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Abstract

In this paper, we investigate some polynomial conditions that
arise from Euclidean geometry. First we study polynomials related to
quadrilaterals with supplementary angles, this includes convex cyclic
quadrilaterals, as well as certain concave quadrilaterals. Then we
consider polynomials associated with quadrilaterals with some equal
angles, which include convex and concave tilted kites. Some of the
results are proved using Groebner bases computations.

1 Introduction

This paper studies some polynomial equations that arise from Euclidean
Geometry. The variables appearing in these polynomials are the mutual
distances between four points, and the equations in question express some
properties of quadrilaterals. In [9] Pech studied several polynomials, three of
them, which we denote P , S and K (see Section 3 for their expressions), are
necessary conditions for a quadrilateral to be cyclic. The condition P = 0 is
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the equation that appears in the celebrated Ptolemy’s Theorem, while S = 0
and K = 0 are a cubic and a quartic equations, respectively. The condition
K = 0 follows from the cosine law, while S = 0 is less well known. All
three conditions are closely connected, in fact, Pech proved that P = 0 is
equivalent to (K = 0 ∧ S = 0). [9]. In this paper we give a simpler proof of
this fact that doesn’t use algebraic geometry.

The polynomials studied by Pech [9] have been useful in studying cyclic
central configurations of four bodies in Celestial Mechanics [2, 11]. Similar
polynomials, related to another type of quadrilaterals, namely trapezoids,
have also been found to be useful in studying central configurations of four
bodies [10, 12]. In light of this, finding additional polynomial conditions char-
acterizing various configurations of four points is not only interesting from a
geometry standpoint, but also from the perspective of potential applications
to Celestial Mechanics.

In this paper we study the polynomial R (see Section 3), which also
appeared in Pech’s paper [9], but wasn’t analyzed in detail. We show that
the condition R = 0 selects certain configurations (either convex or concave)
that possess supplementary angles, but are not cyclic.

We also study other polynomials that are important for quadrilateral
where some of the angles are equal. Recall that a kite is a quadrilateral
with two pairs of equal-length adjacent sides. Kites can be either concave or
convex, and they have equal opposite angles. A way to generalize kites is to
consider quadrilaterals with equal opposite angles. These quadrilaterals are
called tilted kites [5, 6] or angle quadrilaterals [4], and they can be convex or
concave. The name tilted kite seems more descriptive since such a quadrilat-
eral can be obtained from a kite by skewing or tilting one of the angles. The
new polynomials we study in this paper are useful in characterizing concave
and convex titled kites.

The paper is organized as follows. In Section 2 we prove several useful
results from Euclidean geometry and algebraic geometry. In Section 3 we
study some polynomials related to cyclic quadrilaterals and other geometri-
cal figures with supplementary angles. We start with analyzing conditions
that were already studied by Petch [9]. We give a more precise statement of
the Converse of Ptolemy’s theorem and a simpler proof of one of the results
by Pech. We conclude with an in detail analysis of the condition R = 0
(see equation (9)) and its geometrical meaning. In Section 4 we study some
new polynomial conditions related to tilted kites and other geometrical fig-
ures with two equal angles. In Section 5, we conclude by introducing other
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sets of similar polynomials, and giving some ideas on how to find additional
interesting polynomials associated with quadrilaterals.

2 Preliminaries

Consider four points in R3 given by A, B, C, and D = (here we are using
a right-handed coordinate system), and let a = |AB|, b = |BC|, c = |CD|,
d = |DA|, e = |AC|, f = |BD|, be the Euclidean distances between pair of
points.

The following theorem gives a conditions for four points to lie on a plane.

Theorem 1. If the four points A,B,C,D ∈ R3 with distances a, b, c, d, e and
f , belong to a 2D affine subspace of R3, then

CM =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 a2 e2 d2

1 a2 0 b2 f 2

1 e2 b2 0 c2

1 d2 f 2 c2 0

∣∣∣∣∣∣∣∣∣∣
= 0.

The determinant CM is the Cayley-Menger determinant of the four points
A,B,C and D, and, in general CM = 288V 2, where V is the volume of the
3-simplex of edge lengths a, b, c, d, e, f . The condition CM = 0 is known in
Euclidean geometry as Euler’s four point relation.

Another useful result is Euler’s quadrilateral theorem:

Theorem 2 (Euler’s Quadrilateral Theorem). Consider a convex quadrilat-
eral with consecutive sides a, b, c, d and diagonals e, f . Then

a2 + b2 + c2 + d2 − e2 − f 2 = 4v2

where v is the distance between the midpoints of the diagonals e and f .

This theorem can be generalized so that it applies to four arbitrary points
in R3 [7, 8].

