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Abstract

We present a straightforward embedding of quantified moltiah logic in simple type theory
and prove its soundness and completeness. Modal operagorspdaced by quantification
over a type of possible worlds. We present simple experimersing existing higher-order
theorem provers, to demonstrate that the embedding allotsnated proofs of statements
in these logics, as well as meta properties of them.



1 Motivation

There are two approaches to automate reasoning in modaklogihedirect approach [7, 33]
develops specific calculi and tools for the task; tfanslationalapproach [35, 36] transforms
modal logic formulas into first-order logic and applies star first-order tools.

In previous work [10, 8, 11] we have picked up and extendecethbedding of multimodal
logics in simple type theory as proposed by Brown [16]. Tletstg point is a characterization
of multimodal logic formulas as particularterms in simple type theory. A characteristic of the
encoding is that the definiens of the operator\-abstracts over the accessibility relatianiWe
have proved that this encoding is sound and complete [8, did w&e have illustrated that this
encoding supports the formulation of meta properties obdad multimodal logics such as the
correspondence between certain axioms and properties atttessibility relation [10]. Some of
these meta properties can even be effectively automatddhvatir higher-order theorem prover
LEO-II [13].

In this paper we extend our previous work to quantified mudtiad logics. Multimodal log-
ics with quantification for propositional variables haveebestudied by others before, including
Kripke [30], Bull [17], Fine [19, 20], Kaplan [28], and KremE29]. Also first-order modal logics
[23, 26] have been studied in numerous publications. Weraeeasted here in multimodal logics
with quantification over both propositional and first-ordgariables, a combination investigated,
for example, by Fitting [21]. In contrast to Fitting we henerpue the translational approach and
study the embedding of quantified multimodal logic in simfylee theory. This approach has
several advantages:

e The syntax and semantics of simple type theory is well unideds[1, 2, 9, 25]. Studying
(quantified) multimodal logics as fragments of simple typedry can thus help to better
understand semantical issues.

e For simple type theory, various automated proof tools aadaie, including Isabelle/HOL
[34], HOL [24], LEO-II [13], and TPS [5]. Employing the traftsmation presented in this
paper, these systems become immediately applicable taifisdmmultimodal logics or
fragments of them.

e Even meta properties of quantified modal logics can be famaéland mechanically ana-
lyzed within these provers.

e The systematic study of embeddings of multimodal logicsmpge type theory can identify
fragments of simple type theory that have interesting cdatmnal properties (such as
the detection of the guarded fragment). This can foster avgiments to proof tactics in
interactive proof assistants.

Our paper is organized as follows. In Section 2 we brieflye@vsimple type theory and adapt
Fitting’s [21] notion of quantified multimodal logics. In &8n 3 we extend our previous work
[8, 10, 11] and present an embedding of quantified multimtmiat in simple type theory. This
embedding is shown sound and complete in Section4. In $estiwe present some simple
experiments with the automated theorem provers LEO-II,, BiA8 IsabelleP and the model finder
IsabelleM. These experiments exploit the new TPTP THF atiftecture [12].



2 Preliminaries

2.1 Simple Type Theory

Classical higher-order logic agimple type theorys7 7 [3, 18] is built on top of the simply
typed\-calculus. The sef of simple types is usually freely generated from a set ofdagies
{o,.} (Whereo is the type of Booleans andis the type of individuals) using the function type
constructor—. Instead of{o,.} we here consider a set of base tydes:, 1}, providing an
additional base typg (the type of possible worlds).

The simple type theory languag€ 7 is defined by &, 3 € 7):

S, 5= Pa| Xa | (AXawsp)ans | (Sampta)s | (Tomo50)o |

(So \/o—>o—>o to)o | (Sa —a—a—o ta)o | (H(a—>o)—>o Sa—m)o

P denotes typed constants aid typed variables (distinct from,). Complex typed terms are
constructed via abstraction and application. Our logicalnectives of choice are,_,, Vo_o-o,
=a-a-o @NdIl .-, (for each typey). From these connectives, other logical connectives can be
defined in the usual way. We often use binder notatin. s for I1(,—,)-,(AXa. s,). We denote
substitutionof a term A, for a variableXX,, in a term B by [A/X]|B. Since we consided-
conversion implicitly, we assume the bound variable®avoid variable capture. Two common
relations on terms are given [¥reduction and)-reduction. Ag-redex has the forngAX. s)t
andj-reduces tdt/ X|s. An n-redex has the forfi\ X. s X') where variableX is not free ins; it
n-reduces ta. We writes =5 t to means can be converted tbby a series ofi-reductions and
expansions. Similarly; =g, ¢ meanss can be converted tousing both3 and». For eachs € L
there is a uniqug-normal formand a uniquein-normal form

The semantics a7 7 is well understood and thoroughly documented in the litesaf1, 2,
9, 25]; our summary below is adapted from Andrews [4].

