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Abstract Proving statements about linear operators expressed in terms of identities often leads to finding elements
of certain form in noncommutative polynomial ideals. We illustrate this by examples coming from actual operator
statements and discuss relevant algorithmic methods for finding such polynomials based on noncommutative Gröb-
ner bases. In particular, we present algorithms for computing the intersection of a two-sided ideal with a one-sided
ideal as well as for computing homogeneous polynomials in two-sided ideals and monomials in one-sided ideals.
All methods presented in this work are implemented in the Mathematica package OperatorGB.
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1 Introduction

The main motivation for the work presented here is to automatize proofs of statements about matrices and linear
operators. Many properties of matrices and linear operators can be expressed in terms of identities. Algebraically,
these identities can be modeled as free noncommutative polynomials whose indeterminates represent the basic
operators involved. From the polynomials corresponding to known or assumed identities of these operators a (two-
sided) ideal is generated. The most basic instance of a computational problem that can be used for proving a
statement about linear operators consists in identifying a given polynomial as a member of a given ideal. More
generally, proving a statement about linear operators translates into finding polynomials of a certain form in the
given ideal. In this paper, we discuss well-known and present novel algorithmic methods based on noncommutative
Gröbner basis computations to do this and illustrate them by examples.

Gröbner bases of ideals arising from matrix identities have already been used in the pioneering work [7,8].
Recently, proving operator identities using Gröbner basis computations and related questions were also addressed
in [20]. However, not every computation with noncommutative polynomials can be translated into a computation
with operators, since addition and composition of operators are restricted by their domains and codomains. In [18],
a general algebraic framework was developed that provides conditions on the generators of the ideal and the given
polynomial to ensure that ideal membership of that polynomial is equivalent to the existence of a valid computation
with actual operators proving the corresponding identity. More precisely, in this way a single computation with
polynomials verifying ideal membership proves the statement about operators in an abstract setting in such a way
that analogous statements in various concrete settings (e.g. for matrices, linear bounded operators, C∗-algebras,
…) follow immediately in a rigorous way. To encode domains and codomains of operators, the framework uses a
quiver, where vertices correspond to spaces, edges correspond to basic operators mapping between those spaces,
and the labels of edges are indeterminates in a noncommutative polynomial ring. The central notion is then given
by polynomials that are compatible with the quiver, i.e., only consist of monomials that are labels of paths between
the same pair of vertices in the quiver.

Sometimes identities arising from the properties of operators contain undetermined operators. One class of such
properties are conditions on ranges and kernels, like the inclusion of ranges R(A) ⊆ R(B) of operators A, B. For
linear operators over a field, such a range inclusion can be translated into the existence of a factorisation A = B X
for some operator X . In our setting, if we want to prove such a range inclusion, we have to find an element in
the ideal generated by the assumptions that represents an identity of the form A = B X . More generally, solving
operator equations explicitly leads to searching for elements of a particular form in a given ideal. This problem also
arises when we want to use properties like injectivity or surjectivity of some operators in proofs. For example, to
apply injectivity of an operator A, we have to search for elements representing an identity of the form AB = AC
to conclude that B = C . Also other properties can be described by the cancellability of certain left or right factors.

To motivate our work and illustrate our methods, we look at two concrete examples that deal with the solvability
of operator equations. First, we consider the following characterisation of the solvability of the operator equation
AX B = C in Hilbert spaces from Proposition 3.3 in [1]. In the following, P† denotes the Moore-Penrose inverse
of a bounded linear operator P and P∗ denotes the adjoint operator.

Theorem 1.1 Let A : H4 → H2, B : H1 → H3, C : H1 → H2 be bounded linear operators on complex Hilbert
spaces. There exists a bounded linear operator X : H3 → H4 such that AX B = C if and only if R(C) ⊆ R(A)

and R((A†C)∗) ⊆ R(B∗).

We discuss how to prove the sufficiency of the range inclusions in Theorem 1.1 by a computation with polyno-
mials. First, all properties appearing in the statement have to be phrased in terms of identities. For our assumptions,
the postulated range inclusions can be translated into the existence of operators Y, Z such that C = AY and
(A†C)∗ = B∗Z . The existence of the Moore-Penrose inverse A† is encoded in terms of identities by adding the
four defining equations of A† to our assumptions. These identities, the two identities for the range inclusions, and
the respective adjoint statements can be translated into a set F of 10 noncommutative polynomials with integer
coefficients in 12 indeterminates. The quiver encoding the domains and codomains of the operators involved con-
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sists of 4 vertices and 12 edges. It is depicted in Fig. 1. Then, finding a solution X of AX B = C corresponds to
finding a compatible polynomial axb − c ∈ (F), where a, b, c are known but x is an unknown polynomial, in
the ideal generated by F . In Sect. 3, we discuss how this can be done using ideal intersections. In particular, we
discuss well-known ideal intersection techniques [16,17] and we present a new algorithm to compute generators of
the intersection of an ideal with a one-sided ideal, which will allow us to solve this problem. We also characterize
when an ideal has a finite right generating set.

However, not all properties of operators ultimately lead to statements about polynomials that can be solved by
ideal intersections. One example of such a property is determining whether a given operator is positive. Recall that
a linear operator P is called positive if there exists another linear operator Q such that P factors as P = Q∗Q. A
concrete statement where one has to determine the positivity of a given operator is the following part of Theorem 4.3
in [1].

Theorem 1.2 Let A : H3 → H2, B : H1 → H3, C : H1 → H2 be bounded linear operators on complex Hilbert
spaces such that R(B) ⊆ R(A∗). If there exists a bounded, positive linear operator X : H3 → H3 such that
AX B = C, then B∗ A†C is positive.

Proving this statement by a computation with polynomials ultimately leads to the following problem. Given
the ideal (F) generated by the assumptions F of the theorem, find a polynomial of the form p − q∗q ∈ (F),
where p is known but the polynomial q, and therefore also q∗, are unknown. Here, q∗ denotes the image of q
under the involutive antiautomorphism ∗ that sends each variable xi to an adjoint variable x∗

i and each x∗
i back

to xi . Ideal intersections are not useful here since the second term q∗q is completely unknown. To nevertheless
solve this problem if q is a noncommutative monomial, we have generalized a method to compute monomials
in a commutative ideal [13,19]. In Sect. 4, we present this new algorithm, that allows to compute homogeneous
polynomials in noncommutative ideals, and discuss how it can be used to prove Theorem 1.2. Additionally, in
Sect. 5 we show how a simple adaptation of this procedure allows to find monomials in one-sided ideals.

As a consequence of the undecidability of the word problem, also ideal membership in rings of noncommutative
polynomials is undecidable. This is, among other things, also reflected in the fact that not all finitely generated ideals
in such rings have a finite Gröbner basis. Nevertheless, an analog of Buchberger’s algorithm can be used to enumerate
a (possibly infinite) Gröbner basis [15]. Since all the methods presented in this work rely on noncommutative Gröbner
basis computations, they are in fact not terminating algorithms but rather enumeration procedures. In practice,
however, these tools still often allow to verify ideal membership for concrete polynomials. More generally, for
finding polynomials of a certain form in an ideal, we first specify a certain subideal (e.g. by ideal intersections),
which has to contain all polynomials of the desired form. Then, we enumerate generators of this subideal and search
for a polynomial of the desired form. Note that, in general, there is no guarantee that we can find such a polynomial
among the generators of the subideal. However, in practice, this was the case in almost all algebraic proofs of
operator statements we considered so far.

All the procedures presented here are implemented in the Mathematica software package OperatorGB [10],
which also provides support for proving properties of matrices and operators along these lines using the framework
mentioned above. The package is available at https://clemenshofstadler.com/software/ along with a notebook and
PDF file containing detailed proofs of the examples discussed in this paper.

Finally, we note that the methods presented in this work are not exhaustive. There exist other procedures that also
allow to compute elements of certain form in noncommutative polynomial ideals. For example, certain problems can
also be solved by computing the intersection of a (two-sided) ideal with a subalgebra of the ring of noncommutative
polynomials [17]. Furthermore, the problems that Theorems 1.1 and 1.2 lead to, could also be considered as
factorisation problems in a suitable quotient of the ring of noncommutative polynomials. In [2], it was shown that
this quotient is a finite factorisation domain if it admits a finite dimensional filtration and a terminating algorithm was
given that allows to compute all such factorisations in the affirmative case. Unfortunately, however, for the problems
arising from statements about operators, we usually do not have access to such a finite dimensional filtration (in
fact, most of the time we do not even know whether it exists) as this would require a description of a complete
Gröbner basis.

https://clemenshofstadler.com/software/
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To keep the presentation self-contained, we briefly recall the most important notions about noncommutative
polynomials and the algebraic proof framework from [18] in the following section.

