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Abstract. The Bar Code is a bidimensional diagram representing a finite set of terms in any number of vari-
ables. In particular, one can represent the (lexicographical) Groebner escalier of a zerodimensional monomial
ideal and use this representation to desume many of its properties. The aim of this paper is to give a general
description of the Bar Code and it construction, giving then an overview of all the applications studied so far.

1. Introduction
Representing in diagrams zerodimensional monomial ideals is a useful tool to increase the intuition on the
properties of that ideals. The first paper presenting such kind of representation is due to Galligo [18]. In the
book [35], Miller and Sturmfels introduce the staircase diagram for the case of 2 and 3 variables, as a tool to
subsume the structure of the considered ideals. In particular, they are able to compute resolutions “by pictures”.
Such a representation, which is very useful for the case of 2 and 3 variables, cannot be applied to “bigger
dimensions” (see section 3), since no-one can draw pictures in dimension four or even bigger.
In this paper we show how to extend such kind of representation to any number of variables (section 4) with the
Bar Code, a bidimensional diagram which encodes the properties of zerodimensional ideals in n ≥ 1 variables.
From a Bar Code, one can deduce the star set (see section 5), which is the Pommaret basis of the represented
zerodimensional ideal. Finally in section 6, we will see some applications of Bar Codes, both in the involutive
(section 6.2) and in the non-involutive context (section 6.1).

2. Notation
Throughout this paper we mainly follow the notation of [37], for what concerns monomial ideals. We denote
by P := k[x1, ..., xn] the graded ring of polynomials in n variables with coefficients in the field k.
The semigroup of terms, generated by {x1, ..., xn} is T := {xγ := xγ1

1 · · · x
γn
n | γ := (γ1, ..., γn) ∈ Nn}. If τ =

xγ1
1 · · · x

γn
n , then deg(τ) =

∑n
i=1 γi is the degree of τ and, for each h ∈ {1, ..., n} degh(τ) := γh is the h-degree of

τ. The symbol T≤d denotes the degree ≤ d part of T , namely T≤d = {xγ ∈ T | deg(xγ) ≤ d}. Analogously, P≤d

denotes the degree ≤ d part of P and, given an ideal I of P, I≤d is its degree ≤ d part, i.e. I≤d = I ∩ P≤d. For
each term τ ∈ T and x j|τ, the only υ ∈ T such that τ = x jυ is called j-th predecessor of τ.
A semigroup ordering < on T is a total ordering such that τ1 < τ2 ⇒ ττ1 < ττ2,∀τ, τ1, τ2 ∈ T . For each
semigroup ordering < on T , we can represent a polynomial f ∈ P as a linear combination of terms arranged
w.r.t. <, with coefficients in the base field k: f =

∑
τ∈T c( f , τ)τ =

∑s
i=1 c( f , τi)τi : c( f , τi) ∈ k∗, τi ∈ T , τ1 >

... > τs,with T( f ) := τ1 the leading term of f . A term ordering is a semigroup ordering such that 1 is lower than
every variable or, equivalently, it is a well ordering. Unless otherwise specified, we consider the lexicographical
ordering induced by x1 < ... < xn, i.e: xγ1

1 · · · x
γn
n <Lex xδ1

1 · · · x
δn
n ⇔ ∃ j | γ j < δ j, γi = δi, ∀i > j, which is a term
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ordering. Given a term τ ∈ T , min(τ) is the smallest variable dividing τ. For M ⊂ T , M is the list obtained
by ordering the elements of M increasingly w.r.t. Lex. For example, if M = {x2, x2

1} ⊂ k[x1, x2], x1 < x2,
M = [x2

1, x2].
A subset J ⊆ T is a semigroup ideal if τ ∈ J ⇒ στ ∈ J, ∀σ ∈ T ; a subset N ⊆ T is an order ideal if
τ ∈ N ⇒ σ ∈ N∀σ|τ. We have that N ⊆ T is an order ideal if and only if T \ N = J is a semigroup ideal.
Given a semigroup ideal J ⊂ T we define N(J) := T \ J. The minimal set of generators G(J) of J, called the
monomial basis of J, satisfies the conditions below

G(J) := {τ ∈ J | each predecessor of τ ∈ N(J)} = {τ ∈ T |N(J) ∪ {τ} is an order ideal, τ < N(J)}.

For all subsets G ⊂ P, we have T{G} := {T(g), g ∈ G} and T(G) := {τT(g), τ ∈ T , g ∈ G}. Fixed a term order
<, for any ideal I / P the monomial basis of the semigroup ideal T(I) = T{I} is called monomial basis of I and
denoted again by G(I), whereas the order ideal N(I) := T \ T(I) is called Groebner escalier of I.

Definition 1. [37, Vol. 2] A set G ⊂ I is a Groebner basis of I wrt < if T (G) = T {I}.

If I / P is an ideal, we define its associated variety as V(I) = {P ∈ k
n
, f (P) = 0, ∀ f ∈ I}, where k is the

algebraic closure of k.

Definition 2. The affine Hilbert function of an ideal I / P is the function HFI : N→ N; d 7→ dim(P≤d/I≤d).

For d sufficiently large, the affine Hilbert function of I can be written as:HFI(d) =
∑l

i=0 bi

(
d

l−i

)
, where l is the

Krull dimension of V(I), bi are integers and b0 is positive.

Definition 3. The polynomial which is equal to HFI(d), for d sufficiently large, is called the affine Hilbert
polynomial of I and denoted HI(d).

3. Representing zerodimensional monomial ideals
In this section, we see how zerodimensional monomial ideals are represented in literature, before giving, in
the next section, the definition and the construction of Bar Codes, where we encode finite sets of terms. In
particular, we usually represent the Groebner escalier N(I) of a zerodimensional monomial ideal I, automat-
ically desuming some of its properties. First of all, we point out that, since T � Nn, a term xγ = xγ1

1 · · · x
γn
n

can be regarded as the point (γ1, ..., γn) in the n-dimensional space. For the case of two and three variables,
Miller and Sturmfels [35], introduced the staircase diagram, in which each element of T is drawn as a point
in the n-dimensional space (n = 2, 3) and much emphasis is given to the escalier. They have been able to prove
results on irreducible decompositions, minimal free resolutions and Hilbert series, by means of this picture.
An equivalent reformulation of the staircase diagram has been given in [30, 13, 14, 15, 31] and called tower
structure of I in [5].

Example 4. Consider the radical ideal I = (x2
1 − x1, x1x2, x2

2 − 2x2) / k[x1, x2], defined by its lexicographical
reduced Groebner basis. Since w.r.t. Lex1, we have T(x2

1 − x1) = x2
1, T(x1x2) = x1x2, T(x2

2 − 2x2) = x2
2, we can

conclude that the lexicographical Groebner escalier of I is N(I) = {1, x1, x2}, so it can be represented by the
following picture:

Tower structure

1 x1

x2

x1

x2

Staircase diagram

1 x1

x2

x2
2

x1x2

x2
1

I

x1

x2

♦

1Actually, it can be easily observed that T(x2
1 − x1) = x2

1, T(x1 x2) = x1 x2, T(x2
2 − 2x2) = x2

2 trivially holds for each term order.
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For a radical ideal I, notice that if |N(I)| < ∞, it holds |V(I)| = |N(I)| < ∞, so the associated variety consists
of a finite set of points. It has been proved by Cerlienco-Mureddu [13] that, in this case, any ordering on the
points in V(I) gives a precise 1−1 correspondence between the terms in N(I) and the points in V(I), so it is also
possible to label each point in the tower structure with the corresponding point of the (ordered) variety V(I).

