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Dung’s Argumentation is Essentially
Equivalent to Classical Propositional
Logic with the Peirce-Quine Dagger

Dov M. Gabbay

Abstract. In this paper we show that some versions of Dung’s abstract
argumentation frames are equivalent to classical propositional logic. In
fact, Dung’s attack relation is none other than the generalised Peirce—
Quine dagger connective of classical logic which can generate the other
connectives =, A, V, — of classical logic. After establishing the above cor-
respondence we offer variations of the Dung argumentation frames in
parallel to variations of classical logic, such as resource logics, predicate
logic, etc., etc., and create resource argumentation frames, predicate argu-
mentation frames, etc., etc. We also offer the notion of logic proof as a
geometrical walk along the nodes of a Dung network and thus we are
able to offer a geometrical abstraction of the notion of inference based
argumentation. Thus our paper is also a contribution to the question:

“What is a logical system”

in as much as it integrates logic with abstract argumentation networks.
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1. Classical Logic as a Network

The primary aim of this paper is to integrate logic with Dung’s abstract argu-
mentation networks. We get as a by-product of this effort various generalisa-
tions of Dung’s network as well as applications to some problems in the area
of argumentation.

So the paper is about argumentation but the motivation behind the par-
ticular steps taken is integration with logic. The local researcher, immersed in

Research done under ISF project “Integrating Logic and Network Reasoning”.

® Birkhduser



256 D. M. Gabbay Log. Univers.

practical argumentation theory, may perceive some of our moves as possibly
unnecessary pure mathematics. See, however, the discussion in Sect. 2.5.

In the past 40 years logic has undergone a serious evolutionary devel-
opment. The meteoric rise of the applied areas of computer science and arti-
ficial intelligence put pressure on traditional logic to evolve. There was the
urgent need to develop new logics in order to provide better models of human
behaviour and actions. Such models are used to help design products which
aid/replace the human in his daily activity. As a result, a rich variety of new
logics have been developed and there was the need for a new unifying meth-
odology for the chaotic landscape of the new logics.

Thus the question of

“what is a logical system”

is repeatedly being asked and answered, by myself as well as other colleagues.

An important step in this search is the problem of integration of general
network reasoning (Bayesian nets, Neural nets, Argumentation nets, Inheri-
tance nets, Ecological nets, etc., etc.) with discrete logical systems of reasoning
( classical logics, defeasible logics, logic programming, temporal and modal log-
ics, etc., ete.).

We are going to present classical logic in a certain way, to make it most
compatible with argumentation networks. This is done in Sect. 1.1, where we
formulate classical logic with a special unary connective which we call the
Peirce-Quine-Dung dagger.

Section 1.2 gives semantic tableaux for our logic and in Sect. 1.3 we axi-
omatise the consequence relation of this logic. Later in Sect. 2 we shall present
certain restricted version of Dung’s networks which correspond exactly to our
logic. We then map argumentation concepts to logical concepts. For example
in Sect. 2.3 we show that semantic tableaux correspond to admissible sets in
argumentation.

1.1. Peirce’s Arrow, Quine’s Dagger and the Sheffer Stroke

As a first step towards showing the equivalence of classical logic with abstract
argumentation frames we present the above connectives for classical logic.
Classical propositional logic is traditionally formulated with a set of
atomic propositions and some or all of the connectives below:
e 1= truth =T
0= falsity = L
x Ay = min(z,y)
x Vy = max(x,y)
r=1—-x
x — y=max(l —x,y).

Other connectives were put forward for the classical propositional calculus,
among them the Sheffer stroke x 7 y introduced in 1913 [37], and Peirce’s
arrow x | y, discovered in 1880 and published thirty years later [33]. Peirce’s
arrow was also discovered by Quine under the name Quine’s dagger, see report
in [27]. These connectives were introduced for logical methodological reasons
in the foundations of classical logic. They turned up to be also very useful
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TABLE 1.
A B A1 B A|B
0 1 1 0
0 0 1 1
1 1 0 0
1 0 1 0

as gates in circuit design, as the NAND and NOR gates. So, in fact, these
connectives are as fundamental as the usual ones.
The table for these connectives is
zlTy=max(l—z,1—y)
x| y=1—max(z,y).
The following (in Table 1) is the truth table for these connectives:
The Sheffer stroke is equivalent to

A1 B=-AV-B
and the Peirce-Quine dagger is equivalent to
A|] B=-ANAN-B.
The ordinary Boolean connectives are definable from these unary con-
nectives as follows.
e AANB=-(A71B)=(-4) | (—-B)
e AVB=(-A)](-B)=-(A| B).
There exist axiomatisations of classical propositional logic in terms of the
Sheffer stroke as the only connective, see [35,36], and I assume one can do the

same for the case of the Peirce-Quine dagger. The two unary connectives are
interdefinable:

e AIB=—((-A)1(-B)
Al B=-((-4) ] (=B))
We now formulate classical logic in a certain way, ready to be turned into
a Dung network.
Let A be a finite multiset of wifs, A = {A;,..., A4, }.! Define the connec-
tive || A as follows:
e JA=1if A" A =0
Thus
o VA=A 4= Naea A
Thus the truth function for | {xy,...,x,} is?

e | (z1,...,2n) =1 —max(z;).

L We use {...} to denote multisets.
2 Note that this truth function is meaningful for three values as well, i.e. if x; range over

{0,1/2,1}.
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We have that the traditional connectives — and A are definable

-A=| {4}

N A= {U{AHi=1,...,n}

Vi, Ai =00 {Ar, ..., AL}

In fact it might be easier to preset an axiom system for |} than for |.

Let us call this connective the Peirce-Quine-Dung Dagger. This name
is appropriate because as we shall see in the next section, the Dung attack
relation (done by a dagger) corresponds to this connective!

We shall refer to |} by the short name “Dagger”.

This connective is definable using | because A and — are definable from
1, as we have seen. It generalises | because | {A,B} = A | B.

Definition 1.1 (Duwffs: wffs with the Dagger connective). A Dwil is defined by
induction:

1. Any atomic ¢ is a Dwff of level 0.
2. IfA={A,...,A,} is a multiset of Dwifs then A =| A is also a Dwff.
A; are said to be immediate subformulas of A. The level of A is
1 + max{level of A;}.

Definition 1.2 (Trees). A system (S, R,t) is a finite tree iff the following holds:

1. RCS xS.tisan element of S, and S is finite.

2. For any x € S,z # t, there exists a unique y such that yRz. y is called
the predecessor of x.

3. For every x there exists a unique sequence (¢, z1,...,z, = x) such that
tRry ANx1Rxa N ... Nxp_1Rx,,.

For 2 = ¢ we have (t) as the sequence.
Definition 1.3 (Construction tree for a D-formula). Let A be a Dwff. Then
a tuple (S, R,t,«) is a construction tree for A iff (S, R,t) is a tree and « is

a function associating a Dwif «(x) with each x € S such that the following
holds.

1. a(z) is atomic if  is an endpoint (i.e. =~Jy(xRy)).
2. For all z € S which are predecessors, we have
a(z) =4 {a(y)|zRy}.
3. a(t)=A.
Definition 1.4 (Acyclic decorated ordering). A system (S, R, «) is said to be
an acyclic decorated ordering iff the following holds:

1. (S,R) is a finitary acyclic ordering. This means that R C S x S is a
binary relation such that for all x, {y|zRy} is a finite set and such that

for no x1,...,z,, do we have x1Rxs A zoRx3A, ..., \xy R21.

2. (S,R) may have a root t. This means that for all x # ¢, there exists
a (not necessarily unique) sequence z1,...,&, = = such that tRx; A
1’1R£L’2/\, ‘e ,.’ﬂm_le.

©w

Note that we have not imposed that S is finite, only finitary!
4.  «is a function associating with each x € S, a Dwff a(x) such that
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(a)  «(z) is atomic if x is an endpoint (i.e. =3y(zRy)).
(b) If x is not an endpoint then a(z) ={ {a(y)|zRy}.

5. Note that for the definition of (2) to be alright we need that (S, R,t) is
acyclic and finitary. In fact the relation R needs to be well founded for o
to exist!

Ezample (Canonical ordering of Dwifs).
1. Let @ ={q,.-.,qr} be atoms. Let ©¢ be the set of all Dwffs built up
from {q1,...,qx}. Define R on ©g by
e ARB iff B is an immediate subformula of A.3
Then (B¢, R) is acyclic and for each non-atomic A we have

A =| {B|ARB}.

2. For Q = set of all atoms, let ® = O¢. Then (6, R) is the canonical
ordering of all Dwffs.

Definition 1.5 (Models). Let (S, R, ) be a decorated acyclic ordering.

1. A function h assigning a value h(q) € {0, 1} to any atom ¢ of the language
is called a model. In the case of three valued logic, h assigns values in
{0,3,1}.

2. Given a model h we can use it to give a truth value in {0,1} to every
formula and node in (S, R, «) as follows (call this function f(x) for z € S).
(a) For z an endpoint let f(z) = h(a(x)).

(b) for x not an endpoint let
f(@) =1 - max(f(y))
3. Note that this definition follows exactly the truth table of ||. We have

a(z) =i {a(y)|zRy}.
So assuming f(y) is the truth value of a(y) under h (in the model h),
then f(x) would be the truth value of a(x) in the model h.

1.2. Semantic Tableaux for |}

We now give a tableaux formulation for our connective |,. We assume two
valued logic. The tableaux would be slightly different for three valued logic.
We first recall the usual tableaux formulation of classical logic with say, —
and A.

3 We have a notational compatibility problem. In argumentation one writes xRy to say that

x attacks y. In logic we write ARB to say that B is an immediate subformula of A. The

problem is that later we will have that the immediate subformula B of A actually attacks A.
To avoid confusion, let R be the converse relation of R So we have

xRy iff (definition) y Rz
or using the ordered pair notation
(z,y) € Riff (y,z) € R

In the sequel we shall use either R or R depending on context. The reader should
always remember that when we write yRx or xRy, then y attacks x.
In our figures we display xRy by y — .
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The basic computational units are tables of the form
T = [Al,...,An”Bl,...,Bk]

The A; are on the left and the B; are on the right. We are seeking an assign-
ment h to the atoms such that h(A;) = 1 and h(B;) = 0. So what is on the
left is intended to be true and what is on the right is intended to be false.

In the middle of the computation we have a set T of such tableaux. We
pick a tableau 7 € T and replace it by new tableaux one or more, say 7, ..., 7
by performing certain tableaux operations. We get a new set of tableaux T’.
The new tableaux 71, ..., 7, are of less complexity than 7.

Depending on what we need the tableaux system for, we may or may not
remember the connection between 7 and 7, ..., Ty,.

The above description is not mathematically precise, it is only to remind
the reader. Our definition of tableaux for |} will be precise.

The following are the tableaux rules for = and A of classical logic, just to
remind the reader.

(—1) Rule for — on the left. Replace

T =[A;,A|By,..., B
by

7' =[A{||B1,..., B, A]

(—r) Rule for — on the right. Replace
T=1[A1,...,4,|Bu,...,By,B]
by
7' =[A1,...,An, B||Ba,..., B

(Al) Rule for A on the left. Replace
T=1[A1,...,4,,CAND|By,...,By]
by
71 =1[41,...,A,,C,D||By,...,By]

(Ar) Rule for A on the right. Replace
T=1[A1,...,4,||B1,...,Bg,C A D]
by the two tableaux
71 =[A1,...,Akl|B1,..., B, C|
and

T2 = [Al,...,AnHBl,...,Bk,D]
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Closure of a tableau. A tableau
[A1,..., Al B, ..., Bl
is closed cf. for some 1, j

A; = B;

.
Definition 1.6 (Tableaux for }).
1. A unit tableau for |} has the form

T = [Al,...,AnHBl,...,Bk]

where A;, B; are Dwifs.
The tableau is closed if for some 4, j, A; = B;.

2. Reduction rules for tableaux. Given a tableau 7, we perform possible
applicable rules on 7 to obtain new tableaux from it. At each step we
apply exactly one rule. If the result of the application of the rule are
tableaux 7, ..., T,, then we write 7p7y,...,Tp7,.

We now just define the rules. The actual construction process is
defined later. ({} [) Rule for || on the left

Replace
T=1[A41,..., A, 4 {C1,...,Cu}||B1,. .., Bl
by
7' =[A1,...,An||B1,..., Bk, C1,...,Cp]
write Tp7’.
(U r) Rule for |} on the right
Replace

T = [Al,...,AnHBl,...,BklL{C’l,...,C’m}]
by 7,i=1,...,m where
T; — [Al,...7An,Ci||Bl7...,Bk]

Write 7p1; for i =1,...,m.
Note that if 7p7’, the complexity of 7/ is less than that of 7!
3. Given an initial family of tableaux

To = {r,7,7",...}

With relation pg = @, we build by induction a family of tableaux (T,,, p,),
with p, a tree relation on T,,, as follows.

Step n + 1
Assume that (T, p,) has been defined. Assume that p,, is a tree relation
such that the following holds:

(*) If 7 € T is not an endpoint, then there exists a rule ({ ) (or (4 1))
and a formula | {Ci,...,C,,} which is at the right of 7 (resp. at
the left of 7) such that the p,, immediate successors of T are exactly
the result of the application of the rule on the above formula.
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We now define (T,,41, pnt1) as follows:

3.1.

