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Abstract. Operator theory has many applications in several main scientific research areas (struc-
tural mechanics, aeronautics, quantum mechanics, ecology, probability theory, electrical engineer-
ing, among others) and the importance of its study is globally acknowledged. On the study of
the operator’s kernel some progress has been achieved for some specific classes of singular integral
operators whose properties allow the use of particular strategies. However, the existing algorithms
allow, in general, to study the dimension of the kernel of some classes of singular integral operators
but are not designed to be implemented on a computer. The main goal of this paper is to show
how the symbolic and numeric capabilities of a computer algebra system can be used to study the
kernel of special classes of paired singular integral operators with essentially bounded coefficients
defined on the unit circle. It is described how some factorization algorithms can be used to compute
the dimension of the kernel of special classes of singular integral operators. The analytical algo-
rithms [ADimKerPaired-Scalar], [AKerPaired-Scalar], and [ADimKerPaired-Matrix] are presented.
The design of these new algorithms was focused on the possibility of implementing on a computer
all the extensive symbolic and numeric calculations present in the algorithms. For the essentially
bounded hermitian coefficients case, there exist some relations with Hankel operators. The paper
contains some interesting and nontrivial examples obtained with the use of a computer algebra
system.
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1. Introduction

The development of operator theory is motivated by the need to solve problems emerging from several
fields in mathematics and physics. On the study of the operator’s kernel some progress has been
achieved for some classes of singular integral operators whose properties allow the use of particular
strategies. However, the existing algorithms allow, in general, to study the kernel of some classes of
singular integral operators but they are not designed to be implemented on a computer.

In our work we use the computer algebra system Mathematica1 to implement for the first time
on a computer analytical algorithms developed by us and others within operator theory. In the last
years we designed and/or implemented analytical algorithms for solving integral equations [11, 17],
analytical algorithms to factorize scalar and matrix functions [16, 17], calculation techniques to com-
pute singular integrals [15], and more recently analytical algorithms to study the spectrum [22, 23]

This research was supported by Fundação para a Ciência e Tecnologia (Portugal) through the Center for Functional

Analysis, Linear Structures and Applications.
1Wolfram Mathematica is a symbolic mathematical computation program used in many scientific, engineering, and
computing fields. It was conceived by Stephen Wolfram and is developed by Wolfram Research.
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and the kernel [21] of several classes of singular integral operators. It is our belief that the construction
and implementation on a computer of these kind of analytical algorithms is a very interesting line of
research.

Factorization theory has a long and interesting history and is closely related to the computation
of singular integrals, and its roots lie in the work of Plemelj [46]. The relations between the factoriza-
tion of matrix functions, Riemann-Hilbert boundary value problems, and systems of singular integral
equations have been known from the early stages of factorization theory (see, for instance, [31]). At
present time, the theory has wide application in the theory of linear and non-linear differential equa-
tions, in linear transport theory, in theory of diffraction of acoustic and electromagnetic waves, in
theory of scattering, among others (see, for instance, [10, 18, 27, 38, 47]). Some progress has been
achieved (see, for instance, [2, 9, 26, 28, 43]) for some classes of matrix functions whose properties
allow the use of a particular strategy in the study of the factorization problem but there is no general
method for obtaining a factorization for a given matrix function. In [16] it is described the explicit
rational function factorization algorithms [ARFact-Scalar] and matrix [ARFact-Matrix] that compute
explicit (left and right) factorizations of given non-singular rational matrix functions defined on the
unit circle. Both algorithms were implemented using the computer algebra system Mathematica. On
the determination of the partial indices, some developments have also been made but, even in the
rational case (and in recent publications), the methods are difficult to apply and were not designed
to be implemented on a computer (see, for instance, [5, 8, 35, 49]). In addition, the vast majority of
explicit analytical factorization methods depends on the knowledge of the zeros of scalar functions.
As a consequence, in many applications in the real world, a numerical analysis of such methods is
inevitable. However, due to many non-stability issues, such as the ones affecting the factorization
partial indices [31], the numerical approach of factorization theory is a very difficult problem. Due
to this fact, the design of new analytical methods, even if only for some restricted special classes of
functions, is still very significant to the development of such theory. In particular, thanks to the sym-
bolic computation capabilities of Mathematica, the [ARFact-Scalar] algorithm [16] always computes
the factorization index of any considered factorable scalar rational function defined on the unit circle.
One the other hand, the generalized factorization algorithm [AFact] uses the inner-outer factorization
concept and was partially implemented on a computer using the computer algebra system Mathemat-
ica [11, 17]. The classes of essentially bounded matrix functions that can be factorized by this analytic
algorithm are closely related to the solution of the non-linear Schrödinger equation (see, for instance,
[27]), to the generalized Riemann-Hilbert problem (see, for instance, [20, 21, 41, 42]), and to the study
of singular integral operators related with Hankel operators [18].

On the study of the kernel of an operator the importance of the factorization theory is well
known (see, for instance, [33, 34, 42]). In [20] it is described how the generalized factorization concept
is related with estimates of the dimension of the kernel of some classes of singular integral operators
with non-Carleman shift. In [21] it is described how the algorithms [AFact], [ARFact-Matrix], and
[SInt] [15] can be used to estimate the dimension of the kernel of some classes of singular integral
operators with non-Carleman shift and conjugation. In [12] it is shown how the symbolic and numeric
capabilities of the computer algebra system Mathematica can be used to compute the dimension of
the kernel of rational classes of paired singular integral operators.

The main goal of this paper is to show how the symbolic and numeric capabilities of a com-
puter algebra system can be used to study the kernel of special classes of paired singular integral
operators with essentially bounded coefficients defined on the unit circle. The analytical algorithms
[ADimKerPaired-Scalar], [AKerPaired-Scalar], and [ADimKerPaired-Matrix] are presented. The de-
sign of these new algorithms, that use the [ARFact-Scalar] and [ARFact-Matrix] algorithms (see Figure
1), was focused on the possibility of implementing on a computer all the extensive symbolic and nu-
meric calculations present in the algorithms. It is considered the one-dimensional and the matrix
cases. It is also shown some relations between the dimension of the kernel of singular integral op-
erators connected with Hankel operators and the dimension of the kernel of some special classes of
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paired singular integral operators with essentially bounded hermitian coefficients. Some interesting
and nontrivial examples obtained with the use of a computer algebra system are presented.

Figure 1. General flowchart.

The paper is organized as follows: Section 2 contains some basic definitions and properties of
paired singular integral operators and some factorization concepts. Section 3 is dedicated to some
results on the kernel of paired singular integral operators. Some relations between the generalized fac-
torization concept and the kernel of paired singular integral operators are presented. It is considered the
one-dimensional and the matrix cases. In Section 4 it is explained how the symbolic and numeric com-
putation capabilities of a computer algebra system can be used to study the kernel of some classes of
paired singular integral operators. The new algorithms [ADimKerPaired-Scalar], [AKerPaired-Scalar],
and [ADimKerPaired-Matrix] are presented. Section 5 is dedicated to some special classes of paired
singular integral operators with essentially bounded hermitian coefficients, defined on the unit circle.

2. Basic concepts

Let >> denote the unit circle2 in the complex plane. Let >>+ and >>− denote the open unit disk and
the exterior region of the unit circle (∞ included), respectively. As usual, L∞(>>) denotes the space
of all essentially bounded functions defined on >> and H∞(>>) the class of all bounded and analytic
functions in >>+. Let R(>>) be the algebra of rational functions without poles on >> and R±(>>) the
subsets of R(>>) whose elements have no poles in >>±, respectively.

2.1. Singular integral operators

The study of singular integral operators has applications in different research areas, such as theory
of diffraction of acoustic and electromagnetic waves, theory of scattering and of inverse scattering,
and factorization theory (see, for instance, [2, 14, 18, 27]). It is well known that the singular integral3

operator with Cauchy kernel, S>>, defined almost everywhere on >> by

S>>ϕ(t) =
1

πi

∫
>>

ϕ(τ)

τ − t
dτ, t ∈ >>, (1)

where the integral is understood in the sense of its principal value, represents a bounded linear operator
in the Lebesgue space L2(>>). In addition, S>> is a selfadjoint and unitary operator in L2(>>) (see, for
instance, [34]). Thus, we can associate with S>> two complementary Cauchy projection operators

P± = (I ± S>>)/2, (2)

where I represents the identity operator.