Example 5. Consider again the radical ideal I = (x2
1 − x1, x1x2, x2

2 − 2x2) / k[x1, x2] of example 4. The corre-
sponding variety can be easily computed and, actually, it is finite: V(I) = {(0, 0), (0, 2), (1, 0)}. We can also note
that, exactly as expected, |N(I)| = |V(I)| = 3. The correspondence given by Cerlienco-Mureddu (see [13] for
more details on how the correspondence is constructed) is displayed below; the corresponding reorderings of
V(I) are indicated in square brackets:

Φ1 : N(I)→ V(I)
1 7→ (0, 0)
x2 7→ (0, 2)
x1 7→ (1, 0).

[(0, 0), (0, 2), (1, 0)];
[(0, 0), (1, 0), (0, 2)].

Φ2 : N(I)→ V(I)
1 7→ (1, 0)
x2 7→ (0, 2)
x1 7→ (0, 0).

[(1, 0), (0, 0), (0, 2)].

Φ3 : N(I)→ V(I)
1 7→ (1, 0)
x2 7→ (0, 0)
x1 7→ (0, 2).

[(1, 0), (0, 2), (0, 0)].

Φ4 : N(I)→ V(I)
1 7→ (0, 2)
x2 7→ (0, 0)
x1 7→ (1, 0).

[(0, 2), (0, 0), (1, 0)];
[(0, 2), (1, 0), (0, 0)].

Now, we can label the points in the tower structure with the corresponding point of V(I), as it can be seen in
the pictures below.

For Φ1:

(0,0) (1,0)

(0,2)

x1

x2

For Φ2:

(1,0) (0,0)

(0,2)

x1

x2

For Φ3:

(1,0) (0,2)

(0,0)

x1

x2

For Φ4:

(0,2) (1,0)

(0,0)

x1

x2

♦

The construction of Examples 4 and 5 is a sort of “inverse” of Macaulay’s construction (see [34] p.548) in
which from a finite order ideal N, a finite set of point X and a Groebner basis of I(X) are produced so that the
lexicographical Groebner escalier of I(X) is exactly N.

Example 6. For the case in which we have two variables, the tower structure of a zerodimensional radical
ideal I s.t. V(I) = {P1, ..., Ps} is represented by h towers, where h is the number of different values appear-
ing as first coordinate of the points in V(I), so that each tower corresponds to a “first coordinate”. For each
1 ≤ i ≤ h, the i-th tower contains as many elements as the number of occurrences of the associated first co-
ordinate. Displaying these towers in nonincreasing order by height, one obtains a tower structure for I (see
the one obtained in example 5 via the maps Φ1,Φ4), and so also the escalier N(I). This is not the case for
three or more variables, since some shifts in the towers’ planes are needed. For example, given the zerodi-
mensional radical ideal I = (x2

1 − x1, x1x2, x2
2 − x2, x1x3 − x3, x2x3, x2

3 − x3) / k[x1, x2, x3], whose variety is
V(I) = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1)}, we have N(I) = {1, x1, x2, x3}, which cannot be represented with a
natural extension to three variables of the procedure explained above. In such an extension, the towers are in
the x2 direction if the points have only the same first coordinate and in the x3 direction if both the first and the
second coordinate are the same. ♦

Example 7. Let us consider the zerodimensional radical ideal I = (x3
1 − 3x2

1 + 2x1, x1x2, x2
2 − 2x2) / k[x1, x2],

defined by its lexicographical reduced Groebner basis. Since, w.r.t. Lex, T(x3
1−3x2

1 +2x1) = x3
1, T(x1x2) = x1x2,

T(x2
2 − 2x2) = x2

2, we can conclude that the lexicographical Groebner escalier of I is N(I) = {1, x1, x2
1, x2}, so it

can be represented with the picture on the left.

1 x1 x2
1

x2

x1

x2
Consider now the zerodimensional radical ideal I′ = (x3

1 − x1, x1x2, x2
2 − 2x2, x3 +

x2
1 − x1) / k[x1, x2, x3], defined via its reduced lexicographical Groebner basis.

Since w.r.t. Lex, we have T(x3
1 − x1) = x3

1, T(x1x2) = x1x2, T(x2
2 − 2x2) = x2

2,
T(x3 + x2

1 − x1) = x3, we can conclude that the lexicographical Groebner escalier
of I′ is N(I′) = {1, x1, x2

1, x2}, so it can be represented with the same picture as
above and then I and I′ have the same tower structure, even if I′ /P = k[x1, x2, x3] and I /k[x1, x2]. The reason
of this fact is that x3 < N(I′); indeed, x3 is the leading term of x3 + x2

1 − x1. In general, the reason is that there
is a polynomial (x3 −

∑
t∈N(I′) ctt) ∈ I′.
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In a slightly different situation (i.e. in solving equations) the ability of detecting linear relations mod I′ among
the elements of {1, x1, x2, x3} and, equivalently, producing a basis of the vector space generated by {1, x1, x2, x3},
Span(1, x1, x2, x3) mod I′, is crucial (see [3, 32]). This is the case, for instance of I′′ = (x3

1 − x1, x1x2, x2
2 −

2x2, x3 − x1) / k[x1, x2, x3], where Span(1, x1, x2, x3) = Span(1, x1, x2) mod I′′ ♦

Unfortunately, as one can easily understand, the tower structure (as well as the staircase diagram) becomes
rather complicated when we have an high number of terms in N(I) and/or of linearly independent variables
in P, i.e. when we deal with a large number of points, and/or we have really to draw the structure for high-
dimensional spaces2. Moreover, as shown in example 7, from the tower structure it is impossible to understand
the ring in which the Groebner escalier has been computed, since linearly dependent variables are discarded (see
[32]). For these reasons, we introduce now the Bar Code diagram, namely a (compact) bidimensional picture
which keeps track of all the information contained in the tower structure, making them simple to extract.

4. Bar Code associated to a finite set of terms
We define now, in general, what is a Bar Code. After that, we see how to associate to a finite set of terms a Bar
Code and, vice versa, how to associate a finite set of terms to a given Bar Code.

Definition 8. A Bar Code B is a picture composed by segments, called bars, superimposed in horizontal rows,
which satisfies conditions a., b. below. Denote by

• B(i)
j the j-th bar (from left to right) of the i-th row (from top to bottom), i.e. the j-th i-bar;

• µ(i) the number of bars of the i-th row
• l1(B(1)

j ) := 1, ∀ j ∈ {1, 2, ..., µ(1)} the (1−)length of the 1-bars;

• li(B
(k)
j ), 2 ≤ k ≤ n, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ µ(k) the i-length of B(k)

j , i.e. the number of i-bars lying over B(k)
j

a. ∀i, j, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ µ(i), ∃! j ∈ {1, ..., µ(i + 1)} s.t. B(i+1)
j

lies under B(i)
j

b. ∀i1, i2 ∈ {1, ..., n},
∑µ(i1)

j1=1 l1(B(i1)
j1

) =
∑µ(i2)

j2=1 l1(B(i2)
j2

); we will then say that all the rows have the same length.

We denote by Bn the set of all Bar Codes composed by n rows. Note that if 1 ≤ i1 < i2 ≤ n, 1 ≤ j1 ≤ µ(i1),
1 ≤ j2 ≤ µ(i2) and B(i2)

j2
lies below B(i1)

j1
, then l1(B(i2)

j2
) ≥ l1(B(i1)

j1
).

Definition 9. We call bar list of a Bar Code B, composed by n rows, the list LB := (µ(1), ..., µ(n)).