3.2.

3.3.

3.4.

3.5.

Choose any endpoint tableau 7 in T,,. If all the formulas in 7 are
atomic then look for another endpoint tableau.

Assume 7 has a Dwif |} {C4, ..., C,,} on the left. Let 7" be the result
of applying the ({} 1) rule to this formula. Let T,,y; = T,, U{7'} and
let ppi1 = pn U{(7,7')}.

Assume 7 has a Dwff | {C,...,C,,} on the right. Let 7{,..., 7/,
be the resulting tableaux from applying the ({ 7) rule to 7.

Let T, y1 = T, U {7/} and let p,41 be p, U{(7,7])]i =1,...,m}.
Ttems (3.1)—(3.3) above are the steps which define (T, 11, pp+1) from
(T,., pn) through the use of an arbitrary choice of an endpoint in
(Ty, pn). Clearly it satisfies (*).

If the original Ty was infinite, then we want a fair sequence of
choices, which will not neglect any endpoint tableaux.

Let (Too, poo) = U, (Tn, pn). We get a tree. Let IT be a maximal path in
the tree. Define two sets II,. and II; as follows:

I, = {A|Dwff A is the left side of some 7 in IT}
II, = {A|Dwff A is in the right hand side of some 7 in II}

IT is said to be admissible if IT, N II; = &.
Let IT be admissible. Then the following holds:
(8) ¥ {C,...,Cy} €10 then C4,...,Cy, €11,.

Furthermore, if C; is not atomic, i.e. C; =| {D3,.. .,Di(i)} then
for some j, D € II;.

1.3. Axiom System for |

The logic of Dagger is not difficult to axiomatise. When we write axioms for
a consequence relation of the form A - A, the elements of A are together as a
conjunction. We also have negation because |} A is =A. So basically we have
what we need.

Definition 1.7 (Axioms for |}). Consider the following rules as a consequence
relation for the language with . A is a finite set of Dwiffs.

1.

2.

oot

Reflexivity
AFAfAeA

Monotonicity
AFA

A BFA
Cut
AJAFB:AlAFB

AFEB
JARJAfAcA
AAFBiff Al BFJ A
AL A A

Definition 1.8. We can define A + A for A infinite as well.
Let A+ A iff for some finite Ay € A we have Ag F A.
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Definition 1.9. A set © of wils is consistent if for no Dwif A and finite A C ©
do we have A+ A and A H| A.
A theory is complete iff for any A, either A € A or || A € A.

Lemma 1.10. Every finite consistent theory can be extended to a complete the-
ory.

Proof. The proof follows the usual lines known for classical logic. We first show
that if Ag is consistent and B a wiff then either Ag U {B} or Ag U {{} B} are
consistent. For otherwise for some A; and A and finite Aé, Ag C Ay, we have

1. AL BF A
2. ALBFU A
3. A%, BF A
4. A%l BH| As.
From (1) and axiom (2) and axiom (6) we get for Aj = A} U A2
04 Al B
Ay, A1 HU B
And by cut rule we get
5 AjHUB
From (3) and (4) and axiom (6), we get
Ay, As - B
A, Az - B

And by cut we get
6. A)F B.

Thus Ay is not consistent, a contradiction.
We can now follow the usual construction and extend any finite theory
Ay to a complete theory. Enumerate all wifs of the language Ay, As, As, .. ..
Let
A A, U{A,} if consistent
Tl AL, U{ ALY, otherwise
By what we have just proved, A, is consistent.
Let Ao =U,, An-
A is consistent for otherwise for some finite A’ C A, and some X we
have A’ + X and A H| X.

Since A’ is finite, then for some n, A’ C A,, contradicting the consistency
of A,. O

Theorem 1.11 (Completeness theorem). The system of Definition 1.7 is sound
and complete for the classical two valued semantics for ).

Proof. 1. Soundness can be seen from interpreting
ya= A -4
AeA

2. To show completeness, let Ay be a finite consistent theory. Extend A to
a complete theory A. Define a model i by
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(*) h(g) =1iff ¢ € A, ¢ atomic.
We now show by induction that for any | {4;,...,4,} we
have
(*) h(U{A41,..., 4, }) =1iff J {A1,..., A,}) isin A.
Case 1. Assume h({ {A1,...,A,}) = 1. We show || {A;,...,A,} € A.
From the assumption we get that h(A4;) = 0,7 =1,...,n. Hence
by the induction hypothesis, A; ¢ A and hence |} A; € A,i=1,...,n.
Therefore for some A,,, |} A; € Ay, i=1,...,n.
From axiom 5 we have A, F| {4,...,4,}. We claim |
{A41,..., A} € A. Otherwise || {A1,...,A,} € A and so for some
large m’ | {Ay,...,A,} € Ay and YU {44,...,A,} € A, con-
tradicting the consistency of A,,.
Case 2. Assume || {Aq,..., A4,} € A. Show h({ (A1,...,4,)) = 1. Otherwise,
by the induction hypothesis for some i, A; € A. Thus for some m, A; €

A,,. For some large enough k > m we also have || {A4y,...,4,} €
Ay and hence || A; € Ay by axiom 4, contradicting the consistency
of Ak.

Thus h is our required model because h(Ag) = 1, since Ay C A,
and (*) holds.

This concludes the completeness theorem. O

2. Argumentation Frames

This section introduces the basic notions of argumentation frames and then
proceeds to show equivalence with classical propositional logic.

We must make our methodology absolutely clear. We begin by comparing
a very restricted form of argumentation frames, called nearly acyclic orderings
(Definition 2.5), with the Dagger logic of Sect. 1. Such frames can be regarded
as logic models or as argumentation models at the same time. Using that we
will map some correspondences between logical concepts and argumentation
concepts, in Sects. 2.2 and 2.3.

Once we have some idea on what may correspond to what, we start the
technical machinery in earnest in Sect. 3 and generalise in Sects. 4 and 5.

2.1. Argumentation Preliminaries

An argumentation framework [18] consists of a set of arguments and an attack
relation on these arguments. We only consider finite argumentation frame-
works.

We need to make a notational comment. We used in Sect. 1 the notation:

Definition 2.1. An argumentation framework is a pair (S, R) where S is a set
and R C S x S. Let R be the converse relation of R

We say that an argument A attacks an argument B iff (4, B) € R or,
equivalently, iff (B, A) € R.

An argumentation framework can be represented as a directed graph
in which the arguments are represented as nodes and the attack relation is
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.D
N
° e —~ o >
AY—B
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FIGURE 1. An argumentation framework represented as a
directed graph (This figure originates with Martin Camina-
da, it is one of his favourites)

represented as arrows. For instance, the argumentation framework where S =
{A,B,C,D,E} and R ={(A, B),(B,A),(C,B),(C,D),(D,E),(E,C)} is rep-
resented in Fig. 1.

The shorthand notation AT and A~ stands for, respectively, the set of
arguments attacked by A and the set of arguments that attack A. Likewise,
if Args is a set of arguments, then we write Argst for the set of arguments
that is attacked by at least one argument in Args, and Args~ for the set of
arguments that attack at least one argument in Args. In the definition below,
F(Args) stands for the set of arguments that are acceptable in the sense of
[18].

Definition 2.2 (Defense/conflict-free). Let (S, R) be an argumentation frame-
work, A € S and Args C S. We define AT as {B | A attacks B} and Args™
as {B | A attacks B for some A € Args}. We define A~ as {B | B attacks A}
and Args~ as {B | B attacks A for some A € Args}. Args is conflict-free iff
Args N ArgsT™ = @. Args defends an argument A iff A= C Args™. We define
the function F : 2% — 29 as F(Args) = {A | A is defended by Args}.

In the definition below, definitions of grounded, preferred and stable
semantics are described in terms of complete semantics. These descriptions
are not literally the same as those provided by Dung [18], but as was first
stated in [11] and [5], these are in fact equivalent to Dung’s original versions
of grounded, preferred and stable semantics.

Definition 2.3 (Acceptability semantics). Let (S, R) be an argumentation
framework and let Args C S be a conflict-free set of arguments.

—  Args is admissible iff Args C F(Args).

- Arygs is a complete extension iff Args = F(Args).

—  Arygs is a grounded extension iff Args is the minimal (w.r.t. set-inclusion)
complete extension.

— Arygs is a preferred extension iff Args is a maximal (w.r.t. set-inclusion)
complete extension.

— Args is a stable extension iff Args is a complete extension that attacks
every argument in S\.Args.

—  Args is a semi-stable extension iff Args is a complete extension where
Args U Args™ is maximal (w.r.t. set-inclusion).
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stable extension
isa

semi-stable extension
\E a

preferred extension grounded extension
isa is a

completj extension
isa

admissible set
isa

conflict—free set

FIGURE 2. An overview of argumentation semantics (exten-
sion based), (this figure originates with Martin Caminada)

As an example, in the argumentation framework of Fig. 1 {B, D} is a
stable extension, {A} is a preferred extension which is not stable or semi-sta-
ble, & is the grounded extension, and {B} is an admissible set which is not a
complete extension.

It is known that for every argumentation framework, there exists at least
one admissible set (the empty set), exactly one grounded extension, one or
more complete extensions, one or more preferred extensions and zero or more
stable extensions. Moreover, when the set of arguments in the argumentation
framework is finite, there also exist one or more semi-stable extensions.

An overview of how the various extensions are related to each other is
provided in Fig. 2. The fact that every stable extension is also a semi-stable
extension, and that every semi-stable extension is also a preferred extension
was first stated in [12]. All other relations shown in Fig. 2 have originally been
stated in [18].

Definition 2.4 (Caminada labelling).
1. Let (S, R) be an argumentation frame. Let Args be a complete extension.
Define a function \ 4,4; on S as follows:
Args(x) = in (or =1) if x € Args
Adrgs(2) = out (or 0) if for some y € Args, (z,y) € R
Args(z) = undecided (or = ) otherwise.

2. Note that it is clear that an extension is stable iff its A function has
codomain {0, 1}, i.e. it is a {0,1} valued function.

2.2. Discussion of Challenges

It is clear from the above that although both classical logic and argumentation
frames use orderings as a basis, they deal with them in completely different
ways. Let us see if we can get these two areas closer together. Consider the
typical situation of Fig. 3.

Imagine that this is an ordering as part of the canonical ordering of Dwffs
as in Example 1.1. We have ARq; A ... A\ ARgq,.
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q1 qn

A={q1,....q.}

FIGURE 3.

We can also regard this figure as an argument frame, by taking the attack
relation to be the converse relation R of R.
According to classical logic for || we have
o E(A)=1if AT £(g) =0
According to argumentation frames we have for any stable extension Args:
o Aisiniff A, (¢ is out).
or
®  Adrgs (A) =1iff /\?:1()‘.»47'55 (¢;) =0).
The formula is the same. If we identify f(z) = 1 as “z is in”, then we can
write with some abuse of notation that
o f(A)=1-max(f(g;))
o Args(A) =1 — max(Aargs(gi))
Obviously we recognised that the recipe for being in any extension, given by
Dung, corresponds to the truth table for |).
There are, however, further differences. We now list them and then
address and overcome them.

(D1) From argumentation into logic.
In classical logic the ordering should be acyclic. In argumentation we can
have any binary relation, e.g. as in Fig. 1. We ask: how can we regard
an arbitrary argumentation network as logic?

(D2) From logic into argumentation.
In logic the endpoints (i.e. =Jy(xRy)) x can be assigned any value. In
argumentation the endpoints can be value 1 (they are in).

If we consider Fig. 3, the endpoints ¢, ..., g, can be assigned by h

(the assignment) any value, for example

h(g1) = h(g2) = -+ = h(gn) = 0.

In this case A will get value 1.
Argumentation theory, when viewing the ordering of Fig. 3, will
allow only value 1.

h(qi) = h(gz2) = -+ = h(gn) = 1.

(D3) In classical logic the values one gets are always 0 or 1. In argumentation
we can get values 0,1 and undecided (in case of loops).

Let us address these points one by one.
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(S1) Solution to D1

Consider the network in Fig. 1, how can we regard it as Logic? We now
explain:

Almost in every elementary textbook in logic, there are the following
exercises:

Ezercise 1. The statement a says I am false (liar paradox). Can you give
it a truth value?

The answer is no, we cannot. If we give it T then it should be L and if
we give it | then it should be T.

FEzercise 2. You have two statements, a and b. a says b is false and b says
a is false, can you give them a consistent truth value assignments?
The answer is that there are two possibilities;

a=Tand b= 1
and

a=land b=T

Ezercise 3. We have n statements, aq, ..., a,.

a1 says that as is false

an_1 says that a, is false
an says ap is false.

Can you consistently give these statements truth values?

The answer is that if n is odd we cannot but if n is even there are two
solutions.

The above Exercises correspond to argumentation networks
Exercise 1 corresponds to the network containing a single node a attack-
ing itself.

Exercise 2 corresponds to the network with two nodes a and b, where a
attacks b and b attacks a.

Exercise 3 corresponds to the network which is a cycle of n nodes, as
described below, where — is attack:

a1 — ag — - — Ay — a1.

