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Abstract. We investigate the zonal polynomials, a family of symmetric polynomials that appear
in many mathematical contexts, such as multivariate statistics, differential geometry, representa-
tion theory, and combinatorics. We present two computer algebra packages, in SageMath and in
Mathematica, for their computation. With the help of these software packages, we carry out an ex-
perimental mathematics study of some properties of zonal polynomials. Moreover, we derive and
prove closed forms for several infinite families of zonal polynomial coefficients.
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1. Introduction
At the beginning of our study, we recall the generalized hypergeometric function pFq , defined as the
infinite series

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ z) :=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

· z
n

n!
, (1.1)

where for positive integer m, (a)m := a(a+ 1) · · · (a+m− 1) is the Pochhammer symbol. What is
less well-known is a remarkable generalization of this hypergeometric function of a matrix argument,
as follows.

Definition 1.1. Given anm×m symmetric, positive-definite matrix Y , the hypergeometric function
pFq of matrix argument Y is defined as

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣Y ) :=

∞∑
n=0

∑
λ∈Pn

(a1)λ · · · (ap)λ
(b1)λ · · · (bq)λ

· Cλ(Y )

n!
, (1.2)

where
• Pn is the set of all integer partitions of n, in which, every partition λ ∈ Pn is defined to be a

tuple λ = (λ1, . . . , λk) such that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 and λ1 + · · ·+ λk = n;
• (a)λ is the generalized Pochhammer symbol, defined as

(a)λ = (a)(λ1,...,λk) :=

k∏
i=1

(
a− i− 1

2

)
λi

;
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• and finally Cλ(Y ) denotes the zonal polynomial of Y , indexed by a partition λ, which is a
symmetric homogeneous polynomial of degree n (see Section 2) in the eigenvalues y1, . . . , ym
of Y , satisfying ∑

λ∈Pn

Cλ(Y ) = (trY )n = (y1 + · · ·+ ym)n. (1.3)

By noting that the zonal polynomial is zero whenever k, the number of parts of λ, exceeds the
dimension of Y (see Remark 3.4), one recognizes that (1.2) indeed specializes to (1.1) when Y is a
(1× 1)-matrix, since for each n, only the partition λ = (n) contributes.

The hypergeometric function of a matrix argument is used in multivariate statistics, in con-
nection with the Wishart distribution [21]; see Section 2.1 and [3] for an introduction. For example,
the extreme eigenvalues of random matrices can be expressed in terms of this hypergeometric func-
tion [2, 8]. However, the numerical evaluation of pFq functions of a matrix argument is a notorious
problem in multivariate distribution theory [10].

Recent progress on the numerical evaluation is based on the holonomic gradient method [16].
In the case p = q = 1, it is known that the hypergeometric function 1F1(a; c;Y ) satisfies a holo-
nomic system of partial differential equations [14] in the variables y1, . . . , ym, whose holonomic
rank is 2m. Hashiguchi et al. [4] use it to study the cumulative distribution of the largest eigenvalue
of a Wishart matrix. The problem of specializing this high-dimensional holonomic system to sin-
gular regions has been addressed in [17]. As an application, the Wishart distribution arises in the
performance analysis of wireless communication systems under Rayleigh fading [18]. For evaluat-
ing the hypergeometric function of a matrix argument using the holonomic gradient method, one
needs to know the first few zonal polynomials in order to get accurate initial conditions.

A comprehensive introduction to zonal polynomials [1, § 35.4] was given by Takemura [20].
Interestingly, these polynomials also appear in completely different mathematical contexts. No direct
formula for their calculation is known, but only partial results [12, 15]. There exist software packages
in Maple [19] and SageMath1 to compute with them.

In Section 2 we give a survey of different definitions of zonal polynomials. In Section 3 we
recall a recursive method by Muirhead [15] to calculate zonal polynomials. Note that there is no
general direct formula to obtain the coefficients of the zonal polynomial. In the following we will
give such formulas for some special families of zonal polynomial coefficients: In Section 4 we
present conditions under which a coefficient vanishes, and in Section 5 we derive closed forms for
the coefficients at the two extremal corners of the coefficient matrix. Then we give a complete closed
form for zonal polynomials in two variables (Section 6) and some partial results for three and four
variables (Section 7). Finally, we explain some details of our software packages, see Sections 8
and 9, that were written in the frame of the current work.

2. Definitions of zonal polynomials
We shall summarize four different definitions of zonal polynomials involving statistics, differential
geometry, representation theory and combinatorics. Namely, each subsection will present one aspect.
First of all, we need an important linear space.

Definition 2.1. Let Vn be the space of symmetric homogeneous polynomials of degree n in the
variables y1, . . . , ym, including the zero polynomial. Namely, if f ∈ Vn, we have

• deg f = n or f ≡ 0;
• if deg f = n, then f is symmetric and homogeneous in y1, . . . , ym.

1http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/sf/jack.html
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Moreover, any polynomial f ∈ Vn can also be viewed as a polynomial in the eigenvalues of anm×m
symmetric, positive-definite matrix Y . Then, the notations f(y1, . . . , ym) and f(Y ) are considered
equivalent. Denote the space of m×m symmetric, positive-definite matrices by SPD(m).

2.1. Definition involving the Wishart distribution
The following definitions, claims, and properties in this section can be found in [20, pp. 9–22].

Definition 2.2. Define the elementary symmetric polynomial

ur(x1, . . . , xm) :=
∑

1≤i1<···<ir≤m

xi1 · · ·xir .

Then, we have a basis for Vn: for λ = (λ1, . . . , λk) ∈ Pn, define the polynomials

Uλ := uλ1−λ2
1 uλ2−λ3

2 · · ·uλk−1−λk
k−1 uλkk .

Obviously, degUλ = (λ1 − λ2) + 2 (λ2 − λ3) + · · · + kλk = λ1 + · · · + λk = n. Associate a
lexicographical order to Pn as follows: for κ = (κ1, . . . , κj) , λ = (λ1, . . . , λk) ∈ Pn,

κ > λ :⇔ κ1 = λ1 ∧ · · · ∧ κl−1 = λl−1 ∧ κl > λl for some l.

Then, we can write the basis formed by Uλ as a column vector: U :=
(
U(n),U(n−1,1), . . . ,U(1,...,1)

)
T.

This subsection presents a definition of Cλ(Y ) related to the Wishart distribution, defined as follows.