Theorem 3 (Generalized Quadrilateral Theorem). Suppose A,B,C,D are
four points in R3 forming a tetrahedron of sides a = |AB|, b = |BC| ,
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c = |CD|, d = |AD|, e = |AC| and f = |BD|. Then we have an identity for
each pair of edges with no common vertex. More specifically we have:

a2 + b2 + c2 + d2 − e2 − f 2 = 4v21
−a2 + b2 − c2 + d2 + e2 + f 2 = 4v22
a2 − b2 + c2 − d2 + e2 + f 2 = 4v23

where v1 is the distance between the midpoints of the segments AC and BD,
v2 is the distance between the midpoints of the segments AB and CD, and
v3 is the distance between the midpoints of the segments BC and AD.

Proof. These formulas can be verified by writing everything in coordinates
and expanding out.

Note that, in particular, this theorem applies to concave and convex
quadrilateral.

We now restrict our attention to the case the four points belong to a
2D affine subspace of R3. In this case, we can write the four points as:
A = (Ax, Ay), B = (Bx, By), C = (Cx, Cy), and D = (Dx, Dy). From now on
we also assume that the four points are distinct so that a, b, c, d, e, f > 0.

A concave configuration of four points has one point which is located
strictly inside the convex hull of the other three, whereas a convex configu-
ration does not have a point contained in the convex hull of the other three
points. We say that a configuration is degenerate if three or more points lie
on the same straight line. For a convex configuration we say that the points
are ordered sequentially if they are labelled consecutively while traversing
the boundary of the quadrilateral (clockwise or counterclockwise).

In this paper we will use the following notation. When we say that the
convex hull of the points A,B,C,D is ACD we mean that the configuration
is concave with the point B in the interior of the triangle ACD, and ACD
is the order of the points when traversing the boundary counterclockwise.
When we say that the convex hull is ADBC we mean that the configuration is
convex and ADBC is be the order of the points when traversing the boundary
counterclockwise.

Let

∆ABC =

∣∣∣∣∣∣
Ax Ay 1
Bx By 1
Cx Cy 1

∣∣∣∣∣∣ , ∆ABD =

∣∣∣∣∣∣
Ax Ay 1
Bx By 1
Dx Dy 1

∣∣∣∣∣∣ ,
4



and

∆BCD =

∣∣∣∣∣∣
Bx By 1
Cx Cy 1
Dx Dy 1

∣∣∣∣∣∣ , ∆ACD =

∣∣∣∣∣∣
Ax Ay 1
Cx Cy 1
Dx Dy 1

∣∣∣∣∣∣ ,
where ∆ABC denotes twice the signed area of the triangle ABC. Signed
means that the area is positive if the vertices of the triangle are ordered
counterclockwise, negative if the vertices are ordered clockwise, and zero if
the points are collinear. The following theorem is helpful in determining the
convex hull of four points in R2 and in classifying configurations as concave
or convex.

Theorem 4. Let A,B,C and D be points on R2 as defined above, and let
N = ∆ABC ·∆ACD and M = ∆ABD ·∆BCD. The configuration formed by the
points ABCD is convex if and only if

N ≥ 0 and M ≥ 0

or
N ≤ 0 and M ≤ 0.

The configuration is convex and ordered sequentially if and only if

N ≥ 0 and M ≥ 0.

Furthermore, if any of the ∆’s is zero, the three points are collinear. If all
the ∆’s are zero, then all four points are collinear and the hull will be either
a line or a point. If all the ∆’s are non-zero and ∆ABC > 0 then the convex
hull is given in the following table

ABC ABD BCD ACD Convex Hull
+ + + + ABCD
+ + − − ABDC
+ − + − ADBC
+ + + − ABC
+ + − + ABD
+ − + + BCD
+ − − − CAD
+ − − + Not realizable

If ∆ABC < 0 we obtain an analogous table:
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ABC ABD BCD ACD Convex Hull
− − − − ADCB
− − + + ACDB
− + − + ACBD
− − − + ACB
− − + − ADB
− + − − BDC
− + + + CDA
− + + − Not realizable

Although this result is fairly standard, the only reference to this theorem
I am aware of is contained in this stackoverflow post [1].

The next theorem gives a criterion for four points with given coordinates
to lie on a circle:

Theorem 5. Let A = (Ax, Ay), B = (Bx, By), C = (Cx, Cy), and D =
(Dx, Dy) be points on R2 then

C =

∣∣∣∣∣∣∣∣
A2

x + A2
y Ax Ay 1

B2
x +B2

y Bx By 1
C2

x + C2
y Cx Cy 1

D2
x +D2

y Dx Dy 1

∣∣∣∣∣∣∣∣ = 0, (1)

if and only if the four points lie on a circle or on a straight line.

Proof. Assume equation (1) is satisfied. The expression∣∣∣∣∣∣∣∣
x2 + y2 x y 1
B2

x +B2
y Bx By 1

C2
x + C2

y Cx Cy 1
D2

x +D2
y Dx Dy 1

∣∣∣∣∣∣∣∣ = 0,

can be written as
α(x2 + y2) + βx+ γy + δ = 0, (2)

where α = ∆BCD. It is evident from equation (2) that when α 6= 0 the points
A,B,C,D lie on a circle, and when α = 0 the points A,B,C and D lie on a
straight line.