The logic exercise question:

what consistent truth value assignments can you give to the statements,
including no assignment to some?
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Corresponds to the question:
what are the extensions to the network, including undecided?

Now let us look at the network of Fig. 1 and turn it into a logic
exercise.

Exercise 4. Given the following statements, can you give them consistent
truth value assignments (including no assignment to some)?

A says B is false
B says A is false and C is false
C says D is false
D says E is false
E says C'is false.

I think by now the reader has a fair idea of how we regard an argu-
mentation network as an exercise in logic.

By the way, some logic textbooks have some hard exercises corre-
sponding to some pretty complicated networks!

For general formal construction, see the subsection on Boolean Net-
works below, especially Theorem 2.11 and Remark 2.12

(S2) Solution to D2
We still have the problem of the value assignments to endpoints. Argu-
mentation theory requires us to give them value 1. This can be overcome
by splitting every endpoint x into 2 points z and x*, with 2*Rx and
TxRx*.

So Fig. 1 becomes Fig. 4.

This figure is not meaningful from the logic point of view. But from
the argumentation point of view we can have 2" stable extensions and 3™
complete extensions. For the case of two valued logic we use only stable
extensions. Let E be any stable extension. Let hg(q;) = 1iff ¢; € E. Now
we have 2™ assignments h to the atoms.
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For the case of three valued logic, we use complete extensions. Let
be a complete extension, then let hg(g;) = 1if ¢; isin E, let hg(g;) =0
if ¢ is in E and let h(q;) = 3 if neither is in E.

For the moment, this discussion is only intuitive. We need to set up
the formal machinery to explain why and how we can pair Figs. 3 with 4.

The perceptive reader might ask: in what way does the discussion
in (S2) address the difficulty (D2)?

Is it not just a trick?

We are saying:

“the graph of Fig. 3 doesn’t work, so let’s switch to the supergraph of
Fig. 4”.

The answer is that no, it is not a trick; it is common practice in
mathematics to translate one system into another. See for example
http://en.wikipedia.org/wiki/Complex_number#Matrix_representation_

of_complex_numbers, for the translation of complex numbers into matrices.

In our case we are translating Fig. 3, which is a figure in the area of
logic, into Fig. 4, which is a figure in the area of argumentation networks.

Take the letter ¢; in Fig. 3; here we are in the realm of logic, and
¢1 is an atom, so we can talk about substituting another logical formula
B for ¢;.

Take now ¢ in Fig. 4; here we are in the realm of argumentation
networks, ¢; is an abstract argument and the question of substituting a
formula B of logic for ¢; is meaningless.

By the way, we have investigated in [22] the possibility of substitut-
ing another argumentation network for g;, but this is new research!

To make this point crystal clear, recall our answer (S1) above, as
to how we translate from argumentation networks into logic. This is the
other direction of showing that argumentation networks are equivalent
to logic.

For a full discussion see Sect. 6.

Solution to D3

To solve the problem of undecided values in argumentation we can pro-

ceed in two ways

(a) Restrict argumentation extensions to stable extensions, or more spe-
cifically allow for orderings that give rise to stable extensions. For-

tunately the orderings needed to solve (D2) are such orderings (e.g.

Fig. 4). This is not, however, really a solution to (D3) because we

are making the problem disappear. Much better is:

(b) Allow and move to a 3-valued logic for the connective J}. This option
is already incorporated into our definitions above.
We shall follow both possibilities. We shall address (b) in Sect. 3.

Definition 2.5 (Nearly acyclic ordering). An ordering (S*, R*) is said to be
nearly acyclic iff it is obtained from an acyclic ordering (S, R) as follows.

1.
2.

Let T be all the endpoints of (S, R), i.e. T = {z|-Jy € SxRy}.
Let T* be a set of new points of the form
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T ={a*|x € T}.
Let
S*=SuUT"
and
R* = RU{(x,z"), (z",2)}.
3. We say that (S, R) and (S*, R*) are paired.

2.3. Integrating Argumentation Frames with Classical Logic: An Informal
View

We are now ready to present in principle (technical definition will be given
later) our method of integration. The idea is very simple. Present two net-
works (S, R) and (S*, R*) with S C S*, R C R* such that they form a pair
as in Definition 2.5. We can then view (5, R) either as classical logic formula
construction tree as done in Sect. 1.1 or as an argumentation frame, a sub-
frame of (S*, R*), and do what is natural to do from each point of view and
compare what each movement means from the other point of view.

Definition 2.6 (The canonical argumentation frame based on Dagger logic).
Our starting point is the general canonical model (0, R) of Example 1.1.

The elements of © are all Dwffs of the language of classical logic based
on |} and the atoms Q. R is defined by

e ARB iff B is an immediate subformula of A.
Recall that this means that
[ ] U(Al,...,An)RAi,i:1,...,TL.
Regarding (O, R) as just an acyclic ordering, we can construct its pair ©* 2
O, R* O R as in Definition 2.5.
We add a set

Q" ={d"lqa € Q}
that is ©* = Q*U©, and R* = RU{(q,9%), (¢*,9)}

We now compare (©, R) from two points of view.

1. From the point of view of logic, when viewed as a canonical model for all
Dwffs of the language of || and where we allow for arbitrary assignments
h to the atoms of Q).

2. From the point of view of argumentation theory, where (©*, ]%*) is
regarded as just an ordering, just an argumentation frame in which Ris
the converse relation of R and where we examine the effects of argumen-
tation extensions of (©*, R ) on the subnetwork (O, R).

We now go through the concepts one by one.
(C1) Concept of attack
B attacks A in the argumentation network means that B is an immediate
subformula of A in logic. Note that since
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A:U’ (Bla"'aBn) = /\_‘Bz
=1

when B; attacks A we have that F —(A A B;).

Thus this concept corresponds to the inconsistency attacks used by
Besnard and Hunter in their book [6]. Note for example that ——B; ={{}
B; does not attack A because it is not an immediate subformula of 4.4
The concept of an extension
A complete extension in (©*, R*) can be generated by any function A :
Q — {0, %, 1} generating a subset of @ of all ¢ in @ which get value 1,
a subset of @Q* of all ¢* such that the value of ¢ is 0 and the rest get
value %

The ordering (©*, R*) allows for stable extensions. Stable exten-
sions give rise to {0,1} values on @ and Q*. So let E* be any stable
extension. E* must choose one from any mutually attacking pair g, ¢*.
So let \o(q) =1iff ¢ € E*.

The values A, (A), A € © are now determined uniquely by Ao.

We have

Now let us look at A\g as a logical assignment h = Ay to the atoms.
For the two valued case we have, after propagating truth values,
that (see Definition 1.5)
o | {Ay,...,A,} holds at the model h = \¢ iff for all i, A; does not
hold in h.
The above means that we have the correspondence
e stable extension in argumentation corresponds to a complete theory
(or equivalently a model) in classical and two valued logic.
For the three valued case it is slightly more complicated but we get
a similar situation. We need to define the notion of what is a complete
three valued theory. This can be defined (we will do this in Sect. 3) and
we have:
e complete extensions correspond to complete three valued theories
in three valued logic
There are other types of extensions in argumentation as shown in
Fig. 2, for orderings allowing for undecided elements. We shall deal with
this in Sect. 3.
The concept of a logical Dwff
This corresponds to the notion of an argument node.
The notion of a logical theory therefore corresponds to the notion
of a set of argument nodes.

4 'We believe we can draw conclusions from our paper to the debate about the inferential
argumentation frames, as championed by Martin Caminada. We need more time to assess
our results. See, however, Sect. 3.3.
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FIGURE 5.

(C4) The concept of consequence A - B in logic
This means that in any model of A is a model of B.

Since what corresponds to “model” is “stable extension” for two
valued logic and a “complete extension” for three valued logic, the cor-
responding notion is as follows:

e Let (S, R) be an argumentation frame. Let 2,y € . We say = b (g g)

y iff in any stable (resp. complete) extension E, if x € E then y € E.
Similarly we have a correspondence between theories (and subsets of
arguments) proving another Dwif (another argument).

(C5) What corresponds in logic to conflict free set?
This concept has no logical counterpart, as a conflict free set of formulas
may be inconsistent, as Fig. 5 shows.

The nodes ¢ and I} ¢ are conflict free but inconsistent in logic.

The reader should not despair, this is to be expected. If we look
at the literature on how Dung’s abstract argumentation framework is
actually instantiated (by various scholars) we see that what is needed to
produce consistency is not conflict-freeness but the stronger condition of
admissibility. The really important concept is that of an admissible set.
See Caminada and Wu [13].

(C6) The concept of admissible set
This corresponds to the notion of an admissible path in the tableaux
system for |}, as described in items (4) and (5) of Definition 1.6.
Let me do this systematically. Let E' be an admissible set. It is
(1)  Conflict free,
and
(2) If A attacks B € E then for some C € E,C attacks A.
Let us see what (1) and (2) mean in terms of logic. (Note that condi-
tion (1) alone does not have a logical meaning, as we saw in (C5) above,
but (1) and (2) together do have a logical meaning)
(1) means that we do not have any || {C1,...,C,} and any C; both
in F.
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(2) means that if B =|} {A41,...,A,} € E then for some X; € E, we
have that X; attacks A;, for each ¢ = 1,...,n. This must hold since
A; attacks B.
We remember that E C ©*. So if A; is an atom ¢;, this means
¢ €E.If A, = {Di,... ,Dz(i)} then X; is some D} € E.
In terms of tableaux think of the following set

E ={X|X € EnOB}
E, = {X|for some Y € E|XR'Y, ieY attacks X}.

We claim there is a path II in the sense of Definition 1.6. We need to
find the initial tableaux to start the process. We can take [E||E,] as
our tableaux and observe that the rules (1) and (2) are really tableaux
rules which ensure a non-closed path. The conflict free property ensures
that for each atomic ¢ we cannot have both ¢,¢* € E. (Remember E is
admissible in (0%, R*)!)

So an admissible set corresponds to an admissible path in the tab-
leaux proof restricted to the members of the set. There is a nicer way
to do this by taking minimal elements of E but we do this in the next
section.

We shall also address and discuss what happens in the case of the
empty set being an admissible set. Is it the empty tableau?

(CT) The logical concept of proof
We now examine how to represent in an argumentation frame the notion
of logical proof. This is a dynamic concept and obviously we shall have
to do something dynamic; like execute a logical walk over the nodes of
the frame.

According to (C3), a Dwfl corresponds to a node in the argumen-
tation frame. According to (C4) the notion of

consequence A - B,

corresponds to the notion of
B is an element of any extension (of the correct type) which
contains A
Thus if we have a step-by-step proof of B from A, i.e.

D= A

D,=DB

Then (Dy,...,D,) is a logic “walk” along nodes. We must define the
rules of such a “walk” in terms of the geometry of the argumentation
frame, and show that such a “walk” exists iff A+ B.

Our starting point is modus ponens. This has the form

AA—BFB
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U(U4,B)=-—4A-B
=AA-B

|

Wl 4,Bl=—=(4A=B)
=4—> B

FIGURE 6.

FIGURE 7.

The formula for A — B in the language of |} is

A— B= —\(—\—|A/\—|B)
=4 {I A, B}

Figure 6 shows what is happening
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According to (C3), a logical theory is a set of argument nodes, i.e.
a subset T'C S. So if A, A — B € T, this means that we can expand T

and let also B e T.

We can therefore offer the following definition for geometrical

modus ponens (GMP):



276

D. M. Gabbay Log. Univers.

Definition 2.7 (Geometrical modus ponens).

(a) Let (S,R) be an argumentation frame. The pattern subframe of
Fig. 7 is called modus ponens pattern. This pattern is directional.
We can recognise the bottom 2z’ and the left top z (distance 4 from
the bottom) and the right top y, being the top at distance 3 from
the bottom.

(b)  The modus ponens closure rule on a set 7' C S is according to this
pattern the following:

e ifx 2 €T thenlet yeT.

(¢) We now look at the — elimination rule.
To show A — B, assume A and prove B
So geometrically to add the node 2’ of Fig. 7 to T we need to iden-
tify 2’ as part of the pattern of Fig. 7 and temporarily add the node
x to T, show that the geometry allows us to add y to TU{x}. Then
we discharge z and end up with 7T'U {2'}.

(d) The concept of T +— x can be defined that starting from T we can
follow a sequence of geometrical moves which allow us to expand T'
to T’ containing x. An example will help.

Ezxample. Consider the following derivation

B — (A — (), assumption
A, assumption
We aim to prove B — C'
Show B — C' from subproof
(i) B, assumption
(i) A — C, from (a) and (i)
(iii) C from (b) and (ii)
(iv) Exit subproof, discharge B.
Consider Fig. 8.
Look only at patterns. The wifs written is only to help read the pattern.
We start with

T = {y,e}
We want to show that T — c.

Step 0. Recognise that ¢ is the bottom of a pattern {x,2’,b, ¢, z}, with x left

top and z right top.

Step 1. Add x as an assumption to T to form Ty = {z,y,e'}.
Step 2. Using the GMP pattern {z,2’,d, e, e’} and the fact that x,¢’ € Ty,

we add d as an inferred item, to T to form Ty = {xz,€’,d,y} (note
that d stands for A — C).

