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Abstract

We present a straightforward embedding of quantified multimodal logic in simple type theory
and prove its soundness and completeness. Modal operators are replaced by quantification
over a type of possible worlds. We present simple experiments, using existing higher-order
theorem provers, to demonstrate that the embedding allows automated proofs of statements
in these logics, as well as meta properties of them.
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1 Motivation

There are two approaches to automate reasoning in modal logics. Thedirect approach [7, 33]
develops specific calculi and tools for the task; thetranslationalapproach [35, 36] transforms
modal logic formulas into first-order logic and applies standard first-order tools.

In previous work [10, 8, 11] we have picked up and extended theembedding of multimodal
logics in simple type theory as proposed by Brown [16]. The starting point is a characterization
of multimodal logic formulas as particularλ-terms in simple type theory. A characteristic of the
encoding is that the definiens of the2r operatorλ-abstracts over the accessibility relationr. We
have proved that this encoding is sound and complete [8, 11] and we have illustrated that this
encoding supports the formulation of meta properties of encoded multimodal logics such as the
correspondence between certain axioms and properties of the accessibility relation [10]. Some of
these meta properties can even be effectively automated within our higher-order theorem prover
LEO-II [13].

In this paper we extend our previous work to quantified multimodal logics. Multimodal log-
ics with quantification for propositional variables have been studied by others before, including
Kripke [30], Bull [17], Fine [19, 20], Kaplan [28], and Kremer [29]. Also first-order modal logics
[23, 26] have been studied in numerous publications. We are interested here in multimodal logics
with quantification over both propositional and first-ordervariables, a combination investigated,
for example, by Fitting [21]. In contrast to Fitting we here pursue the translational approach and
study the embedding of quantified multimodal logic in simpletype theory. This approach has
several advantages:

• The syntax and semantics of simple type theory is well understood [1, 2, 9, 25]. Studying
(quantified) multimodal logics as fragments of simple type theory can thus help to better
understand semantical issues.

• For simple type theory, various automated proof tools are available, including Isabelle/HOL
[34], HOL [24], LEO-II [13], and TPS [5]. Employing the transformation presented in this
paper, these systems become immediately applicable to quantified multimodal logics or
fragments of them.

• Even meta properties of quantified modal logics can be formalized and mechanically ana-
lyzed within these provers.

• The systematic study of embeddings of multimodal logics in simple type theory can identify
fragments of simple type theory that have interesting computational properties (such as
the detection of the guarded fragment). This can foster improvements to proof tactics in
interactive proof assistants.

Our paper is organized as follows. In Section 2 we briefly review simple type theory and adapt
Fitting’s [21] notion of quantified multimodal logics. In Section 3 we extend our previous work
[8, 10, 11] and present an embedding of quantified multimodallogic in simple type theory. This
embedding is shown sound and complete in Section 4. In Section 5 we present some simple
experiments with the automated theorem provers LEO-II, TPS, and IsabelleP and the model finder
IsabelleM. These experiments exploit the new TPTP THF infrastructure [12].



3

2 Preliminaries

2.1 Simple Type Theory

Classical higher-order logic orsimple type theoryST T [3, 18] is built on top of the simply
typedλ-calculus. The setT of simple types is usually freely generated from a set of basic types
{o, ι} (whereo is the type of Booleans andι is the type of individuals) using the function type
constructor�. Instead of{o, ι} we here consider a set of base types{o, ι, µ}, providing an
additional base typeµ (the type of possible worlds).

The simple type theory languageST T is defined by (α, β ∈ T ):

s, t ::= pα | Xα | (λXα sβ)α�β | (sα�β tα)β | (¬o�o so)o |

(so ∨o�o�o to)o | (sα =α�α�o tα)o | (Π(α�o)�o sα�o)o

pα denotes typed constants andXα typed variables (distinct frompα). Complex typed terms are
constructed via abstraction and application. Our logical connectives of choice are¬o�o, ∨o�o�o,
=α�α�o andΠ(α�o)�o (for each typeα). From these connectives, other logical connectives can be
defined in the usual way. We often use binder notation∀Xα s for Π(α�o)�o(λXα so). We denote
substitutionof a termAα for a variableXα in a termBβ by [A/X]B. Since we considerα-
conversion implicitly, we assume the bound variables ofB avoid variable capture. Two common
relations on terms are given byβ-reduction andη-reduction. Aβ-redex has the form(λX s)t
andβ-reduces to[t/X]s. An η-redex has the form(λX sX) where variableX is not free ins; it
η-reduces tos. We writes =β t to means can be converted tot by a series ofβ-reductions and
expansions. Similarly,s =βη t meanss can be converted tot using bothβ andη. For eachs ∈ L
there is a uniqueβ-normal formand a uniqueβη-normal form.

The semantics ofST T is well understood and thoroughly documented in the literature [1, 2,
9, 25]; our summary below is adapted from Andrews [4].