2Although many of the results presented in this paper can be generalized [7, 25] to the space Lp(Γ), where Γ is a closed
Carleson curve, we decided to state them only for L2(>>) due to the use of symbolic computation for the construction

of nontrivial examples.
3The [SInt] algorithm described in [15] computes (1) when the essentially bounded function ϕ can be represented as
ϕ(t) = r(t)[x+(t) + y−(t)], where x+, y− ∈ H∞(>>) and r is a rational function without poles on >>.
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The projectors (2) allow us to decompose the space L2(>>) in the topological direct sum

L2(>>) = L+
2 (>>)⊕ L−,02 (>>)

where L+
2 (>>) = imP+ and L−,02 (>>) = imP−. We also consider the space L−2 (>>) = L−,02 (>>)⊕ C.

There exist several numerical algorithms and approximation methods for evaluating some classes
of singular integrals. Also, there are several analytical techniques that allow the exact computation
of singular integrals for particular cases. However, the [SInt]4 and [SIntAFact] algorithms [15] are the
only analytical algorithms, up to our knowledge, written and implemented, for computing singular
integrals with general essentially bounded functions defined on the unit circle. Both algorithms were
implemented using the numeric and symbolic computation capabilities of Mathematica. In particular,
the implementation of the [SInt] algorithm makes the results of lengthy and complex calculations
available in a simple way to researchers of different areas.

Let ϕ,ψ ∈ [L∞(>>)]n,n. Operators of the form T = ϕI +ψS>> and T̃ = ϕI +S>>ψI are linear and
bounded singular integral operators (see, for instance, [34]). In the following, these operators will be
written in a more convenient form as

T{a,b} = aP+ + bP− (3)

and

T̃{a,b} = P+aI + P−bI, (4)

where a = ϕ+ ψ and b = ϕ− ψ. We will call these operators, paired singular integral operators, with
coefficients a and b.

Obviously, since S>> = P+ − P−, S>> is a paired singular integral operator that belongs to classes
(3) and (4).

2.2. Factorization concepts

Let us now introduce some factorization concepts (see, for instance, [10, 30, 42, 45, 48]) that are
related to the study of the kernel of some special classes of paired singular integral operators.

2.2.1. Generalized factorization.
Let us now introduce the generalized factorization concept in L2(>>).

We say that a matrix function f ∈ [L∞(>>)]n,n admits a left (right) generalized factorization in

L2(>>) if it can be represented as

f = f+Λf− (f = f−Λf+), (5)

where

f±1+ ∈
[
L+
2 (>>)

]
n,n

, f±1− ∈
[
L−2 (>>)

]
n,n

, Λ(t) = diag{tκi}nj=1, (6)

κj ∈ Z, j = 1, n, with κ1 ≥ κ2 ≥ ... ≥ κn, and f+P+f−I (f−P+f+I) represents a bounded linear
operator in [L2(>>)]n.

The number κ =
n∑
j=1

κj is called the left (right) factorization index of the matrix function f .

The integers κj are called the left (right) partial factorization indices of f . If κj = 0, ∀j = 1, n, then
f is said to admit a left (right) canonical generalized factorization.

Remark 2.1.
(i) A natural and nontrivial question is the relation between the left and right partial indices of a

generalized factorization of a matrix function f . Whenever both left and right generalized factor-
izations in L∞(>>) exist, the left and right factorization index of the matrix function f must be
the same. That is, the factorization index of the scalar valued function det f(t) coincides with
the sum of all partial (both left and right) indices of f , the integer number κ. It was proved in
[29] that this relation is the only existing one between the sets of the left and right partial indices.

4The corresponding source code of [SInt] is available in the online version of [15].
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(ii) The left (right) partial indices κi are uniquely determined by the matrix function f , that is, in
a factorization (5), the matrix Λ is uniquely defined. However, this is not true for f± and the
general relation between the factors of two distinct generalized factorizations of the same matrix
function f is described, for instance, in [31].

2.2.2. Rational factorization.
Any non-singular rational matrix function f ∈ [R(>>)]n,n admits a left (right) factorization of the

form (5), where
f±1+ ∈ [R+(>>)]n,n , f±1− ∈ [R−(>>)]n,n .

For the particular rational scalar case
κ = z+ − p+, (7)

where z+ is the number of zeros of f in >>+ (with regard to their multiplicities) and p+ is the number
of poles of f in >>+ (with regard to their multiplicities) (see, for instance, [16]).

From the computational point of view the rational factorization [ARFact-Scalar] and [ARFact-
Matrix] algorithms [16] can be used to compute explicit factorizations that allow to study the kernel
of some classes of paired singular integral operators.

Remark 2.2.
(i) Note that the success of the [ARFact-Scalar ] algorithm [16] depends on the possibility of finding

solutions of polynomial equations. This can be a serious limitation when working with polynomi-
als of the fifth degree or higher. However, even in this case, thanks to the symbolic and numeric
capabilities of Mathematica, it is still possible to obtain an explicit, and for all purposes exact,
rational factorization for the one-dimensional case. In fact, Mathematica uses Root objects to
represent solutions of algebraic equations in one variable, when it is impossible to find explicit
formulas for these solutions. The Root object is not a mere denoting symbol but rather an expres-
sion that can be symbolically manipulated and numerically evaluated with any desired precision.
In particular, it is still possible to know if any given Root lies in >>, in >>+, or in >>−, which is
all the information the algorithm needs to compute the factors f± and the index κ (see Figure
12).

(ii) For the [ARFact-Matrix ] algorithm [16], due to the complexity of the matrix case, the use of the
Root objects to obtain an explicit factorization is not as feasible as before since the dimension of
the matrix function is also a limiting factor, even when the entries of f are rational functions with
low degree polynomials [16]. However, the algorithm was designed in such a way as to have only
an exact factorization as an output, that is, when it is not possible to determine a factorization
due to the size of the matrix function or due to the degree of a polynomial, the algorithm does not
give any factorization as an output. So, that there is no output problem related to the unstable
case of a factorization (when the difference between the first and last partial index is greater than
1).

2.2.3. Inner-outer factorization.
Another factorization concept that is very important to study the spectrum and the kernel of several
classes of singular integral operators is the inner-outer factorization of bounded analytic functions
defined in the interior of the unit circle.

The generalized factorization algorithm [AFact] uses the inner-outer factorization concept to
factorize some special classes of essentially bounded matrix functions [11, 17]. The classes of matrix
functions that can be factorized by this analytic algorithm are closely related to the solution of the
non-linear Schrödinger equation (see, for instance, [27]), to the generalized Riemann-Hilbert problem
(see, for instance, [20, 21, 41, 42]), and to the study of singular integral operators related with Hankel
operators [18].

Let Hr,θ be the subset of H∞(>>) containing the functions that can be represented as the product
of a rational outer function r (i.e, r has all the zeros and poles in >>−) and an inner function5 θ (i.e.,
θ is a bounded analytic function on >>+ such that its modulus is equal to one a.e. on >>).

5Some of our analytic algorithms [15, 17, 21, 23] provide us extra information about the class of inner functions.
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In Section 5 it is explained how the dimension of the kernel of some classes of paired singular
integral operators is related with the dimension of the kernel of some classes of singular integral
operators connected with Hankel operators with coefficients in Hr,θ.

3. On the kernel of paired singular integral operators

In this section we will see how the study of the factorability, of scalar and matrix functions, is related

to the study of the kernel of the paired singular integral operators T{a,b} and T̃{a,b} defined in (3) and
(4), for the one-dimensional and matrix case.

3.1. Some relations between the dimensions of the kernels of T{a,b} and T̃{a,b}

Let e denote the n× n identity matrix function.
Concerning the questions of invertibility or Fredholm theory the existing references, up to our

knowledge, only consider matrix paired singular integral operators in the form T{a,e} = aP+ + P− or

T̃{e,a} = P++P−aI (see, for instance, [10, 43]) or the one-dimensional case (see, for instance, [33, 34]).

With the same ideas used in the proof of Theorem 2.2 in [24], there arises the following result6

[12] about the kernel of the operators T{a,b} and T̃{a,b} that is a generalization of the known result for
the one-dimensional case (see, for instance, [33]).

Theorem 3.1. Let a±1, b ∈ [L∞(>>)]n,n. If ab = ba, then

dim kerT{a,b} = dim ker T̃{a,b}. (8)

Remark 3.1. The invertible operator W2 considered in the proof of Theorem 3.1 can be used to compute

the T̃{a,b} kernel’s through the kernel of T{a,b}. In fact, a base of the kernel of T̃{a,b} can be constructed

by applying the operator W−12 to the elements of a base of the kernel of T{a,b}. In a similar way, the

T{a,b} kernel’s can be computed through the kernel of T̃{a,b} applying the operator W2 to its base.