Definition 2.3. LetXν×m be a matrix such that each row is independently drawn from anm-variate
normal distribution of mean 0 and with covariance matrix V , namely,

(x1i , . . . , x
m
i ) ∼ Nm(0, V ) (1 ≤ i ≤ ν).

Then, we say S := XTX has the Wishart distribution, denoted by S = XTX ∼ Wm(V, ν), where
ν is called the degree of freedom.

Remark 2.4. Recall the 1-dimensional case: if Z1, . . . , Zk ∼ N (0, 1) are independent Gaussian
distributed, then Q := Z1 + · · · + Zk ∼ χ2

k. In other words, the sum of independent Gaussian
distributions is chi-square distributed. Therefore, the Wishart distribution can be viewed as a multi-
dimensional generalization of the chi-square distribution.

Define the linear transform τν : Vn −→ Vn, for Y ∈ SPD(m), by

(τν(Uλ))(Y ) := EW [Uλ(YW )] for W ∼W (Im, ν).

As U forms a basis of Vn, τν(U) :=
(
τν(U(n)), τν(U(n−1,1)), . . . , τν(U(1,...,1))

)
T must be a linear

combination of U , denoted by τν(U) = TνU . Properties of the transition matrix Tν guarantee a
diagonalization as Tν = Ξ−1ΛνΞ, where
• Λν = diag(2n(ν/2)λ), for λ ∈ Pn, is the diagonalization of Tν ;
• and Ξ is a nonsingular upper triangular matrix, which is uniquely determined up to a (possibly

different) multiplicative constant for each row.
Now, we can define the zonal polynomials.

Definition 2.5. For λ = (λ1, . . . , λk) ∈ Pn, the zonal polynomial Yλ is defined by a vector form

Y =
(
Y(n),Y(n−1,1), . . . ,Y(1,...,1)

)T
= ΞU

= Ξ
(
U(n),U(n−1,1), . . . ,U(1,...,1)

)T
, (2.1)

and define Cλ(Y ) = dλYλ(Y ) by the constants dλ, given by

dλ =

∏
i<j

(2λi − 2λj − i+ j)

k∏
i=1

(2λi + k − i)!
· 2nn!

(2n)!
.
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Example 2.6. For n = 4, ν = 3, and m = 2, we compare an exact computation with a Monte-Carlo
experiment. Since m = 2, we only need to consider partitions of 4 with at most 2 parts and get
U =

(
(y1 + y2)4, y1y2(y1 + y2)2, y21y

2
2

)
.

The map τν is defined to be an expectation. In order to approximate τν(U)(Y ) numerically, we
sample a large number of Wishart matrices W . In Mathematica, the command
In[1]:= RandomVariate[WishartMatrixDistribution[3, IdentityMatrix[2]]]

Out[1]= {{3.0965,−0.551265}, {−0.551265, 1.59861}}
randomly generates such a 2×2 matrix W . For simplicity, let Y = diag(y1, y2). The eigenvalues of
YW are in general algebraic expressions, but after plugging them into the symmetric polynomials
of U and simplifying, one gets polynomials back. For these simplifications, it is advisable to employ
exact arithmetic instead of floating point numbers, and therefore we convertW to have exact rational
entries at the very beginning. Averaging over N = 106 samples yields the following approximation∑N
i=1 U(YWi)/N for the vector τν(U)(Y ):945.715 y41 + 1261.66 y31y2 + 1347.86 y21y

2
2 + 1258.51 y1y

3
2 + 947.094 y42

210.465 y31y2 + 299.699 y21y
2
2 + 209.768 y1y

3
2

119.769 y21y
2
2

 .

Now we want to compare this approximate result with the exact one. For this purpose, we
proceed “backwards”, i.e., we start with the zonal polynomials Cλ(Y ) (their coefficients are given in
Example 3.5). After dividing them with the constants dλ, we can use (2.1),

Ξ ·

 (y1 + y2)4

y1y2(y1 + y2)2

y21y
2
2

 =

4233600 ·
(
y41 + y42 + 4

7 (y31y2 + y1y
3
2) + 18

35y
2
1y

2
2

)
211680 ·

(
24
7 (y31y2 + y1y

3
2) + 16

7 y
2
1y

2
2

)
967680 · y21y22


to determine the matrix Ξ. As a result, one obtains

Ξ = 120960 ·

35 −120 48
0 6 −8
0 0 8

 and Tν = Ξ−1ΛνΞ =

945 −2520 720
0 210 −120
0 0 120

 ,

where Λν = diag(945, 210, 120). Applying this transition matrix to the U-basis, one finally gets

Tν U =

945 y41 + 1260 y31y2 + 1350 y21y
2
2 + 1260 y1y

3
2 + 945 y42

210 y31y2 + 300 y21y
2
2 + 210 y1y

3
2

120 y21y
2
2


and sees that the previous Monte-Carlo simulation delivered quite accurate results.

2.2. Definition in differential geometry
Good references for the material in this subsection are [5, 7, 13]. We first recall the Laplace-Beltrami
operator on Riemannian manifolds.

Definition 2.7. On a Riemannian manifold (M, g), the Laplace-Beltrami operator on smooth func-
tions f ∈ C∞(M) is given by

∆f := (div ◦ grad)f =

n∑
i,k=1

1√
G
∂k

(
gik
√
G∂if

)
,

where n = dimM , (gij)n×n is the metric matrix, and G := det(gij).

Remark 2.8. WhenM = Rn and (gij) = In, the identity matrix, we have the usual Laplace operator:

∆f =

n∑
i=1

∂2f

∂x2i
.

Namely, the Laplace-Beltrami operator is the generalization of the Laplace operator on Rn.
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Proposition 2.9. Given X = HYHT ∈ SPD(m), for some orthogonal matrix H ∈ O(n), and
Y = diag(y1, . . . , yn) being the diagonalization of X , James [7, eq. 3.12] derived the Laplace-
Beltrami operator as

∆ =

m∑
i=1

y2i ∂2∂y2i − m− 3

2
yi

∂

∂yi
+

m∑
j=1,j 6=i

y2i
yi − yj

· ∂
∂yi

 . (2.2)

Remark 2.10. The second term on the right-hand side of (2.2) is, up to the constant (m− 3)/2, the
Euler’s operator

∑m
i=1 yi

∂
∂yi

, which has all symmetric, homogeneous polynomials as its eigenfunc-
tions. Thus, when considering eigenfunctions of the Laplace-Beltrami operator, it can be eliminated.