A frame is a collection{Dα}α∈T of nonempty setsDα, such thatDo = {T, F} (for truth
and falsehood). TheDα�β are collections of functions mappingDα into Dβ. The members
of Dι are calledindividuals. An interpretationis a tuple〈{Dα}α∈T , I〉 where functionI maps
each typed constantcα to an appropriate element ofDα, which is called thedenotationof cα
(the logical symbols¬, ∨, Πα, and =α�α�o are always given the standard denotations). A
variable assignmentφ maps variablesXα to elements inDα. An interpretation〈{Dα}α∈T , I〉
is a Henkin model(equivalently, ageneral model) if and only if there is a binary functionV
such thatVφ sα ∈ Dα for each variable assignmentφ and termsα ∈ L, and the following
conditions are satisfied for allφ and all s, t ∈ L: (a) VφXα = φXα, (b) Vφ pα = Ipα, (c)
Vφ(sα�β tα) = (Vφ sα�β)(Vφtα), and (d)Vφ(λXα sβ) is that function fromDα into Dβ whose
value for each argumentz ∈ Dα is V[z/Xα]φsβ, where[z/Xα]φ is that variable assignment such
that([z/Xα]φ)Xα = z and([z/Xα]φ)Yβ = φYβ if Yβ 6= Xα. (SinceI¬, I∨, IΠ, andI= always
denote the standard truth functions, we haveVφ (¬s) = T if and only ifVφ s = F , Vφ (s∨ t) = T
if and only if Vφ s = T or Vφ t = T , Vφ (∀Xα so) = Vφ (Πα(λXα so)) = T if and only if for all
z ∈ Dα we haveV[z/Xα]φ so = T , andVφ (s = t) = T if and only if Vφ s = Vφ t. Moreover, we
haveVφ s = Vφ t whenevers =βη t.) It is easy to verify that Henkin models obey the rule that
everything denotes, that is, each termtα always has a denotationVφ tα ∈ Dα. If an interpretation
〈{Dα}α∈T , I〉 is a Henkin model, then the functionVφ is uniquely determined.

We say that formulaA ∈ L is valid in a model〈{Dα}α∈T , I〉 if and only if VφA = T for
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every variable assignmentφ. A model for a set of formulasH is a model in which each formula
of H is valid. A formulaA is Henkin-valid if and only ifA is valid in every Henkin model. We
write |=ST T A if A is Henkin-valid.

2.2 Quantified Multimodal Logic

First-order quantification can be constant domain or varying domain. Below we only consider
the constant domain case: every possible world has the same domain. We adapt the presentation
of syntax and semantics of quantified modal logic from Fitting [21]. In contrast to Fitting we are
not interested inS5structures but in the more general case ofK .

Let IV be a set of first-order (individual) variables,PV a set of propositional variables, and
SYM a set of predicate symbols of any arity. Like Fitting, we keepour definitions simple by
not having function or constant symbols. While Fitting [21]studies quantified monomodal logic,
we are interested in quantified multimodal logic. Hence, we introduce multiple2r operators for
symbolsr from an index setS. The grammar for our quantified multimodal logicQML is thus

s, t ::= P | k(X1, . . . , Xn) | ¬ s | s ∨ t | ∀X s | ∀P s | 2r s

whereP ∈ PV , k ∈ SYM, andX,X i ∈ IV .

Further connectives, quantifiers, and modal operators can be defined as usual. We also obey
the usual definitions of free variable occurrences and substitutions.

Fitting introduces three different notions of semantics:QS5π−, QS5π, and QS5π+. We
study related notionsQKπ−, QKπ, andQKπ+ for a modal contextK , and we support multiple
modalities.

A QKπ− modelis a structureM = (W, (Rr)r∈S, D, P, (Iw)w∈W ) such that(W, (Rr)r∈S) is a
multimodal frame (that is,W is the set of possible worlds and theRr are accessibility relations
between worlds inW ),D is a non-empty set (the first-order domain),P is a non-empty collection
of subsets ofW (the propositional domain), and theIw are interpretation functions mapping each
n-place relation symbolk ∈ SYM to somen-place relation onD in worldw.

A variable assignmentg = (giv, gpv) is a pair of mapsgiv : IV −→ D andgpv : PV −→ P ,
wheregiv maps each individual variable inIV to a an object inD andgpv maps each propositional
variable inPV to a set of worlds inP .

Validity of a formulas for a modelM = (W, (Rr)r∈S, D, P, Iw), a worldw ∈ W , and a
variable assignmentg = (giv, gpv) is denoted asM, g, w |= s and defined as follows, where
[a/Z]g denotes the assignment identical tog except that([a/Z]g)(Z) = a:
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M, g, w |= k(X1, . . . , Xn) if and only if 〈giv(X1), . . . , giv(Xn)〉 ∈ Iw(k)

M, g, w |= P if and only if w ∈ gpv(P )

M, g, w |= ¬ p if and only if M, g, w 6|= p

M, g, w |= p ∨ q if and only if M, g, w |= p orM, g, w |= q

M, g, w |= ∀X p if and only if M, ([d/X]giv, gpv), w |= p for all d ∈ D

M, g, w |= ∀Q p if and only if M, (giv, [v/Q]gpv), w |= p for all v ∈ P

M, g, w |= 2r p if and only if M, g, v |= p for all v ∈W

with 〈w, v〉 ∈ Rr

A QKπ− modelM = (W, (Rr)r∈S, D, P, (Iw)w∈W ) is aQKπ modelif for every variable
assignmentg and every formulas ∈ QML, the set of worlds{w ∈ W | M, g, w |= s} is a
member ofP .