In the case when ab 6= ba, the equality (8) is not necessarily satisfied. In fact, several interest-

ing examples where dim ker(T{a,b}) 6= dim ker(T̃{a,b}) can be easily constructed with the use of the
computer algebra system Mathematica (see Examples 4.5 and 4.6). Obviously, in the scalar case the
equality (8) is always satisfied.

3.2. The rule of the factorization partial indices in the study of the kernel of T{a,b} and T̃{a,b}

Now we will see how the computation of the partial indices of a matrix function is related with the

study of the kernel of paired singular integral operators T{a,b} and T̃{a,b} defined by (3) and (4). In
particular, since the calculation of the factorization index is always possible (see Remark 2.2) in the
scalar rational case by using the [ARFact-Scalar] algorithm, the dimension of the kernel of the one-

dimensional paired singular integral operators T{a,b} and T̃{a,b} can be computed using the computer
algebra system Mathematica (see subsection 4.1 [ADimKerPaired-Scalar] algorithm).

3.2.1. The matrix case.
The next result7 on the dimension of the kernel of the paired singular integral operator T{a,b} defined
by (3) is well known (see, for instance, [42]).

Theorem 3.2. Let a, b ∈ [L∞(>>)]n,n. If a−1 ∈ [L∞(>>)]n,n and the matrix function a−1b admits a left

generalized factorization (5) in L2(>>), then dim kerT{a,b} < ∞. In this case, the dimension of the
kernel of the paired singular integral operator T{a,b} corresponds to the sum of the left positive partial

indices of a−1b.

6An analogous result can also be stated for the case when b−1 ∈ [L∞(>>)]n,n changing
(
I ± P∓a−1bP±

)
a∓1I by(

I ± P±ab−1P∓
)
b∓1I.

7A similar result can be obtained for the case when b−1 ∈ [L∞(>>)]n,n and the matrix function b−1a admits a right

generalized factorization in L2(>>). In this case, the dimension of the kernel of the paired singular integral operator
T{a,b} corresponds to the sum of the modulus of the right negative partial indices of b−1a.
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Based on the same ideas, similar results8 can be formulated for the singular integral operator

T̃{a,b} defined by (4).

Theorem 3.3. Let a, b ∈ [L∞(>>)]n,n. If a−1 ∈ [L∞(>>)]n,n and the matrix function ba−1 admits a left

generalized factorization (5) in L2(>>), then dim ker T̃{a,b} < ∞. In this case, the dimension of the

kernel of the paired singular integral operator T̃{a,b} corresponds to the sum of the left positive partial

indices of ba−1.

The next result9 is a complement to the Theorem 3.2.

Theorem 3.4. Let a, b ∈ [L∞(>>)]n,n. If a−1 ∈ [L∞(>>)]n,n and the matrix function a−1b admits a left

generalized factorization (5) in L2(>>),

a−1b = f = f+Λf−,

then
kerT{a,b} = {ϕ : ϕ = [f+ − f−1− Λ−1]P},

where P = (Pκ1−1, · · · , Pκn−1), Pκj−1(t) denotes an arbitrary polynomial of degree at most κj − 1.

Analogously, formulas for the kernel of the operator T̃{a,b}, defined by (4), can be obtained using

a left generalized factorization of the matrix function ba−1 or a right generalized factorization of the
matrix function ab−1.

So, in the rational case, the [ARFact-Matrix] algorithm can be used to compute the kernel of
T{a,b} by computing the factors of a left factorization (5) of the matrix function a−1b (or the factors

of a right factorization of b−1a). For the operator T̃{a,b} the [ARFact-Matrix] algorithm compute a

left factorization (5) of the matrix function ba−1 (or the factors of a right factorization of ab−1) (see
subsection 4.3 [ADimKerPaired-Matrix] algorithm).

The hermitian case. Since the study of paired singular integral operators with hermitian matrix
coefficients is an important line of research in operator theory (see Section 5) it’s interesting to see
what is the effect of the Theorems 3.2 and 3.3 in this special class of paired singular integral operators.

We get the following results on the kernels of the operators T{a,b} and T̃{a,b}.

Theorem 3.5. Let a±1, b ∈ [L∞(>>)]2n,2n. If a−1b is an hermitian matrix function that admits a left

generalized factorization (5) in L2(>>), then

dim kerT{a,b} =

n∑
i=1

κi, (9)

where κi, i = 1, n are the left partial indices of a−1b.

Proof. If a−1b is a left factorable hermitian matrix function its left partial indices are connected via
the relations [42]

κj + κ2n−j+1 = 0, ∀j = 1, 2n. (10)

Since κ1 ≥ κ2 ≥ ... ≥ κ2n, we get (9). � �

Theorem 3.6. Let a±1, b ∈ [L∞(>>)]2n,2n. If ba−1 is an hermitian matrix function that admits a left

generalized factorization (5) in L2(>>), then

dim ker T̃{a,b} =

n∑
i=1

κ̃i, (11)

8Similar results can be obtained for the case when b−1 ∈ [L∞(>>)]n,n and the matrix function ab−1 admits a right

generalized factorization in L2(>>). In this case, the dimension of the kernel of the paired singular integral operator

corresponds to the sum of the modulus of the right negative partial indices of ab−1.
9A similar result can be obtained for the case when b−1 ∈ [L∞(>>)]n,n and the matrix function b−1a admits a right

generalized factorization in L2(>>).
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where κ̃i, i = 1, n are the left partial indices of ba−1.

3.2.2. The one-dimensional case.
Let us now consider the one-dimensional paired singular integral operators T{a,b} and T̃{a,b}.

From Theorem 3.2, Theorem 3.4, and the similar results for the operator T̃{a,b}, we get the

following result10 that allows us to compute the kernels of the operators T{a,b} and T̃{a,b} defined by
(3) and (4).

Theorem 3.7. Let a±1, b ∈ L∞(>>) and assume that the function f = a−1b admits a generalized
factorization f(t) = f+(t)tκf−(t) in L2(>>). In this case,

dim kerT{a,b} = dim ker T̃{a,b} = max{0,κ}. (12)

Furthermore, for κ > 0 and g(t) = f+(t)− f−1− (t)t−κ,

kerT{a,b} = span{g, gt, · · · , gtκ−1} (13)

and
ker T̃{a,b} = span{a−1f−1− t−κ , a−1f−1− t−κ+1, · · · , a−1f−1− t−1}. (14)

So, in the rational case it is always possible to compute the dimension of the kernel of T{a,b} and

T̃{a,b} since the factorization index of a factorable function a−1b can be computed (when it exists)

by using the [ARFact-Scalar] algorithm [16]. Furthermore, kerT{a,b} and ker T̃{a,b} can be effectively
computed since the [ARFact-Scalar] algorithm also computes the factors f± of a factorization (5).

On the other hand, the [SInt] algorithm [15] can be used to compute the kernel of T̃{a,b} through the
kernel of T{a,b}, or vice versa (see Remark 3.1).

3.2.3. How to relate one-dimensional and matrix cases.
This subsection is dedicated to some results11 that relate the dimension of the kernel of a one-
dimensional paired singular integral operator to the dimension of the kernel of a paired singular
integral operator with matrix coefficients.

The next result [12], which comes directly from Remark 2.1, relates a generalized factorization
in L2(>>) of a factorable matrix function A to a generalized factorization of its determinant.

Theorem 3.8. Let f ∈ [L∞(>>)]n,n be a non-singular (left and right) factorable matrix function. If

detf(t) admits a non-canonical generalized factorization in L2(>>), then f admits a non-canonical
(left and right) generalized factorization in L2(>>).

The importance of Theorem 3.8 increases with the development of the use of symbolic compu-
tation within operator theory. In fact, using algorithms to compute the factorization index of scalar
rational functions [16], it is possible to conclude, for certain classes of matrix functions, its kind of fac-
torization. For instance, in the rational case, since it is always possible to determine the factorization
index κ (when it exists) of a scalar rational function, if κ 6= 0, we can conclude that the corresponded
matrix function (when factorable) admits a non-canonical factorization.

Example 3.1. Let us consider the non-singular matrix function belonging to [R(>>)]3,3,

f(t) =

 t− 2 1 1
2 t t+ 1

2t− 1 1 −1

 .