2 Preliminaries and Notation

We denote by 〈X〉 the free monoid over X = {x1, . . . , xn} and we let K 〈X〉 be the free algebra generated by X
over a field K . When speaking about an algebra over K , or a K -algebra for short, we always mean an (associative)
K -algebra with unit element. We consider the elements in K 〈X〉 as noncommutative polynomials with coefficients
in K and monomials in 〈X〉. In K 〈X〉, indeterminates still commute with coefficients but not with each other.

For a monomial m = xi1 . . . xik ∈ 〈X〉, the quantity k is called the length of m and denoted by |m|. A multiple
of m is any monomial m′ of the form m′ = amb with a, b ∈ 〈X〉. If a = 1, then m′ is called a right multiple of m.
If m′ is a multiple of m, then m is said to divide m′. Furthermore, m is called (right) reducible modulo M ⊆ 〈X〉
if m is a (right) multiple of some monomial in M , otherwise it is called (right) irreducible modulo M . We fix a
monomial ordering 	 on 〈X〉, i.e., 	 is a well-ordering on 〈X〉 such that m 	 m′ implies amb 	 am′b for all
a, b, m, m′ ∈ 〈X〉.

For a given set of polynomials F ⊆ K 〈X〉, we denote by (F) and (F)ρ the (two-sided) ideal, respectively the
right ideal, generated by F . When working with one-sided ideals, we restrict ourselves to right ideals, since the
situation for left ideals is completely symmetric and all theorems about right ideals also hold, mutatis mutandis, for
left ideals. In order to help with the distinction between two-sided ideals and right ideals, we denote the former by
capital letters, e.g. I, J, . . . , and the latter by capital letters with an additional subscript ρ, e.g. Iρ, Jρ, . . . .

Furthermore, we let lm(F) = {lm( f ) | 0 
= f ∈ F}, where lm( f ) denotes the leading monomial of f w.r.t. 	.
The set F is called (right) reduced if every element in F is monic and if, for all f ∈ F , all monomials appearing
in f are (right) irreducible modulo lm(F \ { f }). We note that a finite set F can always be transformed into a finite
(right) reduced set F ′ such that (F) = (F ′) (resp. s.t. (F)ρ = (F ′)ρ). See for example [21] on how this can be
done.

Given an ideal I ⊆ K 〈X〉, we say that G ⊆ K 〈X〉 is a (two-sided) Gröbner basis of I if (G) = I and
(lm(G)) = (lm(I )). For a right ideal Iρ ⊆ K 〈X〉, a right generating set G ⊆ K 〈X〉 is called a right Gröbner
basis of Iρ if (lm(G))ρ = (lm(Iρ))ρ . If G is (right) reduced, it is called the reduced (right) Gröbner basis. We
note that the reduced (right) Gröbner basis of an ideal (resp. a right ideal) is unique. Furthermore, the reduced right
Gröbner basis of a right ideal Iρ can be computed by right reducing any generating set of Iρ . The following lemma
expresses this fact and implies that every finitely generated right ideal has a finite Gröbner basis; no matter the
chosen monomial ordering.

Lemma 2.1 Let Iρ ⊆ K 〈X〉 be a right ideal with right generating set G ⊆ K 〈X〉. If G is right reduced, then G is
the reduced right Gröbner basis of Iρ .

Proof See [21, Proposition 4.4.4]. ��
All the techniques presented in this work rely on the elimination property of noncommutative Gröbner bases

[3]. If we let I ⊆ K 〈X〉 be an ideal and Y ⊆ X , then, analogous to the commutative case, the elimination property
of noncommutative Gröbner bases allows to easily obtain a Gröbner basis of the elimination ideal I ∩ K 〈X \ Y 〉
from a suitable Gröbner basis of I . A Gröbner basis is suitable to do this, if it is computed w.r.t. a special monomial
ordering, called an elimination ordering. Such an ordering is defined as follows. A monomial ordering is called
an elimination ordering for Y ⊆ X if lm( f ) ∈ 〈X \ Y 〉 implies f ∈ K 〈X \ Y 〉 for all f ∈ K 〈X〉. The following
theorem states the elimination property of noncommutative Gröbner bases.

Theorem 2.2 Let I ⊆ K 〈X〉 be an ideal and Y ⊆ X. Furthermore, let G be a Gröbner basis of I computed w.r.t.
an elimination ordering for Y . Then, G ∩ K 〈X \ Y 〉 is a Gröbner basis of the elimination ideal I ∩ K 〈X \ Y 〉.
Proof See [3, Theorem 3.2]. ��
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We note that Theorem 2.2 also applies in the same way to right ideals. For further information on Gröbner bases
in the free algebra, see for example [10,15,16,21], and also [12] for an overview on available software and further
references.

To end this section, we recall some of the notions related to the framework developed in [18] that are also relevant
for the work presented here. For a short, more formal summary see also the appendix in [5]. In order to translate
identities of linear operators into noncommutative polynomials, each basic operator is replaced uniformly by a
unique noncommutative indeterminate from some set X and the difference of the left and right hand side of each
identity is formed. In this process, all information about the different domains and codomains of the operators is
lost. In order to preserve this information, it is encoded in a labelled quiver Q. This is a directed multigraph where
edges are labelled by the indeterminates in X . More precisely, the domains and codomains of the basic operators
correspond to the vertices of Q and an edge with label x ∈ X is drawn from a vertex v to a vertex w if and only
if the operator that has been replaced by x maps from the space represented by v to the space represented by w.
With this, a concatenation of paths in Q corresponds to a multiplication of monomials in 〈X〉. Then, a polynomial
in K 〈X〉 is called compatible with Q if all its monomials correspond to paths in Q which all have the same start
and end. Informally speaking, a polynomial is compatible with Q if and only if it can be translated into a valid
operator in the setting encoded by Q. The main result of [18] then says the following. If the polynomials F ⊆ K 〈X〉
representing the assumptions of a statement about operators as well as the polynomial f ∈ K 〈X〉 corresponding
to the claimed property are all compatible with the quiver Q encoding the domains and codomains, then the ideal
membership f ∈ (F) is equivalent to the correctness of the statement about operators.

3 Ideal Intersections

In the introduction, we have already indicated that ideal intersections provide a useful tool for finding elements of
certain forms in an ideal I ⊆ K 〈X〉. For example, they allow us to systematically search for elements of the form
lar ∈ I , where a ∈ K 〈X〉 is known but l, r ∈ K 〈X〉 are unknown. This can be done by intersecting I with the
ideal (a). Moreover, we cannot only find polynomials where only a certain factor in the middle is known but also
elements where, for example, only a specific prefix is given. More precisely, intersecting the ideal I with the right
ideal (a)ρ allows to compute elements of the form ar ∈ I .

To support the proof of Theorem 1.1 by computing ideal intersections, we can use the following approach. To
find a suitable polynomial axb − c ∈ (F) in the ideal generated by the assumptions F of the statement, we intersect
(F) with the right ideal (a, c)ρ and enumerate generators of this intersection. Among these generators, we then
search for a polynomial of the form ar − c with the additional requirement that the free part r has to end with the
variable b. If we can find such a polynomial and show that it is compatible with the quiver Q encoding the domains
and codomains of the statement, then this proves Theorem 1.1. This approach is carried out successfully in the
example at the end of this section.

In this section, we discuss how generating sets of several different kinds of ideal intersections can be computed.
Recall that I, J, . . . denote two-sided ideals while Iρ, Jρ, . . . denote right ideals.

In the case of commutative polynomials, two ideals I, J ⊆ K [X ] can be intersected by computing the elimination
ideal t I + (1 − t)J ∩ K [X ], where t denotes a new tag variable. It is well-known that the same also works for
intersecting one-sided ideals in the free algebra (see e.g. [16, Remark 48.8.6]).