A QKπ modelM = (W, (Rr)r∈S, D, P, (Iw)w∈W ) is aQKπ+ modelif every worldw ∈ W
is member of an atom inP . Theatomsof P are minimal non-empty elements ofP : no proper
subsets of an atom are also elements ofP .

A QML formula s is valid in modelM for world w if M, g, w |= s for all variable as-
signmentsg. A formula s is valid in modelM if M, g, w |= s for all g andw. Formulas is
QKπ-valid if s is valid in allQKπ models, when we write|=QKπ s; we defineQKπ−-valid and
QKπ+-valid analogously.

In the remainder we mainly focus onQKπ models. These models naturally correspond to
Henkin models, as we shall see in Sect.4.



6

3 Embedding Quantified Multimodal Logic in ST T

The idea of the encoding is simple. We choose typeι to denote the (non-empty) set of individ-
uals and we reserve a second base typeµ to denote the (non-empty) set of possible worlds. The
typeo denotes the set of truth values. Certain formulas of typeµ � o then correspond to multi-
modal logic expressions. The multimodal connectives¬ , ∨ , and2 , becomeλ-terms of types
(µ � o) � (µ � o), (µ � o) � (µ � o) � (µ � o), and (µ � µ � o) � (µ � o) � (µ � o) re-
spectively.

Quantification is handled as usual in higher-order logic by modeling∀X p asΠ(λX p) for
a suitably chosen connectiveΠ, as we remarked in Section 2. Here we are interested in defining
two particular modalΠ-connectives:Πι, for quantification over individual variables, andΠµ�o,
for quantification over modal propositional variables thatdepend on worlds, of types(ι � (µ �

o)) � (µ � o) and((µ � o) � (µ � o)) � (µ � o), respectively.

In previous work [10] we have discussed first-order and higher-order modal logic, including
a means of explicitly excluding terms of certain types. The idea was that no proper subterm of
tµ�o should introduce a dependency on worlds. Here we skip this restriction. This leads to a
simpler definition of a quantified multimodal languageQMLSTT below, and it does not affect
our soundness and completeness results.

Definition 3.1 (Modal operators)
The modal operators¬ , ∨ ,2,Πι, andΠµ�o are defined as follows:

¬ (µ�o)�(µ�o) = λφµ�o λWµ ¬(φW )

∨ (µ�o)�(µ�o)�(µ�o) = λφµ�o λψµ�o λWµ φW ∨ ψW

2 (µ�µ�o)�(µ�o)�(µ�o) = λRµ�µ�o λφµ�o λWµ ∀Vµ ¬(RW V ) ∨ φ V

Πι
(ι�(µ�o))�(µ�o) = λφι�(µ�o) λWµ ∀Xι φXW

Π
µ�o
((µ�o)�(µ�o))�(µ�o) = λφ(µ�o)�(µ�o) λWµ ∀Pµ�o φP W

Further operators can be introduced, for example,

⊤(µ�o)�(µ�o) = ∀Pµ�o P ∨ ¬P

⊥(µ�o)�(µ�o) = ¬ ⊤

∧ (µ�o)�(µ�o)�(µ�o) = λφµ�o λψµ�o ¬ (¬φ ∨ ¬ψ)

⊃ (µ�o)�(µ�o)�(µ�o) = λφµ�o λψµ�o ¬φ ∨ ψ

3 (µ�µ�o)�(µ�o)�(µ�o) = λRµ�µ�o λφµ�o ¬ (2R (¬φ))

Σι
(ι�(µ�o))�(µ�o) = λφι�(µ�o) ¬ (Πι(λXι ¬ (φX)))

Σ
µ�o
((µ�o)�(µ�o))�(µ�o) = λφ(µ�o)�(µ�o) ¬ (Πµ�o(λPµ�o ¬ (φP )))

We could also introduce further modal operators, such as thedifference modalityD, the global
modalityE, nominals with!, or the@ operator (consider the recent work of Kaminski and Smolka
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[27] in the propositional hybrid logic context; they also adopt a higher-order perspective):

D(µ�o)�(µ�o) = λφµ�o λWµ ∃Vµ W 6= V ∧ φV

E(µ�o)�(µ�o) = λφµ�o φ ∨ Dφ

!(µ�o)�(µ�o) = λφµ�o E (φ ∧ ¬ (Dφ))

@µ�(µ�o)�(µ�o) = λWµ λφµ�o φW

This illustrates the potential of our embedding for encoding quantified hybrid logic, an issue that
we might explore in future work.

For definingQMLSTT -propositions we fix a setIVSTT of individual variables of typeι, a set
PVSTT of propositional variables of typeµ � o, and a setSYMSTT of k-ary (curried) predicate
constants of typesι � . . . � ι

︸ ︷︷ ︸

n

� (µ � o). The latter types will be abbreviated asιn � (µ � o) in

the remainder. Moreover, we fix a setSSTT of accessibility relation constants of typeµ � µ � o.

Definition 3.2 (QMLSTT -propositions) QMLSTT -propositions are defined as the smallest set
of simply typedλ-terms for which the following hold:

• Each variablePµ�o ∈ PVSTT is an atomicQMLSTT -proposition, and ifXj
ι ∈ IVSTT (for

j = 1, . . . , n) andkιn�(µ�o) ∈ SYMSTT , then the term(k X1 . . . Xn)µ�o is an atomic
QMLSTT -proposition.