In this case, detf(t) = −2t2 + 5t + 5. Using the [ARFact-Scalar] algorithm we get the factorization
index of detf , κ = 1. Since κ 6= 0, by Theorem 3.8 the matrix function f admits a non-canonical left
factorization.

10[33] contains formulas to compute the kernels of T{a,b} and T̃{a,b} using the factors of a factorization of the function

ab−1.
11Similar results can be obtained for the case when the matrix function ba−1 admits a left generalized factorization in
L2(>>).
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Example 3.1.1 Right factorization
The [ARFact-Matrix] algorithm computes the right partial indices of f : κ1 = 1, κ2 = 0, κ3 = 0

(see Figure 2).

Figure 2. Right factorization of f computed with the [ARFact-Matrix] algorithm.

Example 3.1.2 Left factorization
The [ARFact-Matrix] algorithm computes the left partial indices of f : κ1 = 1, κ2 = 0, κ3 = 0

(see Figure 3).

Figure 3. Left factorization of f computed with the [ARFact-Matrix] algorithm.

Remark 3.2. In Example 3.1 the left and right partial indices are equal.

Example 3.2. Let us consider the non-singular matrix function belonging to [R(>>)]3,3,

f(t) =

 1 + 1
t−3 t(2t− 7i)− 3 0

(t− 3)(2t− 1)(3t+ 1) 0 0
(2t−1)2
t−3i 0 −1

(t−3)2

 .

In this case, detf(t) =
(2t−1)(3t+1)(2t4−(6+13i)t3−(24−39i)t2+(72+9i)t−27i)

(t−3)2(t−3i) . Using the [ARFact-Scalar]

algorithm we get the factorization index of detf , κ = 3. Since κ 6= 0, by Theorem 3.8 the matrix
function f admits a non-canonical left factorization.
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Example 3.2.1 Right factorization
The [ARFact-Matrix] algorithm computes the right partial indices of f : κ1 = 2, κ2 = 1, κ3 = 0

(see Figure 4).

Figure 4. Right factorization of f computed with the [ARFact-Matrix] algorithm.

Example 3.2.2 Left factorization
The [ARFact-Matrix] algorithm computes the left partial indices of f : κ1 = 1, κ2 = 1, κ3 = 1

(see Figure 5).

Figure 5. Left factorization of f computed with the [ARFact-Matrix] algorithm.

Remark 3.3. In Example 3.2 the left and right partial indices are not equal.
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Example 3.3. Let us consider the non-singular matrix function belonging to [R(>>)]7,7,

f(t) =



1
(t−2)t

i(4t−1)
t−7i 0 1

t−2 0 0 1
t−2

t+1
4t−1 2i i(t+1)

4t−1 0 0 t−1 0
i

(t−2)t
1−4t
t−7i 0 i(t−1)

t−2 0 0 1
t−2

−1 0 −i 0 0 1 0
t−2
t 0 0 1 0 t−2 0

t− 2 4t−1
t 0 0 0 0 0

− 1
(t−2)t2 − i(4t−1)(t−7i)t 0 − 1

(t−2)t t 0 − 1
(t−2)t


.

In this case, detf(t) = (t2 + (5 + 2i)t − 1)t−2. Using the [ARFact-Scalar] algorithm we get the
factorization index of detf , κ = −1. Since κ 6= 0, by Theorem 3.8 the matrix function f admits a
non-canonical left factorization.

In this example the [ARFact-Matrix] algorithm failed (see Figure 6) to determine the left partial
indices due to the high degree of the polynomials of the entries of the matrix function. However, using
the Theorem 3.8 , and the [ARFact-Scalar] algorithm, it is possible to know that the matrix f admits
a non-canonical left factorization.

Figure 6. The [ARFact-Matrix] algorithm failed to compute a left factorization of f .

Remark 3.4. If the scalar function detf(t) admits a canonical generalized factorization in L2(>>), then
a factorable (left and right) matrix function f can admit a (left and right) canonical or a (left and
right) non-canonical generalized factorization in L2(>>).

Remark 3.4 can be easily illustrated using the algorithms [ARFact-Matrix] and [AFact].

Example 3.4. Let us consider the factorable matrix function (see, for instance, [17]) belonging to
[L∞(>>)]2,2,

f(t) =

(
1 (t− 2)θ(t)

(1− 2t) t−1 θ(t) (−2t2 + 4t− 2) t−1

)
,

where θ is an arbitrary inner function.
Since detf(t) = −1 it is obvious that κ = 0, ∀θ.

Example 3.4.1. Right factorization
A right canonical factorization of f can easily be obtained using some formulas presented in [19](

1 (t− 2)θ(t)

(1− 2t) t−1 θ(t) (−2t2 + 4t− 2) t−1

)
=

(
1 0

(1− 2t) t−1 θ(t) −1

)(
1 (t− 2)θ(t)
0 1

)
.
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Example 3.4.2. Left factorization
In this case, f is an hermitian matrix function, for all inner function θ. So, using relation (10)

we get that κ1+κ2 = 0. That is, f admits a left canonical generalized factorization or a non-canonical
generalized factorization with symmetric left partial indices.

Example 3.4.2.a) Case θ′(1) 6= 0
Using the [AFact] algorithm we get the left partial indices κ1 = 0 and κ2 = 0, for all inner

function θ such that θ′(1) 6= 0 (see Figure 7).

Figure 7. Left generalized factorization of f computed with the [AFact] algorithm.

Example 3.4.2.b) Case θ(t) = 1
Using the [ARFact-Matrix], or the [AFact], algorithm we get the left partial indices κ1 = 1 and

κ2 = −1 (see Figure 8 and Figure 9).

Figure 8. Left generalized factorization of f computed with the [ARFact-Matrix] algorithm.
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Figure 9. Left generalized factorization of f computed with the [AFact] algorithm.

The next result [12] relates the dimension of the kernel of a one-dimensional paired singular
integral operator with the dimension of the kernel of a paired singular integral operator with matrix
coefficients.

Theorem 3.9. Let a±1, b ∈ [L∞(>>)]n,n such that f = a−1b admits a left generalized factorization in

L2(>>). If dim ker (P+ + (detf)P−) > 0, then dim kerT{a,b}) > 0.

Similar results were obtained for the operator T̃{a,b} considering left generalized factorization in

L2(>>) for the matrix function ba−1.

Remark 3.5. Let a±1, b±1 ∈ [L∞(>>)]n,n such that f = a−1b and g = ba−1 admits left generalized

factorizations in L2(>>). If the operators P+ + (detf)P− and P+ + (detg)P− have trivial kernels, then

T{a,b} and T̃{a,b} can have trivial or nontrivial kernels (see Examples 4.5 and 4.6).

4. Exploring the kernel of paired singular integral operators with symbolic
computation techniques

In this section it is described how the symbolic and numeric computation capabilities of a computer
algebra system allow us to study the kernel of several classes of singular integral operators. The
analytical algorithms [ADimKerPaired-Scalar], AKerPaired-Scalar], and [ADimKerPaired-Matrix] are
presented. The section also contains nontrivial rational examples computed with the use of a computer
algebra system.

4.1. [ADimKerPaired-Scalar] algorithm

In this subsection it is shown how the symbolic and numeric computation capabilities of Mathematica
can be used to design and implement an algorithm to compute the dimension of the kernel of some
classes of one-dimensional paired singular integral operators.

The [ADimKerPaired-Scalar] computes the dimension of the kernel of one-dimensional paired
singular integral operators of the form

T{a,b} = aP+ + bP− and T̃{a,b} = P+aI + P−bI,
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defined in (3) and (4), respectively, with non-singular a, b ∈ R(>>). The implementation of this algo-
rithm with the Mathematica software system makes the results of lengthy and complex calculations
available in a simple way.

This analytical algorithm has a rather simple structure (see Figure 10) since the knowledge of the
factorization index κ of a non-singular scalar rational function, that can be determined by formula
(7), is the only information the algorithm needs to determine the dimension of the kernel of the

operators T{a,b} and T̃{a,b} (see Theorem 3.7). In addition, the symbolic computation capabilities of

Mathematica, and the pretty-print functionality12, allow the [ADimKerPaired-Scalar] code to be very
simple and syntactically similar to its analytical counterpart.

Figure 10. Snippet of the Mathematica’s code responsible for the computation of
the factorization index κ in the [ADimKerPaired-Scalar] algorithm.