Example 10. An example of Bar Code B is
1

2

3

The 1-bars have length 1. As regards the other rows,
l1(B(2)

1 ) = 2, l1(B(2)
2 ) = l1(B(2)

3 ) = l1(B(2)
4 ) = 1,

l2(B(3)
1 ) = 1,l1(B(3)

1 ) = 2 and l2(B(3)
2 ) = l1(B(3)

2 ) = 3,
so

∑µ(1)
j1=1 l1(B(1)

j1
) =

∑µ(2)
j2=1 l1(B(2)

j2
) =

∑µ(3)
j3=1 l1(B(3)

j3
) = 5. The bar list is LB := (5, 4, 2). ♦

Definition 11. Given a Bar Code B, for each 1 ≤ l ≤ n, l ≤ i ≤ n, 1 ≤ j ≤ µ(i), an l-block associated to a bar
B(i)

j of B is the set containing B(i)
j itself and all the bars of the (l − 1) rows lying immediately above B(i)

j .

Example 12. Take again the Bar Code B of example 10. Consider the bar B(3)
2 (so i = n = 3, j = 2 = µ(3)) and

set l = 2. The 2-block associated to B(3)
2 consists of B(3)

2 itself and of the bars B(2)
2 , B(2)

3 , B(2)
4 , as shown by the

thick (blue) lines in the picture below:
1

2

3

♦

2Actually, in this context, “high-dimensional” means “of dimension greater than or equal to” 4.
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We outline now the construction of the Bar Code associated to a finite set of terms. In order to do it, we need to
introduce the operators πi, i = 1, ..., n on the terms. First of all, we associate to each term τ = xγ1

1 · · · x
γn
n ∈ T ⊂

k[x1, ..., xn], n terms (one for each variable in P). More precisely, for each i ∈ {1, ..., n}, we let

πi(τ) := xγi
i · · · x

γn
n ∈ T , i.e. πi(τ) =

τ

xγ1
1 · · · x

γi−1
i−1

.

We can extend this procedure to a finite set of terms M ⊂ T , defining, for each i ∈ {1, ..., n}, M[i] := πi(M) :=
{πi(τ) : τ ∈ M}. The terms in M[i] will play a fundamental role for the construction of the Bar Code diagram.
Here we list some features of the operators πi, that will be useful in what follows.

1. For each τ ∈ T , π1(τ) = τ.
2. If τ = xγ1

1 · · · x
γn
n , γi = degi(τ) = 0 then πi(τ) = xγi+1

i+1 · · · x
γn
n = πi+1(τ).

3. It holds τ <Lex σ⇒ πi(τ) ≤Lex π
i(σ), ∀i ∈ {1, ..., n}.

4. For each term τ and for any pair of indices i, j, say 1 ≤ i < j ≤ n, we have that, since xi < x j,
π j(πi(τ)) = πi(π j(τ)) = π j(τ).

5. For each σ, τ ∈ T , ∀1 ≤ i < n, it holds πi(τ) = πi(σ)⇒ πi+1(τ) = πi+1(σ).

Example 13. Take τ = x1x3
2x4

3 ∈ k[x1, x2, x3]. Clearly π1(τ) = x1x3
2x4

3, while π2(τ) = x3
2x4

3 and π3(τ) = x4
3. For

σ1 := x2x5
3 >Lex τ, π2(τ) = x3

2x4
3 <Lex π

2(σ1) = x2x5
3 and π3(τ) = x4

3 <Lex π
3(σ1) = x5

3; for σ2 := x5
1x3

2x4
3 >Lex τ,

π2(τ) = x3
2x4

3 = π2(σ2) and π3(τ) = π3(σ2) = x4
3. Moreover, π3(π2(τ)) = π3(x3

2x4
3) = x4

3 = π2(π3(τ)). ♦

Now we take M ⊆ T , with |M| = m < ∞ and we order its elements increasingly w.r.t. Lex, getting the list
M = [τ1, ..., τm]. Then, we construct the sets M[i], and the corresponding lexicographically ordered lists M

[i]
,

for i = 1, ..., n. We notice that M cannot contain repeated terms, while the M
[i]

, for 1 < i ≤ n, can. In case some
repeated terms occur in M

[i]
, 1 < i ≤ n, they clearly have to be adjacent in the list, due to the lexicographical

ordering. We can now define the n × m matrix of termsM as the matrix s.t. its i-th row is M
[i]

, i = 1, ..., n, i.e.
M = (πi(τ j))1≤i≤n,1≤ j≤m.

Definition 14. The Bar Code diagram B associated to M (or, equivalently, to M) is a n × m diagram, made by
segments s.t. the i-th row of B, 1 ≤ i ≤ n is constructed as follows:

1. take the i-th row ofM, i.e. M
[i]

2. consider all the sublists of repeated terms, i.e. [πi(τ j1 ), πi(τ j1+1), ..., πi(τ j1+h)] s.t. πi(τ j1 ) = πi(τ j1+1) = ... =

πi(τ j1+h), noticing that3 0 ≤ h < m
3. underline each sublist with a segment
4. delete the terms of M

[i]
, leaving only the segments (i.e. the i-bars).

We usually label each 1-bar B(1)
j , j ∈ {1, ..., µ(1)} with the term τ j ∈ M.

By property 5. of the operators πi and, since for each 1 ≤ i ≤ n, |M
[i]
| =

∑µ(i)
j=1 l1(B(i)

j ), a Bar Code diagram is a
Bar Code in the sense of Definition 8.

Example 15. Given M = {x1, x2
1, x2x3, x1x2

2x3, x3
2x3} ⊂ k[x1, x2, x3], we have M

[1]
= [x1, x2

1, x2x3, x1x2
2x3, x3

2x3]

M
[2]

= [1, 1, x2x3, x2
2x3, x3

2x3], M
[3]

= [1, 1, x3, x3, x3], leading to the 3 × 5 table on the left and then to the Bar
Code on the right:

x1 x2
1

x2x3 x1x2
2x3 x3

2x3

1 1 x2x3 x2
2x3 x3

2x3

1 1 x3 x3 x3

x1 x2
1

x2x3 x1x2
2x3 x3

2x3
1

2

3

♦

3Clearly if a term πi(τ j) is not repeated in M
[i]

, the sublist containing it will be only [πi(τ j)], i.e. h = 0.
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Remark 16. We can easily observe that Bar Codes associated to different sets of terms, need not to be different.
For example, if M := {1, x1},M′ := {xi

1, x
i+ j
1 } ⊂ k[x1, x2], i, j ∈ N, j , 0, both the Bar Code B associated to M

and the Bar Code B′ associated to M′ are
1 x1

1

2

xi
1 xi+ j

1
1

2

We will see soon that this cannot happen for order ideals.

Now we explain how to associate a finite set of terms MB to a given Bar Code B. In order to do it, we have to
follow the steps below:

BC1 consider the n-th row, composed by the bars B(n)
1 , ..., B(n)

µ(n). Let l1(B(n)
j ) = `(n)

j , for j ∈ {1, ..., µ(n)} and

a1, ..., aµ(n) ∈ N, s.t. ak < ah if k < h. Label each bar B(n)
j with `(n)

j copies of xa j
n .

BC2 For each i = 1, ..., n − 1, 1 ≤ j ≤ µ(n − i + 1) take the bar B(n−i+1)
j and suppose it has been labelled by

`(n−i+1)
j copies of a term τ. Construct the 2-block associated to B(n−i+1)

j which, by definition, is composed

by B(n−i+1)
j and by all the (n− i)-bars B(n−i)

j
, ..., B(n−i)

j+h
, lying immediately above B(n−i+1)

j ; note that h satisfies

0 ≤ h ≤ µ(n − i) − j. Denote the 1-lenghts of B(n−i)
j

... B(n−i)
j+h

by l1(B(n−i)
j

) = `(n−i)
j

,..., l1(B(n−i)
j+h

) = `(n−i)
j+h

and

fix h + 1 natural numbers a j < a j+1 < ... < a j+h. For each 0 ≤ k ≤ h, label B(n−i)
j+k

with `(n−i)
j+k

copies of

τx
a j+k

n−i .
Clearly, if, given a Bar Code B, we apply BC1 and BC2 to get a set M ⊂ T , and then we construct the Bar
Code associated to M, we get back B. Indeed, BC1 and BC2 exactly construct the elements of the ordered lists
M

[i]
, i = 1, ..., n.