Theorem 3.1 Let Iρ = ( f1, . . . , fr )ρ , Jρ = (g1, . . . , gs)ρ ⊆ K 〈X〉 be two finitely generated right ideals. Consider
the right ideal

Hρ = (
t fi , (1 − t)g j | 1 ≤ i ≤ r, 1 ≤ j ≤ s

)
ρ

.

Then, Iρ ∩ Jρ = Hρ ∩ K 〈X〉.
Consequently, making use of the elimination property of noncommutative Gröbner bases, a right Gröbner basis

of Iρ ∩ Jρ can be computed by removing all polynomial involving the variable t from a right Gröbner basis of Hρ



17 Page 6 of 19 C. Hofstadler et al.

that is computed w.r.t. an elimination ordering for {t}. Lemma 2.1 ensures that the Gröbner basis computed in this
way is always finite.

In [17], it was shown that the elimination property of noncommutative Gröbner bases also allows to compute the
intersection of two-sided ideals provided that we introduce the commutator relations t xk − xkt , for all k = 1, . . . , n,
between the new tag variable t and the elements of X .

Theorem 3.2 Let I = ( f1, . . . , fr ), J = (g1, . . . , gs) ⊆ K 〈X〉 be two finitely generated ideals. Consider the ideal

H = (
t fi , (1 − t)g j , t xk − xkt | 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ n

)
.

Then, I ∩ J = H ∩ K 〈X〉.
Proof See [17, Theorem 2]. ��

Hence, as for right ideals, a Gröbner basis of the intersection can be computed by computing a Gröbner basis of
H w.r.t. an elimination ordering for {t} and by intersecting this Gröbner basis with K 〈X〉. However, in contrast to
the previous case, we cannot expect this Gröbner basis to be finite in general.

Next, we consider the third and for our application most relevant type of ideal intersection—the intersection of
a two-sided ideal I ⊆ K 〈X〉 with a right ideal Jρ ⊆ K 〈X〉. The basic idea to compute the intersection I ∩ Jρ is to
consider I as a right ideal and to intersect two right ideals. As Theorem 3.1 provides an algorithmic way to compute
the intersection of two right ideals, it remains to discuss how to obtain a right generating set of an ideal I . The
following proposition is a spezialisation of a result in [6] for path algebras and tells us how the reduced two-sided
Gröbner basis of an ideal I can be used to obtain a right Gröbner basis of I . In particular, this provides a way to
obtain a right generating set of a two-sided ideal. We recall that a monomial p ∈ 〈X〉 is called a proper prefix of a
monomial m ∈ 〈X〉 if m = pq with 1 
= q ∈ 〈X〉.

Proposition 3.3 Let I ⊆ K 〈X〉 be an ideal and let G be its reduced Gröbner basis. Then, the set

ρ(I ) := {mg | m ∈ 〈X〉, g ∈ G, p is irreducible modulo lm(G) for any proper prefix p of lm(mg)}

is a right Gröbner basis of I . Furthermore, lm( f ) is right irreducible modulo lm(ρ(I ) \ { f }) for all f ∈ ρ(I ).

Proof Follows from [6, Proposition 7.1] since K 〈X〉 can be viewed as a path algebra with only one vertex. ��

Remark 3.4 Equivalently, we can also write ρ(I ) as

ρ(I ) = {mg | m ∈ BI , g ∈ G, p ∈ BI for any proper prefix p of lm(mg)}, (1)

where G is the reduced Gröbner basis of I and BI = 〈X〉 \ lm(I ) is the set of all monomials which are irreducible
modulo lm(I ). Note that the equivalence classes of the monomials in BI form a K -vector space basis of K 〈X〉/I .

It follows from the uniqueness of the reduced Gröbner basis, that, for a fixed monomial ordering, the set ρ(I )
only depends on I . In the following, we discuss under which conditions a two-sided ideal I is finitely generated as
a right ideal. The following result tells us that this is the case if and only if the set ρ(I ) is finite.

Proposition 3.5 Let I ⊆ K 〈X〉 be an ideal. Then, the following are equivalent.

1. I is finitely generated as a right ideal.
2. I has a finite right Gröbner basis.
3. The set ρ(I ) is finite.
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Proof The implications (3) ⇒ (2) ⇒ (1) are clear. Furthermore, the implication (1) ⇒ (2) follows immediately
from Lemma 2.1 and the fact that a finite set of polynomials can always be transformed into a finite right reduced
set. For the implication (2) ⇒ (3), assume that I has a finite right Gröbner basis, say G = {g1, . . . , gm} ⊆ K 〈X〉,
and assume that ρ(I ) is infinite. Since ρ(I ) is a right Gröbner basis of I , there exist g′

1, . . . , g′
m ∈ ρ(I ) and

b1, . . . , bm ∈ 〈X〉 such that lm(gi ) = lm(g′
i )bi for all i = 1, . . . , m. Now, let g ∈ ρ(I ) \ {g′

1, . . . , g′
m} be arbitrary

but fixed. We note that such an element exists since ρ(I ) is infinite. Then, there exist 1 ≤ i ≤ m and b ∈ 〈X〉 such
that lm(g) = lm(gi )b = lm(g′

i )bi b. Since g 
= g′
i , this is a contradiction to the assertion of Proposition 3.3 that

lm( f ) is right irreducible modulo lm(ρ(I ) \ { f }) for all f ∈ ρ(I ). ��
The set ρ(I ) depends on the monomial ordering w.r.t. which the reduced Gröbner basis of I is computed. However,

Lemma 2.1 and Proposition 3.5 imply that the finiteness of ρ(I ) is independent of the monomial ordering.
We will now investigate under which conditions the set ρ(I ) is finite. Clearly, if the reduced Gröbner basis G of

I is infinite, then so must be ρ(I ), or equivalently, the finiteness of ρ(I ) implies the finiteness of G. The converse,
however, is not universally true. The finiteness of G alone is only sufficient to guarantee that also ρ(I ) is finite if I
is the trivial ideal I = {0}. In this case, G = ∅ = ρ(I ). We will see that in all other cases, we need the additional
requirement that also BI is finite. To this end, we recall that an ideal I ⊆ K 〈X〉 is called zero-dimensional if the
quotient algebra K 〈X〉/I is finite dimensional as a K -vector space, or equivalently, if the set BI is finite. It is
well-known that any zero-dimensional ideal has a finite Gröbner basis w.r.t. any monomial ordering (see e.g. 5.1 in
[14]).

Lemma 3.6 Let I ⊆ K 〈X〉 be a zero-dimensional ideal. Then, the reduced Gröbner basis of I is finite.

In fact, this condition is also sufficient for an ideal to have a finite right Gröbner basis.

Lemma 3.7 Let I ⊆ K 〈X〉 be a zero-dimensional ideal. Then, the set ρ(I ) is finite.

Proof It follows from Lemma 3.6 that the reduced Gröbner basis of I is finite. Then, the finiteness of ρ(I ) follows
directly from the representation (1) and the fact that BI is finite. ��

Surprisingly, for a non-trivial ideal I , the property of I being zero-dimensional is also a necessary condition for
it to have a finite right Gröbner basis. This fact is captured in the following lemma.

Lemma 3.8 Let I ⊆ K 〈X〉 be a non-trivial ideal. If I has a finite right Gröbner basis, then I is zero-dimensional.

Proof Let G be a finite right Gröbner basis of I and denote N = max{| lm(g)| | g ∈ G}. Let m ∈ 〈X〉 such that
|m| ≥ N and choose g ∈ G arbitrary. Then, mg ∈ I and therefore, since G is a right Gröbner basis, there exists
g′ ∈ G such that m lm(g) is a right multiple of lm(g′). By the way m was chosen, m in fact has to be a right multiple
of lm(g′). Consequently, m /∈ BI . Since m was arbitrary of length at least N , this shows that BI can contain only
finitely many elements. Hence, I is zero-dimensional. ��

Combining Proposition 3.5 with Lemmas 3.7 and 3.8, we get the following theorem.

Theorem 3.9 Let I ⊆ K 〈X〉 be an ideal. Then, the following are equivalent.

1. I is finitely generated as a right ideal.
2. I has a finite right Gröbner basis.
3. The set ρ(I ) is finite.
4. I = {0} or I is zero-dimensional.