The [ADimKerPaired-Scalar] algorithm can be applied to any one-dimensional paired singular
integral operator of classes (3) and (4), with non-singular rational coefficients defined in >>. There are
two options to input a(t) and b(t):

1. Insert a(t) and b(t) directly.
2. Insert zeros, poles, and multiplicities.

For each pair of inputed functions a, b the [ADimKerPaired-Scalar] algorithm gives one of the
following outputs:

[Output 1] dim kerT{a,b} = 0 and dim ker T̃{a,b} = 0 (15)

[Output 2] dim kerT{a,b} = κ and dim ker T̃{a,b} = κ (16)

where κ is the factorization index κ of the function13 a−1b.
Figure 11 presents the pseudo code of the [ADimKerPaired-Scalar] algorithm.

12The pretty-print functionality allows to write on the computer screen scientific formulas in the traditional format, as

if one was using pencil and paper.
13A similar algorithm can be described considering a factorization of the function ab−1.
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Figure 11. Pseudo code of the [ADimKerPaired-Scalar] algorithm.

The analysis of the pseudo code reveals that one main step in this algorithm is the computation
of the zeros and poles (with regard to their multiplicities), of the non-singular rational function

f(t) = a−1(t)b(t) (17)

and whether they lie in >>± (also verify if they do not lie in >> since it is a necessary condition
for f to be a factorable function). So, the success of the [ADimKerPaired-Scalar] algorithm depends
on the possibility of finding those zeros and poles by solving polynomial equations. This can be a
serious limitation when working with polynomials of the fifth degree or higher. However, even in this
case, thanks to the symbolic and numeric capabilities of Mathematica, it is still possible to compute
the dimension of the kernel of the operators (3) and (4). In fact, Mathematica uses Root objects to
represent solutions of algebraic equations in one variable, when it is impossible to find explicit formulas
for these solutions. The Root object is not a mere denoting symbol but rather an expression that can
be symbolically manipulated and numerically evaluated with any desired precision. In particular, it is
still possible to know if any given Root lies in >>, >>+, or >>− (see Figure 12). In practical terms, this
means that the factorization index of f (when it exists) is always obtained explicitly, and this is all
the information the [ADimKerPaired-Scalar] algorithm needs to compute the dimension of the kernel
of the operators.

4.1.1. [ADimKerPaired-Scalar] examples. In this subsection we present some nontrivial examples
computed with the algorithm [ADimKerPaired-Scalar]. For each pair of inputed non-singular rational
functions a, b, defined in >>, the [ADimKerPaired-Scalar] algorithm gives the output (15) or (16).

All the examples were computed on a MacBook with a 1.2 GHz Intel Core m5 processor and 8
GB of LPDDR3 RAM, running Mac OS High Sierra 10.13.6 in single user mode.

Example 4.1. Let us consider the paired singular integral operators T{a,b} and T̃{a,b}, defined in (3)
and (4), with polynomial coefficients

a(t) = 3t3 − 5t2 − 4 and b(t) = t6 − 3t4 + t3 − 2t2 + 2t− 1.

For

f(t) = a−1(t)b(t) =
t6 − 3t4 + t3 − 2t2 + 2t− 1

3t3 − 5t2 − 4
the [ADimKerPaired-Scalar ] algorithm computes its zeros and poles, with regard to their multiplicities,
and determines whether they lie in >>, >>+, or >>− (see Figure 12). The factorization index is computed
as κ = 4− 2 = 2. Thus we can conclude that

dim kerT{a,b} = dim ker T̃{a,b} = 2.

Remark 4.1. In this example, by using the [ARFact-Scalar ] algorithm we get a factorization (5) of
the function a−1b, with
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f+(t) =
(t− α1)(t− α2)

3(t− 2)

and

f−(t) =
(t− α3) (t− α4) (t− α5) (t− α6)(

t+ 1
6

(
1− i

√
23
)) (

t+ 1
6

(
1 + i

√
23
))
t2

,

where the constants αi(i = 1, . . . , 6) represent the exact ith root of the polynomial equation t6 − 3t4 +

t3 − 2t2 + 2t− 1 = 0. Thus, it is possible to obtain explicitly the kernels of the paired singular integral

operators T{a,b} and T̃{a,b} using the formulas (13) and (14).

Figure 12. Snippet of the calculations made by the computer algebra system Mathematica for

studying the zeros of the rational function a−1b. In spite of the impossibility of computing, in an

explicit way, the roots of the polynomial t6− 3t4 + t3− 2t2 + 2t− 1 it is still possible to know if they

lie in >>, >>+, or >>−. Mathematica uses the objects Root[#16 − 3#14 + #13 − 2#12 + 2#1− 1&, i]

to represent the solutions of t6 − 3t4 + t3 − 2t2 + 2t− 1 = 0. In this case, there are 4, out of 6, poles

lying inside the unit circle.

Example 4.2. Let us consider the paired singular integral operators T{a,b} and T̃{a,b}, defined in (3)
and (4), with rational scalar coefficients

a(t) = (t9 + 5t2 − 1− i)t−2 and b(t) = t9 + t3 + 2t− 10− i.
For

f(t) = a−1(t)b(t) =
t11 + t5 + 2t3 − (10 + i)t2

t9 + 5t2 − 1− i
the [ADimKerPaired-Scalar ] algorithm computes its zeros and poles, with regard to their multiplicities,
and determines whether they lie in >>, >>+, or >>−. The factorization index is computed as κ = 2−2 =
0. Thus we can conclude that

dim kerT{a,b} = dim ker T̃{a,b} = 0.

Remark 4.2. Also for this example it is possible to obtain explicitly the kernels of the paired singular

integral operators T{a,b} and T̃{a,b} using the formulas (13) and (14).

4.2. [AKerPaired-Scalar] algorithm

In this subsection it is shown how the symbolic and numeric computation capabilities of Mathematica
can be used to design and implement an algorithm to compute the the kernel of some classes of
one-dimensional paired singular integral operators.

The [ADimKerPaired-Scalar] uses the [ARFact-Scalar] algorithm [16] and the formulas (13) and
(14) to compute the kernel of one-dimensional paired singular integral operators of the form

T{a,b} = aP+ + bP− and T̃{a,b} = P+aI + P−bI,
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defined in (3) and (4), respectively, with non-singular a, b ∈ R(>>).
As for the [ADimKerPaired-Scalar] algorithm, the symbolic computation capabilities of Mathe-

matica, and the pretty-print functionality, allow the [AKerPaired-Scalar] code (see Figure 13) to be
very simple and syntactically similar to its analytical counterpart.

Figure 13. Snippet of the Mathematica’s code responsible for the computation of a
factorization of a−1b in the [AKerPaired-Scalar] algorithm.

There are two options to input a(t) and b(t):

1. Insert a(t) and b(t) directly.
2. Insert zeros, poles, and multiplicities.

As for the [ADimKerPaired-Scalar] algorithm, the success of the [AKerPaired-Scalar] algorithm
depends on the possibility of finding those zeros and poles by solving polynomial equations. Using the
Root object it is possible to use the [ARFact-Scalar] algorithm to compute the factorization index of
f and the factors f+ and f−, and this is all the information the [AKerPaired-Scalar] algorithm needs
to compute the kernel of the operators.

4.2.1. [AKerPaired-Scalar] examples. In this subsection we present some examples computed with
the algorithm [AKerPaired-Scalar].

The examples were computed on a MacBook with a 1.2 GHz Intel Core m5 processor and 8 GB
of LPDDR3 RAM, running Mac OS High Sierra 10.13.6 in single user mode.

Example 4.3. Let us consider the paired singular integral operators T{a,b} and T̃{a,b}, defined in (3)
and (4), with polynomial coefficients

a(t) = t− 1
2 and b(t) = t5 + 2t4.

The [AKerPaired-Scalar ] algorithm uses the [ARFact-Scalar ] algorithm to compute a factoriza-
tion of the function

f(t) = a−1(t)b(t) =

(
t− 1

2

)−1
(t5 + 2t4)

obtaining the factorization index κ = 3 and the factors

f+(t) = t+ 2 and f−(t) = t

(
t− 1

2

)−1
.