Given a Bar Code B, applying steps BC1 and BC2, we can generate an infinite number of sets M ⊂ T . We
modify the steps BC1 and BC2 getting BC1 and BC2 so that, for each Bar Code B, the set of terms generated
by applying them turns out to be unique:

BC1 consider the n-th row, composed by the bars B(n)
1 , ..., B(n)

µ(n). Let l1(B(n)
j ) = `(n)

j , for j ∈ {1, ..., µ(n)}. Label

each bar B(n)
j with `(n)

j copies of x j−1
n .

BC2 For each i = 1, ..., n − 1, 1 ≤ j ≤ µ(n − i + 1) consider the bar B(n−i+1)
j and suppose that it has been

labelled by `(n−i+1)
j copies of a term τ. Construct the 2-block associated to B(n−i+1)

j which, by definition,

is composed by B(n−i+1)
j and by all the (n − i)-bars B(n−i)

j
, ..., B(n−i)

j+h
lying immediately above B(n−i+1)

j ; note

that h satisfies 0 ≤ h ≤ µ(n − i) − j. Denote the 1-lenghts of B(n−i)
j

, ..., B(n−i)
j+h

by l1(B(n−i)
j

) = `(n−i)
j

,...,

l1(B(n−i)
j+h

) = `(n−i)
j+h

. For each 0 ≤ k ≤ h, label B(n−i)
j+k

with `(n−i)
j+k

copies of τxk
n−i.

It is important to notice that not all Bar Codes can be associated to order ideals, as easily shown by the example
below.

Example 17. Consider the Bar Code B

We cannot associate any order ideal to it.
Indeed, using either BC1, BC2 or BC1,BC2, we obtain terms of the form

xα1
1 xβ1

2 xγ1
3 xα2

1 xβ1
2 xγ1

3 xα3
1 xδ1

2 xγ2
3 xα4

1 xδ2
2 xγ2

3 xα5
1 xδ3

2 xγ2
3

xβ1
2 xγ1

3 xβ1
2 xγ1

3 xδ1
2 xγ2

3 xδ2
2 xγ2

3 xδ3
2 xγ2

3
xγ1

3 xγ1
3 xγ2

3 xγ2
3 xγ2

3

,

with γ1 < γ2, δ1 < δ2 < δ3, α1 < α2 and so the associated set of terms M turns out to be
M = {xα1

1 xβ1
2 xγ1

3 , x
α2
1 xβ1

2 xγ1
3 , x

α3
1 xδ1

2 xγ2
3 , x

α4
1 xδ2

2 xγ2
3 , x

α5
1 xδ3

2 xγ2
3 }. To be an order ideal, M must contain all the divisors
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of its elements: ∀τ ∈ M, if σ | τ then σ ∈ M, so we have to lay down some conditions on the exponents.
Let us start examining xα1

1 xβ1
2 xγ1

3 and xα2
1 xβ1

2 xγ1
3 . Knowing that α1 < α2, we need to take α1 = 0 and α2 =

1. Indeed, otherwise, M should contain at least another term of the form xα0
1 xβ1

2 xγ1
3 , α0 , α1, α2 and α0 <

max(α1, α2). The exponent β1 must be equal to zero, otherwise at least xα1
1 xβ1−1

2 xγ1
3 and xα2

1 xβ1−1
2 xγ1

3 would
belong to M. For analogous reasons, we have to choose γ1 = 0, γ2 = 1 and α3 = α4 = α5 = 0. We get
M = {1, x1, x

δ1
2 x3, x

δ2
2 x3, x

δ3
2 x3}. But let us examine δ1 < δ2 < δ3. Similarly to what said for the other exponents,

we have only one possible choice for them, i.e. δ1 = 0, δ2 = 1 δ3 = 24, but then also x2 and x2
2 should belong to

M, and this is impossible: there is only one possible power of x2 for γ1 = 0 and this contradiction proves that
B cannot be associated to any order ideal. ♦

Inspired by example 17, we define admissible Bar Codes as follows:

Definition 18. A Bar Code B is admissible if the set M obtained by applying BC and BC2 to B is an order
ideal.

Remark 19. By definition of order ideal, using BC1 and BC2 is the only way an order ideal can be associated
to an admissible Bar Code. Indeed, if we label two consecutive bars with two terms τxai

i , τxai+h
i , h > 1, then

also the terms σ with πi(σ) = τxai+1
i would belong to M and it would have to label a bar between those labelled

by τxai
i and τxai+h

i , giving a contradiction.

We need now an admissibility criterion for Bar Codes. In order to be able to state it, we start with the following
trivial lemma.

Lemma 20. Given a set M ⊂ T , the following conditions are equivalent
1. M is an order ideal.
2. ∀τ ∈ M, if σ | τ, then σ ∈ M.
3. ∀τ ∈ M each predecessor of τ belongs to M.

We give then the definition of e-list, associated to each 1-bar of a given Bar Code.

Definition 21. Given a Bar Code B, let us consider a 1-bar B(1)
j1

, with j1 ∈ {1, ..., µ(1)}. The e-list associated to

B(1)
j1

is the n-tuple e(B(1)
j1

) := (b j1,1, ...., b j1,n), defined as follows:

• consider the n-bar B(n)
jn

, lying under B(1)
j1

. The number of n-bars on the left of B(n)
jn

is b j1,n.

• for each i = 1, ..., n − 1, let B(n−i+1)
jn−i+1

and B(n−i)
jn−i

be the (n − i + 1)-bar and the (n − i)-bar lying under B(1)
j1

.

Consider the (n − i + 1)-block associated to B(n−i+1)
jn−i+1

. The number of (n − i)-bars of the block, which lie on

the left of B(n−i)
jn−i

is b j1,n−i.

Example 22. For the Bar Code B
0

3

2

1

x2
3

x2
2

x2 x3

x2
1

x1 x2 x1 x3
1 x1 x2 x3

the e-lists are e(B(1)
1 ) := (0, 0, 0); e(B(1)

2 ) := (1, 0, 0);
e(B(1)

3 ) := (0, 1, 0) and e(B(1)
4 ) := (0, 0, 1).

♦

Remark 23. Given a Bar Code B, fix a 1-bar B(1)
j , with j ∈ {1, ..., µ(1)}. Comparing definition 21 and the steps

BC1 and BC2 described above, we can observe that the values of the e-list e(B(1)
j ) := (b j,1, ...., b j,n) are exactly

the exponents of the term labelling B(1)
j , obtained applying BC1 and BC2 to B.

Proposition 24 (Admissibility criterion). A Bar Code B is admissible if and only if, for each 1-bar B(1)
j ,

j ∈ {1, ..., µ(1)}, the e-list e(B(1)
j ) = (b j,1, ...., b j,n) satisfies the following condition: ∀k ∈ {1, ..., n} s.t. b j,k >

0, ∃ j ∈ {1, ..., µ(1)} \ { j} s.t. e(B(1)
j

) = (b j,1, ..., b j,k−1, (b j,k) − 1, b j,k+1, ..., b j,n).