We will now recall a few facts from algebraic geometry, see [3] for more
details.
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Definition 1. Let k be an arbitrary field and I ⊂ k[x1, . . . xn] an ideal. The
radical of I, denoted by

√
I, is the set

{f : fm ∈ I for some integer m ≥ 1}.

We now give a theorem to test whether f ∈
√
I:

Proposition 1 (Radical Membership). Let k be an arbitrary field and let
I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn] be an ideal. Then f ∈

√
I if and only

if the constant polynomial 1 belongs to the ideal Ĩ = 〈f1, . . . , fs, 1− yf〉 ⊂
k[x1, . . . xn, y].

From this it follows that to determine whether or not f ∈
√
〈f1, . . . , fs〉 it

is enough to compute a reduced Groebner basis of the ideal 〈f1, . . . , fs, 1− yf〉
with respect to some ordering. If the result is {1}, then f ∈

√
I, otherwise

f 6=
√
I. Note that the Maple Basis command always computes a reduced

Grobner bases, so it is easy to use this approach.

3 Some Polynomial Expressions and Cyclic

Quadrilaterals

Pech [9] considered the following polynomials and their relation with cyclic
quadrilaterals.

P = ac+ bd− ef (3)

Q = ac+ bd+ ef (4)

S = e(ab+ cd)− f(ad+ bc) (5)

K = e2(ab+ cd)− (a2 + b2)cd− (c2 + d2)ab (6)

R = (bc+ ad)2 − e2(a2 + b2 + c2 + d2 − e2 − f 2) (7)

W = ac(−a2 − c2 + b2 + d2 + e2 + f 2)

+ bd(a2 + c2 − b2 − d2 + e2 + f 2)− ef(a2 + c2 + b2 + d2 − e2 − f 2) (8)

It is not difficult to check that the polynomials above verify the following
identities

−PW + S2 + CM/2 = 0 (9)

−eS +K + (bc+ ad)P = 0 (10)

2(K2 − PQR) + e2CM = 0, (11)
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where CM = 288V 2 denotes the Cayley-Menger determinant. The first and
third equations above provide interesting way to organize the terms of the
Cayley-Menger determinant. The first of these identities has been useful in
studying cyclic central configurations in Celestial Mechanics [2, 11].

We begin by stating without proof the well known Ptolemy’s theorem:

Theorem 6 (Ptolemy’s Theorem). Let A,B,C,D be four points lying in
counterclockwise or clockwise order on a circle, then P = 0. The same
conclusion holds if the 4 points lie in order on a straight line.

Next we state and prove of the so called Converse of Ptolemy’s Theorem,
following the approach of Pech [9]. We include this theorem and its proof
because we want to include the case of a straight line which was not explicitly
considered in Pech’s paper.

Theorem 7 (Converse of Ptolemy’s Theorem). Let A,B,C and D be four
points in the plane that satisfy P = 0 then they form a convex configuration
(or quadrilateral) and lie on a circle or a straight line. If they lie on a circle
their counterclockwise order is either ABCD or ADCB.

Proof. Without loss of generality we choose A = (0, 0), B = (a, 0) , C =
(u, v), and D = (w, z), as in [9]. With this assumption the expression for C
given in equation r̄efeqn:det can be written as

C = a(−avw + vw2 + auz − u2z − v2z − v2z − v2z + vz2) = 0.

We also define the following polynomials

f1 = (u− a)2 + v2 − b2

f2 = (w − u)2 + (z − v)2 − c2

f3 = w2 + z2 − d2

f4 = u2 + v2 − e2

f5 = (w − a)2 + z2 − f 2

which describe the quadrilateral algebraically.
Suppose that P = 0 and consider the ideal I = 〈f1, f2, f3, f4, f5〉. A

reduced Groebner basis for the ideal 〈f1, . . . , f5, P, 1− tC〉 is {1}. Therefore,
by Proposition 1 we have that C ∈

√
I ∪ {P}. This shows that P = f1 =

f2 = f3 = f4 = f5 = 0 implies C = 0. It follows by Theorem 5 that the points
either lie on a circle or on a straight line.
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We now prove convexity. Consider the ideal K = I ∪ {P} ∪ {N − t},
where t is a slack variable and N is defined in Theorem 4. Eliminating the
variables e, f, u, v, w, z in K it is possible to show that

N =
abcd(−a+ b+ c+ d)(a− b+ c+ d)(a+ b− c+ d)(a+ b+ c− d)

4(ab+ cd)2
.

A similar computation shows that

M =
abcd(−a+ b+ c+ d)(a− b+ c+ d)(a+ b− c+ d)(a+ b+ c− d)

4(bc+ ad)2
.