However, the condition of I being zero-dimensional is very strong and in practice usually not fulfilled. Typically,
the reduced Gröbner basis of I is not even finite. In such cases, there is no chance to obtain a finite right generating
set. Consequently, we have to content ourselves with finite approximations of ρ(I ) and can therefore only work
with a right subideal I ′

ρ � I . A priori, it is usually not clear how to choose such a finite approximation. For the
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operator statements we looked at so far, we simply selected all elements in ρ(I ) up to a certain degree bound. Thus
far, this has worked very well, allowing us to find the correct polynomials.

Moreover, in case of our applications, we can choose the subideal I ′
ρ so that it still contains all polynomials that

are of interest to us and such that I ′
ρ is more likely to have a finite right generating set. This follows from the fact

that for proving statements about operators, we are only interested in polynomials in I that are compatible with a
certain quiver Q. Hence, if the objective is to find polynomials in I that are compatible with a given quiver Q, then
ρ(I ) can be replaced by

ρQ(I ) := { f ∈ ρ(I ) | f compatible with Q} .

The following corollary from [18, Theorem 16] ensures under very mild assumptions on the generators of I that,
when working with ρQ(I ) instead of ρ(I ), we can still form all compatible polynomials in I .

Corollary 3.10 Let Q be a labelled quiver and let f1, . . . , fr , f ∈ K 〈X〉 be compatible with Q. Furthermore, let
I = ( f1, . . . , fr ). Then,

f ∈ I ⇐⇒ f ∈ (
ρQ(I )

)
ρ

.

Typically, the set ρQ(I ) is a lot smaller than ρ(I ). To illustrate this point, we finish the proof of Theorem 1.1.

Remark 3.11 It has been observed that the noncommutative version of Buchberger’s algorithm preserves compat-
ibility of polynomials with a quiver [4,7,20]. This means that, if all polynomials that are given as input to this
algorithm are compatible with a quiver, then so are all polynomials in the output. We note that this behavior carries
over to one-sided ideal intersections. More precisely, if all generators of two right ideals Iρ and Jρ are compatible
with a quiver, then so are all polynomials in a Gröbner basis of Iρ ∩ Jρ when Buchberger’s algorithm is used in
combination with Theorem 3.1. In case of two-sided ideal intersections, however, this is no longer true. A Gröbner
basis of the intersection I ∩ J of two ideals I and J with compatible generators computed with Buchberger’s algo-
rithm might contain incompatible polynomials. The reason for this is the introduction of the commutator relations
t xk − xkt during the computation of I ∩ J .

Example Recall that we had translated the assumptions of Theorem 1.1 into a set F of 10 noncommutative polyno-
mials with integer coefficients in 12 indeterminates. More precisely, the set F consists of the following elements:

aa†a − a, a∗(a†)∗a∗ − a∗, (a†)∗a∗ − aa†,

a†aa† − a†, (a†)∗a∗(a†)∗ − (a†)∗, a∗(a†)∗ − a†a,

c − ay, c∗ − y∗a∗, c∗(a†)∗ − b∗z, a†c − z∗b,

where the first two lines correspond to the existence of the Moore-Penrose inverse A† (plus the respective adjoint
statements) and the last line corresponds to the range inclusions R(C) ⊆ R(A) and R((A†C)∗) ⊆ R(B∗) (plus
the respective adjoint statements). The quiver encoding the domains and codomains of the operators involved is
depicted in Fig. 1.

The existence of a solution X of AX B = C corresponds to finding a compatible polynomial axb − c ∈ (F),
where a, b, c are known but x is unknown. Using one-sided ideal intersection as discussed in this section, we can
now find such a polynomial. To this end, we intersect I = (F) with the right ideal (a, c)ρ . Working over K = Q

with a degree lexicographic ordering, the reduced Gröbner basis of I consists of 17 polynomials. In this example,
ρ(I ) as well as ρQ(I ) seem to be infinite. However, it turns out that it suffices to consider the finite approximation

ρ
(5)
Q (I ) ⊆ ρQ(I ) of compatible polynomials of degree at most 5 to find a suitable polynomial in the intersection.

We note that |ρ(5)
Q (I )| = 263 while computing all elements in ρ(I ) up to degree 5 would yield 3485 elements.
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• • • •
a

a∗

a†

(a†)∗

b

b∗

c

c∗

y

y∗

z

z∗

Fig. 1 Quiver encoding the domains and codomains of the operators of Theorem 1.1

Then, the reduced Gröbner basis of (ρ
(5)
Q (I ))ρ ∩ (a, c)ρ contains the compatible polynomial az∗b−c, which proves

Theorem 1.1 and shows that Z∗ is a solution of AX B = C .

To end this section, we mention another example of applying the methods described above. In a recent application
of the algebraic proof framework, we investigated automated proofs of the triple reverse order law for Moore-
Penrose inverses [5]. All parts of these proofs that can be reduced to verifying ideal membership of an explicitly
given polynomial could be automatized back then. The only step that does not lead to such a problem is the proof
of certain range inclusions R(A) ⊆ R(B). As explained in the introduction, this leads to the problem of finding a
polynomial of the form a − bx , where a, b are known but x is an unknown polynomial, in the ideal (F) generated
by the assumptions F of the statement. Back then, a polynomial of this form had to be found by hand. Using the
methods presented in this section, this step can now be supported by computing the intersection of the two-sided
ideal (F) with the right ideal generated by a and b. For further information, we refer to the Mathematica notebook
accompanying this paper.

4 Homogeneous Part

The previous section has shown that ideal intersections can provide a useful tool for computing elements of special
form in an ideal. However, ideal intersections require to explicitly know a factor in every summand of the element. In
some situations we do not have this explicit knowledge. This is for example the case when searching for polynomials
in an ideal I ⊆ K 〈X, X∗〉 of the form p − q∗q ∈ I , where p is known but q, and therefore also q∗, are unknown.
Recall that q∗ is the image of q under the involutive antiautomorphism ∗ on K 〈X, X∗〉 that maps each xi ∈ X to
x∗

i ∈ X∗ and each x∗
i back to xi . As already mentioned in the introduction, such a task corresponds to determining

the positivity of the linear operator represented by the polynomial p. If q is a monomial, a polynomial of the desired
form can be found by computing the homogeneous part of the ideal I .

So, in this section, we describe how the homogeneous part of an ideal can be computed. Our result is a general-
isation of [13], which describes how the set of all monomials contained in a commutative ideal can be computed.
We note that a variant of the approach described in [13] can also be found in [19, Algorithm 4.4.2].

First, we recall that an M-grading of a ring R by a monoid (M,+) is given by a decomposition R = ⊕
α∈M Rα

of R into a direct sum of abelian groups Rα such that Rα Rβ ⊆ Rα+β for all α, β ∈ M . Given an M-grading of
R, an element r ∈ R is called homogeneous if r ∈ Rα for some α ∈ M . If r 
= 0, then α is called the degree of
r , denoted by deg(r) = α. Every nonzero r ∈ R can be written uniquely as r = rα1 + · · · + rαd with α j ∈ M
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and 0 
= rα j ∈ Rα j for all j = 1, . . . , d. The elements rα j are referred to as the homogeneous components of
r . An ideal I ⊆ R is called homogeneous if I is generated by homogeneous elements. We note that there are
also other equivalent characterisations of a homogeneous ideal. The following one will be relevant for the proof
of Theorem 4.4. An ideal I ⊆ R is homogeneous if and only if, with every nonzero element r ∈ I , also all
homogeneous components of r lie in I .

A matrix A ∈ Rn×k with rows a1, . . . , an ∈ Rk specifies a grading of the free algebra K 〈X〉 by the monoid
(Rk,+). The grading is given by the monoid homomorphism degA : 〈X〉 → Rk defined on the basis X to be
degA(xi ) = ai , for i = 1, . . . , n. This map decomposes K 〈X〉 into a direct sum of the abelian subgroups

K 〈X〉α =
⎧
⎨

⎩

∑

m∈〈X〉
cmm | cm ∈ K , degA(m) = α if cm 
= 0

⎫
⎬

⎭
,

for α ∈ Rk . Given a grading degA of K 〈X〉 and an ideal I ⊆ K 〈X〉, we can now ask what are the polynomials in I
that are homogeneous w.r.t. degA. More precisely, we want to consider the ideal generated by all these polynomials.
Analogous to the commutative case (see e.g. [11, Tutorial 50]), we call this ideal the homogeneous part of I w.r.t.
degA.

Definition 4.1 Let I ⊆ K 〈X〉 be an ideal and let A ∈ Rn×k . We denote by homA(I ) := ( f ∈ I |
f is homogeneous w.r.t. degA) the homogeneous part of I w.r.t. degA.