Proof. It is a trivial consequence of Lemma 20 and Remark 23. �

4Notice that these assignments are those given by BC1 and BC2.
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Consider the sets An := {B ∈ Bn s.t. B admissible} and Nn := {N ⊂ T , |N| < ∞ s.t. N order ideal}. We can
define the map η : An → Nn; B 7→ N, where N is the order ideal obtained applying BC1 and BC2 to B.
By BC1 and BC2, η is a function; it is trivially surjective. Moreover, it is injective since, if B,B′ ∈ An and
B , B′ they have at least one pair of indices i, j s.t. l1(B(i)

j ) , l1(B′(i)j ) and this changes the result of the
application of BC1/BC2. From the arguments above, we can then deduce that there is a bijection between
admissible n-Bar Codes and finite order ideals of T ⊂ k[x1, ..., xn].
In the Lemma below we state some properties of admissible Bar Codes related to lengths.

Lemma 25. If B is an admissible Bar Code, the following two conditions hold:

a) ln−1(B(n)
1 ) ≥ ... ≥ ln−1(B(n)

µ(n))

b) ∀1 ≤ i ≤ n − 2, ∀1 ≤ j ≤ µ(i + 2) take the (i + 2)-bar B(i+2)
j and let B(i+1)

j1
, ...,B(i+1)

j1+h (where h satisfies

h ∈ {0, ..., µ(i + 1) − j1}) be the (i + 1)-bars lying over B(i+2)
j .

Then li(B
(i+1)
j1

) ≥ ... ≥ li(B
(i+1)
j1+h ).

Proof. Let us start proving a). If for some 1 ≤ l ≤ µ(n) − 1 it holds ln−1(B(n)
l ) < ln−1(B(n)

l+1) the Bar Code
would be not admissible. Indeed, let B(1)

k be the rightmost 1-bar over B(n)
l+1 and e(B(1)

k ) = (bk,1, ..., bk,n) be its
e-list. By construction (see Definition 21), bk,n−1 = ln−1(B(n)

l+1) − 1. Now, this proves that there cannot exist
a 1-bar labelling (bk,1, ..., bk,n−1, bk,n − 1), since ln−1(B(n)

l ) < ln−1(B(n)
l+1) and so the 1-bars B(1)

k
over B(n)

l have

bk,n−1 ≤ ln−1(B(n)
l ) − 1 < ln−1(B(n)

l+1) − 1 = bk,n−1, contradicting the assumption of admissibility (see Proposition
24). An analogous argument proves that if for some ∀1 ≤ i ≤ n − 2, ∀1 ≤ j ≤ µ(i + 2) we take the (i + 2)-bar
B(i+2)

j and B(i+2)
j1+h s.t. h satisfies h ∈ {0, ..., µ(i + 1) − j1} is the (i + 1)-bars lying over B(i+2)

j , it happens that for a

fixed l ∈ {1, ..., µ(i + 1) − 1 − j1} li(B
(i+1)
j1+l ) < li(B

(i+1)
j1+l+1), B is not admissible and so also b) is true. �

In what follows, unless differently specified, we always consider admissible Bar Codes, so, in general, we will
omit the word “admissible”.

Remark 26. In principle, it is possible to represent with a Bar Code also infinite order ideals, by means of
a simple modification, i.e. the introduction of the symbol “→” immediately after a l-bar for some 1 ≤ l ≤ n,
meaning that there should actually be infinitely many l-blocks equal to that containing that bar. For example, the
Bar Code of I = (x2

1x2
2) / k[x1, x2], whose lexicographical Groebner escalier is N(I) = {xh1

1 xh2
2 , x

h3
1 xh4

2 , h1, h4 ∈

N, h2, h3 ∈ {0, 1}}, turns out to be
1
→

x2
→

x2
2 x1x2

2

→

In particular, the arrow on the right of 1 represents the terms of the form xh1
1 , h1 ∈

N \ {0}, the one on the right of x2 represents the terms of the form xh1
1 x2, h1 ∈ N \ {0};

finally the bottom arrow represents the terms of the form xh4
2 , x1xh4

2 , h4 ∈ N, h4 > 2.

Remark 27. It is possible to give an alternative construction for the Bar Code (this remark deeply depends
on [4]), that is deduced from the point trie [17, 33] by applying the correlation between monomials and points
introduced by [34, p. 548], [36, 33]. The main tools for our alternative construction are the Σ-algorithm and
the point trie, deeply examined in [33], of which we borrow the notation.
First of all, we endow a given set Ω with an equivalence relation = and we extend it to Ωn: A := (a1, ..., an), B :=
(b1, .., , bn) ∈ Ωn, A = B ⇔ ∀1 ≤ i ≤ n, ai = bi. For 1 ≤ i ≤ n, we define π : Ωn → Ωi the projection map
s.t. πi((a1, ..., an)) = (a1, ..., ai). Now, the witness of A, B ∈ Ωn is the smallest value i such that πi(A) , πi(B).
If {p1, ..., pN} ⊂ Ωn, let Σ0 = {{1, ...,N}} and Σi, 1 ≤ i ≤ n, the set of equivalence classes of πi(p1), ..., πi(pN).
Clearly |Σn| = N. The point trie is a tree representation for the elements in Ωn, constructed using the Σi’s:
the vertices are labelled by the elements in the Σi’s and there is an edge from a vertex labelled by Σi,k ∈ Σi

to a vertex with label Σi+1,h ∈ Σi+1 exactly when Σi+1,h ⊂ Σi,k. Applying the correlation between monomials
and points introduced by [34] p. 548, [36, 33] we can now give an alternative construction of the Bar Code,
deduced by the point trie. Let Ω = N; then Ωn = Nn � T can be seen as the set of the exponents’ lists of each
term in n variables: if τ = xγ = xγ1

1 · · · x
γn
n it can be identified by the list (γn, ..., γ1). This allows to build the Bar

Code of a finite set M ⊂ T (or, equivalently, of the lex-ordered list M) as follows:
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• letM = {(γn, ..., γ1) ∈ Nn := xγ = xγ1
1 · · · x

γn
n ∈ M};

• compute the Σi’s w.r.t.M and return them as T
(
Σn,Σn−1, ...,Σ1

)
;

• substitute each Σi,k ∈ Σi, 1 ≤ i ≤ n with a bar, whose length is |Σi,k |.
The obtained diagram is a Bar Code.

5. The star set
Up to this point, we have discussed the link between Bar Codes and order ideals, i.e. we focused on the link
between Bar Codes and Groebner escaliers of monomial ideals. In this section, we show that, given a Bar Code
B and the order ideal N = η(B) it is possible to deduce a very specific generating set for the monomial ideal I
s.t. N(I) = N.

Definition 28. The star set of an order ideal N and of its associated Bar Code B = η−1(N) is a setFN constructed
as follows:

a) ∀1 ≤ i ≤ n, let τi be a term which labels a 1-bar lying over B(i)
µ(i), then xiπ

i(τi) ∈ FN;

b) ∀1 ≤ i ≤ n − 1, ∀1 ≤ j ≤ µ(i) − 1 let B(i)
j and B(i)

j+1 be two consecutive bars not lying over the same

(i + 1)-bar and let τ(i)
j be a term which labels a 1-bar lying over B(i)

j , then xiπ
i(τ(i)

j ) ∈ FN.

We usually represent FN within the associated Bar Code B, inserting each τ ∈ FN on the right of the bar from
which it is deduced. Reading the terms from left to right and from the top to the bottom, FN is ordered w.r.t.
Lex.