• If φ andψ areQMLSTT -propositions, then so are¬ φ andφ ∨ ψ.

• If rµ�µ�o ∈ SSTT is an accessibility relation constant and ifφ is anQMLSTT -proposition,
then2 r φ is aQMLSTT -proposition.

• If Xι ∈ IVSTT is an individual variable andφ is aQMLSTT -proposition thenΠι(λXι φ)
is aQMLSTT -proposition.

• If Pµ�o ∈ PVSTT is a propositional variable andφ is a QMLSTT -proposition then
Πµ�o(λPµ�o φ) is aQMLSTT -proposition.

We write2r φ, ∀Xι φ, and∀Pµ�o φ for 2 r φ, Πι(λXι φ), andΠµ�o(λPµ�o φ), respectively.

Because the defining equations in Definition 3.1 are themselves formulas in simple type theory,
we can express proof problems in a higher-order theorem prover elegantly in the syntax of quan-
tified multimodal logic. Using rewriting or definition expanding, we can reduce these representa-
tions to corresponding statements containing only the basic connectives¬ , ∨ , =, Πι, andΠµ�o

of simple type theory.

Example 3.3 The followingQMLSTT proof problem expresses that in all accessible worlds
there exists truth:

2r ∃Pµ�o P

The term rewrites into the followingβη-normal term of typeµ � o

λWµ ∀Yµ ¬(rW Y ) ∨ (¬∀Pµ�o ¬(P Y ))
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Next, we define validity ofQMLSTT propositionsφµ�o in the obvious way: aQML-proposition
φµ�o is valid if and only if for all possible worldswµ we havewµ ∈ φµ�o, that is, if and only if
φµ�owµ holds.

Definition 3.4 (Validity)
Validity is modeled as an abbreviation for the following simply typedλ-term:

valid = λφµ�o ∀Wµ φW

Example 3.5 We analyze whether the proposition2r ∃Pµ�o P is valid or not. For this, we
formalize the following proof problem

valid (2r ∃Pµ�o P )

Expanding this term leads to

∀Wµ ∀Yµ ¬(rW Y ) ∨ (¬∀Xµ�o ¬(X Y ))

It is easy to check that this term is valid in Henkin semantics: putX = λYµ ⊤.

An obvious question is whether the notion of quantified multimodal logics we obtain via this
embedding indeed exhibits the desired properties. In the next section, we prove soundness and
completeness for a mapping ofQML-propositions toQMLSTT -propositions.
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4 Soundness and Completeness of the Embedding

In our soundness proof, we exploit the following mapping ofQKπ models into Henkin models.
We assume that theQML logic L under consideration is constructed as outlined in Section 2
from a set of individual variablesIV, a set of propositional variablesPV, and a set of predicate
symbolsSYM. Let 2r1 , . . . ,2rn for ri ∈ S be the box operators ofL.

Definition 4.1 (QMLSTT logicLST T for QML logicL)
Given anQML logicL, define a mappinġ_ as follows:

Ẋ = Xι for everyX ∈ IV

Ṗ = Pµ�o for everyP ∈ PV

k̇ = kιn�(µ�o) for n-aryk ∈ SYM

ṙ = rµ�µ�o for everyr ∈ S

TheQMLSTT logic LST T is obtained fromL by applying Def. 3.2 withIVSTT = {Ẋ | X ∈
IV}, PVSTT = {Ṗ | P ∈ PV}, SYMSTT = {k̇ | k ∈ SYM}, andSSTT = {ṙ | r ∈ S}. Our
construction obviously induces a one-to-one correspondence_̇ between languagesL andLST T .

Moreover, letg = (giv : IV −→ D, gpv : PV −→ P ) be a variable assignment forL. We
define the corresponding variable assignment

ġ = (ġiv : IVSTT −→ D = Dι, ġ
pv : PVSTT −→ P = Dµ�o)

for LST T so thatġ(Xι) = ġ(Ẋ) = g(X) andġ(Pµ�o) = ġ(Ṗ ) = g(P ) for all Xι ∈ IVSTT and
Pµ�o ∈ PVSTT .

Finally, a variable assignmentġ is lifted to an assignment for variablesZα of arbitrary type
by choosingġ(Zα) = d ∈ Dα arbitrarily, if α 6= ι, µ � o.

We assume below thatL, LST T , g andġ are defined as above.

Definition 4.2 (Henkin modelHQ for QKπ modelQ)
Given aQKπmodelQ = (W, (Rr)r∈S, D, P, (Iw)w∈W ) forL, a Henkin modelHQ = 〈{Dα}α∈T , I〉
for LST T is constructed as follows. We choose

• the setDµ as the set of possible worldsW ,

• the setDι as the set of individualsD (cf. definition ofġiv),

• the setDµ�o as the set of sets of possible worldsP (cf. definition ofġpv),1

• the setDµ�µ�o as the set of relations(Rr)r∈S,

• and all other setsDα�β as (not necessarily full) sets of functions fromDα to Dβ; for all
setsDα�β the rule that everything denotes must be obeyed, in particular, we require that
the setsDιn�(µ�o) contain the elementsIkιn�(µ�o) as characterized below.