The next lemma follows directly from the definition above.

Lemma 4.2 Let I ⊆ K 〈X〉 be an ideal and let A ∈ Rn×k . Then, homA(I ) is the largest homogeneous ideal w.r.t.
degA contained in I .

In the following, we describe how a Gröbner basis of homA(I ) can be computed. In our approach, we have to
restrict ourselves to the case that A has only integer entries, that is, A ∈ Zn×k . Note that this is equivalent to having
A ∈ Qn×k as, for any nonzero c ∈ Q, the matrix cA induces the same decomposition of K 〈X〉 as A.

For the following, some notation is needed. First, for two sets Y and Z , we denote by [Y, Z ] := {yz − zy |
y ∈ Y, z ∈ Z} the set of commutator relations between Y and Z . Then, with two new sets of indeterminates
T = {t1, . . . , tk} and T −1 = {t−1

1 , . . . , t−1
k }, we let J ⊆ K 〈X, T, T −1〉 be the ideal generated by

[X ∪ T ∪ T −1, T ∪ T −1] ∪ {1 − t j t
−1
j | j = 1, . . . , k}.

Furthermore, we let A = K 〈X, T, T −1〉/J . We denote the equivalence class of an element f ∈ K 〈X, T, T −1〉 in A
by f . Note that, in A, the elements t j and t−1

j commute with each other and with everything else. Furthermore, they

are also invertible. Consequently, we can think of the equivalence classes of monomials in the variables T ∪ T −1

as commutative monomials. Hence, there is a bijection τ between exponent vectors and suitable representatives of
these equivalence classes. More precisely, for α = (α1, . . . , αk) ∈ Zk we define

τ(α) := s|α1|
1 . . . s|αk |

k ∈ 〈T, T −1〉, where s j =
{

t j if α j ≥ 0

t−1
j otherwise

.

Example For α = (3,−2, 0, 1) ∈ Z4, we have τ(α) = t3
1 (t−1

2 )2t4.

So, the map τ turns a vector of integers into a monomial in 〈T, T −1〉. The following lemma captures an important
property of this map in A. It follows from the fact that the equivalence classes t j commute with each other and with
their designated inverses.
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Lemma 4.3 Let α, β ∈ Zk . Then, τ(α + β) = τ(α) · τ(β).

For a fixed matrix A ∈ Zn×k , we can use the map τ to define the K -algebra homomorphism

ϕA : K 〈X〉 → K 〈X, T, T −1〉, xi �→ xiτ(ai ),

where ai denotes the i-th row of A. Furthermore, we let ϕA : K 〈X〉 → A be the composition of ϕA with
the canonical epimorphism that sends each element in K 〈X, T, T −1〉 to its equivalence class. Applying ϕA to a
polynomial f maps each monomial m appearing in f to mmt , where mt = τ(degA(m)) ∈ 〈T, T −1〉 is a monomial
in the variables T ∪ T −1 encoding degA(m). Finally, for an ideal I ⊆ K 〈X〉 with generating set F ⊆ K 〈X〉, we
consider the extension of I along the homomorphism ϕA, which we denote by

I ϕA := (ϕA( f ) | f ∈ F) ⊆ A.

Note that this definition is independent of the generating set F . Then, we can state the main result of this section.

Theorem 4.4 Let I ⊆ K 〈X〉 be an ideal and let A ∈ Zn×k . Furthermore, let I ϕA be the extension of I along ϕA.
Then,

homA(I ) = I ϕA ∩ K 〈X〉 :=
⋃

f ∈ I ϕ A

f ∩ K 〈X〉.

Proof We note that it follows from the definition of I ϕA that f ∈ I implies ϕA( f ) ∈ I ϕA . Now, to prove the
inclusion homA(I ) ⊆ I ϕA ∩ K 〈X〉, let f ∈ homA(I ). W.l.o.g. we can assume that f is homogeneous. Let
α = degA( f ) ∈ Zk . Note that since f is homogeneous, every term in f has degree α. Due to this fact, in A, we
have τ(α) f = ϕA( f ) ∈ I ϕA . To see that this implies that also f ∈ I ϕA , we use Lemma 4.3 and compute

f = τ(0) · f = τ(−α) · τ(α) · f = τ(−α) · τ(α) f ∈ I ϕA .

For the other inclusion I ϕA ∩ K 〈X〉 ⊆ homA(I ), we show that I ϕA ∩ K 〈X〉 ⊆ I and that I ϕA ∩ K 〈X〉 is a
homogeneous ideal. Then, the claim follows from Lemma 4.2. For the first part, let f ∈ I ϕA ∩ K 〈X〉. Then, f can
be written as

f = ∑d
i=1 piϕA( fi )qi + ∑e

i=1 ui givi ,

with fi ∈ I , gi ∈ [X ∪ T ∪ T −1, T ∪ T −1] ∪ {1 − t j t
−1
j | j = 1, . . . , k} and pi , qi , ui , vi ∈ K 〈X, T, T −1〉.

Note that the left hand side of this identity does not depend on the indeterminates in T and T −1. Hence, by setting
t j = t−1

j = 1 for all j = 1, . . . , k, we obtain f = ∑d
i=1 p̃i fi q̃i with p̃i , q̃i ∈ K 〈X〉. This shows that f ∈ I .

Finally, to show that I ϕA ∩ K 〈X〉 is a homogeneous ideal, we extend the Zk-grading of K 〈X〉 defined by A to a
Zk-grading of K 〈X, T, T −1〉 by setting

degA(xi ) = ai , degA(t j ) = −e j , degA(t−1
j ) = e j ,

for i = 1, . . . , n, j = 1, . . . , k, where e j denotes the j-th unit vector of Zk . Then, the ideal J is homogeneous w.r.t.
this grading. Consequently, this induces a well-defined grading on A w.r.t. which the ideal I ϕA is homogeneous.
To see that also the intersection I ϕA ∩ K 〈X〉 is homogeneous, let f ∈ I ϕA ∩ K 〈X〉. Since I ϕA is homogeneous,
the homogeneous components of f are in I ϕA . As the normal forms of these homogeneous components do not
depend on T or T −1, they are consequently also contained in I ϕA ∩ K 〈X〉. This shows that the intersection is also
a homogeneous ideal. ��
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To turn Theorem 4.4 into an effective procedure, we can make use of the fact that there is a bijection between
ideals in K 〈X, T, T −1〉/J and superideals of J in K 〈X, T, T −1〉. Using this, we can obtain a Gröbner basis of
homA(I ) as described in Procedure 1.

Procedure 1 Gröbner basis enumeration of homA(I )
Input: a generating set F ⊆ K 〈X〉 of an ideal I , a degree matrix A ∈ Zn×k

Output: G ⊆ I a Gröbner basis of homA(I )
1: T ← {t1, . . . , tk}, T −1 ← {t−1

1 , . . . , t−1
k }

2: J ← the ideal in K 〈X, T, T −1〉 generated by
[X ∪ T ∪ T −1, T ∪ T −1] ∪ {1 − t j t

−1
j | j = 1, . . . , k}

3: H ← (ϕA( f ) | f ∈ F) ⊆ K 〈X, T, T −1〉
4: enumerate a Gröbner basis {g0, g1, . . . } of H + J w.r.t. an elimination ordering for T ∪ T −1

5: G ← {gi | i ∈ N, gi ∈ K 〈X〉}
6: return G

Remark 4.5 If A ∈ Nn×k , then the ideal J can be replaced by

J ′ =
(
[X ∪ T, T ] ∪ {1 − t j t

−1
j | j = 1, . . . , k}

)
.

To end this section, we discuss how computing the homogeneous part of an ideal I ⊆ K 〈X, X∗〉 allows to find
elements of the form p − q∗q ∈ I , where p ∈ K 〈X, X∗〉 is given and q is unknown. In case that q is a monomial,
we can choose a grading of K 〈X, X∗〉 that makes elements of the form p − q∗q homogeneous. Taking the matrix
A such that degA(xi ) = ei and degA(x∗

i ) = −ei , where ei denotes the i-th unit vector of Zn for all i = 1, . . . , n,
yields degA(q∗q) = 0 for all q ∈ 〈X, X∗〉. Now, if there exists an element of the form p − q∗q ∈ I and if we
introduce a new variable v with degA(v) = 0 and set I ′ = I + (v − p), then the homogeneous polynomial v − q∗q
of degree 0 lies in I ′. By enumerating generators of homA(I ′) we can systematically search for this element. We
note that we can increase our chances of finding a suitable element by computing a Gröbner basis of homA(I ′)
w.r.t. an elimination ordering for {v}. Because then, provided that I contains an element of the form p − q∗q, this
Gröbner basis must contain an element with leading monomial v. In the following, we apply this procedure to prove
Theorem 1.2.