Example 29.
For N = {1, x1, x2, x3} ⊂ k[x1, x2, x3], associated to the Bar Code of example 22, we
have FN = {x2

1, x1x2, x2
2, x1x3, x2x3, x2

3}; looking at Definition 28, we can see that the
terms x1x3, x2x3, x2

3 come from a), whereas the terms x2
1, x1x2, x2

2 come from b).

0

3

2

1

x2
3

x2
2

x2 x3

x2
1

x1 x2 x1 x3
1 x1 x2 x3

♦

In [10], given a monomial ideal I, the authors define the following set, calling it star set:

F (I) =

{
xγ ∈ T \ N(I)

∣∣∣∣ xγ
min(xγ) ∈ N(I)

}
. We can prove the following proposition, which connects the definition

above to our construction.

Proposition 30. With the above notation FN = F (I).

Proof. We start proving FN ⊆ F (I). Consider σ ∈ FN; by definition of FN there are two possibilities
a) σ = xiπ

i(τi), with 1 ≤ i ≤ n and τi a term which labels a 1-bar lying over B(i)
µ(i);

b) σ = xiπ
i(τ(i)

j ), with 1 ≤ i ≤ n − 1, 1 ≤ j ≤ µ(i) − 1, where τ(i)
j is a term which labels a 1-bar lying over

B(i)
j i.e. the rightmost bar over some B(i+1)

u , whereas B(i)
j+1 is the leftmost bar over B(i+1)

u+1 . Notice that we can

chooose one τ(i)
j indifferently over B(i)

j , since for each term over B(i)
j the operator πi gives the same result.

Let us examine a) and b) separately.
a) By definition, σ > τi; indeed degh(σ) = degh(τi) for i + 1 ≤ h ≤ n and degi(σ) > degi(τi). Clearly, σ < N,

because if it was in the Groebner escalier, applying the steps described in Definition 14, πi(σ) = σ =

xiπ
i(τi) would be put in a list that is subsequent to the one containing πi(τi), but, in this case, there would

be µ(i)+1 i-bars instead of µ(i), contradicting the definition of µ(i). Since min(σ) = xi, σ
min(σ) = πi(τi) | τi,

so σ
min(σ) ∈ N and σ ∈ F (I).

b) Analogously to case a), σ > τ(i)
j . Let us prove that σ < N. If σ ∈ N then σ would label a 1-bar lying

over B(i)
j+1 but, since πi+1(σ) = πi+1(τ(i)

j ), B(i)
j B(i)

j+1 would lie over the same (i + 1)-bar, contradicting the

hypothesis. As above, since min(σ) = xi, σ
min(σ) = πi(τ(i)

j ) | τ(i)
j , so σ

min(σ) ∈ N and σ ∈ F (I).
We prove now that FN ⊇ F (I). Let us consider σ ∈ F (I) and let min(σ) = xi, 1 ≤ i ≤ n. By definition of F (I),
σ < N and σ̃ := σ

xi
∈ N, so it labels a 1-bar lying over some i-bar B(i)

j . Denote by B(1)
j
, ...,B(1)

j+h
(where h satisfies

0 ≤ h ≤ µ(i) − j) the 1-bars lying over B(i)
j . Two possibilities may occur:
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a) j + h = µ(i); in this case xiπ
i(σ̃) = σ ∈ FN by Definition 28.

b) otherwise consider the term τ j+h, which labels B(1)
j+h

, and the subsequent term τ j+h+1, labelling B(1)
j+h+1

.

Notice that πi(τ j+h) = πi(σ̃). By Definition 14, τ j+h <Lex τ j+h+1. If πi(τ j+h) = πi(τ j+h+1) this would
contradict the maximality of h, so, by property 3. of the operators πi, it must be πi(τ j+h) <Lex π

i(τ j+h+1).
But, if πi+1τ j+h) = πi+1(τ j+h+1), then σ | τ j+h+1 and so σ ∈ N, that is impossible since σ ∈ F (I).
This means then that πi+1(τ j+h) <Lex π

i+1(τ j+h+1), so we can deduce that B(1)
j+h

and B(1)
j+h+1

lie over two

consecutive i-bars not lying over the same (i + 1)-bar, so σ = xiπ
i(σ̃) = xiπ

i(τ j+h) ∈ FN.
�

Remark 31. By Proposition 30, beingFN = F (I), it trivially holds G(I) ⊆ FN ⊆ B(I). In general, the inclusions
may be strict; if FN = G(I), we say that BN := η−1(N) is a full Bar Code.

The star set F (I) of a monomial ideal I is strongly connected to Janet’s theory [24, 25, 26, 27] and to the notion
of Pommaret basis [39, 40, 43], as explicitly pointed out in [10]. For completeness sake, we recall it below.

Definition 32. [24, ppg.75-9] Let M ⊂ T be a set of terms and τ = xγ1
1 · · · x

γn
n be an element of M. A variable

x j is called Janet-multiplicative for τ w.r.t. M if there is no term in M of the form τ′ = xδ1
1 · · · x

δ j

j xγ j+1

j+1 · · · x
γn
n with

δ j > γ j. We will denote by MJ(τ,M) the set of multiplicative variables for τ w.r.t. M.

Definition 33. With the previous notation, the cone of τ w.r.t. M is the set CJ(τ,M) := {τxλ1
1 · · · x

λn
n |where λ j ,

0 only if x j is multiplicative for τ w.r.t. M}.

Definition 34. [24, ppg.75-9] A set of terms M ⊂ T is called complete if for every τ ∈ M and x j < MJ(τ,M),
there exists τ′ ∈ M such that x jτ ∈ CJ(τ′,M). Moreover, M is stably complete [43, 10] if it is complete and
for every τ ∈ M it holds MJ(τ,M) = {xi | xi ≤ min(τ)}. If a set M is stably complete and finite, then it is the
Pommaret basis of I = (M).

Theorem 35. For every monomial ideal I, the star set F (I) is the unique stably complete system of generators
of I. Hence, if M is stably complete, M = F ((M)).

By Proposition 30, the Bar Code gives a simple way to deduce the star set from the Groebner escalier of a
zerodimensional monomial ideal.

6. Applications of Bar Code
In this section, we give an overview on possible applications of Bar Codes to the study of zerodimensional
monomial ideals. Many of them are related to involutive divisions, but there are also some of them which have
nothing to do with this context. We first see the applications that are not linked to the involutive framework,
i.e. enumerative combinatorics on (strongly) stable ideals (see 6.1.1) and an iterative Lex Game algorithm for
zerodimensional ideals defined by sets of points (see 6.1.2). Then we switch to the involutive applications (6.2).

6.1. Non-involutive applications
6.1.1. Counting 0-dimensional (strongly) stable ideals. In the paper [4], Bar Codes are employed as a tool
for counting zerodimensional stable and strongly stable ideals in 2, 3 variables, given their constant affine
Hilbert polynomial p. These ideals are defined in a purely combinatorial way

Definition 36. ([25, pg.41], [27], c.f.[37, Vol. 4, p. 673,679]) A monomial ideal J / P = k[x1, ..., xn] is called
stable [16]] if it holds τ ∈ J, x j > min(τ) =⇒

x jτ

min(τ) ∈ J.

Definition 37 ([41, 42, 22, 23, 18, 38]). A monomial ideal I /P = k[x1, ..., xn] is called strongly stable ([2, 1])
if, for every term τ ∈ I and pair of variables xi, x j with xi|τ and xi < x j, then also τx j

xi
∈ I or, equivalently, for

every σ ∈ N(I), and pair of variables xi, x j with xi|σ and xi > x j, then also σx j

xi
∈ N(I).