From the triangle inequality it follows that (−a+b+c+d) ≥ 0, (a−b+c+d) ≥
0, etc., where equality means that the four points lie on the same line. This
shows that the configuration is convex. Moreover, if the points do not lie
on the same line then M,N > 0, and all the triangles ∆ABC , etc. are
non zero. Thus, by Theorem 4 it follows that their counterclockwise order
must be either ABCD or ADBC. See Figure 1a for an example of a cyclic
quadrilateral with counterclockwise order ABCD.

Remark. Of course there are two other polynomials similar to P , these
are PT and QT and are defined in equations (12) and (13) respectively. PT

appears when Ptolemy’s theorem is stated for quadrilaterals with diagonals b
and d. QT appears when Ptolemy’s theorem is stated for quadrilaterals with
diagonals a and c. These polynomials will play an important role later on in
this paper.

We now state a prove a theorem that shows how the conditions P = 0 ,
K = 0 and S = 0 are related. This theorem was proved in Pech [9], but here
we give a very simple proof that does not use tools of algebraic geometry.

Theorem 8. Let A,B,C and D be four points in the plane then

(K = 0 ∧ S = 0)⇔ P = 0.

Proof. Suppose P = 0. Since the configuration is planar then CM = 0.
Thus, equation (9) gives S = 0. Since S = P = 0 equation (10) also gives
K = 0. Now assume that K = 0 and S = 0. Then, from equation (10) it
follows that (bc+ad)P = 0, but since a, b, c, d > 0 this means that P = 0.

9



(a) (b)

Figure 1: (a) A cyclic quadrilateral with supplementary angles ∠CDA and
∠CBA. (b) A quadrilateral ACDB with supplementary angles ∠CDA and
∠CBA.

The next theorem shows that the condition R = 0 is somewhat comple-
mentary to P = 0. In fact, while the figure obtained by imposing R = 0
still has two supplementary angles, it is quite different from a cyclic quadri-
lateral. A convex example of such configuration is given in Figure 1b, while
a concave example is given in Figure 4. Note that in both these examples
these configurations can be obtained by folding a cyclic quadrilateral about
one of the diagonals. The following theorem appears to be new.

Theorem 9. Let A,B,C and D be four points in the plane that satisfy R = 0
then the angles ∠CDA and ∠CBA are supplementary. Moreover, if all the
∆’s are nonzero then

1. If ∆ABC < 0 the convex hull of the points A,B,C, and D is one of
ACB, CDA, ACDB, and ACBD.

2. If ∆ABC > 0, then the convex hull is one of ABC, CAD, ABDC, and
ADBC.

Finally, If at least one of the ∆’s is zero then we have the following degenerate
cases

1. The points A,B,C and D are collinear.

2. The points A,B and D are collinear and b = c, see Figure 2.
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3. The points B,C and D are collinear and a = d , see Figure 3.

Proof. Assume R = 0. Since the points are on the plane we also have that
CM = 0. Hence equation (11) gives that K = 0. The equation K = 0 can
also be written as

ab
[
e2 − (c2 + d2)

]
= −cd

[
e2 − (a2 + b2)

]
.

Applying the law of cosines to the triangles ACD and ABC we have e2 =
c2 + d2 − 2cd cosα and e2 = a2 + b2 + 2ab cos β, where ]CDA = α and
]CBA = β. Hence we obtain the equations

ab[e2 − (c2 + d2)] = −2abcd cosα, cd[e2 − (a2 + b2)] = −2abcd cos β.

Hence, K = 0 implies that cosα = − cos β, which can be also written as

cosα + cos β = 2 cos

(
α + β

2

)
cos

(
α− β

2

)
= 0,

which means that α+ β = 2πn− π or α− β = 2πm− π. Since α, β ≤ π the
only possible solution is α+ β = π. This proves that the angles ∠CDA and
∠CBA are supplementary.

Choose a coordinate system such that A = (u, v), B = (f, 0), C = (w, z)
and D = (0, 0). Then we have the following polynomials

h1 = (u− f)2 + v2 − a2

h2 = (u− w)2 + (z − v)2 − e2

h3 = w2 + z2 − c2

h4 = u2 + v2 − d2

h5 = (w − f)2 + z2 − b2

We show that N ≤ 0. Consider the ideal JN =< h1, h2, h3, h4, h5, R,N− t >,
where t is a slack variable. Calculating the elimination ideal of J with Maple,
eliminating the variables e, f, u, v, w, z yields a polynomial L in a, b, c, d and
t. Solving L = 0 for t yields

t = −(−d+ a+ c+ b)(d− a+ c+ b)(d+ a− c+ b)(d+ a+ c− b)abcd
4(ab+ cd)2

.
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Figure 2: Degenerate configuration with f = 2w

From this expression for t it follows that N = t ≤ 0, since in a quadrilateral
−d + a + c + b ≥ 0, d− a + c + b ≥ 0, etc. (which follows from the triangle
inequality). Performing a similar computation it is possible to find an ex-
pression for M , but it turns out that M can also take positive values, and so
the computation is not useful for this proof.