Step 3. Using the pattern {y,y’,a,d, z} we can add z to Ty to obtain T3 =

TQ U {Z}

Step 4. Having started with 7'U {z} and ended up with T'U {z, z}, we can

now add ¢ to T because c¢ is the bottom node of a modus ponens
pattern whose top left is z and top right is z and we have shown that
TU{z}— z.
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b:BA-C a:AnN-C

c:B—>C

e:BAN-(4—-C0C)

¢ :B—-(4-0)

FIGURE 8.

X y
u = endpoint

FIGURE 9.

Thus the proof is a sequence of nodes each obtained from 7T and
previous members of the sequence using geometrical (GMP rules)
considerations.

Remark 2.8. The reader should note that our discussion here is only an
intuitive introduction, to get the idea of what a proof is. The exact defi-
nition of a GMP pattern need yet to be given in the correct context. To
get an idea of what we mean, consider Fig. 9.

This figure may not conform to the pattern of Fig. 7. First we have
x itself acting as z’. We may ignore that. After all if A = (A — B) and
we have A we can still get B. A more interesting problem is the pres-
ence of node w attacking z. This really breaks the pattern. However, w
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is attacked by w which is an endpoint. So we do have the pattern if we
take that into account.
We need a proper technical definition for our intuitions.

Remark 2.9 (Inference based argumentation and Geometrical Modus Ponens).
We note that we can make a contribution to the debate about inference based
argumentation. There is the view, championed by senior figures in the field
among them Martin Caminada, Henry Prakken and others see [14] and [34],
that there are three stages in constructing an argumentation network

1. start with base logic and a knowledge base, which can be used to con-
struct proofs

2. Use the proofs from 1. to construct arguments, the attack relation and
an argumentation frame

3. Use the network of 2. to construct extensions and expect the winning
arguments in any extensions in 2. to give rise to a consistent theory of
the base logic in 1.

See for example [13,34]. The notion of geometrical Modus Ponens allows us to
offer an abstraction of step 1 above in the sense that we can include it in the
abstract within step 2. See Sect. 3.3 below.

The advantages of doing this are two fold

e  We continue Dung’s spirit of abstraction and not regress backwards into
specialised systems. If in step 1 we already have the detailed notions of
base logic, proof and inconsistency, why add step 2 to dress it up in some
high level concepts which are obvious and available already in step 17

e The geometrical concepts of walking along a network to simulate the
proof procedures are not just a local technical device cooked up espe-
cially to enable our local purpose—it is a commonly used apparatus of
traversing graphs and networks used in many areas, including graph the-
ory and Kripke semantics yielding a rich variety of results.

Summary of correspondence between logic and arguments

It would be helpful to summarise the correspondence between abstract argu-
mentation and Dagger classical logic. See Table 2.

2.4. Boolean Networks

The main result of this section is to show that every argumentation network
can be obtained in a systematic way from logic. In Sect. 2.2, under (S1), we dis-
cussed this. We intuitively shown in (S1) that every argumentation network
can be obtained from a logic exercise. This however, is not mathematically
systematic.

We show a stronger result, that every Boolean network can be obtained
from logic.

To motivate Boolean networks, let us start with an example of Brewka
and Woltran.

The correspondence between classical Dagger logic and argumentation
makes the results of Gabbay [22,24] and Brewka and Woltran [9,10], about
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TABLE 2.

Logic concept

Argumentation concept

1. Classical logic formulated A specific canonical argu-
with | mentation frame presented
in Definition 2.6
2. A is an immediate A attacks B
subformula of B
3. Complete logical theory Complete extension for the
(or equivalently) a model case of 3-valued model, and
a stable extension for the
case of a two valued model
4. A Dwif An argument (a node in the
argumentation frame)
5. Consequence A - B Node b is present in any
complete extension contain-
ing node a
6. No direct correspondence Conflict-free set
7. A maximal path in the tab- Admissible extension
leaux (based on the elements
of the admissible extension)
8. Modus ponens or other Geometrical patterns on
proof rules the abstract argumentation
network
9. A proof sequence from A to A “walk” in the network

B using certain proof rules

from point a to point b
respecting and using certain
geometrical patterns

translating an arbitrary Boolean network into argumentation network, rather
predictable.

We simply translate the relevant Boolean formulas into the language with
Dagger and they will automatically be embedded into our canonical argumen-
tation frame (©*, R*) of Definition 2.6.

Let us begin with an example of Brewka and Woltran.

Ezample (Brewka and Woltran Boolean example). Brewka and Woltran [9] put
forward the example in Fig. 10, in which nodes a and b are neither attacking
nor supporting node c. In their abstract dialectical framework one can write
Boolean conditions on the nodes. In this case we want ¢ = [(a A —b) V (ma AD)],
i.e. we want ¢ = in when ezactly one of {a, b} is in.

This example was addressed specifically in our paper [7, Examplel4].
It was translated into Dung argumentation networks using additional nodes.
Paper [7] then follows to indicate using [22] how any abstract dialectical frame-
work can be so translated into a Dung network.

We quote Figure 27 from [7] as our Fig. 11 and we implement it in Fig. 12.

If argument a is acceptable and argument b is acceptable then arguments
Uugq, Up are not acceptable and argument y is acceptable and argument c¢ is not
acceptable.
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N4

c=[(an=b)V(—aAb)

We use —=—> to indicate Boolean connections.

FIGURE 10.
a b
X Uy up
/
C
FIGURE 11.

If both arguments a and b are not acceptable then argument x is accept-
able and so argument c is not acceptable.

If argument a is not acceptable and argument b is acceptable then argu-
ment x is not acceptable, argument u, is acceptable and wy is not acceptable.
Because u, is acceptable then we get y not acceptable. Since both x and x are
not acceptable then we get argument ¢ as acceptable, as desired.

If argument « is acceptable and argument b is not acceptable then we get
argument x is not acceptable and argument wy is acceptable and argument y
is not acceptable. Thus argument c is acceptable, as desired.

The general case requires the equational algebraic approach, we address
it in our paper [24].

Consider Fig. 13.

This presents a problem at the moment because it is cyclic.

Definition 2.10 (Boolean networks). A Boolean network has the form (S, R, U,),
t € S, where R C S xS and for each t, W, is a Boolean wif in the set of atoms
{yét} For t an endpoint, ¥, is either T or L. We write ¥(y1,...,yx), where

A solution to the Boolean network is a function & giving values in {T, L}
to each node t € S, such that the following holds

(*)  h(t) = Welh(yr), -, h(yx))
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x=l(a,b)=—-an-b u, =} (a) = —-a up = (b) = -b

y:U(ua’ub):a/\b

¢ =l (x,y) = =(—a A =b) A =(a A b)
=(aA-b)V (-aAb)

FIGURE 12.

c c=(aN=b)V (maAnb)
a=c

FIGURE 13.

Note that we may not have a solution. Take for example the network
({t}, tRt, U, = —t).
A solution for this network requires a function h such that
h(t) = —h(t).
This is not possible.
Theorem 2.11 (Representation theorem for Boolean networks). Every finite

acyclic Boolean network can be faithfully embedded into an argumentation net-
work.

Proof. Let (S, R, ¥;) be an acyclic network. Write each Wy(yy,...,yx) as a
Dwff in the y’s using the language with |}. Since we are now using logic, we
use the relation R instead of K. Remember that one is the converse of the
other. So y attacks = can be written either as x Ry or as y}?x ory — .
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So our network has the form (S, R, ¥;) where ¥} is written with J. (We
will have to accept T and L as formulas as well.)
Now define new formulas ¢j,t € S as follows:
1. For t an endpoint (i.e. =Jy(tRy)) let p; = ¥;.
2. Let t,yi1,...,yx be such that {y|tRy} = {y1,...,yx}
Let ¥} be written as ¥} (y1,...,yr). Then let

o1 = V(W1 / ey, YK/ Py,)
It is easy to see that
1. tRsiff ¢} is a subformula of ¢f.
2. For any solution h to (*) we have h(t) = h(y]).
From the above it is clear that the subset {¢;|t € S} is a subnetwork of

the canonical network (0*, R*) based on the atoms S of Definition 2.6.
This proves the theorem. O

Remark 2.12 (Boolean network with loops). What do we do in the case of
(S, R, ;) with loops where a solution h may or may not exist?

Again we assume ¥, is written with |} only.

Define Dwifs U, n=1,2,....
1. U=y,
2. Ut =, ({y/Vr[tRy}).
We are getting an infinite number of wifs but all of these appear in the canon-
ical model based on S as defined in Definition 2.6.

Note that for any solution h satisfying (*) we also have

h(q’?) = h(‘l’t)-

Now consider the equivalence relation on the canonical model (0%, R*) as fol-
lows:

x =~ y iff for some n, m we have that x = U} Ay = UJ". Let us denote
by E(t) the set of all z such that = =~ t.

Let x ~ y be defined by induction as follows

1. z=yiff z =~; y for some ¢
2. YAzt~ {y}, it ;= y;, fori=1,2,....
~ is well defined. Take the factor (0*/ ~, R*/ ~) network with ©* being
the equivalence classes and the attack relation R*/ ~ is defined by
x/ ~ R*/ ~y/ ~ iff for some 2’ ~ x,y’ ~y we have zR*y.

We claim (5, R, U;) is faithfully embedded in (©*/ =, R*/ ).

Let ¢ be mapped onto the equivalence class {U7'}.

Assume tRs holds. Then W)™ = W,(,... " ..) by definition. So for
any h satisfying (*) we also have

h(W¢/ =) = U ({h(¥s/ =)|tRs}.
Conversely if there is an h on the canonical model giving all elements of

the same class the same value then there is an h satisfying (*) on the original
Boolean network.
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FIGURE 14.

FIGURE 15.

Let us give some examples illustrating the process of Remark 2.12.

Ezample. Consider the loop in Fig. 14.
In this figure we have ¥, = =b and ¥, = —a. We therefore have

Ul==b Ul =-a
\II?L:a \Ilg:b
U =-b U=-a

The initial equivalence classes are therefore

E(a) = {a,-b} and E(b) = {—a,b}.
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Consider the canonical model, based on the atoms {a, a*, b, b*}. Figure 15

describes part of it. Recall that —A is |} A in the Dagger language.
Taking into account the equivalence classes we get Fig. 16.

Ezample. Let us try an example where there is no solution in {0,1}, as in

Fig. 17.
We get
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FIGURE 16.

)

FIGURE 17.

a,b,c,la,lblc

FIGURE 18.

Obviously there is one equivalence class
{a,b, ¢, —a,—b, ~c}
The graph we get is in Fig. 18.

There is no solution in {0,1}. The solution in {0,1,3}isa =b=c =
a* =b* =¢* = %,SO&ISO»UCl:Urb:lLC:%-
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3. Technical Results on Integrating Argumentation as Logic

3.1. What is a Logical System

Our first step is to clarify what we mean by logic. We give precise definitions of
a view of “what is a logical system” which is most friendly to argumentation.

We now explain our ideas. Consider Fig. 11. This is just a network. How
can we turn it into a logic? One obvious way of doing it is to go through a
semantical interpretation. This is an ordering, a set of worlds with a binary
relation and so we can regard it as a Kripke model for some logic. It can thus
define a modal logic, or an intuitionistic intermediate logic, or a provability
logic, etc., etc.

In our paper [21], we took this approach and interpreted argumentation
networks into the modal logic of provability. We got surprising results about
what is the logical content of argumentation network, but this does not present
the network as a logic.

The construction in Sect. 1 of this paper does turn the network into a
logic. It says the nodes t are formulas and the attack of z1,...,x, on t means
“being an immediate subformula of”. So Fig. 11 actually represents Fig. 12.

So far so good, the problem is that argumentation networks can have
loops. So how do we interpret Fig. 97

Our idea is to abstract from the actual syntax of a formula and regard
it as an object and have the relations of “being an immediate subformula of”
as the interpretation of the arrow. If we do that, all we have left is just an
ordering? Where is the logic in it?

The answer is simple. All we need to add is the truth table functions
which tell us for each node t and its attacking nodes z1,...,x,, how to get
the truth value of the formula ¢ (whose structure we do not know) from the
values of its immediate subformula 1, ..., z,, (whose structure we also do not
know). Let us call such a truth propagating function

hy(z1,...,2,).

We may not know the syntactic structure of the formulas but we do know how
to calculate their values! When we know how to calculate values we do not
mind cycles, they just give rise to equations to be solved.

Clearly h; is also part of the logic.”

Now that we have the idea, all that remains is to figure out the coherent
technical details. This we now do.

5 The perceptive reader might be a bit puzzled here. He may reason as follows:

If T know the immediate subformulas of ¢ and the function yielding the truth
value of ¢ from the truth value of its immediate subformulas, then this means
that the logic is truth-functional (at least there) and therefore this function
characterizes the main connective of ¢, so I know the structure of t after all
(and, recursively, I would know the structure of the subformulas, applying the
same principle).
Note, however, that h; can vary with ¢ and may not be Boolean. We may also have loops in
the network.
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Definition 3.1 (Function spaces). By a function space we mean the following

1.

A set V with a family of functions F of the form
h: V"=V
Forn=1,2,....