Definition 2.11. The zonal polynomials Cλ(y1, . . . , ym) are the eigenfunctions of the operator ∆Y ,
defined by

∆Y :=

m∑
i=1

y2i ∂2∂y2i +

m∑
j=1,j 6=i

y2i
yi − yj

· ∂
∂yi

 .

In particular, for λ = (λ1, . . . , λk) ∈ Pn, we have

∆Y Cλ(Y ) =
(
ρλ + (m− 1)n

)
· Cλ(Y ),

where

ρλ :=

k∑
i=1

λi (λi − i) . (2.3)

2.3. Definition through representation theory
Consider the general linear group G = GL(m) on Vn. Define a representation as follows. For
g ∈ GL(m), Y ∈ Vn, and ϕ ∈ GL(Vn),

(g ◦ ϕ) (Y ) := ϕ
(
g−1Y (g−1)T

)
.

As a representation, the linear space can be decomposed into invariant subspaces [6, p. 611]

Vn =
⊕
λ∈Pn

Vλ.

Definition 2.12. Given Y ∈ SPD(m) and λ ∈ Pn, define the zonal polynomials by the projection

Cλ(Y ) = (trY )n
∣∣∣
Vλ
. (2.4)

Remark 2.13. Note that (2.4) confirms (1.3).

2.4. A short remark on Macdonald, Jack and zonal polynomials
A limit case (by taking t = qα and letting q → 1) of the Macdonald polynomials gives the Jack
polynomials J (α)

λ , which when α = 2, gives the zonal polynomials Zλ(Y ). Zλ(Y ) differs from
Cλ(Y ) only by a constant factor.

3. Calculation of zonal polynomials
Although there are several ways to define the zonal polynomial Cλ(Y ), in practice, none of these
definitions gives an algorithm or formula to directly compute Cλ(Y ). Now, we follow the steps by
Muirhead [15] to build up packages for the calculation of Cλ(Y ).
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Definition 3.1. For λ = (λ1, . . . , λk) ∈ Pn, define the monomial symmetric function as

Mλ(y1, . . . , ym) =
∑

i1,...,ik
distinct terms

yλ1
i1
· · · yλkik = yλ1

1 · · · y
λk
k + symmetric terms. (3.1)

Remark 3.2. An explicit expression of Mλ(Y ) is given by [20, eq. 6]:

M(1m12m2 ··· )(Y ) =

 n∏
j=1

1

mj !

 ∑
i1,...,ik

yλ1
i1
· · · yλkik , (3.2)

where λ = (λ1, . . . , λk) = (1m1 , 2m2 , . . . , nmn) ∈ Pn contains m1 1’s, m2 2’s, etc.

Theorem 3.3. We have, for some constants cκ,λ, that (see, e.g., [15, eq. 13])

Cκ(Y ) =
∑
λ≤κ

cκ,λMλ(Y ). (3.3)

Remark 3.4. Note that Mλ(Y ) is defined to be zero whenever there are fewer variables than parts in
the partition λ. It follows that Cκ(Y ) = 0 if the dimension of Y is less than the number of parts of κ.

Example 3.5. The following table, from [15, p. 238], shows the coefficients cκ,λ, in the case n = 4.

κ\λ (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

(4) 1 4
7

18
35

12
35

8
35

(3, 1) 0 24
7

16
7

88
21

32
7

(2, 2) 0 0 16
5

32
15

16
5

(2, 1, 1) 0 0 0 16
3

64
5

(1, 1, 1, 1) 0 0 0 0 16
5

Theorem 3.6. The constant cκ,λ satisfies the recurrence [15, eq. 14]

cκ,λ =
∑

λ<µ≤κ

(λr + t)− (λs − t)
ρκ − ρλ

cκ,µ, (3.4)

where the sum is over all µ = (λ1, . . . , λr−1, λr + t, λr+1, . . . , λs−1, λs − t, λs+1, . . . , λk), for
λ = (λ1, . . . , λk) and t = 1, . . . , λs such that by rearranging the tuple µ in a descending order, it
lies as λ < µ ≤ κ. Recall the quantity ρκ that is defined in (2.3).

Remark 3.7. As mentioned in Remark 1 on page 73 of [20], recurrence (3.4) fails when ρκ−ρλ = 0,
which first occurs when κ = (4, 1, 1) and λ = (3, 3):

ρκ = 4 · (4− 1) + 1 · (1− 2) + 1 · (1− 3) = 9 = 3 · (3− 1) + 3 · (3− 2) = ρλ.

In this case, not only does the denominator in (3.4) vanish, but also the summation is empty. It seems
that James [7] has claimed that for all “relevant” pairs (κ, λ), cκ,λ > 0. Due to the nonnegative
numerator of the summation in (3.4), it suggests that if ρκ ≤ ρλ, cκ,λ = 0.

See the example at the end of Section 8 of the case κ = (4, 1, 1) and λ = (3, 3), which is also
compatible with the built-in package in SageMath.

Once the initial value cκ,κ is given, (3.4) can compute cκ,λ for all λ < κ. Now, observing the
tables in Example 3.5 and recalling (1.3), it is easy to see that the sum of each column is given by a
multinomial coefficient. More precisely, let λ = (λ1, . . . , λk) ∈ Pn,

(n)∑
κ=λ

cκ,λ =

(
n

λ1, . . . , λk

)
. (3.5)

In particular, c(n),(n) =
(
n
n

)
= 1. Thus, all constants cκ,λ are obtained, and so is Cλ(Y ).
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4. Characterization of vanishing coefficients
Muirhead [15, Lem. 7.2.3] gives a necessary condition for some coefficients cκ,λ to be zero, but
without a proof. We recall his result here and give a simple proof of it.

Lemma 4.1. Let n ∈ N and κ, λ ∈ Pn. If κ has more parts than λ, then cκ,λ = 0.

Proof. Given a partition λ, denote by len(λ) its number of parts. Assume that len(κ) = k. Then, the
definition of zonal polynomials (3.3) and Remark 3.4, we see that

0 = Cκ(y1, . . . , yk−1)

=
∑
λ≤κ

len(λ)<k

cκ,λMλ(y1, . . . , yk−1)︸ ︷︷ ︸
6=0

+
∑
λ≤κ

len(λ)≥k

cκ,λMλ(y1, . . . , yk−1)︸ ︷︷ ︸
=0

.