We now study the degenerate cases where three or more points lie on the
same line. Note that the equality −d+a+c+b = 0, or one of the other similar
ones, means that A,B,C and D are collinear. As a consequence, N = t = 0
if and only if A,B,C and D are collinear. This means that the triangles
ACD and ABC have nonzero areas, unless the quadrilateral degenerates to
a line. Therefore, the condition R = 0 implies that A,C and D cannot be
collinear, and A,B and C cannot be collinear, unless A,B,C and D are all
collinear.

Consider the ideal JABD =< h1, h2, h3, h4, h5, R,∆ABD − s >, where s is
a slack variable. Computing the elimination ideal and solving for s yields

s = ±
√

(−d+ a+ c+ b)(d− a+ c+ b)(d+ a− c+ b)(d+ a+ c− b)(b+ c)(b− c)da
2(ab+ cd)(ac+ bd)

Consequently ∆ABD = s = 0 when either A,B,C and D are collinear, or
b = c. In the latter case, h3 = h5 = 0 yield f(f − 2w) = 0 which, since we
assume f > 0, gives f = 2w, which means that the triangle BCD is isosceles,
see Figure 2.
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Figure 3: Degenerate configuration with f = 2u

Finally, consider the ideal JBCD =< h1, h2, h3, h4, h5, R,∆BCD − η >,
where η is a slack variable. Computing the elimination ideal and solving for
η yields

η = ±
√

(−d+ a+ c+ b)(d− a+ c+ b)(d+ a− c+ b)(d+ a+ c− b)(a+ d)(a− d)cb

2(ab+ cd)(ac+ bd)

Consequently, ∆BCD = η = 0 when either A,B,C and D are collinear, or
a = d. In the latter case, h1 = h4 = 0 yield f(f − 2u) = 0 which, since we
assume f > 0, gives f = 2u, which means that the triangle ABD is isosceles,
see Figure 3.

Now that we have studied the degenerate cases, we can go back to the
non-degenerate ones and conclude the proof. Assuming that all the ∆’s are
non-zero, we can apply Theorem 4. Since N ≥ 0, if ∆ABC > 0, then the
convex hull of the points A,B,C, and D is one of ABC, CAD, ABDC, and
ADBC. If ∆ABC < 0, then the convex hull of the points A,B,C, and D is
one of ACB, CDA, ACDB, and ACBD. This concludes the proof.

Remark (Geometrical Interpretation). Note that the polynomial K, can be
interpreted as follows. We consider the cyclic quadrilateral in Figure 1a.
Since the quadrilateral is cyclic, then ]CDA = π − ]CBA = α. Hence, by

13



Figure 4: Concave quadrilateral ADCB with supplementary angles ∠ADC
and ∠ABC. The orange shaded area represents the convex hull ACB.

the law of cosines we have e2 = c2+d2−2cd cosα and e2 = a2+b2+2ab cosα.
Taking a suitable linear combination of these equations yields the expression

K = e2(ab+ cd)− ab(c2 + d2)− cd(a2 + b2) = 0.

The exact same computation holds for any of the configurations in The-
orem 9. In particular, the computation holds for the cases represented in
Figures 1b,2,3, and 4. Hence, in all cases, the expression K = 0 is just a
linear combination of the cosine law applied to two triangles. However, by
Theorem 9 we know that in the cyclic case P = 0, while in the other cases
R = 0, in which case, whenever the configuration is not cyclic, P > 0 by the
well known Ptolemy’s inequality.

Note that, the equation R = 0 expresses the Generalized Quadrilateral
Theorem (Theorem 3) for the configurations mentioned in Theorem 9, and
thus, gives the distance between the midpoints of the segments AC and BD
as

v =
1

2

√
(bc+ ad)2

e2
,

for those configurations. As a consequence, this formula is applicable to
specific quadrilaterals having supplementary angles, but is not suitable for
cyclic quadrilaterals, as R 6= 0 in such cases. For instance, this formula is

14



Figure 5: Tilted kite with equal angles ∠BAD and ∠BCD.

valid for both the configuration in Figure 1b and the concave configuration
in Figure 4.

For planar configurations, if R = 0 then we also have that K = 0. Solving
K = 0 for e2 and substituting the result into v yields another formula for v
which applies to the configurations specified in Theorem 9 and is independent
of the diagonals

v =
1

2

√
(bc+ ad)(ab+ cd)

(ac+ bd)
.