It is possible to prove that there is a bijection between (strongly) stable ideals in 2, 3 variables and some
partitions of the affine Hilbert polynomial p.
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Definition 38 ([44]). An integer partition of p ∈ N is a k-tuple (λ1, ..., λk) ∈ Nk s.t.
∑k

i=1 λi = p and λ1 ≥ ... ≥ λk.

For p, k ∈ N, we denote I(p,k) := {(λ1, ..., λk) ∈ Nk, λ1 > ... > λk > 0 and
∑k

j=1 λ j = p} the set of partitions of p
in k distinct parts.

Definition 39 ([28]). A plane partition π of a positive integer p ∈ N, is a partition of p in which the parts have
been arranged in a 2-dimensional array, weakly decreasing across rows and down columns. If the inequality
is strict across rows (resp. columns), we say that the partition is row-strict (resp column-strict). Different
configurations are regarded as different plane partitions. The norm of π is the sum n(π) :=

∑
i, j πi, j of all its

parts, i.e. p.

Definition 40 ([28]). Let Dr denote the set of all r-tuples λ = (λ1, ..., λr) of integers with λ1 ≥ ... ≥ λr. For
λ, µ ∈ Dr, we write λ ≥ µ if λi ≥ µi for all i = 1, 2, ..., r. Let c, d arbitrary integers and λ, µ ∈ Dr, with λ ≥ µ.
We call an array ρ of integers of the form

ρ1,µ1+1 ρ1,µ1+2 ... ... ... ρ1,λ1
ρ2,µ2+1 ... ... ... ... ... ρ2,λ2

... ... ... ...
ρr,µr+1 ... ... ρr,λr

a (c, d)-plane partition of shape λ/µ if ρi, j ≥ ρi, j+1 + c for 1 ≤ i ≤ r, µi < j < λi, and ρi, j ≥ ρi+1, j + d for 1 ≤
i ≤ r − 1, µi < j ≤ λi+1. In the case µ = 0, we shortly say that ρ is of shape λ.

Definition 41 ([29]). Let c, d be arbitrary integers and λ be a partition with λr ≥ r. We call “shifted (c, d)-plane
partition of shape λ” an array π of integers of the form

π1,1 π1,2 ... ... ... ... ... ... π1,λ1
π2,2 ... ... ... ... ... π2,λ2

... ... ... ... ...
πr,r ... ... πr,λr

s.t. πi, j ≥ πi, j+1 + c for 1 ≤ i ≤ r, i ≤ j < λi, and πi, j ≥ πi+1, j + d for 1 ≤ i ≤ r − 1, i < j ≤ λi+1.

The symbolPλ(c, d) denotes the set of (c, d)-plane partitions of shape λ, whileSλ(c, d) denotes the set of shifted
(c, d)-plane partitions of shape λ.
The main results of [4] are summarized in what follows. The case of (strongly) stable ideals in two variables is
the simplest one. For stable ideals we have

Proposition 42. The number of Bar Codes B ∈ B2 with bar list (p, h) and s.t. η(B) = N ⊂ k[x1, x2] is the
Groebner escalier of a stable ideal J / k[x1, x2] equals the number of integer partitions of p in h distinct parts.

and since

Proposition 43. Denoting by B a Bar Code associated to a stable ideal I / k[x1, x2] with affine Hilbert poly-

nomial HI(d) = p ∈ N and by LB = (p, h) its bar list, the maximal value that h can assume is h :=
⌊
−1+
√

1+8p
2

⌋
.

we can desume that

Proposition 44. The number of stable ideals J / k[x1, x2] with H (t, J) = p is
∑h

i=1 Q(p, i), where h :=⌊
−1+
√

1+8p
2

⌋
and Q(p, i) is the number of integer partitions of p into i distinct parts.

and this result holds also for strongly stable ideals, since

Lemma 45. An ideal I / k[x1, x2] is stable if and only if it is strongly stable.

For the case of three variables, we can start by observing that

Corollary 46. The number of Bar Codes associated to stable ideals in k[x1, ..., xn], n > 2, whose bar list
is (p, h, 1, ..., 1︸ ︷︷ ︸

3,...,n

), p, h ∈ N, p ≥ h equals the number of integer partitions of p in h distinct parts, i.e. p =

α1 + ... + αh, α1 > ... > αh > 0. Moreover, the maximal value that h can take in the bar list (p, h, 1, ..., 1) is

h :=
⌊
−1+
√

1+8p
2

⌋
.
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so we only have to deal with the bar lists of the form (p, h, k), k > 1.

Lemma 47. With the previous notation, it holds:
1. k ∈ {1, ..., l}, where l := maxi∈N{i3 + 3i2 + 2i ≤ 6p};
2. h ∈ { k(k+1)

2 , ...,m}, where m = max
r≥ k(k+1)

2

{r | ∃λ ∈ I(r,k), Sm(λ) ≤ p}, and Sm(λ) := Sm([λ1, ..., λk]) =
∑k

i=1
λi(λi+1)

2 .

Denoting P(p,h,k) = {ρ ∈ Pβ(1, 1) for some β ∈ I(h,k) and s.t. n(ρ) = p}

Theorem 48. There is a bijection between P(p,h,k) and the set B(S )
(p,h,k) = {B ∈ A3 s.t. LB = (p, h, k), η(B) =

N(J), J stable}.

In conclusion, counting stable ideals becomes an easy application of Krattenthaler’s formulas [28] for counting
the elements in P(p,h,k). The situation is analogous for strongly stable ideals.
Indeed, denoting S(p,h,k) = {π ∈ Sλ(1, 0), n(π) = p, λi = i + αi − 1, 1 ≤ i ≤ k, for some α ∈ I(h,k)}, we have

Theorem 49. There is a bijection between S(p,h,k) and the set B(p,h,k) = {B ∈ A3 s.t. LB = (p, h, k), η(B) =

N(J), J strongly stable}.

and again determinantal formulas by Krattenthaler [29] solve the problem of counting. The paper [4] terminates
with a conjecture about the number of (strongly) stable ideals with fixed affine Hilbert polynomial for the case
of n ≥ 4 variables. The idea consists in introducing (shifted) partitions in dimension n − 1 and establishing
analogous bijections with (strongly) stable 0-dimensional ideals in n variables. In the case of n−1-dimensional
partitions (n ≥ 4), anyway, there are no determinantal formulas and counting them is still an open problem.

6.1.2. An iterative Lex Game. In the paper [9], we employ the Bar Code in order to give an iterative version
of the Lex Game algorithm [17]. In 1990 Cerlienco and Mureddu [13, 14, 15] gave a combinatorial algorithm
which, given an ordered set of points X = [P1, ..., PN] ⊂ kn, k a field, returns the lexicographical Gröbner
escalier N(I(X)) ⊂ T := {xγ := xγ1

1 · · · x
γn
n | γ := (γ1, ..., γn) ∈ Nn} of the vanishing ideal I(X) := { f ∈ P :

f (Pi) = 0, ∀i ∈ {1, ...,N}} ⊂ P := k[x1, ..., xn], by giving a bijection between X and N(I(X)). This algorithm
performs iteration on the points (so it gives the aforementioned bijection for all the ideals in the Macaulay chain
Ii := I({P1, ..., Pi}) 1 ≤ i ≤ N) and recursion on the variables, with complexity O

