families of type (ksss).

7.9 v = 49

In this case there are again two GS-parameter sets with k1 = (v−1)/2, namely (49; 24, 24, 22, 18; 39)
and (49; 24, 22, 21, 19; 37). Our exhaustive search did not find any families of type (ksss) or
(kkss).
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