The set V may have some operations on it by which means the
functions h in F are defined. We give two examples:

(a) V =10,1], the set of all real numbers between 0 and 1 and F is the

set of all continuous functions with any number of variables.

(b)  V is a complete partial order (i.e. it has a partial ordering on it and

any subset Vy C V has a least upper bound and a greatest lower
bound) and F is the set of all monotonic functions on V in any
number of variables.
We assume (V,F) satisfy the following. Let hy,..., h, be n functions in
Z1,...,%, (same n). Consider the vector function on V" defined by

j = h(7)

Y
Where & = (1,...,20),¥ = (Y1,.-.,yn) and h = (hy,... h,).
Then we assume that any such vector function for any n has at least
one fixed point 7y, i.e. we have

Zo = h(Z)).
Note that the fixed point condition holds for [0,1] because of Brou-
wer’s fixed point theorem and for the complete partial orders because of
Tarksi’s fixed point theorem.

Definition 3.2 (Logics, models, theories and inconsistency). Let (V,F) be a
function space.

1.

By a (V,F) logic we mean a system (S, R, h;),t € S where S is a finite
set, R C S?, and for each t € S, the following holds:

Let x1,...,x, be all points in S such that tRx; holds. Then h; is
an n-place function from F.

It is important to note that when we write h;, then the variables
Z1,...,%T, are ordered inside h;. We are not assuming that h; is a sym-
metric function in its variables. Where does this order come from? It
comes from the geometry of (S, R).

Consider for example Fig. 9, the points z’,y, w are distinguishable
individually by the geometry of the graph and so we can order them as
we see fit when we plug them into h,.

It is expected that should the geometry not distinguish between any
two points, say 1 and x2, then h; must be symmetrical in these variables.
By a model for the logic (S, R, h;) we mean any function f from S into
V such that for all ¢ € S we have
f(t) =h(f(z1),...,f(xn)).

Such f s exist because of the fixed point theorem for (V,F). f is not
unique for solving (*1)
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(*2)

I
w

X -+ T - <

y

Rule r; Rule r;
FIGURE 19.

Let (S, R, hy) be a logic and let s,t € S. We say s E ¢ iff for any model f
we have

f(s)=1=f1f(t) =1.

Note that (S, R) corresponds to the set of wifs of the language and f to
truth value assignments to the wifs. The partial ordering of (1b) of Defi-
nition 3.1 above corresponds to the Lindenbaum algebra of the logic. The
functions h; are the truth tables of the connectives. R corresponds to the
inductive construction tree of the wifs, except that it needs not the tree
but could be a general binary dependence relation!

This is a sort of “free style” notion of a wif.

A wif is just an abstract point with a relation R saying xRy, which

means ¥y is an immediate subformula of x.
A theory in traditional logic is a set of wffs required to be true. In our
context, to require a set of nodes to be true means to impose constraints
on the models, i.e. on the function f, i.e. on the solution of the equations
of (*1).

Since f is a general function from .S into V', there are many types of
constraints we can impose, e.g. that f has a minimal number of 0 values
or that it has a minimal number of % values (this would yield circum-
scription minimal models in the right context and right formulation for
the case of 0 values, or would yield semi-stable semantics for the case of
argumentation and value ).

So we define
A logical theory is a set of constraints on the solutions (models) fs. It is
inconsistent if the constraints have no solution.

See [24] for examples.

Ezample (Geometrical proof rules, geometric inconsistency).

1.

Let (S, R) be an argumentation frame. A unary geometrical proof rule
r is a finite ordering (which can be represented visually by a figure) of
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a  end point

FIGURE 20.

the form r = (P, Ry, z,y) where P, is a set of nodes and R, is a binary
relation on P, and x,y are two distinct points in P,. x is called the input
point (the premise of the rule) and y is called the output point (the con-
clusion of the rule). We require that x and y be geometrically definable
in (S, R) in terms of information in (P, Ry). Figure 19 shows two such
rules corresponding to the rules

A
r: TﬁA
And
. _|_\A
2T

2. A binary geometrical proof rule for (S, R) has the form r= (P, Ry, x, 2", y)
where (P, R,) is finite ordering and x,2’,y € P.. x is the input point,
Z" is the base point and y is the output point. We require that x,y, 2’ be
geometrically identifiable in (S, R) in terms of information available in
(P, Ry).
3. What do we mean by a point being geometrically identifiable in (S, R)
in terms of information available in (P, R,)? Counsider Fig. 20.
This pattern requires in (S, R) two points; the first being an end-
point attacking the second. The information a = endpoint is for (S, R).
4.  What do we mean by geometric inconsistency? We need to have a family
of subsets of the network S which are marked unacceptable. Intuitively
each such subset corresponds to a constraint of, say, wanting an equa-
tional solution which gives all members of the subset value 1. So the
family is of all subsets for which there is no solution.
A formal definition is given in Definition 3.3.
Another example of a pattern for geometrical modus ponens is
Fig. 7. The points z,y, 2’ in this figure are definable using R,.

Definition 3.3 (Formal definition of geometric proof rules and inconsistency).

1. Let (S, R) be an argumentation network with R C .S x S. Consider first
order predicate logic with a binary relation R. Let ¥(z) be a formula in
this language with a free variable x. Let a € S. We can ask

(S, R) E70(a)
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For example
Uy (z) = =3y(zRy)
Says that x is an endpoint in (S, R) or
Vs(x) = Jy(zRy AyRy)

We call such formulas ¥(x) as additional information about node z for-
mulated in the first order predicate logic of the binary relation R.
2. A geometric rule r has the form

r = (P, Ry, Vy(x),a1,...,ax,¢0b), for t in P,

Where a,a;,c,b € Py.

ai,...,ar are inputs. ¢ is the base and b is the output.

Intuitively think of it as a1 A ... A ax = .

(P, Ry) is a finite ordering and for each t € Py, U,(t) is additional
information about ¢ in the sense of item (1) above.

3.  Letr be a geometric rule, and let (S, R) be an argumentation network.
Let w : Pr — S be a one to one embedding of P, into S. We say u
identifies the pattern of the rule r in p(P,) iff the following holds.

(a)  xRpy iff p(x)Ru(y) for all z,y € Py.
(b) Forallz e P, (S,R) E U,(u(x)).

4. We require also that the points p(ai),...,pu(ar)u(c) and p(b) are
uniquely identifiable in (S, R). More precisely there are properties
Cay (T), -+« s Pap (), 0c (), p(2) such that for each v,y € {a1,. .., ar, ¢, b)
we have

(S, R) Eey(n) A N\ —ey (1))-
y'#y
5. An inconsistency notion is just a family of subsets of S. For monotonic
logic the family is closed under enlargement

Ezample. Consider the pattern of Fig. 20.
Here

U, (x) = =JyxzRy
Up(z) =o ==.

Consider the following embeddings of this pattern into Fig. 9. (I chose this
figure at random, just for illustration).
If we match (a, b) with (y, z), we get a good embedding because y satisfies
U,, but if we embed (a,b) as (2, z), then the conditions are not satisfied.
Note that from now on to simplify notation we regard p as the identity
and talk about P, C S and R, C R.

Definition 3.4 (Geometrical proofs). Let (S, R) be part of a logic as defined
in Definition 3.2. Let T C S be any subset. Let ry,...,r; be proof rules. We
define the notion of
e the sequence (z1,...,2,),n > 1,z; € S is a proof of level m > 0 of z,,
from T, using rq,...,rg.
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The definition is by induction on m and n.

Casen=1,m =0
1 is a proof from T if 1 € T.

Case n+1,m =0
(z1,...,Tnt+1) is a proof from T iff one of the following holds:

1. xp41 € T

2. Tp41 is obtained from some z;,7 < n using a unary geometrical rule
r = (Py, Ry, x,y) such that P, C S, R, C R and x; is the input (x = ;)
and x,, is the output (y = zy,).

3. TFor some xj,,...,7;,%;,%7 < n and some geometrical rule r =
(Pr,Rr,LL'17...7
T, 2 y) we have P, C S, R, C R,xj, = x;,2 = x; and y = Tp11.
Case level m + 1
Assume that for each T and any m’ < m and any n we have defined the
notion of x1,...,x, is a proof of z, of level < m’. We now define this
notion for level m 4+ 1 and n > 1. Let cases (1)—(3) be as above for level
< m. We add more cases

4. Casem+1l,n=1

For some rule r = (P, R, x;, 2',y) we have that there exists (y1, ..., Yn’),
Yns = y which is a proof of level < m of y from T U {xg} We also have
2 = x.

5. Casem—+1,n>1
For some rule as in (4), we have that there exists (y1,...,Yn’)Yn’ = ¥,

which is a proof of level < m of y from T'U {z} U {z1,..., 2,1} We
also have 2/ = z,,.

Remark 3.5. Note that in logic based argumentation networks (see [14] or [29])
only level 0 proofs are used. The rules have the form Ay A...A A, = B and
only =, eliminations are used.

Definition 3.6 (Soundness of rules). Let (S, R,h;) be a logic in the sense of
Definition 3.2. Let rq, ..., rg be rules in the sense of Definition 3.3. We say the
rules are sound iff whenever b is proved from a in (S, R) as in Definition 3.4
for a,b € S then a - b holds as defined in Definition 3.2.

We say the rules are complete iff we have

e at biff bis provable from a using the rules.

If a subset of S is marked inconsistent then the constraint arising from that
set cannot be solved.

Ezample (Defeasible rules). Ordinary implication (strict implication) we can
write as Ay A...ANA, - Boras Ay — (A2 — ... = (4, — B)...).

Let us do geometrically A — B and A = B. All we need are some
markers in the figures representing these two implications, to distinguish one
from another. See Figs. 21 and 22.

Consider now (S, R) of Fig. 23 and consider the rule r of Fig. 22. Take
the theory T = {ay,...,an} U {b,}. What can it prove using r?
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input node x output node y

4

z = x — y, base node 7’ is an auxiliary node so that we can tell the
difference between input and output. When identifying this pattern in an
argumentation network it is required that nodes z and z’ bear exactly the

attacks shown in the pattern

FIGURE 21.

input node x output node y

A

o e
Z

2z = x = ¥, base node 2’ is an auxiliary node. When identifying this pattern
in an argumentation network it is required that nodes z, e and 2’ bear
exactly the attacks shown in the pattern

FIGURE 22.

The answer is that it can prove by and all b,_1,...,b; along the way.
The deduction is essentially a; and b; = [a; = (a1 = -+ (a1 = bg) - - - )]
yields for bj,1 = [CLJ‘,1 —— = (a1 — b())]

We can turn this ordering into a logic if we give the functions hy, for
any t of Fig. 23. Try h,, = % h,, = arbitrary h,, = h,,. hy, = arbitrary.
hy, = min(1,1 - a; +0bj_) for j > 1.

We need to show the rule is sound in this semantics, but in this case it is
clear because the rules are versions of modus ponens and the function h, are
from Lukasiewicz many valued logic.
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bo
B T B O
ai by e
B B O
a by e
a O
as S B, | by = ¢
Y
ey O
Aap-1 b1 €n—1
0 ()
a J b, = e,

FIGURE 23.

3.2. Revisiting the Canonical Model

In Definition 2.6 we introduced a canonical ordering (©*, R*) made up of all
Dagger wifs as well as an additional atoms Q*.

Let us now treat it as a logic in the sense of Sect. 3.1.
Take V ={0,1,1} and

59
e hy(zy,...,2,) =1—max(z;)

Let the relation A ~ B be defined as saying
e A= Bfor A,B e 0,A, B wif iff A and B have the same classical truth

table.
This relation is an equivalence relation and is decidable.
Let @0 = @/ ~

Let T be the set of all &~ equivalence classes of ©*. Define an attack rela-
tion Att on T by A/ ~ Att B/ = iff for some A’ ~ A and B’ ~ B we have
B'RA.

We claim®

e A/~ Att B/ = iff AF —B in classical logic.

What we need to show is that if A = =B then for some A’ =~ A and
B’ ~ B, A’ is an immediate subformula of B’. This is not difficult to show. We
can assume A and B are written in the language with |} only.

Since A+ —B, we have B+ —A, hence B ~ B A\ —A.

6 This is a standard way of transferring any relation between points in a set to their equiv-
alence classes.
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Consider

4B, A)
This is equivalent to B and indeed A is an immediate subformula of it.

We thus got a canonical model of (T, Att) of classical formulas (up to
equivalence).

The above notion of Att is symmetric and is based on inconsistency in
classical logic. In the literature, There are a number of frameworks for model-
ling argumentation in logic. A common assumption for logic-based argumen-
tation is to start with a knowledge base KB in some logic (usually a version of
defeasible logic based on KB) and construct arguments as pairs (A, A) where
A is a minimal subset of the knowledge base such that A is consistent and
Al|~ A. Hunter [29] call the logic used for consistency and entailment, the
base logic. Different base logics provide different definitions for consistency
and entailment and hence give us different options for argumentation.

3.3. Argumentation Systems Arising from Knowledge Bases

We are going to use our results to analyse problems and abnormalities existing
in argumentation systems based on knowledge bases formulated in some base
logic see [13,14,29,34].

We begin with a specific paradoxical example, which according to Cami-
nada and Amgoud [14] seems to defy solution.