1To keep things simple, we identify sets with their characteristic functions.
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The interpretationI is as follows:

• Let kιn�(µ�o) = k̇ for k ∈ SYM and letX i
ι = Ẋ i for X i ∈ IV . We chooseIkιn�(µ�o) ∈

Dιn�(µ�o) such that
(I k)(ġ(X1

ι ), . . . , ġ(Xn
ι ), w) = T

for all worlds w ∈ Dµ such that Q, g, w |= k(X1, . . . , Xn); that is, if
〈g(X1), . . . , g(Xn)〉 ∈ Iw(k). Otherwise(I k)(ġ(X1

ι ), . . . , ġ(Xn
ι ), w) = F .

• Let rµ�µ�o = ṙ for r ∈ S. We chooseIrµ�µ�o ∈ Dµ�µ�o such that(Irµ�µ�o)(w,w
′) = T

if 〈w,w′〉 ∈ Rr in Q and(Irµ�µ�o)(w,w
′) = F otherwise.

It is not hard to verify thatHQ = 〈{Dα}α∈T , I〉 is a Henkin model.

Lemma 4.3
LetQ = (W, (Rr)r∈S, D, P, (Iw)w∈W ) be aQKπ model and letHQ = 〈{Dα}α∈T , I〉 be a Henkin
model forQ. Furthermore, letsµ�o = ṡ for s ∈ L.
Then for all worldsw ∈ W and variable assignmentsg we haveQ, g, w |= s in Q if and only if
V[w/Wµ]ġ (sµ�oWµ) = T in HQ.

Proof: The proof is by induction on the structure ofs ∈ L.

Let s = P for P ∈ PV . By construction of Henkin modelHQ and by definition ofġ, we
have forPµ�o = Ṗ thatV[w/Wµ]ġ (Pµ�oWµ) = ġ(Pµ�o)(w) = T if and only ifQ, g, w |= P , that
is,w ∈ g(P ).

Let s = k(X1, . . . , Xn) for k ∈ SYM andX i ∈ IV . By construction of Henkin modelHQ

and by definition oḟg, we have fork̇(Ẋ1, . . . , Ẋn) = (kιn�(µ�o)X
1
ι . . . X

n
ι ) that

V[w/Wµ]ġ ((kιn�(µ�o)X
1
ι . . .X

n
ι )Wµ) = (I k)(ġ(X1

ι ), . . . , ġ(Xn
ι ), w) = T

if and only ifQ, g, w |= k(X1, . . . , Xn), that is,〈g(X1), . . . , g(Xn)〉 ∈ Iw(k).

Let s = ¬ t for t ∈ L. We haveQ, g, w |= ¬s if and only Q, g, w 6|= s, which is
equivalent by induction toV[w/Wµ]ġ (tµ�oWµ) = F and hence toV[w/Wµ]ġ ¬(tµ�oWµ) =βη

V[w/Wµ]ġ ((¬ tµ�o)Wµ) = T .

Let s = (t ∨ l) for t, l ∈ L. We haveQ, g, w |= (t ∨ l) if and only if Q, g, w |= t
or Q, g, w |= l. The latter condition is equivalent by induction toV[w/Wµ]ġ (tµ�o Wµ) = T or
V[w/Wµ]ġ (lµ�o Wµ) = T and therefore toV[w/Wµ]ġ (tµ�o Wµ) ∨ (lµ�oWµ) =βη V[w/Wµ]ġ (tµ�o ∨

lµ�o Wµ) = T .

Let s = 2r t for t ∈ L. We haveQ, g, w |= 2r t if and only if for all u with 〈w, u〉 ∈ Rr

we haveQ, g, u |= t. The latter condition is equivalent by induction to this one: for all u with
〈w, u〉 ∈ Rr we haveV[u/Vµ]ġ (tµ�o Vµ) = T . That is equivalent to

V[u/Vµ][w/Wµ]ġ (¬(rµ�µ�oWµ Vµ) ∨ (tµ�o Vµ)) = T

and thus to

V[w/Wµ]ġ (∀Yµ (¬(rµ�µ�oWµ Yµ) ∨ (tµ�o Yµ))) =βη V[w/Wµ]ġ (2r tWµ) = T.
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Let s = ∀X t for t ∈ L and X ∈ IV . We haveQ, g, w |= ∀X t if and only
if Q, [d/X]g, w |= t for all d ∈ D. The latter condition is equivalent by induc-
tion to V[d/Xι][w/Wµ]ġ (tµ�oWµ) = T for all d ∈ Dι. That condition is equivalent to
V[w/Wµ]ġ (Πι

(ι�o)�o(λXι tµ�oWµ)) =βη V[w/Wµ]ġ ((λVµ (Πι
(ι�o)�o (λXι tµ�o Vµ)))Wµ) =

T and so by definition of Πι to V[w/Wµ]ġ ((Πι
(ι�(µ�o))�(µ�o) (λXι tµ�o))Wµ) =

V[w/Wµ]ġ ((∀Xι tµ�o)Wµ) = T .

The case fors = ∀P t wheret ∈ L andP ∈ PV is analogous tos = ∀X t. 2

We exploit this result to prove the soundness of our embedding.

Theorem 4.4 (Soundness forQKπ semantics) Let s ∈ L be a QML proposition and let
sµ�o = ṡ be the correspondingQMLSTT proposition. If|=ST T (validsµ�o) then|=QKπ s.