Example Recall that Theorem 1.2 states that if R(B) ⊆ R(A∗) and if the operator equation AX B = C has a
positive solution X , then the operator B∗ A†C is positive as well. To prove this statement by a computation with
polynomials, we have to translate all properties of the operators first into identities and then into noncommutative
polynomials. For the assumptions, the existence of a positive solution X and the range inclusion translate into the
identities AY ∗Y B = C and B = A∗Z , respectively, with new operators Y, Z . Furthermore, the existence of the
Moore-Penrose inverse A† is encoded by the four defining identities of A†. Translating all these identities and
the respective adjoint statements into noncommutative polynomials, gives a set F ⊆ Q〈X, X∗〉 of 10 polynomials
with integer coefficients in 12 indeterminates. Proving Theorem 1.2 boils down to finding an operator Q such that
B∗ A†C = Q∗Q, or in terms of polynomials, to finding a compatible polynomial of the form b∗a†c − q∗q ∈ (F),
where b∗, a†, c ∈ X ∪ X∗ are known but q ∈ Q〈X, X∗〉, and therefore also q∗, are unknown. We note that the quiver
encoding the domains and codomains of the operators involved consists of 3 vertices and 12 edges representing
the 12 indeterminates. We refer to the Mathematica notebook accompanying this paper for a visualisation of the
quiver and for further information on the computations.

Following the procedure outlined above, we consider the ideal I ′ = (F) + (v − b∗a†c) ⊆ Q〈X, X∗, v〉 and
enumerate a Gröbner basis of the homogeneous part homA(I ′) w.r.t. the degree matrix A ∈ Z13×6 such that
degA(v) = 0, degA(xi ) = ei , degA(x∗

i ) = −ei for all xi ∈ X , x∗
i ∈ X∗. We do this computation w.r.t. an

elimination ordering for {v}. To speed up the computation, we first compute the reduced Gröbner basis G of
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I ′ and then use this generating set as input to enumerate a Gröbner basis of homA(I ′). While |G| = 25, the
Gröbner basis of homA(I ′) seems to be infinite. However, after enumerating 273 generators of homA(I ′), one can
see that v − b∗y∗yb = v − (yb)∗yb ∈ homA(I ′), which shows that b∗a†c − (yb)∗yb ∈ (F). After verifying
that this polynomial is compatible with our quiver, this reveals that B∗ A†C = (Y B)∗Y B is indeed positive, and
consequently, proves Theorem 1.2.

5 Monomial Part

Other elements in an ideal that are often of special interest are monomials. The goal of this section is to effectively
describe the monomial part of a (right) ideal I ⊆ K 〈X〉, that is, the (right) ideal generated by all monomials
contained in I . More precisely, we show how a simple adaptation of the technique described in the previous section
allows to compute all monomials in a given right ideal. We note that the following definition is analogous to the
commutative case (cf. the discussion before Algorithm 4.4.2 in [19]).

Definition 5.1 Let I ⊆ K 〈X〉 be an ideal. Then, we denote by mon(I ) := (m ∈ I | m ∈ 〈X〉) the monomial part
of I . Analogously, for a right ideal Iρ ⊆ K 〈X〉, we denote by mon(Iρ) := (m ∈ I | m ∈ 〈X〉)ρ the monomial part
of Iρ .

This is clearly a monomial (right) ideal as defined below.

Definition 5.2 Let I ⊆ K 〈X〉 be a (right) ideal. Then, I is called a monomial (right) ideal if I has a (right)
generating set consisting only of monomials.

Monomial ideals can also be characterized in a different way. To this end, we recall that the support of a
polynomial f ∈ K 〈X〉, denoted by supp( f ), is the set consisting of all monomials that appear in f . Then, a (right)
ideal I ⊆ K 〈X〉 is a monomial (right) ideal if and only if, with every element f ∈ I , also supp( f ) ⊆ I . The next
lemma follows directly from the definition above.

Lemma 5.3 Let I ⊆ K 〈X〉 be a (right) ideal. Then, mon(I ) is the largest monomial (right) ideal contained in I .

In the following, we describe how an adaptation of the technique from the previous section allows to compute
a right Gröbner basis of mon(Iρ) for a given right ideal Iρ ⊆ K 〈X〉. As for the homogeneous part of an ideal, we
need some notation. First, we define the ideal

J =
(
[X, T ] ∪ {1 − t j t

−1
j | j = 1, . . . , n}

)
, (2)

where T = {t1, . . . , tn} and T −1 = {t−1
1 , . . . , t−1

n } are new indeterminates. Then, we consider the quotient algebra
B = K 〈X, T, T −1〉/J . We again denote the equivalence classes of elements f ∈ K 〈X, T, T −1〉 in B by f . In B,
the t j commute with all xi but not with each other. The fact that the t j do not commute with each other is the main
and crucial difference compared to the previous section. Furthermore, each t j can also be cancelled from the right.

Additionally, we define the K -algebra homomorphism

ϕ : K 〈X〉 → K 〈X, T, T −1〉, xi �→ xi ti . (3)

The map ϕ can be considered as a special case of the map ϕA defined in the previous section by setting A = In . As
before, ϕ denotes the composition of ϕ with the canonical epimorphism. Applying ϕ to a polynomial f maps each
monomial m ∈ supp( f ) to the equivalence class mtm , where tm is a copy of m but in the variables t1, . . . , tn .

Next, for a right ideal Iρ ⊆ K 〈X〉 with right generating set F , we consider the extension of Iρ along the
homomorphism ϕ, which we denote by

I ϕ
ρ := (ϕ( f ) | f ∈ F)ρ ⊆ B. (4)
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Note that, as in the previous section, this definition is independent of the generating set F . However, in contrast to
before, I ϕ

ρ is now a right ideal. The main result of this section is the following theorem.

Theorem 5.4 Let Iρ ⊆ K 〈X〉 be a right ideal. Furthermore, let I ϕ
ρ be the extension of Iρ along ϕ. Then,

mon(Iρ) = I ϕ
ρ ∩ K 〈X〉 :=

⋃

f ∈ I ϕ
ρ

f ∩ K 〈X〉.

Before we proceed to prove this theorem, we describe in Procedure 2 how a right Gröbner basis of mon(Iρ) can
be obtained.

Remark 5.5 Procedure 2 requires the computation of a right Gröbner basis of the right ideal I ϕ
ρ in the quotient

algebra B = K 〈X, T, T −1〉/J . As described in [9], this can be done effectively by introducing a new tag variable
y and computing the Gröbner basis of a two-sided ideal containing J in the free algebra K 〈X, T, T −1, y〉. This is
what is done in line 3–5 of Procedure 2. We note that there are also other ways to compute a Gröbner basis of a
one-sided ideal in a quotient algebra (see e.g. [21, Section 6.1.2]), however the approach described above has the
advantage that it can be realized with a standard two-sided Gröbner basis implementation without any additional
adaptations.

Procedure 2 Gröbner basis enumeration of mon(Iρ)

Input: a right generating set F ⊆ K 〈X〉 of a right ideal Iρ
Output: G ⊆ Iρ a right Gröbner basis of mon(Iρ)

1: T ← {t1, . . . , tn}, T −1 ← {t−1
1 , . . . , t−1

n }
2: J ← the ideal in K 〈X, T, T −1, y〉 generated by

[X, T ] ∪ {1 − t j t
−1
j | j = 1, . . . , n}

3: H ← (y · ϕ( f ) | f ∈ F) ⊆ K 〈X, T, T −1, y〉
4: enumerate a Gröbner basis {g0, g1, . . . } of H + J w.r.t. an elimination ordering for T ∪ T −1

5: G ′ ← {g | yg = gi for some i ∈ N}
6: G ← G ′ ∩ K 〈X〉
7: return G

The proof of the commutative analog of Theorem 5.4 in [13] relies on the fact that a certain ideal is homogeneous
w.r.t. a certain matrix grading and that an ideal can only be homogeneous w.r.t. this grading if it is a monomial ideal.
Unfortunately, this argument does not immediately carry over to the case of noncommutative polynomials because
no matter which matrix grading we choose, monomials that are permutations of each other will always have the
same degree. For example, the right ideal (x1x2 − x2x1)ρ is homogeneous w.r.t. any matrix grading but it is clearly
not a monomial ideal. In order to prove Theorem 5.4, we introduce the notion of a separating pseudograding for a
subset S ⊆ R of a ring R.