Now, it is apparent that all coefficients cκ,λ for which λ has fewer parts than k must be zero. �

While Lemma 4.1 only gives a necessary condition under which cκ,λ is zero, we would like to
obtain a full characterization, i.e., a necessary and sufficient condition for cκ,λ = 0. For example,
we have c(8,2,2),(7,4,1) = 0, although both partitions have the same length.

Theorem 4.2. Let n ∈ N and let κ, λ ∈ Pn with κ ≥ λ in lexicographic order. Then cκ,λ = 0 if and
only if there exists p ∈ N such that, (where the partitions are filled with zeros as necessary,)

p∑
i=1

(κi − λi) < 0. (4.1)

Proof. We first want to show that, under the assumption (4.1),
∑p
i=1(κi − µi) < 0 holds for all µ

of the form µ = (. . . , λr + t, . . . , λs − t, . . . ), 1 ≤ t ≤ λs, after reordering the parts. Assume that
this reordering requires us to move the part λr + t to the k-th position (k ≤ r) and the part λs − t to
the `-th position (` ≥ s). Then the partition µ has the following form:

(λ1, . . . , λk−1, λr + t, λk, . . . , λr−1, λr+1, . . . , λs−1, λs+1, . . . , λ`, λs − t, λ`+1, . . . ).

Then we have

p∑
i=1

µi =



∑p
i=1 λi, if p < k;∑p−1
i=1 λi + λr + t, if k ≤ p < r;∑p
i=1 λi + t, if r ≤ p < s;∑s−1
i=1 λi + t+

∑p+1
i=s+1 λi, if s ≤ p < `;∑p

i=1 λi, if p ≥ `.

In each of these cases, we claim
∑p
i=1 µi ≥

∑p
i=1 λi. For the 1st, 3rd and 5th case, it is immediately

obvious. For the 2nd and 4th case, it is true because λr + t ≥ λp and λp+1 ≥ λs − t, respectively.
We have just shown that if κ and λ satisfy (4.1), then all the µ’s in (3.4) also satisfy (4.1), in

other words, cκ,λ is a linear combination of cκ,µ’s with the same property. In order to conclude the
proof by induction, we have to investigate the two possible base cases:

1. We arrive at a cκ,λ for which λ has fewer parts than κ (, note that the operation (. . . , λr +
t, . . . , λs − t, . . . ) weakly decreases the number of parts). Then by Lemma 4.1, cκ,λ = 0.

2. We arrive at a cκ,λ such that no suitable µ between λ and κ exists. Also in this case we get
cκ,λ = 0 since the sum in (3.4) is empty.

Now we show the converse: if κ, λ do not satisfy (4.1), then by (3.4), cκ,λ is a linear combi-
nation (with nonnegative coefficients) of c’s that do not satisfy (4.1) either. Note that ρκ < ρλ only
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occurs if (4.1) holds, which can be proven as follows. Let κ = (κ1, . . . , κm) and λ = (λ1, . . . , λm),
with possible zero components as necessary. For any constant c,

ρκ − ρλ =

m∑
i=1

(κi(κi − i)− λi(λi − i))

=

m∑
i=1

(κi − λi)(κi + λi − i)

=

m∑
i=1

(κi − λi)(κi + λi − i+ c)− c
m∑
i=1

(κi − λi)

=

m∑
i=1

(κi − λi)(κi + λi − i+ c),

due to that
m∑
i=1

(κi − λi) =

m∑
i=1

κi −
k∑
i=1

λi = n− n = 0.

Let c = m + 1 and define ai = κi + λi + (m + 1 − i) for i = 1, 2, . . . ,m, which are positive and
strictly decreasing. If ρκ < ρλ but (4.1) fails, i.e., for any p ∈ N,

∑p
i=1(κi − λi) ≥ 0, we see the

contradiction as follows.

ρκ − ρλ =

m∑
i=1

(κi − λi)ai

= am

m∑
i=1

(κi − λi) + (am−1 − am)

m−1∑
i=1

(κi − λi) + · · ·

+ (a1 − a2)(κ1 − λ1) ≥ 0.

Thus, we only focus on the case that ρκ > ρλ. It is not difficult to see that λ can be converted into κ
by a finite sequence of moves (. . . , λr + 1, λr+1 − 1, . . . ), where r is the smallest index such that∑r
i=1(κi−λi) > 0, and all partitions in this sequence do not satisfy (4.1). The recursion ends when

there is no such r, i.e., when λ = κ, and one sees that the contribution of cκ,κ 6= 0 makes cκ,λ
positive. �

Example 4.3. For κ = (8, 2, 2) and λ = (7, 4, 1) we verify that the second partial sum of their
differences, i.e., p = 2 is negative: (8− 7) + (2− 4) = −1, and hence cκ,λ must be zero.

A graphical presentation of the positions where cκ,λ = 0 is shown in Figure 4.1. We recognize
a fractal-like structure which is due to Theorem 4.2 and the lexicographical ordering of partitions.

5. Infinite families of coefficients cκ,λ
In this section, we study some infinite families among the coefficients cκ,λ of the zonal polynomi-
als Cκ(Y ). Since we have seen that c(n),(n) = 1 for all n (that corresponds to the upper left corner
of the cκ,λ-matrix), one can ask whether the “neighboring” entries also admit a closed form for gen-
eral n. Theorem 5.2 will give an explicit answer for the first few cases. Before that, we focus on the
first row of the cκ,λ-matrix, i.e., on the coefficients cκ,λ for which κ = (n) and λ ≤ κ has two parts.

Theorem 5.1. Let (n−m,m) ∈ Pn, then

c(n),(n−m,m) =

(
n

m

)
·

(
1
2

)
m(

n−m+ 1
2

)
m

. (5.1)
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(1
,
..
.,
1
)

(2
,
..
.,
2
)

(3
,
..
.,
3
,
1
)

(4
,
4
,
4
,
4
)

(5
,
5
,
5
,
1
)

(6
,
6
,
4
)

(7
,
7
,
2
)

(8
,
8
)

(9
,
7
)

(1
0
,
6
)

(1
2
,
4
)

(1
6
)

(1, ..., 1)
(2, ..., 2)

(3, ..., 3, 1)

(4, 4, 4, 4)

(5, 5, 5, 1)

(6, 6, 4)

(7, 7, 2)

(8, 8)

(9, 7)

(10, 6)

(12, 4)
(16)

FIGURE 4.1. Location of zeros in the cκ,λ-matrix for n = 16: each nonzero co-
efficient is represented by a white square, each zero by a black square.