Ezample. This is example 6 of [14, p. 293].
Our base logic has both strict rules with — and defeasible rules with =.
Our knowledge base has the following data:

Strict data

1. a
2. d
3. g

4. bAcANeANf— g
Defeasible data

7. a=—b
8. b=c¢
9. d=e
10. e=f

From the above knowledge base we construct arguments. We follow [14]
but use our notation to indicate the chain of reasoning.
Arguments
A=la,a =1
B =[d,d = €
C=la,a= bb=
D=[d,d—ee= f]

The problem with this example is that A, B, C, D have no defeaters and
so one has to accept them and their conclusions which is the set {b,c,e, f} is
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VRN

xa=>b yb:c zd:ewe:f

C x’ C y C 4 Cw’
FIGURE 24.

justified which together with the data {a, g} should be consistent but it is not
consistent because of item 4 of the data.

Ezample (Representing Example 6 of [14] in our system). Figure 24 repre-
sents Example 6 of [14] as described above in our Example 3.3. The nodes
a' b el e, f 2y, 2w are auxiliary nodes. The original nodes men-
tioned are

a7b7cﬁd’€7f7g7_‘g

and
z—(a:>b)
=0b=¢)
z—(d:>e)

w=(e=f)
u=bAcANeA f— —g.
The rules of modus ponens are represented as in Figs. 21 and 22. This is

why we need the auxiliary points. The arguments represent walks along Fig.
24, which respect the geometry of the rules.

They are:
A = walk (a,b)
B = walk (d, e)

C = walk(a, b, c)
D = walk(d, e, f)

We perceive the walk as a proof augmenting the knowledge base (which
is a set of nodes), with additional nodes. So if KB is the original knowledge
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base, then we perceive the arguments as follows:
A as KB U {a,b}

B as KBU{d, e}

C as KB U {a,b,c}

D as KBU{d,e, f}.

The perceptive reader might say: OK, fine. So you represented the prob-
lem your way. How are you going to solve the anomaly? A new representation
does not solve any original problem! So?

The answer is that the new representation may suggest more readily a
new idea for a solution to the problem. Once we get the new idea we can apply
it equally well to the old original representation.

OK, so what is the new idea?

I say that what is wrong (in my opinion) with the old way of deriving
arguments from a knowledge base is in the way they define attacks between
arguments.

The concept is flawed and this is the source of difficulty. Let us recall our
paper [26] entitled Logical modes of attack in argumentation networks. We
presented there a model of attack between nonmonotonic knowledge bases,
say A1 and Ay. A; can attack As by sending one or more items of data from
itself (i.e. Ay) into Ag. This may render Ay inconsistent or may hinder As in
its nonmonotonic deductive tasks. See [26, Example 1.8 Directional attacks].

How are we going to apply this definition in our case?

We saw that an argument becomes a walk along a graph. During the
walk we collect points into our set. The more points we have collected, the
more geometric patterns we can use to collect even more points. So imagine
two people walking along a graph (say the streets of the old district in town).
We first notice that the two fellows may not be using the same tourist guide
(or map). So they may not have the same walks. In geometrical proof terms
maybe the first fellow can use rule r while the second fellow does not use it.
OK, now we ask: how can one obstruct the walk of the other?

1. One can be an immediate obstruction. Stop the other immediately in his
tracks. This corresponds to a rebuttal (you should stop now or needed to
stop before) or undercut (you got here by going through a “forbidden to
walk” path!).

2. Give the guy a wrong direction so he will reach a dead end and will have
to stop. How is this done in practice?

Remember each of these walkers is collecting nodes in the graph. If one of them
gives the other some nodes then the enlarged set of the other can be incon-
sistent, or unacceptable (this is case (1) above), or he may be tempted to use
the additional nodes to carry on walking and get to a pending inconsistency,
(this is case (2) above).

Recall inconsistency was defined in Definition 3.3.

It is (2) above that is missing from the concept of attack. I hit upon a
similar problem in the early 1990s when I was writing my book on Labelled
Deductive Systems [19]. The notion was labelled revision theory and incon-
sistency. I could have a labelled theory which receives an input and really
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eventually becomes inconsistent but it was not seen immediately. You needed
to carry on proving all kinds of things from it to eventually realise it is incon-
sistent. So how are we going to use this idea in our context?

Let (S, ]i’) be an argumentation network with geometrical rules ry, . .., rg.
Let T C S. This network is our base logic. We are using the fact that we can
view a logic as network as we have shown in Sect. 3.1.

(S, R.T,ry,..., ri) is our knowledge base KB, presented as a net-

work. An argument X is a walk along this network. Let X = {x1,...,2,}
and Y = {y1,...,Ym} be two arguments. We say that Y attacks X if
TU{z1,...,Zn,Y1,---,Ym} IS not acceptable or not consistent according to

the rules of X.

We may not see this immediately so we can talk about levels of pending
inconsistency, inconsistency revealed after so many steps.

Note that the relation of attack is not symmetrical. X may not be able
to consistently continue according to his rules but Y’s rules may allow him to
continue.

In our example the situation is symmetrical and C' and D attack each
other.

4. Predicate Argumentation

The discussions of previous sections allow us to put forward argumentation
theory where the arguments are not atomic but are involved in predication,
either by having parameters themselves, i.e. the arguments themselves are like
predicates in predicate logic, or by being predicated upon, being themselves
the elements of a meta-predicate.

Two immediate examples come to mind

1.  The argument x itself involves a claim about certain domains, e.g.
z = all men are mortal.

See [6] for examples and references.
2. There is a predicate @, a value predicate, operating on the argument x
to form Q(z,e),
Q(z,e) = The value of z is e,

like that introduced by Bench Capon, [3,4], and there is a preference
relation on values.

In this case the argument itself is being predicated upon by the value predicate.

This section will address predication and arguments.

The basic situation is shown in Fig. 25.

In this figure a is an element of the domain. P(a) is a predicate about
this element, say ‘a is red’.

The argument Vz—P(x) is a sweeping general statement saying that noth-
ing is red. The metapredicates Q and Q' tell us what source the statements
come from. So Q(P(a)) says P(a) comes from source @ and Q' (Vx—P(x)) tells
us that Vz—P(z) comes from source Q’. We consider @’ less reliable than Q.
We can write Q' < Q.
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P(a) O(P(a))
VYx—-P(x) O'(Yx—=P(x))
FIGURE 25.

In fact, the source might be a chain of hearsay. Q" says he heard from
@’ that .... So we might be comparing

Q1Q2...QrP(a)
with
@Q1Q5 ... QYr=P(x).

So really we need to handle chains of predicates @ = (Q1,...,Qy). In real
situations there may be several such chains as different witnesses tell stories
which support the argument. See [16] for some examples and discussion.
Anyway, in our case the attack from Vax—P(x) on P(a) cannot be
accepted.
The figure has two features at the same time

1. Bench-Capon type value predicates Q, Q.
2. The arguments themselves are predicate logic arguments.

We therefore need a language which allows us to express the following

1. Given a wif p and a predicate Q(z), we are allowed to write Q(¢). (Think
of @) as a provability predicate, for example.)

2. Try and make quantified Vay(x) behave like some instantiated ¢(zg), in
other words, eliminate quantification. Quantification can be eliminated if
the domain is finite and known. Say D = {ay,...,a,} then we can write

Sop(e) = \/ elan)
Vop(z) = /\ o(a;)

But if we do not make such an assumption we still need a solution to how to
eliminate quantifiers.

If we succeed in the above two tasks we will have reduced the problem
of predicate argumentation to ordinary Dung networks. How are we going to
do it?

There is a language introduced by Gabbay in [19,20], called HFP, Hered-
itarily Finite Predicates. It allows to write expressions like P(yp).
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P(a) O(P(a))
—P(exP(x)) O'(=P(exP(x)))
FIGURE 26.

It was studied in [20] in the chapter entitled “Self fibring of predicate log-
ics”. The language is powerful and has been applied to the logics of security
among other applications.

To eliminate quantifiers we use Hilbert Epsilon symbol see [30].

We can write exg(x). This is a term which picks up in the model an
element satisfying ¢ and if no such element exists (i.e. Vo= (z) holds) then it
picks up an arbitrary element. Thus we have

plexp(r)) — yp(y)
~p(ezp(z)) — Vy—p(y)

So by using the Epsilon symbol, we don’t need quantifiers and the lan-
guage can be treated like it were propositional.

So Fig. 25 becomes Fig. 26.

This is a propositional network. We need to somehow extract from it by
geometric means the reason for the attack relation and why the @’ cannot
attack the Q. Let us begin first by taking predicate logic formulated with the
e-symbols. We choose monadic logic for simplicity. We have a set P of unary
predicates, variables V' and the connective |} and the e-symbol.

Definition 4.1. Formulas and terms are defined as follows
1. xis a term with z free, for x € V.

2. Ift(xy,...,2,) is a term with x; free then P(t(z1,...,2,)) is a formula
with z; free.

3. Ifo(x,x1,...,2,) is a formula with x, x; free then exp(x) is a term with
x; free.

4. If A; are wifs with {%} for each i = 1,2,... then || {A;} is a wff with
{xé} free.

Definition 4.2. Now that we have the wifs of the language we can define a
canonical network as follows.
Let S* be the set of all wifs together with the new additional predicates
P*(z), for any predicate P and variable x.
Define R* on S* by
1.  P(x)R*P*(x) and P*(z)R*P(x).
This gives us an assignment
2.  AR*Bif B is an immediate subformula of A
This gives us the table for |



Vol. 5 (2011) Dung’s Argumentation . .. 299

3. b plewp(z)) R p(y), y any term
This corresponds to the quantifier rule Va—p(z) — —p(y).

Remark 4.3. 1. Note that we do not have the axiom:
(#)  Va(P(r) < Q) — (cxP(x) = ezQ(z)).
This means that exP(z) and ex(P(x) A P(x)) may choose different ele-
ments. So our semantics for the logic without (#) is syntactic. A model
is a function m, giving values to all wffs such that
(%) m(P(y) =1 = m(P(ezxP(z))) =1

If we do adopt (f) as an axiom, we can have set theoretic models, where
we have a domain D and a selection function s giving selection from any
subset Dy C D and element s(Dy) € Dy. If Dy = &, then s(&) € D.

We now have

exP(x) = s{z | P(x) holds}.

2. The axiom (}) is written with —, the universal quantifier and =. The lan-
guage we use has |}, the Epsilon symbol and no equality. We can express
— using |} and express the universal quantifier using the Epsilon symbol.
To overcome the lack of equality we can write the axiom as

(#)  Va(P(z) < Qx)) — (AlexP(z)) — A(ezQ(x)))
Where A is an arbitrary new predicate. This expression is OK because
the axiom has implicit quantifier V, i.e., it is

VPVQVA(#1).

Proposition 4.4. The stable extensions of the canonical network (S*, R*) of
Definition 4.2, yield exactly all predicate models with e-symbols based on |}
and V.

Proof. Let m be a model for the language. Following Remark 4.3, m is a
syntactical model, giving values in {0, 1} to all wffs, and satisfying

m(p(y)) = 1 — m(p(erp(r))) = 1.

Consider now the extension E,, defined by

P(z) €eEy ifm((z)) =1
P*(r) € Em if m((x)) =0.

We now check an arbitrary point A € S, that A is in Ey, iff m(A) = 1. This

we do by structural induction which is also induction on the tree (S, R).

1. A is attacked by all its main subformulas Y. If A =]} {Y'}, then really
A = Ay Y and so if m(Y) = 1, which by the induction hypothesis
means that Y is in the extension E, for any Y, then m(A) = 0, and also
A is not in the extension E. If for all Y, m(Y) = 0, then by the induction
hypothesis, no such Y is in Ey,. Therefore A is in Ey,, and we also have

that m(A) = 1, because A = A\ =Y. Thus we conclude for this case that
Aisin Ey, iff m(A) = 1.
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2. We now check the case of A =| B where B = exp(x)). In this case we
have that A is attacked by B and also by any ¢(y), for any term y.
We must show that if any of the attackers Z gets value 1 (i.e.
m(Z) = 1 which means by the induction hypothesis that Z is in E.y,)
then m(A) = 0, and A is not in the extension E,,. Otherwise m(A) = 1.
If m(B) = 1, then clearly m(A) = 0. If m(p(y)) = 1, then by
(*) m(B) = 1 and so m(A) = 0. If m(p(y)) = 0 for all y, then
m(—B(ezB(x))) = 1, but also from the argumentation network point
of view, A € Ey,.
3. Assume we have a stable extension E. Let mg be defined by

mg(P(z)) =1 iff P(z) € E.

To show that this holds for any A € S, we follow similar reasoning as in
case (1). 0

Let us now also deal with predicates on predicates of the form Q(P(z)).
There are difficulties with the e-symbol in this case, as we shall see.
Let us give the formal definitions first and then follow with a discussion.

Definition 4.5 (Syntaz). Consider a language with variables V' = {1, 22,...},
the Dagger connective |} and the e-operator (ex) and a set of unary predicates

P={P,P,,..}.