4 Polynomials Conditions for Tilted Kites

In the previous section we recognized that the polynomial K can be inter-
preted as an expression coming from the law of cosines. There are a few
more interesting polynomials that can be obtained that way and are asso-
ciated to various configurations of four points. Recall that tilted kites are
quadrilaterals with two opposite equal angles, and they can be convex (see
Figure 6) or concave (see Figure 7). Convex tilted kites are studied in de-
tail in [6]. Consider the convex tilted kite in Figure 5, the concave tilted
kite in Figure 7, and the quadrilateral 6. Suppose ]BAD = ]BCD = α.
Then, it follows from the law of cosines that f 2 = a2 + d2 − 2ad cosα and
f 2 = b2 + c2 − 2bc cosα. Taking a linear combination of these yields the

15



Figure 6: Convex quadrilateralACBD with equal angles ∠BCD and ∠BAD.

expression

KT = f 2(bc− ad)− bc(a2 + d2) + ad(b2 + c2) = 0,

which coincides with the equation in the proof of Theorem 4.2 in [6]. Note
that the same expression holds in several cases including but not limited to
the configurations in Figures 5, 6, and 7.

We also find the polynomials

PT = (ac− bd+ ef) (12)

QT = (ac− bd− ef) (13)

RT = (ab− cd)2 − f 2(a2 + b2 + c2 + d2 − e2 − f 2) (14)

which are related by the equation

f 2CM = 2(PTQTRT −K2
T ). (15)

Moreover, in analogy with the expressions for S and W , we also find the
following polynomials

ST =f(bc− ad)− e(cd− ab) (16)

WT =− ac(−a2 + b2 − c2 + d2 + e2 + f 2) (17)

− bd(a2 − b2 + c2 − d2 + e2 + f 2) + ef(a2 + b2 + c2 + d2 − e2 − f 2).
(18)
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Figure 7: Concave tilted kite ABCD with equal angles ∠BAD and ∠BCD.
The orange shaded area denotes the convex hull ACD.

Clearly, ST is related to the other polynomials by the following equations

−fST +KT − (cd− ab)PT = 0 (19)

−PTWT + S2
T + CM/2 = 0 (20)

Suppose that we have four point A,B,C and D lying in the plane. Then,
CM = 0, and it is clear from equation (15) that we can consider the following
three cases

1. QT = 0: Clearly, by equation (15), we must have KT = 0. Moreover,
by the Converse of Ptolemy’s Theorem the four points form a convex
cyclic quadrilateral with counterclockwise order ACBD (see Figure
6) or ADBC , or a straight line. Notice that in Figure 6 the angle
∠DAB between the side d and the diagonal AB is equal to the angle
between the opposite side and the other diagonal. Hence, by elementary
geometry, we have that ABCD is a convex cyclic quadrilateral with
diagonals a and c.

2. PT = 0: Again, we must have KT = 0, but now the four points form
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a convex cyclic quadrilateral with counterclockwise order ACDB or
ABDC or a straight line.

3. RT = 0: As in the previous two cases we must have KT = 0. Looking at
Figures 5, and 7, it is natural to conjecture that RT = 0 is a necessary
condition for a quadrilateral to be a tilted kite. This conjecture is made
precise in the following theorem.

Theorem 10. Let A,B,C and D be four points in the plane that satisfy
RT = 0 then the angles ∠BAD and ∠BCD are equal. Moreover, if all the
∆’s are nonzero then

1. If ∆ABC < 0 the convex hull of the points A,B,C, and D is one of
ADCB, ACB, CDA.

2. If ∆ABC > 0, then the convex hull is one of ABCD, ABC, and CAD.

In particular, if ad − bc = 0, then the tilted kite is a parallelogram or a
rhombus. Finally, If at least one of the ∆’s is zero then we have the following
degenerate cases

1. The points A,B,C and D are collinear.

2. The points A,B and c are collinear and c = d.

3. The points A,C and D are collinear and a = b .

Proof. Assume RT = 0. Since the configuration is planar CM = 0, and thus,
by equation (15), we also have that KT = 0. The equation KT = 0 can also
be written as

bc
[
f 2 − (a2 + d2)

]
= ad

[
f 2 − (b2 + c2)

]
.

Applying the law of cosines we have f 2 = a2 + d2 − 2ad cosα and f 2 =
b2 + c2− 2bc cos β, where ]BAD = α and ]BCD = β. Hence we obtain the
equations

bc
[
f 2 − (a2 + d2)

]
= −2abcd cosα, ad

[
f 2 − (b2 + c2)

]
= −2abcd cos β.

Hence, KT = 0 implies that cosα = cos β, which can be also written as

cosα− cos β = −2 sin

(
α + β

2

)
sin

(
α− β

2

)
= 0,
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which means that α + β = 2πn or α − β = 2πm with m,n = 0,±1,±2, . . ..
Since α, β ≤ π the only possible solution is α = β. This proves that the
angles ∠BAD and ∠BCD are equal.