Proof. Obviously, ρ(n) − ρ(n−m,m) = m(2n− 2m+ 1). By (3.4),

c(n),(n−m,m) =
∑

(n−m,m)<µ≤(n)

(n−m+ t)− (m− t)
ρ(n) − ρ(n−m,m)

· c(n),µ

=
1

m(2n− 2m+ 1)

m∑
t=1

(n− 2m+ 2t)c(n),µ.

Now, we proceed by induction on m. When m = 1, the only term in the sum is t = 1, i.e., µ = (n),
so that

c(n),(n−1,1) =
1

2n− 1
· (n− 2 + 2) · 1 =

n

2n− 1
=

(
n

1

) 1
2

n− 1
2

. (5.2)

Now, assume (5.1) holds for m. Considering the case m+ 1, we have

c(n),(n−m−1,m+1) =

=
1

(m+ 1)(2(n−m)− 1)

m+1∑
t=1

(n− 2m− 2 + 2t)c(n),µ

=
1

(m+ 1)2(n−m)− 1)

(
(n− 2m)c(n),(n−m,m) +

m∑
t=1

(n− 2m+ 2t)c(n),µ

)
=

c(n),(n−m,m)

(m+ 1)(2(n−m)− 1)

(
(n− 2m) +m(2(n−m) + 1)

)
=

(n−m)(2m+ 1)

(m+ 1)(2(n−m)− 1)
·
(
n

m

) (
1
2

)
m(

n−m+ 1
2

)
m

=

(
n

m+ 1

)
·

(
1
2

)
m+1(

n−m− 1
2

)
m+1

. �
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Theorem 5.2. We have

c(n−1,1),(n−1,1) =
2n(n− 1)

2n− 1
, (n ≥ 2);

c(n−1,1),(n−2,2) =
2n(n− 1)(n− 2)

(2n− 1)(2n− 5)
, (n ≥ 4);

c(n−2,2),(n−2,2) =
2n(n− 1)(n− 2)(n− 3)

(2n− 3)(2n− 5)
, (n ≥ 4).

Proof. Using (5.2) and (3.5) with λ = (n− 1, 1), we have

c(n−1,1),(n−1,1) =

(
n

n− 1, 1

)
− c(n),(n−1,1)

= n− n

2n− 1
=

2n2 − 2n

2n− 1
=

2n (n− 1)

2n− 1
.

By applying (3.4), we obtain

c(n−1,1),(n−2,2) =
(n− 2 + 1)− (2− 1)

ρ(n−1,1) − ρ(n−2,2)
· c(n−1,1),(n−1,1)

=
(n− 2 + 1)− (2− 1)

2n− 5
· 2n(n− 1)

2n− 1
=

2n(n− 1)(n− 2)

(2n− 1)(2n− 5)
.

Finally, using (3.5) and (5.1)with λ = (n− 2, 2), we get the last coefficient:

c(n−2,2),(n−2,2) =

(
n

n− 2, 2

)
− c(n),(n−2,2) − c(n−1,1),(n−2,2)

=
2n(n− 1)(n− 2)(n− 3)

(2n− 3)(2n− 5)
. �

It is clear that we could proceed in this manner and compute more coefficients cκ,λ in the upper
left corner of the matrix for symbolic n. Since the corresponding calculations get too tedious to be
done by hand, we employ computer algebra to determine the rational function expressions for a few
more coefficients. Note that, when n is sufficiently large, the lexicographically largest elements of
Pn are (in descending order):

(n), (n− 1, 1), (n− 2, 2), (n− 2, 1, 1), (n− 3, 3), (n− 3, 2, 1), etc.

In Table 1 we give closed forms for the coefficients cκ,λ when κ and λ are taken from these lexico-
graphically largest partitions, i.e., when both κ and λ are of the form (n−m,π), where π ∈ Pm but
n is symbolic. Pictorially speaking, this table represents the upper left submatrix of the cκ,λ-matrix
for large n; more precisely, for n ≥ 6 since we consider only partitions (n), . . . , (n − 3, 1, 1, 1).
We remark that all these formulas have been rigorously proven by applying (3.4) and (3.5) for sym-
bolic n, as it was done in the proof of Theorem 5.2. This symbolic proof strategy is implemented in
our Mathematica package as ZonalCoefficientN (see Section 9).

Example 5.3. For example, for n = 23 we obtain the coefficient c(21,2),(21,1,1) by reading the entry
in Table 1 in row (n− 2, 2) and column (n− 2, 1, 1):

c(21,2),(21,1,1) =
4(n− 3)(n− 2)(n− 1)n

3(2n− 5)(2n− 3)

∣∣∣∣∣
n=23

=
4 · 20 · 21 · 22 · 23

3 · 41 · 43
=

283360

1763
.

We formulate a conjecture on the limit, as n goes to infinity, of the coefficients of the form
c(n),(n−n′,λ′).
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κ\λ (n) (n− 1, 1) (n− 2, 2) (n− 2, 1, 1)

(n) 1 n
2n−1

3(n−1)n
2(2n−3)(2n−1)

(n−1)n
(2n−3)(2n−1)

(n− 1, 1) 0 2(n−1)n
2n−1

2(n−2)(n−1)n
(2n−5)(2n−1)

2n(2n2−6n+3)
(2n−5)(2n−1)

(n− 2, 2) 0 0 2(n−3)(n−2)(n−1)n
(2n−5)(2n−3)

4(n−3)(n−2)(n−1)n
3(2n−5)(2n−3)

(n− 2, 1, 1) 0 0 0 2
3 (n− 2)n

κ\λ (n− 3, 3) (n− 3, 2, 1)

(n) 5(n−2)(n−1)n
2(2n−5)(2n−3)(2n−1)

3(n−2)(n−1)n
2(2n−5)(2n−3)(2n−1)

(n− 1, 1) 3(n−3)(n−2)(n−1)n
(2n−7)(2n−5)(2n−1)

(n−2)n(5n2−20n+11)
(2n−7)(2n−5)(2n−1)

(n− 2, 2) 2(n−4)(n−3)(n−2)(n−1)n
(2n−9)(2n−5)(2n−3)

2(n−3)(n−1)n(5n2−30n+36)
3(2n−9)(2n−5)(2n−3)

(n− 2, 1, 1) 0 2(n−3)(n−2)n
3(2n−7)

(n− 3, 3) 4(n−5)(n−4)(n−3)(n−2)(n−1)n
3(2n−9)(2n−7)(2n−5)

4(n−5)(n−4)(n−3)(n−2)(n−1)n
5(2n−9)(2n−7)(2n−5)

(n− 3, 2, 1) 0 4(n−4)(n−3)(n−1)n
5(2n−7)

TABLE 1. Coefficients cκ,λ for some of the lexicographically largest partitions
of n; the lower table continues the upper one to the right.