(
n2N2

)
. The Lex Game has

been developed as an improvement of Cerlienco-Mureddu algorithm. It employs two tries (rooted trees with
both nodes and edges with their own label), called point trie (see remark 27) and lex trie, and reaches a very
better complexity, O (nN + N min(N, nr)), where r < n is the maximal number of edges from a vertex in the
point trie, dropping iterativity for the sake of efficiency. Using a combination of the point trie, which represents
the reciprocal relations among the points and the Bar Code in order to store the monomials, it is possible to give
an iterative algorithm with complexity O(N2n log(N)), so very near to that of the Lex Game algorithm. Indeed,
our algorithm mimicks Cerlienco-Mureddu’s one, but it stores in the Bar Code the information that is (lost and)
computed by Cerlienco-Mureddu more than once. The construction of the point trie is identical to that of the
Lex Game, with complexity nN + N min(N, nr) ∼ O(nNr) and for each of the N points, while constructing the
new branch of the point trie corresponding to the new point, we obtain for free the level h in which the new
point forks from the previous ones and the node in the (h − 1)-level in which the point is still not splitted from
the previous ones (so in particular the σ-antecedent,i.e. the maximally-indexed point with the same first h − 1
coordinates as the newly inserted point). Then, the algorithm updates the Bar Code, reading and writing each
bar only once. In particular, it takes - if it exists- the h-block following that of the σ-antecedent, lengthens the
h + 1, ..., n-bar under this block and keeps track of the corresponding exponents of the monomials (i.e. 0). Then
it lengthens also the h-bar of this block and keep track of the h-exponent of the monomials over it and walks in
the path of the trie corresponding to the new point, from level h− 1 to level 1, repeating the procedure. Instead,
if such following h-block in the Bar Code does not exist yet the algorithm inserts it by adding the 1, ..., h-bars
(whose length is one). The cost of detecting the following h block is the same as identifying the last element
belonging to the current h-block and in the (h − 1)-node of the trie in which the new point appears. Since the
number of points both in the ordered h-block and in the (h−1)-ordered node are bounded by N, the complexity
of this problem is N log(N). Therefore, this procedure costs N2n log(N) As an example of the results provided
by our algorithm, one can see that the four maps and pictures given in example 5, are exactly the results one
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gets by applying either Cerlienco-Mureddu algorithm or our iterative Lex game, in correspondence with the
ordering given to the set of input point5 In the same paper, an efficient algorithm for computing a family of
squarefree separator polynomial for X is given6, as well as a fast algorithm to get Auzinger-Stetter matrices.

6.2. Involutive applications.
We see now some applications of Bar Code to involutive divisions. The idea of involutive divisions dates back
to the works by Janet and Riquier [24, 25, 26, 27] and has been formalized by Gerdt and Blinkov

Definition 50 (Gerdt-Blinkov, [19]). An involutive division L or L-division on T is a relation |L defined, for
each finite set U ⊂ T, on the set U × T in such a way that the following holds for each u, u1 ∈ U and t, t1 ∈ T
(i) u |L t ⇒ u | t;
(ii) u |L u;
(iii) u |L ut, u |L ut1 ⇔ u |L utt1;

(iv) u |L t, u1 |L t ⇒ either u |L u1 or u1 |L u;
(v) u |L u1, u1 |L t ⇒ u |L t;
(vi) if V ⊆ U and u ∈ V then u |L t w.r.t. U ⇒ u |L t w.r.t. V.

If u |L t = uw, u is called an involutive divisor of t, t is called an involutive multiple of u and w is said to be
multiplicative for u. If u -L t = uw, w is said to be non-multiplicative for u. �

In particular, Janet division is assigned on a finite set of terms, by equipping each term with a set of multiplica-
tive variables as seen at the end of section 5 (see definitions 32, 33). In [6, 8], we focus on applications of Bar
Codes related to Janet division. In particular, [8] focuses on determining Janet multiplicative variables for the
terms in a finite set U ⊂ T using the Bar Code associated to U and the star set construction (i.e. the construction
with stars explained in section 5). The relation with multiplicative variables is stated by the proposition below:

Proposition 51. Let U ⊆ T be a finite set of terms and let us denote by BU its Bar Code. For each t ∈ U xi,
1 ≤ i ≤ n is multiplicative for t if and only if, in BU , the i-bar B(i)

j , over which t lies, is followed by a star.

The above proposition implies that a mere Bar Code and star set construction is enough to determine Janet
multiplicative variables for a finite set of terms. Then, the Bar Code can be seen as an alternative to Gerdt’s
Janet tree [20] and it is actually rather similar to the (equivalent) presentation given by Seiler in [43]. We
point out that with an analogous of Proposition 51, Bar Code allows also to deal with Janet-like division [21],
identifying non-multiplicative powers, despite the fact that actually Janet-like division is not an involutive
division. Moreover, in [6], we deal with completeness of terms’ sets w.r.t. Janet division (Definition 34). The
first result in [6] is that

Proposition 52. Let U ⊆ T be a finite set of terms and B be its Bar Code. Let t ∈ U, xi ∈ NMJ(t,U) and B(i)
j

the i-bar under t. Let s ∈ U; it holds s |J xit if and only if
1. s | xit
2. s lies over B(i)

j+1 and
3. ∀ j′ appearing with nonzero exponent in xit

s there is a star after the j′-bar under s.

Moreover, basing on this proposition, we can construct an algorithm that given a finite set of terms U =

{t1, ..., tm} ⊆ T , finds whether there exists an ordering on the variables x1, ..., xn such that U is complete. The
idea consists in constructing the Bar Code B of the set U = {t1, ..., tm} ⊂ T from the maximal variable to the
minimal one, checking if, with the choice made up to the current point on the variables’ ordering, the conditions
of proposition 52 hold for each term in U, and going back retracting our steps in case of failure, so modifying
previously made choices. With this backtracking technique, we have to check less ordering with respect to the
n! orderings one would have in general to try.
In [7], Bar Code is employed in the context of polynomial interpolation. Considered a finite set of distinct points
X = {P1, ..., PN} ⊂ kn, the zerodimensional ideal T(I(X)) is quasi-stable by definition, so it has a Pommaret
basis, which is exactly given by the terms of the star set of the Bar Code associated to N(I((X)). By the iterative
Lex Game, we can compute N(I((X)) point by point; then again exploiting the Bar Code, we can compute
the factors of an Axis of Evil factorization for a Pommaret basis of I(X) point by point, so we can do it for
each ideal in the Macaulay chain. In particular, we compute one factor for each bar, according to the points

5The Lex game gives the same escalier, but it is not so focused on the bijection between X and N(I(X)).
6For an efficient implementation, see [11, 12].
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corresponding to the terms lying over that bar. That factors, chosen in a suitable way, according to the star set
element we want to deal with, constitute the Axis of Evil factorization for a Pommaret basis of I(X).

Example 53. For the set X = {(0, 0, 0), (1, 2, 3), (1, 4, 5), (0, 1, 4)}, we have that the lexicographical Groebner
escalier is N(X) = {1, x1, x2, x1x2}, corresponding to the following Bar Code.

1 x1 x2 x1x2
x1

x2

x3

The polynomials in the three variables x1, x2, x3 corresponding to the bars, in left-
to-right order are: X1 = {x1, x1 − 1, x1 − 1, x1}, for 1-bars, X2 = {x2 − 2x1, x2 − 4 −
3(x1 − 1)}, for 2-bars and X3 = {x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1)} for the only 3
bar. The factorized Pommaret basis is then

G = {x1(x1 − 1), (x2 − 2x1)(x1 − 1)x1, (x2 − 2x1)(x2 − 4 − 3(x1 − 1)), x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1)}

= {x2
1 − x1, x2

1x2 − x1x2 − 2x3
1 + 2x2

1, x
2
2 − 5x1x2 − x2 + 6 ∗ x2

1 + 2x1, x3 + 3x1x2 − 4x2 − 6x2
1 + 5x1}

♦

In the same paper we show also that, with some small modifications to Moeller algorithm, it is possible to
compute a Pommaret basis of I(X) (and actually of any ideal in the Macaulay chain).
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