To complete the proof choose a coordinate system such that A = (0, 0),
B = (u, v), C = (e, 0) and D = (w, z). Then we have the following polyno-
mials

g1 = u2 + v2 − a2

g2 = (e− u)2 + v2 − b2

g3 = (w − e)2 + z2 − c2

g4 = w2 + z2 − d2

g5 = (u− w)2 + (z − v)2 − f 2

We show that M > 0. Consider the ideal JM =< h1, h2, h3, h4, h5, R,M−t >,
where t is a slack variable. Calculating the elimination ideal of JM with
Maple, eliminating the variables e, f, u, v, w, z yields a polynomial in a, b, c, d
and t. Solving for t yields

t = − abcdΓ

4(ad− bc)2

where Γ = (d + a + c + b)(d + a − c − b)(−d + a + c − b)(−d + a − c + b).
Repeating this calculation for the ideal < h1, h2, h3, h4, h5, R,∆ABD − s >
yields

s = ±
√
−Γ da

(2(ad− bc))
,

which means that, if ad−bc 6= 0, we must have −Γ ≥ 0, otherwise ∆ABD = s
is not a real number. This shows that, provided that ad − bc 6= 0, we have
that M ≥ 0. If all the ∆’s are non-zero, then M > 0 and there are the
following possible cases: ABCD, ABC and CAD if ∆ABC > 0 and ADCB,
ACB and CDA if ∆ABC < 0. The quadrilaterals ABCD and ADCB are
convex tilted kites (see Figure 5), while ACB CDA, ABC and CAD are
concave tilted kites (see Figure 7). Suppose ad − bc = 0. A computation
with Groebner bases shows that

b2c2(a− c)2(a+ c)2(a− b)2(a+ b)2 ∈
√
J,

with J =< h1, . . . , h5, RT , ad− bc >. Therefore, c = a or a = b. If c = a then
we also have that d = b. If a = b, instead we have that c = d. In both cases
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RT = −f 2(2a2 + 2b2− e2− f 2), and thus we must have 2a2 + 2b2− e2− f 2 =
0, which is the parallelogram law. Since the parallelogram law holds, the
quadrilateral is, in both cases, a parallelogram. Note that, in the first case
we have shown that opposite sides are equal, while in the second case adjacent
sides are equal. Therefore, in the second case the parallelogram is actually a
rhombus.

Now, we consider the case where one or more of the ∆’s is zero. First of
all we have that

∆BCD = ±
√
−Γ cb

(2(ad− bc))
, ∆ABC = ±

√
−Γ (c+ d)(c− d)ba

2(ac− bd))(ad− bc)

and

∆ACD = ±
√
−Γ (a+ b)(a− b)dc

2(ac− bd))(ad− bc)
.

Therefore, ∆BCD = 0 or ∆ABD = 0 if and only if Γ = 0. Consequently, if
∆BCD = 0 or ∆ABD = 0, then all the ∆’s must be zero, and the four points
lie on a straight line.

If c = d then ∆ABC = 0, so that the points A, B and C lie on the same
line. From the equations g3 = g4 = 0 we find that e(e − 2w) = 0, that is,
e = 2w. This configuration can be described as an isosceles triangle ABC,
with the point B on the segment AC. If a = b then ∆ACD = 0, so that the
points A, C and D lie on the same line. From the equations g3 = g4 = 0 we
find that e(e− 2u) = 0, that is, e = 2u. This configuration can be described
as an isosceles triangle ACD, with the point D on the segment AC.

Remark. Notice that, by the previous theorems, for the tilted kites in Fig-
ures 5, and 7 we must have that RT = 0 and KT = 0. For the quadrilateral in
Figure 6, however, the angle ∠DAB between the side d and the diagonal AB
is equal to the angle between the opposite side and the other diagonal. Hence,
in this case, by elementary geometry, we have that the vertices ABCD define
a convex cyclic quadrilateral with diagonals a and c. By Ptolemy’s theorem
we then have that QT = 0, and by the cosine law we have that KT = 0. In
this case we have KT = QT = 0, instead.

We conclude this section with a theorem that shows that the quadrilateral
determined by the condition QTPT = 0, and the quadrilateral defined by the
condition R̃T = 0 (that is the condition RT = 0 but with different distances)
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are related to each other by a reflection. To introduce this theorem recall
that A, B, C, and D are four points on the plane, and, as usual, a = |AB|,
b = |BC|, c = |CD|, d = |DA|, e = |AC|, f = |BD|, are the Euclidean
distances between pair of points. Let C̃ be the reflection of the point C
over the line through the points B and D. Let b̃ = |BC̃|, c = |̃C̃D|, and
ẽ = |AC̃|, be the distance between C̃ and the points B,D and A, respectively.
Clearly, b̃ = b and c̃ = c. Let KT , PT , QT and RT be the polynomials given in
equations (4), 12),(13) and (14), respectively. Let K̃T , P̃T , Q̃T and R̃T be the
analogue of KT , PT , QT and RT for the points A,B, C̃ and D. It is then easy
to see that KT = K̃T , while P̃T , Q̃T and R̃T are obtained from PT , QT and
RT by replacing e with ẽ. Moreover we denote by CM the Cayley-Menger
determinants for the points A, B, C, and D and C̃M the Cayley-Menger
determinants for the points A, B, C̃, and D.