Proof: By contraposition, assume6|=QKπ s: that is, there is aQKπ model Q =
(W, (Rr)r∈S, D, P, (Iw)w∈W ), a variable assignmentg and a worldw ∈W , such thatQ, g, w 6|= s.
By Lemma 4.3, we haveV[w/Wµ]ġ (sµ�oWµ) = F in a Henkin modelHQ for Q. Thus,
Vġ (∀Wµ (sµ�oW )) =βη Vġ (validsµ�o) = F . Hence,6|=ST T (validsµ�o). 2

In order to prove completeness, we reverse our mapping from Henkin models toQKπmodels.

Definition 4.5 (QML logicLQML for QMLSTT logicL) The mappinḡ_ is defined as the re-
verse map oḟ_ from Def. 4.1.

TheQML logic LQML is obtained fromQMLSTT logic L by choosingIV = {X̄ι | Xι ∈
IVSTT}, PV = {P̄µ�o | Pµ�o ∈ PVSTT}, SYM = {k̄ιn�(µ�o | kιn�(µ�o) ∈ SYMSTT}, and
S = {r̄µ�µ�o | rµ�µ�o ∈ SSTT}.

Moreover, letg : IVSTT ∪ PVSTT −→ D ∪ P be a variable assignment forL. The cor-
responding variable assignmentḡ : IV ∪ PV −→ D ∪ P for LQML is defined as follows:
ḡ(X) = ḡ(X̄ι) = g(Xι) andḡ(P ) = ḡ( ¯Pµ�o) = g(Pµ�o) for all X ∈ IV andP ∈ PV .

We assume below thatL, LQML, g andḡ are defined as above.

Definition 4.6 (QKπ− modelQH for Henkin model H) Given a Henkin model
H = 〈{Dα}α∈T , I〉 for QMLSTT logic L, we construct aQML model QH =
(W, (Rr)r∈S, D, P, (Iw)w∈W ) for LQML by choosingW = Dµ, D = Dι, P = Dµ�o

2,
and (Rr)r∈S = Dµ�µ�o. Let k = k̄ιn�(µ�o) and letX i = X̄ i

ι . We chooseIw(k) such that
〈ḡ(X1), . . . , ḡ(Xn)〉 ∈ Iw(k) if and only if

(I k)(g(X1
ι ), . . . , g(Xn

ι ), w) = T.

Finally, letr = r̄µ�µ�o. We chooseRr such that〈w,w′〉 ∈ Rr if and only if (Irµ�µ�o)(w,w
′) =

T .

It is not hard to verify thatQH = (W, (Rr)r∈S, D, P, (Iw)w∈W ) meets the definition ofQKπ−

models. Below we will see that it also meets the definition ofQKπ models.

2Again, we identify sets with their characteristic functions.
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Lemma 4.7 Let QH = (W, (Rr)r∈S, D, P, (Iw)w∈W ) be aQKπ− model for a given Henkin
modelH = 〈{Dα}α∈T , I〉. Furthermore, lets = s̄µ�o.

For all worldsw ∈ W and variable assignmentsg we haveV[w/Wµ]g (sµ�oWµ) = T in H if
and only ifQH , ḡ, w |= s in QH .

Proof: The proof is by induction on the structure ofsµ�o ∈ L and it is analogous to the proof
of Lemma 4.3.

2

With the help of Lemma 4.7, we now show that theQKπ− models we construct in Def. 4.6
are in fact alwaysQKπ models. Thus, Henkin models never relate toQKπ− models that do not
already fulfill theQKπ criterion.

Lemma 4.8 Let QH = (W, (Rr)r∈S, D, P, (Iw)w∈W ) be aQKπ− model for a given Henkin
modelH = 〈{Dα}α∈T , I〉. ThenQH is also aQKπ model.

Proof: We need to show that for every variable assignmentḡ and formulas = s̄µ�o the set
{w ∈ W | Qh, ḡ, w |= s} is a member ofP in QH . This is a consequence of the rule that
everything denotes in the Henkin modelH. To see this, considerVgsµ�o = Vg(λVµ sµ�o V )
for variableVµ not occurring free insµ�o. By definition of Henkin models this denotes that
function fromDµ = W to truth valuesDo = {T, F} whose value for each argumentw ∈ Dµ

is V[w/Vµ]g(s V ), that is,sµ�o denotes the characteristic functionλw ∈ W V[w/Vµ]g (sµ�oVµ) = T
which we identify with the set{w ∈ W | V[w/Vµ]g (sµ�oVµ) = T}. Hence, we have{w ∈ W |
V[w/Vµ]g (sµ�oVµ) = T} ∈ Dµ�o. By the choice ofP = Dµ�o in the construction ofQH we know
{w ∈W | V[w/Vµ]g (sµ�oVµ) = T} ∈ P . By Lemma 4.7 we get{w ∈W | Qh, ḡ, w |= s} ∈ P .

2

Theorem 4.9 (Completeness forQKπ models) Let sµ�o be aQMLSTT proposition and let
s = s̄µ�o be the correspondingQML proposition. If|=QKπ s then|=ST T (validsµ�o).

Proof: By contraposition, assume6|=ST T (validsµ�o): there is a Henkin modelH =
〈{Dα}α∈T , I〉 and a variables assignmentg such thatVg (validsµ�o) = F . Hence, for some
worldw ∈ Dµ we haveV[w/Wµ]g (sµ�oWµ) = F . By Lemma 4.7 we then getQH , ḡ, w 6|=QKπ−

s
for s = s̄µ�o in QKπ− modelQH for H. By Lemma 4.8 we know thatQH is actually aQKπ
model. Hence,6|=QKπ s. Box

Our soundness and completeness results obviously also apply to fragments ofQML logics.