A frameis a collection{ D, }.c7 of nonempty setd,,, such thatD, = {T, F'} (for truth
and falsehood). Thé,_s are collections of functions mapping,, into Dg. The members
of D, are calledindividuals An interpretationis a tuple({ D, }.c7, I) where function/ maps
each typed constant, to an appropriate element @¥,, which is called thedenotationof ¢,
(the logical symbols-, v, I1¢, and=,_,., are always given the standard denotations). A
variable assignment maps variablesy, to elements inD,. An interpretation({ D, }sc7, I)
is a Henkin modelequivalently, ageneral modglif and only if there is a binary functiow
such thatV, s, € D, for each variable assignmentand terms, € L, and the following
conditions are satisfied for af and alls,t € L: (a) Vy X, = ¢Xa, (0) Vypa = Ipa, (C)
Vo(Sampta) = (Vs Sasp)(Vsta), and (d)Vy(AX,.sp) is that function fromD,, into Dz whose
value for each argumente D, is V., x,j453, Where[z/ X, ]¢ is that variable assignment such
that([z/X,]¢) Xa = z and([z/X,]9)Ys = ¢Ys if Ys # X,. (Sincel—, IV, ITI, and/= always
denote the standard truth functions, we h&yé—s) = T'ifand only if V, s = F', V(s Vt) =T
ifand only if V,s = T'or Vst =T, Vs (VX so) = Vs (11*(A X, s,)) = T if and only if for all
z € D, we haveV, x,45, = T, andV, (s = t) = T ifand only if V, s = V4 ¢. Moreover, we
haveV, s = V,t whenevers =g, t.) Itis easy to verify that Henkin models obey the rule that
everything denotes, that is, each tefralways has a denotatian, t, € D,. If an interpretation
({Ds}aer, I) is a Henkin model, then the functiaf, is uniquely determined.

We say that formulad € L is valid in a model({ D, }.c7, I) if and only if V,A = T for



every variable assignment A model for a set of formulas/ is a model in which each formula
of H is valid. A formulaA is Henkin-valid if and only ifA is valid in every Henkin model. We
write =577 A'if A is Henkin-valid.

2.2 Quantified Multimodal Logic

First-order quantification can be constant domain or vgrglamain. Below we only consider
the constant domain case: every possible world has the samain. We adapt the presentation
of syntax and semantics of quantified modal logic from Fgt{id1]. In contrast to Fitting we are
not interested irs5 structures but in the more general cas&of

Let ZV be a set of first-order (individual) variablegB)’ a set of propositional variables, and
SYM a set of predicate symbols of any arity. Like Fitting, we keep definitions simple by
not having function or constant symbols. While Fitting [21}dies quantified monomodal logic,
we are interested in quantified multimodal logic. Hence, mieduce multipled,. operators for
symbolsr from an index set. The grammar for our quantified multimodal logitM £ is thus

s,;t n= Plk(XY...,X")|—=s|sVt|VX.s|VP.s|0O,s

whereP € PV, k € SYM, andX, X' € TV.

Further connectives, quantifiers, and modal operators eatefined as usual. We also obey
the usual definitions of free variable occurrences and gubens.

Fitting introduces three different notions of semanti€S57—, QS5r, and QS5r*. We
study related notionQ@ K7, QKm, andQK=* for a modal contexK, and we support multiple
modalities.

A QK7 modelis a structuréV = (W, (R, ),es, D, P, (I,)wew) such tha{ W, (R,),cs) is a
multimodal frame (that islV is the set of possible worlds and tli& are accessibility relations
between worlds i), D is a non-empty set (the first-order domaiR)is a non-empty collection
of subsets oV (the propositional domain), and tlig are interpretation functions mapping each
n-place relation symbat € SY M to somen-place relation orD in world w.

A variable assignmenj = (¢, g**) is a pair of mapg™ : ZV — D andg?’ : PV — P,
whereg® maps each individual variable iV’ to a an object irD andg”” maps each propositional
variable inPV to a set of worlds inP.