Definition 5.6 Let R be a ring and let (N , ·) be a monoid. Furthermore, let S ⊆ R. We call a decomposition

R =
⊕

α∈N

Sα,

of R into a direct sum of abelian groups a separating (right) N-pseudograding for S if the following conditions
hold:

1. S1Sα ⊆ Sα for all α ∈ N ;
2. |S ∩ Sα| = 1 for all α ∈ N ;
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Intuitively speaking, a separating N -pseudograding for S allows us to separate the elements in S as they all have
to lie in different subgroups Sα . As in the case of usual gradings, we omit the information about the monoid N in a
separating N -pseudograding if N is clear from the context.

The following example shows that the multidegree yields a separating pseudograding for commutative mono-
mials.

Example Let R = K [X ] be the usual polynomial ring in X = {x1, . . . , xn}. Consider the monoid (Nn,+) and
let S = [X ]. For α = (α1, . . . , αn) ∈ Nn , we denote xα := xα1

1 . . . xαn
n ∈ [X ]. The grading of R induced by

the multidegree deg(xα) = α is a separating Nn-pseudograding for S. This follows from the fact that for all
α = (α1, . . . , αn) ∈ Nn , the set Sα is given by Sα = {cxα | c ∈ K \ {0}}.

For the following definition and proposition, we fix a ring R and a monoid (N , ·). Given a separating
(N -)pseudograding for a set S ⊆ R, we can define separable homogeneous elements, or short s-homogeneous
elements, and, based on this, separable homogeneous ideals, or short s-homogeneous ideals.

Definition 5.7 Let S ⊆ R and let R = ⊕
α∈N Sα be a separating pseudograding for S. An element r ∈ R is called

separable homogeneous, or short s-homogeneous, if r ∈ Sα for some α ∈ N . If r 
= 0, then we call α the s-degree
of r , denoted by sdeg(r) = α. An ideal I ⊆ R is called separable homogeneous, or short s-homogeneous, if I is
generated by s-homogeneous elements.

The following proposition is the crucial observation about separating pseudogradings. It is a weaker version of
the property that, with an element r , a homogeneous ideal also contains all homogeneous components of r .

Proposition 5.8 Let S ⊆ R and R = ⊕
α∈N Sα be a separating pseudograding for S. Furthermore, let Iρ ⊆ R be

an s-homogeneous right ideal generated by s-homogeneous elements of s-degree 1. If r = c1s1 + · · · + cdsd ∈ Iρ
with s1, . . . , sd ∈ S pairwise different and c1, . . . , cd ∈ S1, then c1s1, . . . , cdsd ∈ Iρ .

Proof W.l.o.g. we can assume that ci si 
= 0 for all i = 1, . . . , d. We note that it suffices to show that c1s1 ∈ Iρ , for
then also r − c1s1 ∈ Iρ and the statement follows by induction. We denote by F ⊆ S1 a right generating set of Iρ
consisting of s-homogeneous elements of s-degree 1. Then, with b f ∈ R and b f,α ∈ Sα such that b f = ∑

α∈N b f,α ,
we can write r as

r =
∑

f ∈F

f b f =
∑

f ∈F

f
∑

α∈N

b f,α =
∑

f ∈F

∑

α∈N

f b f,α.

As all f ∈ S1, it follows from the definition of a separating pseudograding that f b f,α ∈ S1Sα ⊆ Sα . Furthermore,
by the definition of a separating pseudograding for S there exist pairwise different α1, . . . , αd ∈ N such that
S ∩ Sαi = {si } for all i = 1, . . . , d. Then, also ci si ∈ S1Sαi ⊆ Sαi for all i = 1, . . . , d. Since the subgroups Sαi have
trivial intersection with each other, the nonzero elements c2s2, . . . , cdsd cannot lie in Sα1 . Therefore, by comparing
s-degrees, one can see that c1s1 = ∑

f ∈F f b f,α1 ∈ Iρ . ��
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Coming back to noncommutative polynomials, our next goal is to define a separating pseudograding for 〈X〉 in
K 〈X, T, T −1〉. To this end, we denote by Fn the free group of rank n generated by g1, . . . , gn . This allows us to
consider the two monoid homomorphisms

λ : 〈X, T, T −1〉 → Fn, xi �→ gi , ti �→ 1, t−1
i �→ 1,

μ : 〈X, T, T −1〉 → Fn, xi �→ 1, ti �→ gi , t−1
i �→ g−1

i .

Using λ and μ, we define the map sdeg : 〈X, T, T −1〉 → Fn that sends each m ∈ 〈X, T, T −1〉 to sdeg(m) :=
μ(m)−1λ(m) ∈ Fn .

Example Let X = {x1, x2}, T = {t1, t2} and T −1 = {t−1
1 , t−1

2 }. Then, for m = x1t1x2t2 ∈ 〈X, T, T −1〉, we
have sdeg(m) = (g1g2)

−1g1g2 = 1. Analogously, taking m′ = t1t−1
2 x1t−1

1 x2 ∈ 〈X, T, T −1〉, yields sdeg(m′) =
(g1g−1

2 g−1
1 )−1g1g2 = g1g2g2.

The following lemma captures some important properties of the map sdeg.

Lemma 5.9 Let m, m′ ∈ 〈X, T, T −1〉, xi ∈ X, t j ∈ T and t−1
j ∈ T −1. Then, the following hold.

1. sdeg(mxi t j m′) = sdeg(mt j xi m′);
2. sdeg(mt j t

−1
j m′) = sdeg(mm′);

3. sdeg(m) = 1 �⇒ sdeg(mm′) = sdeg(m′);

Proof The properties 1 and 2 follow immediately from the definition. To prove the third property, we assume
sdeg(m) = 1. This yields

sdeg(mm′) = μ(mm′)−1λ(mm′) = μ(m′)−1μ(m)−1λ(m)λ(m′)
= μ(m′)−1 sdeg(m)λ(m′) = μ(m′)−1λ(m′) = sdeg(m′).

��
The map sdeg allows us to decompose K 〈X, T, T −1〉 into a direct sum of the abelian subgroups

K 〈X, T, T −1〉α =
⎧
⎨

⎩

∑

m∈〈X,T,T −1〉
cmm | cm ∈ K , sdeg(m) = α if cm 
= 0

⎫
⎬

⎭
,

for α ∈ Fn . In particular, the following proposition tells us that this decomposition forms a separating Fn-
pseudograding for 〈X〉, and hence, justifies the name sdeg.

Proposition 5.10 The abelian subgroups K 〈X, T, T −1〉α with α ∈ Fn as defined above form a separating Fn-
pseudograding for 〈X〉.
Proof It is clear that the subgroups K 〈X, T, T −1〉α decompose K 〈X, T, T −1〉 into a direct sum. Furthermore, the
first condition of Definition 5.6 follows immediately from Lemma 5.9. Finally, we note that sdeg restricted to 〈X〉
is an isomorphism. Hence, sdeg(m) 
= sdeg(m′) for all m 
= m′ ∈ 〈X〉. This implies the second property of a
separating Fn-pseudograding. ��

It follows from the first two properties in Lemma 5.9 that the map sdeg is invariant modulo the ideal J from (2).
Hence, we can set sdeg(m) = sdeg(m) for all m ∈ 〈X, T, T −1〉 and thereby extend sdeg to the quotient algebra
B. Consequently, the separating Fn-pseudograding for 〈X〉 in K 〈X, T, T −1〉 can be extended in a straightforward
way to give a separating Fn-pseudograding for 〈X〉 = {x | x ∈ 〈X〉} in B.

Finally, we have all tools available to prove Theorem 5.4. We split this proof into two lemmas.
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Lemma 5.11 Let Iρ ⊆ K 〈X〉 be a right ideal. Furthermore, let I ϕ
ρ be the extension of Iρ along ϕ. Then,

mon(Iρ) ⊆ I ϕ
ρ ∩ K 〈X〉 ⊆ Iρ.