Since the factorization index is bigger than zero, the output is

kerT{a,b} = span
{
ψ(t)
t4 , ψ(t)t3 , ψ(t)t2

}
, where ψ(t) = t5 + 2t4 − t+ 1

2

and
ker T̃{a,b} = span

{
1
t4 ,

1
t3 ,

1
t2

}
.
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Example 4.4. Let us consider the paired singular integral operators T{a,b} and T̃{a,b}, defined in (3)
and (4), with polynomial coefficients

a(t) = t21 + t13 − 4t2 and b(t) = t10 − 2t2 + t− 1.

The [AKerPaired-Scalar ] algorithm uses the [ARFact-Scalar ] algorithm to compute a factoriza-
tion of the function

f(t) = a−1(t)b(t) =
(
t21 + t13 − 4t2

)−1 (
t10 − 2t2 + t− 1

)
obtaining the factorization index κ = 0. So, the output is that the operators have trivial kernels,

kerT{a,b} = ker T̃{a,b} = {0}.

Remark 4.3. This case shows that, since the factorization index of f can always be obtained explicitly,
when κ 6 0, the [AKerPaired-Scalar ] have all the information to give the output of trivial kernels
(even for rational functions containing polynomials with high degree).

4.3. [ADimKerPaired-Matrix] algorithm

In this subsection it is explained how the symbolic and numeric computation capabilities of the
computer algebra system Mathematica can be used to design an algorithm to compute the dimension
of the kernel of paired singular integral operators of the form

T{a,b} = aP+ + bP− and T̃{a,b} = P+aI + P−bI,

defined in (3) and (4), respectively, with non-singular a, b ∈ [R(>>)]n,n, n > 2.

Due to the symbolic and numeric capabilities of Mathematica several nontrivial examples such
that

dim kerT{a,b} 6= dim ker T̃{a,b}

can be easily constructed (see Example 4.5 and Example 4.6 .
In the design of this spectral algorithm we used the factorization algorithm [ARFact-Matrix] [16],

that computes explicit factorizations for given factorable rational matrix function defined on the unit
circle. For this reason, the success of the [ADimKerPaired-Matrix] algorithm depends on the possibility
of finding solutions of polynomial equations. However, due to the complexity of the matrix case, it is
not as feasible as before to use the Root objects to obtain an explicit matrix function factorization
when working with polynomials of a high degree. In fact, one crucial step of this algorithm is finding
the zeros of the determinant of a rational matrix function defined through the matrix functions a and
b. This means that the dimension of the matrix is also a limiting factor, even when its entries are
rational functions with low degree polynomials. We also note that, although the final factorization may
have relatively simple entries, if we were to use the traditional pencil and paper tools the intermediate
calculations would take typically many working hours, up to the point of infeasibility, even for low
matrix orders.

The [ADimKerPaired-Matrix] algorithm can be applied to a given paired singular integral oper-
ator of classes (3) and (4), with non-singular a, b ∈ [R(>>)]n,n, n > 2.

As in the case of the [ADimKerPaired-Scalar] algorithm, for the [ADimKerPaired-Matrix] algo-
rithm there are two options to input the entries of a(t) and b(t):

1. Insert the entries of a(t) and b(t) directly.
2. Insert, for each entry, the numerator and the poles (and its multiplicities).

Due to the non-commutativity of matrix function multiplication and the usage of the [ARFact-
Matrix] algorithm, the code of [ADimKerPaired-Matrix] must be significantly more complex than the
code of the [ADimKerPaired-Scalar] algorithm.

Figure 14 presents the flowchart of the [ADimKerPaired-Matrix] algorithm14 (considering a non-
singular matrix function a).

14If b−1 ∈ [R(>>)]n,n, then a similar algorithm can be described using the matrix functions b−1a and ab−1.
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Figure 14. Flowchart of the [ADimKerPaired-Matrix] algorithm.

4.3.1. [ADimKerPaired-Matrix] examples. In this subsection we present some nontrivial examples
computed with the algorithm [ADimKerPaired-Matrix]. For each pair of inputed non-singular rational
matrix functions a, b, defined in >>, the [ADimKerPaired-Scalar] algorithm computes the dimension

of the kernel of the operators T{a,b} and T̃{a,b}.

All the examples were computed on a MacBook with a 1.2 GHz Intel Core m5 processor and 8
GB of LPDDR3 RAM, running Mac OS High Sierra 10.13.6 in single user mode.

Example 4.5. Let us consider the paired singular integral operators T{a,b} and T̃{a,b}, defined in (3)
and (4), with rational matrix coefficients

a(t) =

(
t−1 −i
−2t−1 t+ 2i

)
and b(t) =

(
−i t−1

t+ 2i −2t−1

)
.

There are no poles in the entries of the matrix functions a and b lying in >>. In this case ab 6= ba.
As a consequence, the equality (8) is not necessarily satisfied. The [ADimKerPaired-Matrix] algorithm
constructs the matrix function

a−1(t)b(t) =

(
0 1
1 0

)
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Taking into account that det(a−1b) has no zeros in >> the [ADimKerPaired-Matrix] algorithm con-
structs the matrix function

b(t)a−1(t) =

(
(−it3 + 2t2 + 2)t−2 t−2 + 1

(t4 + 4it3 − 4t2 − 4)t−2 (it3 − 2t2 − 2)t−2

)
Then uses the [ARFact-Matrix] algorithm to compute the left partial indices of the matrix function
a−1b, κ1 = κ2 = 0, and the left partial indices of the matrix function ba−1, κ̃1 = 1 and κ̃2 = −1.

The Output is

dim kerT{a,b} = 0 and dim ker T̃{a,b} = 1.

Example 4.6. Let us consider the paired singular integral operators T{a,b} and T̃{a,b}, defined in (3)
and (4), with rational matrix coefficients

a(t) =

 0 0 t
0 t−1 0
1 0 0

 and b(t) =

 1 0 0
0 t−1 0
0 0 t

.

There are no poles in the entries of the matrix functions a and b lying in >>. In this case ab 6= ba.
As a consequence, the equality (8) is not necessarily satisfied. The [ADimKerPaired-Matrix] algorithm
constructs the matrix function

a−1(t)b(t) =

 0 0 t
0 1 0
t−1 0 0


and computes (with the [ARFact-Matrix] algorithm) a left factorization with the left partial indices
κ1 = 1, κ2 = 0, κ3 = −1. On the other hand, the matrix function

b(t)a−1(t) =

 0 0 1
0 1 0
1 0 0


admits a left factorization with the left partial indices κ1 = κ2 = κ3 = 0.

So, due to Theorem 3.2 and Theorem 3.3 the Output is

dim kerT{a,b} = 1 and dim ker T̃{a,b} = 0.

Examples 4.5 and 4.6 illustrate the fact that the dimensions of the kernels of T{a,b} and T̃{a,b}
are not necessarily the same. Furthermore, these examples exemplify that when the operators P+ +

(detf)P− and P+ + (detg)P− have trivial kernels the operators T{a,b} and T̃{a,b} can have trivial or
nontrivial kernels (see Remark 3.5).

Example 4.7. Let us consider the paired singular integral operators T{a,b} and T̃{a,b}, defined in (3)
and (4), with rational matrix coefficients

a(t) =



i
t−3i 0 0 0 0 0 0

0 1
5t−1 0 0 0 0 0

− 1
it+3 0 t−3i

it−+3 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 1

t 0
0 0 0 0 1 0 0

− i
it+3 0 0 0 0 0 1


and
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b(t) =



0 i
t−6 0 1

t−4 0 0 1
t−5

0 2i
5t−1

t+1
5t−1 0 1 0 0

0 − 1
t−6 0 i(t−1)

t−2 0 0 i
t−2

0 0 −1 0 1 0 0
1 0 0 1 1 0 0
1 1

t 0 0 0 0 0
0 − i

t(t−6) 0 − 1
t(t−4) 0 1 −1

t(t−4)


.

There are no poles in the entries of the matrix functions a and b lying in >>. In this case ab 6= ba. As
a consequence, the equality (8) is not necessarily satisfied.

The [ADimKerPaired-Matrix] algorithm constructs the matrix function

g(t) = b(t)a−1(t) =



1
t−5

i(5t−1)
t−6 0 1

t−4 0 0 1
t−5

t+1
5t−1 2i i(t+1)

5t−1 0 0 1 0
i
t−2 − 5t−1

t−6 0 i(t−1)
t−2 0 0 i

t−2
−1 0 −i 0 0 1 0
−3i+ t 0 0 1 0 1 0
−3i+ t 5t−1

t 0 0 0 0 0

− 1
(t−4)t − i(5t−1)(t−6)t 0 − 1

(t−4)t t 0 − 1
(t−4)t


and computes (using the [ARFact-Matrix] algorithm) a left factorization with the left partial indices

κ1 = 1 and κi = 0,∀i = 2, 6 (see Figure 15) . So, dim ker (P+ + (detg)P−) = 1 and dim ker T̃{a,b}) = 1.