Corollary 4.10 The reduction of our embedding to propositional quantified multimodal logics
(which only allow quantification over propositional variables) is sound and complete.

Corollary 4.11 The reduction of our embedding to first-order multimodal logics (which only
allow quantification over individual variables) is sound and complete.

Corollary 4.12 The reduction of our embedding to propositional multimodallogics (no quantifi-
cation) is sound and complete.
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5 Applying the Embedding in Practice

In this section, we illustrate the practical benefits of our embedding with the help of some simple
experiments. We employ off-the-shelf automated higher theorem provers and model generators
for simple type theory to solve problems in quantified multimodal logic. Future work includes
the encoding of a whole library of problems for quantified multimodal logics and the systematic
evaluation of the strengths of these provers to reason aboutthem.

In our case studies, we have employed the simple type theory automated reasoners LEO-II,
TPS [5], IsabelleM and IsabelleP.3 These systems are available online via the SystemOnTPTP
tool and they exploit the new TPTP infrastructure for typed higher-order logic [12].

The formalization of the modal operators (Def. 4.1) and the notion of validity (Def. 3.4) in
THF syntax [12] is presented in Appendix A. As secured by the theoretical results of this paper,
these few lines of definitions are all we need to make simple type theory reasoners applicable to
quantified multimodal logic.

If we call the theorem provers LE0-II and IsabelleP with thisfile, then they try to find a
refutation from these equations: they try to prove their inconsistency. As expected, none of the
systems reports success. The model finder IsabelleM, however, answers in 0.6 seconds that a
model has been found. IsabelleM employs the SAT solver zChaff.

When applying our systems to Example 3.5, we get the following results (where+/t repre-
sents that a proof has been found int seconds and−/t reports that no proof has been found within
t seconds): IsabelleP:+/1.0, LEO-II: +/0.0, TPS:+/0.3. IsabelleM does not find a model (this
also holds for the examples below).

We also tried the Barcan formula and its converse:

BF : valid (∀Xι 2r (pι�(µ�o)X)) ⊃ (2r ∀Xι (pι�(µ�o)X))

BF−1 : valid (2r ∀Xι (pι�(µ�o)X)) ⊃ (∀Xι 2r (pι�(µ�o)X))

The results forBF andBF−1 are IsabelleP:+/0.7, LEO-II and LEO-IIP:+/0.0, TPS:+/0.2.
This confirms that our first-order quantification is constantdomain.

The next example analyzes the equivalence of two quantified multimodal logic formula schemes
(which can be read as “if it is possible for everything to beP , then everything is potentiallyP ”):

∀Rι�µ�o ∀Pι�(µ�o)

(valid (3R ∀Xι (P X)) ⊃ (∀Xι 3R (P X)))

⇔

(valid (∃Xι 2R (P X)) ⊃ (2R ∃Xι (P X)))

The results are: IsabelleP:+/2.0, LEO-II: +/0.0, TPS:+/0.2.

3IsabelleM is a model finder in Isabelle that has been made available in batch mode, while IsabelleP applies a
series of Isabelle proof tactics in batch mode.



14

An interesting meta property is the correspondence betweenaxiom

valid ∀Pι�(µ�o) (3i 2j P ) ⊃ 2k 3l P

and the(i, j, k, l)-confluence property:

∀Aµ ∀Bµ ∀Cµ (((i AB) ∧ (k AC)) ⇒ ∃Dµ ((j B D) ∧ (l C D)))

The results are: IsabelleP:+/3.7, LEO-II: +/0.3, TPS:+/0.2. The problem encoding is presented
in Appendix C.

Future work will investigate how well this approach scales for more challenging problems. We
therefore invite potential users to encode their problems in the THF syntax and to submit them to
the THF TPTP library.



15

6 Conclusion

We have presented a straightforward embedding of quantifiedmultimodal logics in simple type
theory and we have shown that this embedding is sound and complete forQKπ semantics. This
entails further soundness and completeness results of our embedding for fragments of quantified
multimodal logics. We have formally explored the natural correspondence betweenQKπ models
and Henkin models and we have shown that the weakerQKπ− models do not enjoy such a
correspondence.

Non-quantified and quantified (normal) multimodal logics can thus be uniformly seen as nat-
ural fragments of simple type theory and their semantics (except some weak notions such as
QKπ− models) can be studied from the perspective of the well understood semantics of simple
type theory. Vice versa, via our embedding we can characterize some computationally interest-
ing fragments of simple type theory, which in turn may lead tosome powerful proof tactics for
higher-order proof assistants.

Future work includes further extensions of our embedding toalso cover quantified hybrid
logics [14, 15] and full higher-order modal logics [22, 31].A first suggestion in direction of
higher-order modal logics has already been made [10]. This proposal does however not yet ad-
dress intensionality aspects. However, combining this proposal with non-extensional notions of
models for simple type theory [9, 32] appears a promising direction.
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A THF Formalization of Quantified Multi-Modal Logic in
Simple Type Theory

%---------------------------------------------------------------------
% File : QML.ax
% Domain : Quantified multimodal logic
% Problems :
% Version :
% English : Embedding of quantified multimodal logic in
% simple type theory
% Refs :
% Source : Formalization in THF by C. Benzmueller
% Names :
% Status :
% Rating :
% Syntax :
% Comments :
%---------------------------------------------------------------------
%---- declaration of additional base type mu
thf(mu,type,(

mu: $tType )).