We define the notion of a term and a formula with free variables

1. Any z € V is a term. z is free in the term .

2. If P is an atomic predicate and t(z1,...,z,) is a term with the free vari-
ables x1, ..., Ty, then P(t(z1,...,2,)) is a formula with the free variables
Llyerey Ty

3. Leta=(Py,...,P) beasequence of elements from P. If p(z, x1,...,2,)
is a formula with the free variables x, x1, ..., x,, then e®zp(z) is a term
with the free variables z1,...,z,.

4. If @ is a predicate and @(x1,...,2,) is a formula with free variables
Z1,-..,%, then Q(p) is a formula with free variables x1, ..., x,.

5. If ;i = 1,...,k are formulas with free variables z%,i = 1,...,k,j =
1,...,n(7), respectively, then || {¢;} is a formula with the free variables

{2 ]i=1,....kj=1,...,n(i)}

6. Let L(PP) be the language defined by clauses (1), (2), (5). L(PP, ) the lan-
guage defined by (1), (2), (3), (5) and L(P, ¢, Fib) be the language defined

by (1)~(5).

Definition 4.6 (Models). Let P* be the set of all finite sequences from P. For
each such sequence o € P*, let m,, be a classical monadic model for the lan-
guage (P, |}), i.e. L(IP). We turn the system {m,} into a model of our syntax.
We can assume all models m, have domain V.
First we convert each m,, into a model of the language L(PP,e). We need
to deal with e®zp(z) and assign it a value. We use induction.
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For a wif ¢ without ¢, let e*xz¢(x) be any x such that m, F ¢(x).
Otherwise let e*zp(z) be any element. Note that if m, F Jze(z) then
w(e®xzprx) holds, otherwise —p(e®xzp(xz) holds. We say that e*xp(x) has
been assigned a value.

Also note, following Remark 4.3 that we are not committed to

assigning the same element to the Epsilon symbol applied to two log-
ically equivalent formulas.
Let W(x,t1,...,tx) be a wif of classical logic with ¢ and assume all
ePrp(x) in U have been assigned values in m,, for any a, 3. This means
that WU itself can be evaluated in m,,, because all expressions e’zp(z) in
U are assigned elements in m,,. So let e*2¥(x) be some arbitrary element
in m, which satisfies ¥, otherwise, if there is no element in m,, satisfying
W, choose any element.

Thus we now have that each m, can be considered a model of L(P,e). We
now need to extend our definition to model expressions like Q(¢). We regard
Q) as a modality

m, F Q(p) iff ax (Q) F ¢

where « * (Q) is the sequence obtained from « by adding @ at the end.

For example, we have

aF Pl(PQ(Pg((p))) iff (Q,Pl,P27P3) = ®.

Remark 4.7. Note that now we have syntax and semantics. So let us see what
theorems are valid.

1.

2.

aE —p(e®rp(r) — —p(y)
ak p(e’zp(r) = o(y)
ak QU {A,B})iff (o, Q) FI (A, B)
iff (o, Q) # A and (o, Q) ¥ B
iff o Q(A) and o ¥ Q(B)
iff a =l (Q(A), Q(B)).
We can see that the following holds

QU {A:}) =4 {Q(4:)}-

Note that although m, have the same domain V, the element which
ez P(x) picks up at each o may be different. The reason is that the
extension of P at each m, may be different and so we will not be able
to organise the same choice for ez P(z).

Consider e“2(Q1, Q2P (z)). We are choosing an = at «, such that P(z)
holds at 8 = (a,@Q1,Q2). This is possible because all models have the
same domain V and for each @ the “modality” suggested by @ is lin-
ear discrete. Generally in modal logic when we write ¢t F 032 P(z) we
may have a different ¢, such that s F P(cs) for each s such that tRs (s
accessible to t). We have

tF OP(exP(x))
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to deduce
t F 3z0P(x)

but this is not true!
So the rule in general

Fo(y) — Jz0(2)
becomes problematic.
We avoid this problem because all of our e-symbols have the form
ez for some 3. So e’z P(x) goes to mg only.
Let us illustrate: Assume

m, F Q1(P(a)) A Q2(P(b))
Thus
m, E Qy(P(e %z P(2)) A Qa(P(e\ Pz P(x))).

We have no problems with that.
However, had we not indexed the £ operator we would have got

m,, = Q1(P(exP(x))) A Qa(P(exP(x)))

which would have allowed us to deduce
m, F 3y[Q1(P(y)) A Q2(P(y))]

which may not be true.

Another approach is to make elements of the domain be vectors of
the form y = (a,b) and the semantics would be different. Which solution
we choose depends on the application. Our aim is not to solve difficulties
with the e-symbol but to apply it to argumentation. For this reason we
also simplify by adding the axiom

QU {A:i} =1 {QA:}.
Our purpose is not to develop a comprehensive theory of HFP +& symbol
but to develop a predicate argumentation theory and so we need less of
the HFP +e-symbol.

Ezxample. Let us revisit Fig. 26 and see how it can be dealt with in our seman-
tics. This discussion is only intuitive at this stage. Consider Fig. 27. Remember
that = is | ¢ in the Dagger language.

We have Q' < @ and « is related to (o, Q) and to (a, Q).

We would need to say that there cannot be any attack from world @’ to
Qis Q' <Q.

We shall present a precise system later. We already see that we may need
to allow attacks from one world « to another world 3.

There is a way to simplify. We notice that argument P(a) and argument
Q(P(a)) are both atomic units and are independent of one another. So we can
put them all in one network/model. We can recognise the world @ by taking
all arguments of the form Q(z). So we can have one network and the different
worlds are subnetworks of it. This allows us to represent Q' < @ by an attack
from @ to @’ done in a certain way. The next Example 4 will illustrate.
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World o World (a, Q) World (a, Q")
O(P(a)) P(a) P(a)

Q' U P(exP(x)) | P(exP(x)) | P(exP(x))

FIGURE 27.
o) 0x(b")
b 174
01<0
0> < 0
a
O1(a)
FIGURE 28.
b o) b Oa(b)
a 0O1(a)
FIGURE 29.

Example. We consider the basic situation of Fig. 28 and implement it in Fig. 29.
We have that argument a attacks arguments b and . Argument a has
metalevel value Q1, argument b has value Q and argument 4" has value Q5.
The terms Q1 (a), Q(b), and Q2(b’) are not part of the attack network but
are metalevel to it. The information ;1 < @ and Q2 < @1 say which value is
higher than which in the Bench-Capon sense [3].
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FiGure 30.

y

z attacks the arrow from x to y

FIGURE 31.

Thus the attack of a on b cannot take place because b has higher value

but the attack on b’ is OK because a has higher value.

Now, how are we going to represent this metalevel information in the

object level? We need:

1.

To include Q1(a), Q(b) and Q2(¥') as arguments in the object level. We
know how to do that from the previous discussion in this section.
We need to represent the metalevel information Q1 < @ and Q2 < @ in
the object level. To do this we need two higher level concepts introduced
in our papers [22,23]. These are
(a) joint attacks
(b)  higher level attacks.
The concept of joint attacks is illustrated in Fig. 30 and is discussed in
[22].

x and y join forces to attack z. For the attack to succeed, we need
both z and y to be “in” and to be joined.

The concept of higher level attack [23], which originates in [1]7 allows
arguments to attack and disconnect attacks arrows. This is illustrated in
Fig. 31

7 This concept was later independently discovered by Modgil [32] and studied by Baroni
and others [8]. See discussion and references in [23].
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X y ——» w
/ u
Junction «:
z

FIGURE 32.

x y

xl yl
Z/
z

FIGURE 33.

If z is “in” the attack from z to y is “out” (x,y are still untouched).

Figure 29 represents our implementation of Fig. 28, where we use joint
attacks and higher level attacks. We have that the double arrow emanating
from Q(b) onto the arrow which joins Q1(a) to the attack on b, is representing
the fact that Q1 < @ and therefore making sure that a cannot attack b.

Note that in Fig. 32 the following holds:

u attacks the contribution of y to the joint attack (on z), which is form-
ing, (or getting organised or “gathering”) at junction «. This means that the
joint attack cannot go on, if u is in. It does not mean that x can attack alone!
This is why we have the junction notation.

y itself is not attacked by u, so y’s attack on w is valid. In Fig. 32 we
have the extension v = in, y = in, w = out, x = in, z = in.

Remark 4.8 (Representation of joint attacks, and higher level attacks). In
Example 4 and in Fig. 29 we used joint attacks and higher level attacks to
code the metalevel information that value @ is lower than value @9, writ-
ten as @)1 < Q2. We therefore need to show how to represent joint attacks
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X y

X = x=-x y/:Uy:ﬁy

Z=l{{xlyl=-xA-y=xAYy

2=l U x, Uy} =~(xAy)

FIGURE 34.

— Z

FIGURE 35.

and higher level attacks in our canonical model. We need to translate Figs. 30
and 31 into the canonical model.

We start with joint attacks. Following [22], consider Fig. 33.

Note that only when x and y are “in”, do we get that z is out.

Consider now Fig. 34.

Clearly this is the same figure as Fig. 33, and we can see that the joint
attack of z and y is executed by x A y in the canonical model.

Let us now address higher level attack. Consider Fig. 30. This can be
implemented by Fig. 35 (which is the same as Figure 9 of [23, p. 365].

We note that this figure represents the higher level attack of Fig. 31, as
shown in [23] and as can be readily verified directly. We further observe that
the part of Fig. 35 enclosed in a circle, is the same as the representation of
joint attacks in Fig. 34. This is a joint attack of z and 2’ on y. We note that
z' is really —z. So we get that Fig. 31 can be represented as Fig. 36.
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X lz=~-z
y
FIGURE 36.
b U o) v’ Ox(b")
< O
a Oi(a)
FIGURE 37.

Now since the case of joint attacks we already know how to represent
(Fig. 34), we can also represent higher level attacks.

Remark 4.9. Following our discussion in Remark 4.8, Fig. 29 becomes Fig. 33.
Now consider Fig. 37. In this figure the fact that Q1 < @ is represented by
the fact that | Q(b), (i.e. =Q(b)) joins the contribution of @Q;(a) to the joint
attack of {a,@1(a)} on b. We thus have the joint attack of [a and the joint
attack of {Q1(a), ~Q(b)}] jointly attacking b. In symbols:

Joint{a, Joint{Q (a), ~Q(b)}} attack on b.

Note that what we have not done yet is to have a uniform representa-
tion of how Q'(z) joins all the attacks of z on any y and how any Q" (y) also
participates but Q" participation is effective only if Q' < Q".

So far we have participation of Q” with Q' only when Q" < Q”.

5. Resource Considerations
Let us do again Definition 1.5, this time paying attention to resources.

Definition 5.1. Let (S, R, a) be a decorated ordering. Let h be a model. Let
us define the notion of resource annotated valuation of nodes in S. We write
Val(h, z) = (f(z), F(x)).
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1. Val(h,z) = (h(a(z)),{z}) for  an endpoint of the ordering.

2. Val(h,z) = (1 —maxzry(f(y), U, g, F(y)) for z which is not an endpoint.

3.  For any z,f(x) is the truth value in {0,1} of the formula a(z) and F(x)
indicates which end nodes z relies on. F(z) is needed for resource logic,
not for classical logic.

Ezample (Resource considerations). We now explain the components of Defi-
nition 5.1.

Consider the following deduction
1. A, assumption
2. A— (A — B), assumption
3. A— B, from (1) and (2) by modus ponens.
4. B from (1) and (3) by modus ponens.
The above deduction is not valid in linear logic because (1) A is used twice (in
(3) and (4).
A correct deduction for linear logic would be the following
A, assumption
A, assumption
A — (A — B), assumption
A — B, from (2) and (3)
B, from (1) and (4).
The above means that the formula

CZ(A/\[A—> (A—)B)]/\—!B)

is not a contradiction in resource logic as described above. While

D:A/\A/\(A—>(A—>B))/\—|B

U o =

is a contradiction.
Let us now reflect the resource idea in our |} system.

Ezample (Resources considerations for |}).

1. First recall a convention for drawing figures. When we have a binary
relation R C S x S and we have xRy, we draw it as « < y (arrow going
into the z).
We can now build two possible decorated acyclic graphs for the for-
mula A A (-4 — (A — B)) A —=B. We use the equivalent =A A (A V
AV B) A —B. See Figs. 38 and 39.
In Fig. 38 all the elements of F(s) are different. No node is used twice.
In Fig. 39 all nodes are used twice. In classical logic it does not matter. In
resource logic it does matter.

Remark 5.2 (Argumentation frames based on linear logic). The connection
between logic and networks, together with the discussion and figures of this
section shows that for the case of acyclic networks, if we allow for each node
in the network to attack only a single other node at the most, then the cor-
responding underlying logic is linear propositional logic based on Dagger, and
the network is actually a tree.
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xle JCZIA )C3ZA )C4ZA Z]ZB ZQIB

t: (4,4, B)=-AAN-AN-B

F(t) = {x3,x4,21}

s:y(4,4,1 (4,4, B), B)
:—|A/\—|A/\(A\/AVB)/\—|B
F(S) = {xl,x29x3,x4,21,22}

FIGURE 38.

t:l (A,A,B)= -AA-AAN-B

F(t) = {x3,x4,21}

s:U (4,4, 0 (4,4, B), B)
— ~AN=ANAV AV B)A-B
F(s) = {x3, x3, X4, X4,21, 21}

FI1cUure 39.
X \ / b
a
/ \
y c
FiGURE 40.