Proof We note that it follows from the definition of I ϕ
ρ that f ∈ Iρ implies ϕ( f ) ∈ I ϕ

ρ . Now, to prove the first

inclusion, mon(Iρ) ⊆ I ϕ
ρ ∩ K 〈X〉, let m = xi1 . . . xik ∈ mon(Iρ). Then, we get mti1 . . . tik = ϕ(m) ∈ I ϕ

ρ , which
implies

m = m · ti1 . . . tik t−1
ik

. . . t−1
i1

= mti1 . . . tik · t−1
ik

. . . t−1
i1

∈ I ϕ
ρ ,

and consequently, m ∈ I ϕ
ρ ∩ K 〈X〉.

For the second inclusion, I ϕ
ρ ∩ K 〈X〉 ⊆ Iρ , let f ∈ I ϕ

ρ ∩ K 〈X〉. Then, f can be written as

f = ∑d
i=1 ϕ( fi )qi + ∑e

i=1 givi

with fi ∈ Iρ , gi ∈ [X, T ] ∪ {1 − t j t
−1
j | j = 1, . . . , n} and qi , vi ∈ K 〈X, T, T −1〉. Note that the left hand

side of this identity does not depend on the indeterminates in T and T −1. Hence, by setting t j = t−1
j = 1 for all

j = 1, . . . , n, we obtain f = ∑d
i=1 fi q̃i ∈ Iρ with q̃i ∈ K 〈X〉. ��

Lemma 5.12 Let Iρ ⊆ K 〈X〉 be a right ideal. Furthermore, let I ϕ
ρ be the extension of Iρ along ϕ. Then, I ϕ

ρ ∩ K 〈X〉
is a monomial right ideal.

Proof Let f = c1m1 +· · ·+cdmd ∈ I ϕ
ρ ∩ K 〈X〉 with nonzero c1, . . . , cd ∈ K and pairwise different m1, . . . , md ∈

〈X〉. To show that I ϕ
ρ ∩ K 〈X〉 is a monomial right ideal, we have to show that m1, . . . , md ∈ I ϕ

ρ ∩ K 〈X〉, which

is equivalent to m1, . . . , md ∈ I ϕ
ρ . To show this, we fix the Fn-pseudograding for 〈X〉 in B induced by the map

sdeg and note that the image ϕ(g) of any nonzero g ∈ K 〈X〉 under the map ϕ defined in (3) is an s-homogeneous
polynomial of s-degree 1. In particular, this means that I ϕ

ρ is an s-homogeneous right ideal in B generated by
s-homogeneous elements of s-degree 1. Since sdeg(ci ) = 1 and mi ∈ 〈X〉 for all i = 1, . . . , d, Proposition 5.8 is
applicable and yields that c1m1, . . . , cdmd ∈ I ϕ

ρ . But then clearly also m1, . . . , md ∈ I ϕ
ρ . ��

The proof of Theorem 5.4 now follows from Lemmas 5.3, 5.11 and 5.12.

Remark 5.13 We make some remarks on Theorem 5.4.

1. Theorem 5.4 can also be adapted to work with left ideals. In this case, the ideal J , w.r.t. which the quotient is
taken, has to be changed to

J ′ =
(
[X, T ] ∪ {1 − t−1

j t j | j = 1, . . . , n}
)

.

Then, in the quotient K 〈X, T, T −1〉/J ′ each t j can be cancelled from the left instead of from the right. To then
prove the theorem for left ideals, Definition 5.6 and the map sdeg have to be adapted accordingly as well.

2. Unfortunately, this approach does not generalize to two-sided ideals, as witnessed by the following example.

Example In this example, we show that the approach described in this section does not generalize to two-sided
ideals in a straightforward way. To this end, we consider the ideal I = (x1 − x2) ⊆ K 〈x1, x2〉 over an arbitrary
field K . It is not hard to see that mon(I ) = {0}. However, if we consider the two-sided ideal I ϕ = (ϕ(x1 − x2)) =
(x1t1 − x2t2) ⊆ B, then x1x2 − x2x1 ∈ I ϕ ∩ K 〈x1, x2〉 as the following computation shows:
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(
x1t1 − x2t2

)
x2t−1

1 − x2
(
x1t1 − x2t2

)
t−1
1

=
(

x1x2 − x2x2t2t−1
1

)
−

(
x2x1 − x2x2t2t−1

1

)

= x1x2 − x2x1 ∈ I ϕ.

To compute a generating set of mon(I ) in case of a two-sided ideal I ⊆ K 〈X〉, we were so far only able to prove
the following rather restrictive result. In what follows, we fix a monomial ordering 	 on 〈X〉. Recall that the tail of
f ∈ K 〈X〉 is tail( f ) = f − lc( f ) lm( f ), where lc( f ) denotes the leading coefficient of f (w.r.t. 	).

Proposition 5.14 Let X, Y be two disjoint sets of indeterminates and let I ⊆ K 〈X, Y 〉 be an ideal. Furthermore,
let G ⊆ K 〈X, Y 〉 be a Gröbner basis of I such that lm(g) ∈ 〈X〉 and tail(g) ∈ K 〈Y 〉 for all g ∈ G. Then G ∩ 〈X〉
is a Gröbner basis of mon(I ).

To prove this proposition, we recall the concept of polynomial (top) reduction in K 〈X〉. For f, f ′, g ∈ K 〈X〉
with f, g 
= 0, we write f →g f ′ if there exist a, b ∈ 〈X〉 such that lm( f ) = a lm(g)b and f ′ = f − lc( f )

lc(g)
agb.

It is well-known that a generating set G ⊆ K 〈X〉 of an ideal I ⊆ K 〈X〉 is a Gröbner basis of I if for every f ∈ I ,
there exist g1, . . . , gk ∈ G and f0, . . . , fk ∈ K 〈X〉 such that f0 = f , fk = 0 and fi−1 →gi fi for all i = 1, . . . , k.
Additionally, we also need the following result about Gröbner bases of monomial ideals, which follows immediately
from our definition of a Gröbner basis.

Lemma 5.15 Let M ⊆ 〈X〉 be a set of monomials generating an ideal (M) ⊆ K 〈X〉. Then, M is a Gröbner basis
of (M).

Proof (Proof of Proposition 5.14) Denote M = G∩〈X〉. Due to Lemma 5.15, it suffices to show that (M) = mon(I ).
The inclusion (M) ⊆ mon(I ) is trivial. For the other inclusion mon(I ) ⊆ (M), let m ∈ mon(I ) be a monomial.
Since G is a Gröbner basis of I , there exist g1, . . . , gk ∈ G such that

m →g1 m1 →g2 · · · →gk mk = 0,

with m1, . . . , mk ∈ K 〈X, Y 〉. In particular, we have that m1 = −a tail(g1)b for some a, b ∈ 〈X〉. Since lm(g2) ∈
〈X〉 but tail(g1) ∈ K 〈Y 〉, the second reduction can only act on a or b but not on tail(g1). W.l.o.g. assume that the
reduction with g2 acts on a. Then, m2 = a′ tail(g2)a′′ tail(g1)b. Analogously, since lm(g3) ∈ 〈X〉, the reduction
with g3 cannot act on tail(g1) or tail(g2) and as this also holds for all other reductions, mk must be of the form

mk = (−1)ka1 tail(gi1)a2 tail(gi2) . . . ak tail(gik )ak+1

for some a1, . . . , ak+1 ∈ 〈X〉 and {i1, . . . , ik} = {1, . . . , k}. Note that all parts in any m j that lie in K 〈X〉 are
subwords of m. Furthermore, since the reductions with all gi can only act on these parts, we get that lm(gi ) divides
m for all i = 1, . . . , k. Hence, in particular, lm(gk) divides m. To finish the proof, we show that gk is in fact a
monomial and therefore contained in M . To see this, we note that mk can only be zero if one of the factors in this
product is zero and since none of the a j can be zero, we must have tail(gi ) = 0 for some 1 ≤ i ≤ k. In particular,
we know that mk−1 
= 0, and therefore, tail(gk) = 0. This means that gk is a monomial, and so, gk ∈ M , which
implies that m ∈ (M). ��

It remains open how to compute a generating set of mon(I ) for an arbitrary (finitely generated) two-sided ideal
I ⊆ K 〈X〉.
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