%---- modal operators not, or, box, Pi (for types mu and $i>$o)
thf(mnot,definition,

( mnot
= ( ^ [Phi: $i > $o,W: $i] :

~ ( Phi @ W ) ) )).

thf(mor,definition,
( mor
= ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :

( ( Phi @ W )
| ( Psi @ W ) ) ) )).

thf(mbox,definition,
( mbox
= ( ^ [R: $i > $i > $o,Phi: $i > $o,W: $i] :

! [V: $i] :
( ~ ( R @ W @ V )
| ( Phi @ V ) ) ) )).

thf(mall_ind,definition,
( mall_ind
= ( ^ [Phi: mu > $i > $o,W: $i] :

! [X: mu] :
( Phi @ X @ W ) ) )).

thf(mall_prop,definition,
( mall_prop
= ( ^ [Phi: ( $i > $o ) > $i > $o,W: $i] :

! [P: $i > $o] :
( Phi @ P @ W ) ) )).

%---- further modal operators
thf(mtrue,definition,
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( mtrue
= ( mall_prop

@ ^ [P: $i > $o] :
( mor @ P @ ( mnot @ P ) ) ) )).

thf(mtrue,definition,
( mfalse
= ( mall_prop

@ ^ [P: $i > $o] :
( mnot @ mtrue ) ) )).

thf(mand,definition,
( mand
= ( ^ [Phi: $i > $o,Psi: $i > $o] :

( mnot @ ( mor @ ( mnot @ Phi ) @ ( mnot @ Psi ) ) ) ) )).

thf(mimpl,definition,
( mimpl
= ( ^ [Phi: $i > $o,Psi: $i > $o] :

( mor @ ( mnot @ Phi ) @ Psi ) ) )).

thf(mdia,definition,
( mdia
= ( ^ [R: $i > $i > $o,Phi: $i > $o] :

( mnot @ ( mbox @ R @ ( mnot @ Phi ) ) ) ) )).

thf(mexi_ind,definition,
( mexi_ind
= ( ^ [Phi: mu > $i > $o] :

( mnot
@ ( mall_ind

@ ^ [X: mu] :
( mnot @ ( Phi @ X ) ) ) ) ) )).

thf(mexi_prop,definition,
( mexi_prop
= ( ^ [Phi: ( $i > $o ) > $i > $o] :

( mnot
@ ( mall_prop

@ ^ [P: $i > $o] :
( mnot @ ( Phi @ P ) ) ) ) ) )).

%---- definition of validity
thf(mvalid,definition,

( mvalid
= ( ^ [Phi: $i > $o] :

! [W: $i] :
( Phi @ W ) ) )).
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B THF Example: In all Worlds exists Truth

%--------------------------------------------------------------------
% File : ex1.p
% Domain : Quantified multimodal logic
% Problems :
% Version :
% English : In all accessible worlds exists truth.
% Refs :
% Source : Formalization in THF by C. Benzmueller
% Names :
% Status :
% Rating :
% Syntax :
% Comments :
%--------------------------------------------------------------------
%---- include the definitions for qunatified multimodal logic
include(’QML.ax’).

%---- provide a consant for accesibility relation r
thf(r,type,r:$i>$i>$o).

%---- conjecture statement
thf(ex1,conjecture,

(mvalid @ (mbox @ r @ (mexi_prop @ (^[P:$i>$o]: P))))).
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C THF Example: Confluence Property of Accessibility Rela-
tions

%--------------------------------------------------------------------
% File : ex9.p
% Domain : Quantified multimodal logic
% Problems :
% Version :
% English : Confluence property of accessibility relations
% Refs :
% Source : Formalization in THF by C. Benzmueller
% Names :
% Status :
% Rating :
% Syntax :
% Comments :
%--------------------------------------------------------------------
%---- include the definitions for qunatified multimodal logic
include(’QML.ax’).

%---- constants for accesibility relations
thf(i,type,(

i: $i > $i > $o )).

thf(j,type,(
j: $i > $i > $o )).

thf(k,type,(
k: $i > $i > $o )).

thf(l,type,(
l: $i > $i > $o )).

%---- definition of confluence property
thf(confluence,definition,

( confluence
= ( ^ [I: $i > $i > $o,J: $i > $i > $o,

K: $i > $i > $o,L: $i > $i > $o] :
! [A: $i,B: $i,C: $i] :

( ( ( I @ A @ B )
& ( K @ A @ C ) )

=> ? [D: $i] :
( ( J @ B @ D )
& ( L @ C @ D ) ) ) ) )).

%---- correspondence between axiom and confluence property
thf(conj,conjecture,

( ( mvalid
@ ( mall_prop
@ ^ [P: $i > $o] :

( mimpl @ ( mdia @ i @ ( mbox @ j @ P ) )
@ ( mbox @ k @ ( mdia @ l @ P ) ) ) ) )

<=> ( confluence @ i @ j @ k @ l ) )).