Figure 15. Left factorization computed with [ARFact-Matrix] algorithm.

In this example, the [ARFact-Matrix] algorithm, due the dimension of the matrix function,
is unable to determine the left partial indices of the matrix function f = a−1b. However, since
dim ker (P+ + (detf)P−) = 1 > 0, through the Theorem 3.9 we can conclude that dim kerT{a,b}) > 0.

Example 4.8. Let us consider the paired singular integral operators T{a,b} and T̃{a,b}, defined in (3)
and (4), with rational matrix coefficients
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a(t) =



1
t−2 0 0 0 0 0 0

0 1
4t−1 0 0 0 0 0

i
t−2 0 −i 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 1

t 0
0 0 0 0 1 0 0

− 1
t(t−2) 0 0 0 0 0 1


and

b(t) =



0 i
t−7i 0 1

t−2 0 0 1
t−2

0 2i
4t−1

t+1
4t−1 0 1

t 0 0

0 − 1
t−7i 0 i(t−1)

t−2 0 0 i
t−2

0 0 −1 0 1 0 0
1
t 0 0 1 1

t2 0 0
1 1

t 0 0 0 0 0
0 − i

t(t−7i) 0 − 1
t(t−2) 0 1 −1

t(t−2)


.

There are no poles in the entries of the matrix functions a and b lying in >>. In this case ab 6= ba. As
a consequence, the equality (8) is not necessarily satisfied.

The [ADimKerPaired-Matrix] algorithm constructs the matrix function

f(t) = a−1(t)b(t) =



0 i(−2+t)
−7i+t 0 1 0 0 1

0 2i 1 + t 0 4t−1
t 0 0

0 0 0 −1 0 0 0
0 0 −1 0 1 0 0
1 1

t 0 0 0 0 0
1 0 0 t 1

t 0 0
0 0 0 0 0 1 0


,

and computes det
(
a−1(t)b(t)

)
= (t2 + (5 + 2i)t − 1)t−2. There are no zeros of the determinant of

a−1(t)b(t) in >>. The [ARFact-Matrix] algorithm computes the left partial indices κi of f as κ1 =
κ2 = κ3 = κ4 = κ5 = κ6 = 0 and κ7 = −1 (see Appendix). From Theorem 3.2 we can conclude that

dim kerT{a,b} = 0.

In this example the [ARFact-Matrix] algorithm failed to determine the left partial indices of the

matrix function ba−1 (the function f of the Example 3.3) relative to the operator T̃{a,b} due to the high

degree of the polynomials of the entries of the matrix function ba−1. Since dim ker (P+ + (detg)P−) = 0
it is not possible to apply Theorem 3.9.

5. Special classes of paired singular integral operators

This section is devoted to special classes of paired singular integral operators with essentially bounded
coefficients, defined on the unit circle. Due the specificity and complexity of these operators it is very
hard to automate the exploration process. However, it is still possible to use, in a step-by-step manner,
the symbolic computation capabilities of Mathematica, to explore the corresponding kernel for some
classes of such paired singular integral operators.

5.1. On the factorability of essentially bounded hermitian matrix functions

Let us consider essentially bounded matrix functions of the form

Aγ(ϕ) =

(
e ϕ
ϕ∗ ϕ∗ϕ+ γe

)
(18)

where ϕ is an essentially bounded matrix function on the unit circle, that is, ϕ ∈ [L∞(>>)]n,n , ϕ∗ is
the hermitian adjoint of ϕ, and γ ∈ C.
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In [11, 14, 16, 17] we present necessary and sufficient conditions for the existence of a canonical
generalized factorization of Aγ(ϕ). Although we have theoretical results for ϕ ∈ [L∞(>>)]n,n, we can

always assume, without loss of generality, that ϕ ∈ [L+
∞(>>)]n,n, that is, ϕ is an essentially bounded

matrix function, holomorphic and bounded on >>+ (see, for instance, [14, 17, 18, 19]).
For the particular second-order case, it is possible to show that the study of the factorability

of essentially bounded hermitian matrix functions, with negative determinant and definite diagonal
elements, can be reduced [11, 17, 42] to the study of the factorability of matrix functions of the
class (18). In addition, a canonical generalized factorization of matrix functions of the type (18) has
applications in several scientific research areas [1, 15, 18, 21, 23, 27, 39, 41, 42].

The [AFact] algorithm [17] computes explicit factorizations for matrix functions of some sub-
classes of class (18) for ϕ ∈ Hr,θ.

5.2. On the kernel of special classes of paired singular integral operators

Let us now consider the special classes of paired singular integral operators of the form

Tγ{a,b} = aP+ + bP−, (19)

defined in (3) with a, b ∈ [L∞(>>)]2n,2n such that15 a−1b belongs to class (18), for a matrix function

ϕ ∈ [L∞(>>)]n,n and γ ∈ C.
Let us also consider the special classes of paired singular integral operators of the form

T̃γ{a,b} = P+aI + P−bI, (20)

defined in (4) with a, b ∈ [L∞(>>)]2n,2n such that16 ba−1 belongs to class (18), for a matrix function

ϕ ∈ [L∞(>>)]n,n and γ ∈ C.

In [24], based directly on the ideas and concepts that were presented in [17], we formulated
new results that relate the spectra of operators (19) and (20) with the spectra of the special class of
self-adjoint singular integral operators

P+ϕP−ϕ
∗P+,

where ϕ ∈ [L∞(>>)]n,n.

Now, we formulate new results that relate the kernel of operators (19) and (20) with the special
class of self-adjoint Hankel operators

P−ϕ
∗P+ϕP−,

where ϕ ∈ [L∞(>>)]n,n.

Theorem 5.1. Let Tγ{a,b} be a singular integral operator of class (19), for a matrix function ϕ ∈
[L∞(>>)]n,n and γ ∈ C. Then

dim kerTγ{a,b} = dim ker (P−ϕ
∗P+ϕP− + γI) .

Proof. If γ ∈ C \ R−0 , by Corollary 2.2 of [17] we can conclude that the matrix function a−1b ad-
mits a left canonical factorization in L2(>>). As a consequence, dim ker (P−ϕ

∗P+ϕP− + γI) = 0 and
dim kerTγ{a,b} = 0.

If γ < 0, then the dimension of the kernel of the Hankel operator P−ϕ
∗P+ϕP−+ γI corresponds

[17] to the sum of the positive left partial indices of the hermitian matrix function a−1b, that is, the
dimension of the kernel of Tγ{a,b}. �

Based on Theorem 3.2 of [23] the following result can be formulated.

Theorem 5.2. If P−ϕ = ϕ and γ ∈ C \ {0}, then Tγ{a,b} has a trivial kernel.

Using Theorem 3.3 of [23] we get the following result.

Theorem 5.3. If γ ∈ C \ R−0 , then Tγ{a,b} has a trivial kernel.

15The same idea can be applied when b−1a belongs to class (18) and admits a right generalized factorization in L2(>>).
16The same idea can be applied when ab−1 belongs to class (18) and admits a right generalized factorization in L2(>>).
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Remark 5.1. Similar results17 to Theorems 5.1, 5.2, and 5.3 were obtained for the kernel of singular

integral operators T̃γ{a,b}, defined in (20).

For the case when ϕ ∈ Hr,θ, we designed the generalized factorization algorithm [AFact] [11, 17]
that computes a left generalized factorization of factorable essentially bounded second-order matrix
functions of type (18), for any general inner function θ. In particular, the [AFact] algorithm allows us to
know if a matrix function of the class (18) admits, or not, a left generalized factorization (5). Moreover,
if Aγ(ϕ) is factorable, the algorithm allows us to determine if the generalized factorization is canonical
or non-canonical, and it gives us an explicit left generalized factorization of the matrix function. Note
that the computations of the [AFact] algorithm do not depend on the degree of the polynomials that
may eventually be part of inner function θ. Therefore, for some subclasses of operators (19) and (20),
whose kernels cannot be studied with the [ARFact-Matrix] algorithm due to the many zeros and poles
present in the entries of the corresponding matrix coefficients, it may still be possible to use [AFact] to
perform this analysis (see Example 5.1). In addition, our [SInt] algorithm [15] computes the singular
integral S>>ϕ and its projections P±ϕ for an essentially bounded function ϕ, and can be used to check
if P−ϕ = ϕ (see Example 5.1).