Using these notations we prove the following theorem

Theorem 11. Let A,B,C and D be four points that lie on the plane, and
let C̃ be the reflection of the point C over the line through the points B and
D. Then R̃T = 0, if and only if PTQT = 0.

Proof. This theorem can be proved by an application of Theorem 1. Here
we give a proof that does not rely on Groebner bases computations.

Suppose PT = 0. Substituting PT = 0 into equation (15) yields

CM = −2
K2

T

f 2
= 0,

and thus KT = 0. Equation (15) for the points A,B, C̃ and D is

C̃M = 2
P̃T Q̃T R̃T −K2

T

f 2
. (21)

Since KT = 0 we find that

C̃M = 2
P̃T Q̃T R̃T

f 2
.

Therefore, we must have P̃T Q̃T R̃T = 0, since C̃M = 0 for a planar config-
uration. If P̃T = 0 we must have e = ẽ, which only happens when either
A or C lie on the line through B and D. However, since we are assuming
that PT = 0 the points A,B,C and D are either cocircular or collinear.
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Since three collinear points cannot be cocircular then all the points must be
collinear. In this case Q̃T = P̃T = R̃T = 0. If, on the other hand, Q̃T = 0
then PT − Q̃T = (e+ ẽ)f = 0. But this is impossible since we take e, f > 0.

The analysis of the case QT = 0, is analogous to the case PT = 0, and
hence it will be omitted.

Now, suppose R̃T = 0. Substituting R̃T = 0 into (21) yields

C̃M = −2
K2

T

f 2
= 0,

and hence KT = 0. Since, by equation (15), CM = 2
PTQTRT−K2

T

f2 it follows
that

CM = 2
PTQTRT

f 2
.

Since the configuration is planar, CM = 0 and thus PTQTRT = 0. If RT 6= 0,
then we are done. It remains to see what happens when RT = 0. Since
R̃T = 0, we have that RT = 0 if and only if e = ẽ. This last condition
holds if and only if either A or C lie on the line through the points B and
D. Note that, according to Theorem 10, if RT = 0 and ∆ABD = 0 or
∆BCD = 0, then all the four points must lie on a line. Therefore, in this
case, by the Ptolemy’s theorem, the points A,B, C̃ and D also satisfy the
following equalities: PT = QT = 0. This concludes the proof.

5 Finding Additional Polynomial conditions

Because these conditions are intrinsically interesting, and because of the
potential applications to Celestial Mechanics and other fields, we think it is
advantageous to find additional polynomial conditions. Two examples are
provided here to illustrate how you can find new conditions.

First we consider a very simple minded approach. If we apply the cosine
law to find an expression for f 2 instead of e2 then we can obtain the following
polynomial

K1 = (ad+ bc)f 2 − (a2 + d2)bc− (b2 + c2)ad.

We can also consider

R1 = (ab+ cd)2 − f 2(a2 + b2 + c2 + d2 − e2 − f 2).
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These polynomials satisfy the following conditions

2(K2
1 − PQR1) + f 2CM = 0

fS +K1 + (ab+ cd)P = 0.

These polynomials relationships are very similar to the ones found by Pech
[9], and therefore it is not worthwhile to study them. However, combining
these equations with (10) and (11) we can obtain the following symmetrized
relations

(f − e)S +K +K1 + (ab+ cd+ bc+ ad)P = 0

2[K2 +K2
1 − PQ(R +R1)] + (e2 + f 2)CM = 0

which may quench some scholar’s thirst for symmetry.
Another less trivial approach consists in using Groebner bases type com-

putations to find new polynomials and new relations. This approach seems
more promising. For instance, by using Maple to compute a Groebner basis
for the ideal generated by h1, . . . , h5 and P with respect to a graded reverse
lexicographic order we obtain several polynomials, one of which is

(a2ce− ac2f + ad2f − ae2f − cd2e+ cef 2)2

We can then define

KG = (a2ce−ac2f+ad2f−ae2f−cd2e+cef 2) = (af−ce)d2+ce(a2+f 2)−(c2+e2)af.

Then
CMd2

2
= PQGRG −K2

G

where QG = −ac+ bd+ ef and

RG = (a2 − b2 + c2 − d2 + e2 + f 2)d2 − (ae− cf)2

These polynomials are very similar to the ones we studied in section 4 except
here b and d are the diagonals. As a consequence we will not study them
because they do not lead to anything substantially new.
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