Conjecture 5.4. Let n′ < n and λ′ = (p1, . . . , p`) ∈ Pn′ . Then,

lim
n→∞

c(n),(n−n′,λ′) =
∏̀
i=1

(pi)pi
pi! 22pi−1

Example 5.5. Let n′ = 3 and λ′ = (2, 1). By Table 1 and the conjecture above

lim
n→∞

c(n),(n−3,2,1) = lim
n→∞

3(n− 2)(n− 1)n

2(2n− 5)(2n− 3)(2n− 1)
=

3

16

=
(2)2

2! 22·2−1
· (1)1

1! 22·1−1
.

The next families we study are located in the “lower right corner” of cκ,λ-matrix. In this case
both κ and λ are of the form (2m, 1n−2m), i.e., a sequence of m times the part 2 and n− 2m times
the part 1. Note that for m = 0, 1, 2, . . . we obtain the lexicographically smallest partitions of n (in
increasing order). In contrast to Theorem 5.2 it is not straightforward to derive formulas for general n
by means of Equations (3.4) and (3.5). Instead, we compute the first few values of these sequences,
say up to n = 30, and then guess a closed form expression. Some results are displayed in Table 2.

More precisely, we first applied the Guess.m package [9] to find a plausible candidate for a
linear recurrence with polynomial coefficients (in all considered instances this recurrence was of first
order, which easily allowed for a closed form solution). Then, after observing that all expressions
obtained this way were of the form 2n · r(n) where r(n) is some rational function in n, we refined
our ansatz to only search for expressions of this form: divide the n-th sequence entry by 2n and then
perform polynomial interpolation and rational reconstruction.
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κ\λ (24, 1n−8) (23, 1n−6) (22, 1n−4)

(24, 1n−8) 2n−3(n−6)(n−5)n
15

2n−3(n−7)(n−6)2n
15

2n−4(n−7)(n−6)2(n−5)n
15

(23, 1n−6) 0 2n−3(n−4)(n−3)
3

2n−3(n−5)(n−4)2
3

(22, 1n−4) 0 0 2n−1(n−2)(n−1)
3(n+1)

κ\λ (2, 1n−2) (1n)

(24, 1n−8) 2n−4(n−7)(n−6)2(n−5)(n−2)n
45

2n−6(n−7)(n−6)2(n−5)(n−1)n2

45

(23, 1n−6) 2n−4(n−5)(n−4)2(n−3)
3

2n−4(n−5)(n−4)2(n−3)n
9

(22, 1n−4) 2n−1(n−3)(n−2)2
3(n+1)

2n−2(n−3)(n−2)2(n−1)
3(n+1)

(2, 1n−2) 2n−1n
n+2

2n−1(n−1)n2

(n+1)(n+2)

(1n) 0 2n

n+1

TABLE 2. Coefficients cκ,λ for some of the lexicographically smallest partitions
of n; the lower table continues the upper one to the right.

6. Partitions with two parts
Now we concentrate on the coefficients cκ,λ when both κ and λ have at most two parts. Take-
mura [20, § 4.4] gives formulas for these coefficients in terms of elementary symmetric functions,
while we focus on monomial symmetric functions.

When applying the recursive formula (3.4) one sees that the partitions µ cannot have more
parts than λ, by the way how they are constructed. Similarly, when we use (3.5) to compute cλ,λ,
only those coefficients cκ,λ contribute for which κ has at most two parts; this is a direct consequence
of Lemma 4.1. We conclude that, for the computation of cκ,λ, we do not need any cκ′,λ′ with κ′ or
λ′ having more than two parts. Throughout this section we write

κ = (a, a− b) and λ = (a− d, a− b+ d)

for nonnegative integers a, b, d. The condition b < a ensures that κ is a proper partition and the con-
dition d ≤ b/2 ensures that the parts of λ are in the correct order. In Theorem 6.3 we present a closed
form of the coefficients cκ,λ under these assumptions. We start our investigation by specializing (3.4)
and (3.5) to partitions with two parts. First of all, it is easy to compute that

ρκ − ρλ = d · (2b− 2d+ 1).

Then, recurrence (3.4) can be written as, by noting that λ has only two parts,

cκ,λ = c(a,a−b),(a−d,a−b+d) =
∑

λ<µ≤κ

(a− d+ t)− (a− b+ d− t)
ρκ − ρλ

cκ,µ

=

d∑
t=1

b− 2d+ 2t

d (2b− 2d+ 1)
c(a,a−b),(a−d+t,a−b+d−t)

=

d−1∑
j=0

b− 2j

d (2b− 2d+ 1)
c(a,a−b),(a−j,a−b+j). (6.1)
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Example 6.1. We consider some specific examples. For d = 1, 2, 3, recursively applying (6.1) yields

c(a,a−b),(a−1,a−b+1) =
b

2b− 1
c(a,a−b),(a,a−b),

c(a,a−b),(a−2,a−b+2) =
3b(b− 1)

2(2b− 1)(2b− 3)
c(a,a−b),(a,a−b),

c(a,a−b),(a−3,a−b+3) =
5b(b− 1)(b− 2)

2(2b− 1)(2b− 3)(2b− 5)
c(a,a−b),(a,a−b).