5.2.1. Essentially bounded examples. Let us now show how the symbolic and numeric computation
capabilities of the computer algebra system Mathematica (by using the algorithms [SInt] and [AFact])
can be used to construct some interesting examples for these special classes of paired singular integral
operators.

Example 5.1. We consider the paired singular integral operators Tγ{a,b} and T̃γ{a,b} defined in (19)
and (20) with essentially bounded matrix coefficients

a =

(
1 0

−ϕγ−1 γ−1

)
and b =

(
1 ϕ
0 1

)
,

where ϕ ∈ L∞(>>), γ ∈ C \ {0}, and the overline in ϕ denotes the complex conjugate of ϕ in the unit
circle.

Let us note that in this case ab 6= ba. Therefore, the equality (8) is not necessarily satisfied.

Paired singular integral operator Tγ{a,b}: Let us now study the dimension of the kernel of the paired
singular integral operator (19).

Since

a−1b =

(
1 ϕ

ϕ |ϕ|2 + γ

)
belongs to the class (18), the Theorems 5.1, 5.2, and 5.3 can be used to study the kernel of the operator
(19).

Case 1. Let us consider ϕ(t) represented as ϕ(t) = x(t)y−(t), where y− is an arbitrary essentially
bounded function on the unit circle, analytic in the interior of the unit circle, x is a rational function
without poles on >>, and γ is an arbitrary non-null complex value. In this case the [SInt] algorithm
[15] can be used to study the kernel of operator (19).

For instance, if

x(t) =
(3 + i)t4 − (9−

√
7i)t+ 1

(i− 10)t9 + 2t7 + t6 + 1

the calculation technique [SInt] concludes that S>>ϕ = −ϕ, that is, P−ϕ = ϕ. Therefore, by Theorem
5.2

dim ker(Tγ{a,b}) = 0.

Furthermore, if y− is a rational function, the study of the kernel of operator (19) maybe it could
also be done by the [ARFact-Matrix] algorithm. However, due to the complexity of the matrix case, it

17Considering a left generalized factorization (5) of the matrix function ba−1 or a right generalized factorization (5) of
the matrix function ab−1.
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is not as feasible as before to use the Root objects to obtain an explicit matrix function factorization
when working with polynomials of such a high degree.

Case 2. Let ϕ be an arbitrary essentially bounded function and γ ∈ C \R−0 . By Theorem 5.3 we
can conclude immediately, without using the symbolic computation capabilities of Mathematica, that

dim ker(Tγ{a,b}) = 0.

Case 3. Let us consider ϕ(t) = θ(t)(t− 2)−1, where θ is an arbitrary inner function and γ < 0.
In this case the [AFact] algorithm can be used to study the kernel of operator (19).

(i) Let θ be a differentiable inner function in a neighborhood of t = 1, in >>, and γ = −1. The
factorization algorithm [AFact] gives the output that the matrix function a−1b admits a left
canonical generalized factorization in L2(>>). As such, we can conclude by Theorem 3.5 that

dim ker(Tγ{a,b}) = 0.

(ii) Let θ be a differentiable inner function in a neighborhood of t = −1, in >>, such that satisfies
the condition18 θ′(−1) = 0 and γ = − 1

9 . The [AFact] algorithm gives the output that the left

partial indices of the matrix function a−1b are κ1 = 1 and κ2 = −1. As such, we can conclude
by Theorem 3.5 that

dim ker(Tγ{a,b}) = 1.

Paired singular integral operator T̃γ{a,b}: Let us now study the dimension of the kernel of the paired
singular integral operator (20).

Since

ba−1 =

(
1 + |ϕ|2 γϕ

ϕ γ

)
,

that is,

ba−1 =

(
0 1
1 0

)(
1 ϕ

ϕ 1 + |ϕ|2
)(

0 γ
1 0

)
,

the study of the factorability of this matrix function can be reduced to the study of the factorability
of (

1 ϕ

ϕ 1 + |ϕ|2
)

which is a matrix function of class (18). Corollary 2.2 and Remark 2.4 of [17] can be used to conclude
immediately, without the need to use the symbolic computation capabilities of Mathematica, that

dim ker(T̃γ{a,b}) = 0,

for all ϕ ∈ L∞(>>) and γ ∈ C \ {0}.

6. CONCLUSIONS

The design of our analytical algorithms is focused on the possibility of implementing on a computer
all, or a significant part, of the extensive symbolic and numeric calculations present in the algorithms.
The methods developed rely on innovative techniques of operator theory and have a great potential
of extension to ever more complex and general problems. Also, by implementing these methods on a
computer, new and powerful tools are created for exploring that same potential, making the results
of lengthy and complex calculations available in a simple way to researchers of different areas.

• We are considering the design and implementation of other factorization, spectral and kernel al-
gorithms. In particular, we hope to publish in the near future some results concerning algorithms
to explore the spectra and compute the kernels of singular integral operators related with Hankel
and commutator operators.

18This condition is provided explicitly in the output of the [AFact] algorithm. It arises from the construction of an
homogeneous linear system which we know to be uniquely solvable when −γ ∈ σ (P−ϕP+ϕP−).
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• Furthermore, we note that the majority of the concepts and results established for the unit circle
within operator theory can be generalized for the real line. It is our opinion that the design and
implementation of analytical algorithms that work with singular integral operators defined on
the real line can constitute a very interesting new line of research.

• We hope that our work within the operator theory, and with Mathematica, will help in the path
to the future design and implementation of several other analytical algorithms, with numerous
applications in many areas of research and technology.

• We also hope that, going forward, these analytical methods, and their implementation using a
computer algebra system with large symbolic and numeric computation capabilities, may con-
tribute to the numerical approach in operator theory.

APPENDIX

Example 4.8

Left non-canonical factorization of f :

f+(t) =



i− 28− 98i

k1(t− 7i)

−2(7 + 2i)k2t

k1(t− 7i)
0 1 0 1 0

k3 −1− k2t 1 + t 0 0 0 −1 + 4t
0 0 0 −1 0 0 0
1 0 −1 0 0 0 t
0 1 0 0 0 0 0
0 1 0 t 0 0 1
0 0 0 0 1 0 0


,

Λ(t) =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0
1

t


, f−(t) =



k2 1 0 0 0 0 0

1
1

t
0 0 0 0 0

k2 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
k4 0 0 0 0 0 1
0 −1 0 0 1 0 0


k1 = −5− 16i+

√
25 + 20i,

k2 = − 1
2

(
5 + 2i−

√
25 + 20i

)
k3 = 1

2

(
3 + 2i+

√
25 + 20i

)
k4 =

(
2i
[
9 + 2i−

√
25 + 20i+

(
(−33− 24i) +

√
565 + 1600i

)
t
])

(k1k5)−1

k5 = 5 + 2i+
√

25 + 20i+ 2t
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[11] Conceição, A.C.: Factorization of Some Classes of Matrix Functions and its Applications (in portuguese).
Ph.D thesis, University of Algarve, Faro (2007)

[12] Conceição, A.C.: Computing the kernel of special classes of paired singular integral operators with Math-
ematica software. Proceedings of the 4th International Conference on Numerical and Symbolic Computa-
tion: Developments and Applications, Ed A. Loja, J. I. Barbosa, and J. A. Rodrigues, Porto - Portugal
(2019)

[13] Conceição, A.C., Kravchenko, V.G.: Factorization algorithm for some special matrix functions. Oper.
Theory Adv. Appl. vol. 181, pp. 173-185 Birkhäuser Verlag (2008)
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[25] Davis, G.: Opérateurs intégraux singuliers sur certaines courbes du plan complexe. Ann. Sci. Ecole Norm.
S. vol. 17(1), pp. 157-189 (1984)

[26] Ehrhardt, T., Speck, F.-O.: Transformation techniques towards the factorization of non-rational 2 × 2
matrix functions Linear Algebra Appl. vol. 353(1-3), pp. 53-90 Elsevier Science Inc (2002)

[27] Faddeev, L.D., Tkhatayan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer-Verlag (1987)

[28] Feldman, I., Gohberg, I., Krupnik, N.: An Explicit Factorization Algorithm. Integral Equations Operator
Theory. vol. 49(2), pp. 149-164. Birkhäuser Verlag (2004)
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