If we want a node to attack several other nodes then we must make
multiple copies of it. Thus for example Fig. 40 becomes Fig. 41.
If we allow cycles the definitions are more complicated.
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X
e

aqa——®» C

FIGURE 41.

6. Conclusion: Discussing the Correspondence Between Dung
Networks and Dagger Logic and Comparing it with
Seemingly Relevant Literature

In this concluding section, we would like to evaluate the correspondence
between Argumentation networks and classical logic formulated with the Dag-
ger connective. We try and answer possible criticisms from both the pure logic
community and the down to earth practical argumentation community.

The title of this paper may be seen by some as a sweeping statement.
We are saying that Dung argumentation frames together with its machinery of
finding extensions is essentially equivalent to classical propositional logic with
the Pierce-Quine Dagger connective and its machinery for finding models for
wifs.

We have discussed and demonstrated the connections under (S1) and
(S2) of Sect. 2.2. However, since there is a general confusion in the community
about what it means to be an “equivalent” system, we thought we had bet-
ter clarify these concepts in this section. Furthermore, this clarification will
allow us to compare this work with some seemingly related works, namely,
References [5,6,15,17,28,38].

Let us begin with a very simple example of two systems which are not
the same. Take two strong enough computer languages. Say modern Basic and
Pascal. These languages are strong enough for each to simulate the other. Give
me a program in one and I can write an equivalent program in the other, where
“equivalent” means doing exactly the same job!

Yet, despite the above, we will not say the two languages are the same.
Yes, they have the same expressive power, Yes, they can do the same jobs.
However, their basic internal constructs are different. They are not based on
the same “internal movements”.

We ask the reader to accept this intuitively. Don’t ask us what we mean
by “internal movements”.

We now show you two systems which are generally considered the same.

Start with intuitionistic implication =, formulated and axiomatised as
a Hilbert System, call it I. We have the following two axioms and the rules of
Modus ponens and substitution.
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1. a= (b= a)
2. (a=0b=¢) = ((ac=b) = ((a=0))

We now want to add negation to the system. We do it in two ways, creat-
ing two separate systems I; and I». I; adds a negation unary symbol —; with
the following additional axioms:

3. (a= —1b) = (b = —1a)
4. a= (ma=b)

The second system I, adds a constant to the logic, call it f, with the

additional axiom

5, f=a

We now show that the two systems are really the same.

I, finding itself inside I
We are now in the realm of I;. We want to look at I; through the eyes of I.
I, has a constant f. Can we find it in I;7 Yes. Let f; be any g A —1¢. We must
prove in I; that any two p A —=1p and g A —1¢ are equivalent (i.e. from axioms
(1)—(4) we prove I = (p A =1p) = (¢ A —14q)).

This makes f; unique. We now prove in I; that f{ = a is a theorem of
I;. Having done all that we managed to look at I; through the eyes of Io. We
found an f; which is what I5 has.

I, finding itself in I
Here we want to look at I through the eyes of I;. I has —; as negation. Can
we find it in Is? The answer is yes. Let

—wa =a = f.

We now need to prove in Iy (using axioms (1), (2) and (5)) that axioms (3)
and (4) hold for —.

This means prove in I that:

3. (a=b=1) = (b= (a=1))
4*. o= ((a=1f) =)
This must be done, and can be done, using axioms (1), (2), (5) of I.

Why is it that all logicians agree that I; and I are the same really? It is
because both formulations of negation are based on the same idea. As it says
in the Bible, “Keep away from falsity”.

Now let us compare the above with what we did in (S1) and (S2) of
Sect. 2.2. The Peirce-Quine connective dagger of logic and the Dung attack
relation of argumentation are based on the same idea. This we have shown.
Now the question is are we doing for logic and argumentation network some-
thing similar to what we did for I; and I5?

Logic finding itself in the argumentation world. The typical figure for logic
is Fig. 3. As discussed in (S2), of Sect. 2.2, logic can “find” this figure in the
argumentation world as Fig. 4.
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Argumentation finding itself in the logic world. A typical argumentation net-
work is the one of Fig. 1. As discussed under (S1) of Sect. 2.2, this network
can find itself in the logic world as Exercise 4 mentioned in (S1) of Sect. 2.2.
This direction is mathematically complex, as seen from Remark 2.12 (in fact
we prove a stronger mathematical theorem for this direction).

We now want to clarify the concept of one system S1 acting as a metalevel
language to describe another system S2. We do this by example, and once the
reader understands what we mean, we can compare our paper with the papers
[5,6,15,17,28,38].

Our starting point is classical predicate logic with term symbols (con-
stants). We want to describe the Hilbert system of intuitionistic implication
with axioms (1) and (2), modus ponens and substitution. To achieve this we
must say what is an atom, a formula, an axiom and a theorem.

Let {q1,q2,...} be the atomic wifs of I. We use in predicate logic the
constants {qi,qa, ...} to represent them. Let the function symbol Imp repre-
sent =>. Let the predicates Atom and Formula represent the notion of atomic
formula and a general wif of I. Let the predicate axiom represent the notion
of an axiom of I and the predicate Theorem represent the notion of a theorem
of I. All the above are predicates and functions in predicate logic.

We now describe I. This will be a predicate logic theory A(I).

(P1) Atom (q;),i=1,2,.
(P2) Vz(Atom(z) — Formula( )
Vzy(Formula(z) A Formula(y) — Formula(Imp(z,y)))
(P3) Vay(Axiom(Imp(z, Imp(y,x)))
Vey(Axiom(Imp(Imp(x, Imp(y, 2)), Imp(Imp(z, ), Impz, 2))))
(P4) Vry(Axiom(z) — Theorem(x))
(P5) Vazy(Theorem(z) A Theorem(Imp(z,y)) — Theorem(y))

We now got a theory A(I) of first order logic describing I. We can use a
resolution theorem prover to ask for example does A(I) prove in classical logic
Theorem(Imp(z, z))? This means does I prove a = a?

We use this example to clarify the following concepts.

1. One logic/system S1 talks about another system S2 in the metalevel.
2. One system, say S2 is used by another system S1, as a case study appli-
cation.
In our detailed example, classical logic was describing I as a case
study application acting as a metalevel system when describing I.

Now that we have these concepts, let us compare with other papers.

Grossi’s paper [28] uses modal language as a metalevel langauge describ-
ing argumentation.

Paper [17] is a survey paper of argumentation theory in general.

Paper [15] discusses with examples, various ways of looking at argumen-
tation theory. It is well worth reading. It is written in the spirit of the current
paper but it was written before we discovered the “equivalence” described in
the current paper.
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Paper [5] characterises extensions in set-theoretic terms. It does not deal
with equivalence or connection with classical logic.

Paper [38] uses adaptive logic as a metalevel language for reasoning about
argumentation and extensions.

The book [6] uses classical logic as a case study application of argumen-
tation. It uses wifs of classical logic as arguments and defines various attack
relations in terms of classical logic consistency. It is strongly related to logic
but has no bearing on the question of the equivalence of logic with | and
argumentation networks. To make the point crystal clear, note that we can
take another case study where the arguments are restaurant menus for first
course and main course for dinner. We have a chef who tells us what goes with
which dish and this is the attack relation.

In summary, we see that none of the above papers do what we do here
and they seem related to us because they have “logic” in the title.

We now proceed to address some possible criticism of our work.

The pure logician may say that the Dagger connective is not central to
logic. Much more important are the traditional intuitive connectives and, or,
not, and implies. The Sheffer stroke and the dagger were studied in logic for
technical reasons. The logic community was interested in connectives which are
functionally complete (the Sheffer stroke and the Peirce-Quine dagger) and
can define all other connectives and can be axiomatised by a minimal number
of axioms containing a minimal number of letters. However, such connectives
are not so important. So if the argumentation attack relation is essentially
the Dagger connective, then good for argumentation. We the logicians are not
necessarily interested.

My answer to this is to say that we are generalising the concept of what
is a logical system, a foundational issue for logic, and advise the logician to
take a look at Sect. 3. This might help.

To the argumentation people I would say that first they should realise
that they have the power of classical logic in a natural way. The correspon-
dence shown in Table 2 and discussed in (S1) and (S2) in Sect. 2.2 and further
methodologically described in Sect. 6 above is very natural. So they should
not be surprised at what one can do with argumentation. See, for example,
Sect. 2.4.

The argumentation researcher may come up with three objections:

1.  The correspondence in Table 2 is for a very restricted argumentation
frame, namely The canonical argumentation frame based on Dagger logic
of Definition 2.6 which is basically a tree with small cycles at the top as in
Fig. 4. This is a very restricted argumentation frame and all the richness
of argumentation is lost.

To this we answer that this canonical frame is only our starting
point, showing how logic can find itself in argumentation. We get the
richness of all argumentation frames with cycles, by applying equiva-
lence relations to this starting frame and obtaining new factor frames.
This is done in Sect. 2.4 and also see Remark 4.8 where higher level
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attacks is simplified and is reduced to logic. Section 4 gives as predicate
argumentation suggested by the correspondence with logic.

2. The second objection is more tricky to answer. It claims that ordinary
argumentation is simple and that the connection with logic makes things
more complicated. So it can’t be useful. My answer is that it is not more
complicated, just a new natural way of looking at argumentation. The
correspondence is natural and anyone used to logic can see it. Real com-
plications arise when the new representations are completely different
paradigm, say something like category theory. Logic is already related to
and is firmly embedded in argumentation!

3. The third objection is linguistic. We talk about classical logic and yet we
end up needing three valued logic, {in, out, undecided}. My answer to
this is two fold.

First, having functions undefined on some elements of its domain,
was never considered a departure from classical logic. Look at the field
of partial recursive functions, it is one of the pillars of classical logic!

We talk about three values for convenience and also in anticipation
of paper [24], where we use continuous values in [0,1]. But the equational
model of [24] is a different interpretation altogether and equally applies
to Logic or to Argumentation.

Second, from the semantic point of view it can be argued, that
any non-classical logic which can be characterised by a finite matrix is
essentially classical logic. This is because the matrix can be expressed in
classical logic. Of course this is a semantical point of view, which includes
the Semantic Tableaux formulation as well. However, when it comes to
writing a Hilbert system or a Gentzen system for such logics it can be
extremely difficult and much different from classical logic. See our book
[31].

Further, I stress that Argumentation needs a wider theoretical basis, not
just for methodological reasons but for the social cohesiveness of the commu-
nity. Without a good logical connection and meta-logical foundations, there
is the danger that the community will fragment and be absorbed into the
variety of its application areas. Those who apply argumentation to Law will
get absorbed in the law community, those who apply argumentation to Agent
Theory will be absorbed in the agents community. History shows us that this
is how the Logic Programming community fragmented! In fact the Logic Pro-
gramming community was lucky; because of its close connection with logic, a
vibrant core group did survive. I am not sure this would happen to the argu-
mentation community. The strength of argumentation is in its applicability
across many diverse disciplines (much more than Logic Programming) and
that can be a problem!

Now I have something to say to both communities.

It is clear from what we are doing that the most general formal setup
is that of a network (S, R) with various annotation to the elements of the
network and some algorithms, relying on the geometry of the network and
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the annotation, for going around the network updating the annotations, pos-

sibly in loops, possibly never terminating seeking steady state solutions to the

annotation function.

This is the most general case and it integrates logic, argumentation net-
works, neural networks, ecology networks and more.

We have done this for numerical values in our papers [1,2,24].

The important point here is that the general integrating framework is
natural in itself. It has a meaning in itself and logic and networks each can be
identified (I have not written this yet) internally as specialised case of the gen-
eral framework. This is an important test showing the integration is natural!

It is not the case that in this integration each component loses its iden-
tity. Not at all, they give each other ideas, being residents of a more general
framework.

We saw in Sects. 2 and 3 that logic can be viewed as a network. How-
ever, Logic is also strong enough to describe and talk about networks. There
is a feature logic can do which is not available in networks—and this is the
ease of the interaction of object level and meta-level features. Can we expand
networks to be able to talk about itself?

This problem we still have to solve, namely how to embed meta-level
features of networks in the object level of networks themselves. In other words
how can networks talk about networks much in the same way that logic can
talk about logic.

We did start to address this in the predicate logic section, Sect. 4. Roughly
we showed a correspondence between meta-predicates in logic and attacks on
one network from another network. So for a network to talk about itself it must
have certain attacks from one part of itself to another part, but we leave this
for future papers, or maybe include it in our planned book on argumentation
[25]!

We close this section by listing what future papers we can write on topics
hinted in this paper.

1. The ideas in Sect. 4 can give rise to several papers on predicate argumen-
tation and a systematic study of various papers in the literature which
can be simplified and integrated using predicate argumentation.

2. The ideas of Sect. 5, where we replace classical propositional logic by lin-
ear logic, naturally give us a handle on resource considerations in argu-
mentation. We do not need to define resource features ad hoc but we can
be systematic. Use arguments in attack only once, or if you keep using
the same argument again and again, it weakens because people get weary
of it, and more.

3. The results of Sect. 3 can be further developed in a systematic way into
a paper: “What is a logical system, version 2011”.
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