Proposition 6.2. Given two partitions κ = (a, a − b) and λ = (a − d, a − b + d) of the positive
integer n = 2a− b, with 0 ≤ b < a and 0 ≤ d ≤ b/2, then

cκ,λ = c(a,a−b),(a−d,a−b+d) =

(
b

d

) (
1
2

)
d(

b− d+ 1
2

)
d

· c(a,a−b),(a,a−b). (6.2)

Proof. Note that this result is a direct generalization of Theorem 5.1, and hence the same inductive
argument could be applied. Instead, we illustrate a different proof strategy, using symbolic summa-
tion. Because of the recursive definition of the coefficients cκ,λ, demonstrated in Example 6.1, it
suffices to show that the asserted expression satisfies the recurrence (6.1). Namely, we need to prove(

b

d

) (
1
2

)
d(

b− d+ 1
2

)
d

=

d−1∑
j=0

(
b

j

) (b− 2j)
(
1
2

)
j

d (2b− 2d+ 1)
(
b− j + 1

2

)
j

. (6.3)

Using special-purpose computer algebra packages, such as the HolonomicFunctions package [11],
we find that the expression in the sum, denote it by f(j), is Gosper-summable. More precisely, we
find a function

g(j) =
j (2b− 2j + 1)

b− 2j
· f(j) =

(
b

j

) j (2b− 2j + 1)
(
1
2

)
j

d (2b− 2d+ 1)
(
b− j + 1

2

)
j

with the property g(j + 1)− g(j) = f(j) (the latter can be easily verified). By telescoping, and by
noting that g(0) = 0, we obtain the value of the right-hand side of (6.3):

g(d) =

(
b

d

)
·

(
1
2

)
d(

b− d+ 1
2

)
d

,

which matches exactly the left-hand side of (6.3). �

Theorem 6.3. Let a, b, d ∈ N with 0 ≤ b < a and 0 ≤ d ≤ b/2. Then we have

c(a,a−b),(a−d,a−b+d) =
(2a− b)!

(
b+ 1

2

) (
1
2

)
d

d! (a− b)! (b− d)!
(
b− d+ 1

2

)
a−b+d+1

.

Proof. We first show that the asserted expression is compatible with the result of Proposition 6.2:
indeed, by computing the quotient

c(a,a−b),(a−d,a−b+d)

c(a,a−b),(a,a−b)
=

(2a− b)!
(
b+ 1

2

) (
1
2

)
d
· (a− b)! b!

(
b+ 1

2

)
a−b+1

d! (a− b)! (b− d)!
(
b− d+ 1

2

)
a−b+d+1

· (2a− b)!
(
b+ 1

2

)
=

b!
(
1
2

)
d

(
b+ 1

2

)
a−b+1

d! (b− d)!
(
b− d+ 1

2

)
a−b+d+1

=

(
b

d

) (
1
2

)
d(

b− d+ 1
2

)
d

,

we see that this is the case. It remains to prove that the asserted expression is correct in the case
d = 0, i.e., when κ = λ. For this purpose, we employ the recursion (3.5), specialized to partitions
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with two parts:
a−b∑
d=0

c(a+d,a−b−d),(a,a−b) =

(
2a− b
a

)
. (6.4)

By dividing both sides with the binomial coefficient of the right-hand side, and by inserting the
asserted closed form (after the change of variables a→ a+ d and b→ b+ 2d), we are left with the
summation identity

a−b∑
d=0

a! (a− b)!
(
b+ 2d+ 1

2

) (
1
2

)
d

d! (a− b− d)! (b+ d)!
(
b+ d+ 1

2

)
a−b+1

= 1. (6.5)

Taking into account the recursive definition of the coefficients cκ,λ, the (inductive) proof is com-
pleted by verifying (6.5). For this purpose, we denote by f(a, b, d) the expression inside the sum (6.5)
and construct two WZ pairs, i.e., two functions

g1(d) =
−2d(b+ d)

(a− b− d+ 1)(2b+ 4d+ 1)
· f(a, b, d)

= −
a! (a− b)!

(
1
2

)
d

(d− 1)! (b+ d− 1)! (a− b− d+ 1)!
(
b+ d+ 1

2

)
a−b+1

,

g2(d) =
d(2a+ 2d+ 1)

(a− b)(2b+ 4d+ 1)
· f(a, b, d)

=
a! (a− b− 1)!

(
1
2

)
d

(d− 1)! (b+ d)! (a− b− d)!
(
b+ d+ 1

2

)
a−b

,

such that the following identities hold (they can be verified by routine calculations):

f(a+ 1, b, d)− f(a, b, d) = g1(d+ 1)− g1(d), (6.6)

f(a, b+ 1, d)− f(a, b, d) = g2(d+ 1)− g2(d). (6.7)

Now we sum (6.6) for d = 0, . . . , a− b and obtain

a−b∑
d=0

(
f(a+ 1, b, d)− f(a, b, d)

)
= g1(a− b+ 1)− g1(a, 0),

or equivalently,

a−b+1∑
d=0

f(a+ 1, b, d)−
a−b∑
d=0

f(a, b, d) = g1(a− b+ 1)− g1(a, 0) + f(a+ 1, b, a− b+ 1).

A straightforward calculation shows that the left-hand side equals 0, thereby showing that the sum∑a−b
d=0 f(a, b, d) is independent of a. Summing over (6.7), followed by a similar calculation, shows

that the sum does not depend on b either. Therefore, the sum in (6.5) is constant, and by setting
a = b = 0, one immediately sees that this constant is 1. �

Remark 6.4. By setting b = a in Theorem 6.3 and by interpreting (a, 0) as the partition (a), we
recover Theorem 5.1:

c(a),(a−d,d) =
(a)!

(
a+ 1

2

) (
1
2

)
d

d! (a− d)!
(
a− d+ 1

2

)
d+1

=

(
a

d

) (
1
2

)
d(

a− d+ 1
2

)
d

.
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7. Partitions with three and four parts
We have seen that the coefficients of the zonal polynomial Cκ(Y ) are given by the row indexed
by κ in the cκ,λ-matrix. Using (3.4) we can express all coefficients cκ,λ in the κ-th row as constant
multiples of the diagonal coefficient cκ,κ. Unfortunately, the latter one is harder to obtain: to apply
(3.5) we need to know all cκ,λ in the λ-th column, which in turn are obtained by (3.4) and so on.
Hence, in the worst case, we need to compute the whole triangle above the position (κ, κ).

Therefore, it would be highly desirable to have a more direct way to compute the diagonal
coefficients cκ,κ. We present formulas for the special cases that κ has three resp. four parts.

Conjecture 7.1. Let κ = (a, a−b, a−c) with integers 0 ≤ b ≤ c ≤ a be a partition of n = 3a−b−c
into at most three parts. Then the diagonal coefficient

cκ,κ =
(c+ 1)!

(a+ 1)!
· n!

δ1! δ2! δ3!
(
δ1 + 3

2

)
δ2

(
δ2 + 3

2

)
δ3

,

with δ1 = κ1 − κ2 = b, δ2 = κ2 − κ3 = c − b, and δ3 = κ3 − κ4 = a − c being the differences
between consecutive parts of κ (with the convention κ4 = 0).

Conjecture 7.2. Let κ = (a, a− b, a− c, a− d) with integers 0 ≤ b ≤ c ≤ d ≤ a be a partition of
n = 4a− b− c− d into at most four parts. Then the diagonal coefficient cκ,κ is given by

(c+ 1)! (d− b+ 1)!

(a− b+ 1)! (d+ 1)!
(
d+ 5

2

)
a−d
· n!

δ1! δ2! δ3! δ4!
(
δ1 + 3

2

)
δ2

(
δ2 + 3

2

)
δ3

(
δ3 + 3

2

)
δ4

,

with δ1 = κ1 − κ2 = b, δ2 = κ2 − κ3 = c− b, δ3 = κ3 − κ4 = d− c, and δ4 = κ4 − κ5 = a− d
being the differences between consecutive parts of κ.

We have verified Conjecture 7.1 for all 0 ≤ b ≤ c ≤ a ≤ 14 and Conjecture 7.2 for all
0 ≤ b ≤ c ≤ d ≤ a ≤ 10.

Remark 7.3. Conjecture 7.1 with c = a reduces to Theorem 6.3 with d = 0. Similarly, by letting
d = a in Conjecture 7.2, we have Conjecture 7.1.

8. SageMath package for the calculation of zonal polynomials
We briefly present the main functionality of the package Zonal.sage, which is freely available at
https://jiulin90.github.io/package.html, and give a few examples. On the same
website, we provide a manual with further examples of its usage.

Let κ, λ ∈ Pn be partitions and Y = (a, b, c, . . .) be the variables.

CZonal(λ, Y ) computes the zonal polynomial Cλ(Y ), by (3.3).
sage: load(’Zonal.sage’)
sage: var(’a’,’b’,’c’)
(a,b,c) sage: CZonal([2,1],[a,b,c])
12/5*a^2*b + 12/5*a*b^2 + 12/5*a^2*c + 18/5*a*b*c + 12/5*b^2*c
+ 12/5*a*c^2 + 12/5*b*c^2

MZonal(λ, Y ) computes the monomial symmetric function Mλ(Y ) by (3.2).
sage: MZonal([2,2,1],[a,b,c])
a^2*b^2*c + a^2*b*c^2 + a*b^2*c^2
sage: MZonal([2,1],[a,b,c])
a^2*b + a*b^2 + a^2*c + b^2*c + a*c^2 + b*c^2

https://jiulin90.github.io/package.html
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Coeffi(κ, λ) computes the coefficient cκ,λ for partitions κ ≥ λ, by (3.4) and (3.5).
sage: Coeffi([5,4],[3,3,3])
82944/1925

Remark 8.1. The SageMath software has built-in functions for Jack symmetric functions, as men-
tioned in the Introduction, where the zonal polynomials Zλ(Y ) := Cλ(Y )/cλ,λ are also imple-
mented, as a special case of Jack polynomials. Many properties can be checked, such as algebraic
relations among Jack polynomials in the P , J , and Q bases. In particular, an example shows that(

Z(2)(Y )
)2

=
64

45
Z(2,2)(Y ) +

16

21
Z(3,1)(Y ) + Z(4)(Y ).

In addition, one can expandZλ(Y ) into an explicit expression, by the command expand. Meanwhile,
since our package only focuses on calculations of zonal polynomials, it is notably faster by using
our CZonal. The screenshot below shows two computations of Z(4,1,1)(a, b, c) and C(4,1,1)(a, b, c),
which also confirm Conjecture 7.1 with c(4,1,1)(4,1,1) = C(4,1,1)(a, b, c)/Z(4,1,1)(a, b, c) = 16.

9. Mathematica package for the calculation of zonal polynomials
We briefly describe our implementation of zonal polynomials in Mathematica. Our software pack-
age ZonalPolynomials.m is freely available on the website www.koutschan.de/data/
zonal/. There we also provide a demo notebook with further examples of its usage. The main
functions of the package are the following:

ZonalPolynomial[λ] gives the zonal polynomial indexed by the partition λ, in terms of the monomial
symmetric functions Mλ.
In[2]:= ZonalPolynomial[{3, 2}]

Out[2]=
48

7
M[3, 2] +

176

21
M[2, 2, 1] +

32

7
M[3, 1, 1] +

64

7
M[2, 1, 1, 1] +

80

7
M[1, 1, 1, 1, 1]

ZonalPolynomial[λ, {y1, . . . , ym}] gives the zonal polynomial indexed by the partition λ, as a sym-
metric polynomial in the variables y1, . . . , ym.
In[3]:= ZonalPolynomial[{2, 1}, {a, b, c}]

Out[3]=
12

5

(
a2b+ a2c+ ab2 + ac2 + b2c+ bc2

)
+

18

5
abc

www.koutschan.de/data/zonal/
www.koutschan.de/data/zonal/
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ZonalCoefficient[κ, λ] computes the zonal polynomial coefficient cκ,λ recursively by using (3.4)
and (3.5).
In[4]:= ZonalCoefficient[{8, 6, 6, 3}, {7, 7, 5, 3, 1}] // Timing

Out[4]=

{
4.60311,

33426505728

5

}
ZonalCoefficientTable[n] generates a table with all zonal polynomial coefficients cκ,λ, where κ and
λ are partitions of n.
In[5]:= ZonalCoefficientTable[4]

Out[5]=

{{
1,

4

7
,
18

35
,
12

35
,
8

35

}
,
{
0,

24

7
,
16

7
,
88

21
,
32

7

}
,
{
0, 0,

16

5
,
32

15
,
16

5

}
,
{
0, 0, 0,

16

3
,
64

5

}
,

{
0, 0, 0, 0,

16

5

}}
ZonalCoefficientN[κ, λ] gives a symbolic expression (a rational function in n) for the zonal coeffi-
cient cκ,λ in the upper left corner. The partitions κ and λ must be of the form (n− i, π), where π is
a partition of i and where n is symbolic.
In[6]:= ZonalCoefficientN[{n− 3, 2, 1}, {n− 4, 2, 2}]

Out[6]=
4(n− 3)(n− 1)n(2n2 − 18n+ 39)

5(2n− 11)(2n− 7)
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