Validity of a formulas for a modelM = (W, (R,),es, D, P, 1,,), aworldw € W, and a
variable assignment = (¢, g**) is denoted as\/, g,w = s and defined as follows, where
la/Z]g denotes the assignment identicaljtexcept that[a/Z]g)(Z) = a:



M,g,w k= k(X' ..., X™) ifandonlyif (¢"(X?"),...,¢"(X™)) € I,(k)
M,g,w = P ifandonlyif w € ¢*’(P)

M,g,wE—p ifandonlyif M g,wlp
M,g,wl=pV q ifandonlyif M,g,wEporM, g, wlq
M,g,w=VX.p ifandonlyif M, ([d/X]g",¢""),w = pforalld e D
M,g,w=VQ.p ifandonlyif M, (¢", [v/Q)¢""),w = pforallv € P

M,g,w =0,p ifandonlyif M, g,vlpforalve W

with (w,v) € R,

A QK7™ modelM = (W, (R,)es, D, P, (1,)wew) IS @ QK7 modelif for every variable
assignmeny and every formulas €¢ QML, the set of world§w € W | M,g,w = s} is a
member ofP.

A QKr modelM = (W, (R,)es, D, P, (I,)wew) is aQKx™ modelif every worldw € W
is member of an atom i?. Theatomsof P are minimal non-empty elements 6f no proper
subsets of an atom are also element® of

A QML formula s is valid in modelM for world w if M, g,w = s for all variable as-
signmenty. A formula s is valid in modelM if M, g,w | s for all g andw. Formulas is
QKr-valid if s is valid in all QK7 models, when we write=Q¥™ s; we defineQK~~-valid and
QK *-valid analogously.

In the remainder we mainly focus dd K7 models. These models naturally correspond to
Henkin models, as we shall see in Sect.4.



3 Embedding Quantified Multimodal Logic in S77T

The idea of the encoding is simple. We choose type denote the (non-empty) set of individ-
uals and we reserve a second base fype denote the (non-empty) set of possible worlds. The
type o denotes the set of truth values. Certain formulas of fype o then correspond to multi-
modal logic expressions. The multimodal connectivesV , andO , become\-terms of types
(h—=0)=(=0), (n=>0) = (p—0) = (r—0),and(p—p—o0)=(u—0) = (n— o) re-
spectively.

Quantification is handled as usual in higher-order logic mdetingvX.p asIl(AX.p) for
a suitably chosen connectivg as we remarked in Section 2. Here we are interested in dgfinin
two particular modalT-connectivesII‘, for quantification over individual variables, ahit°,
for quantification over modal propositional variables tti@pend on worlds, of types — (1 —
0)) = (p—=o)and((x — o) = (- 0)) = (1 — o), respectively.

In previous work [10] we have discussed first-order and higider modal logic, including
a means of explicitly excluding terms of certain types. Tdieai was that no proper subterm of
t,.-o Should introduce a dependency on worlds. Here we skip tisisicgon. This leads to a
simpler definition of a quantified multimodal langua@eM 57" below, and it does not affect
our soundness and completeness results.

Definition 3.1 (Modal operators)
The modal operators, Vv, O, IT*, andIT*° are defined as follows:

7 (pm0) (o) = ADpmor AW 2 (@ W)
V (4=0)~(1=0) = (520) = APy Apmson AW g WV A W
O (=) )= =) = AR oo ADposor AW WV 2(RW V)V GV
o) = AD (o AW VX X W
= (o) (o) AWV Pypsn d P W

(L—> (p—0))—(p—o

p—o
L (m0)— (pm0)) = (o) =

Further operators can be introduced, for example,

T (um0)=(umo) =
Lmo)ys(umoy =2 T
N (p=0)(p=0)=(i=0) = APpmor Apmsor 71 (90 V —10))
) ) = AQpoor Mpmsr 0 V1
O (pmpm0)=(s=0)~(1=0) = AMRypmor ADpson ™ S (O R(—9))
EL_,(M_,O))_,(M_,O) = )\¢L—» (u—o0)" (HL(AXL-_' (CbX)))
Eu(;io )= (1—=0))=(u—0) — AP (m0)= (o) T (IO (APyoe = (0 P)))

D (u=0)=(n=0)=(u—o

We could also introduce further modal operators, such asglifference modalityD, the global
modality £, nominals with, or the@ operator (consider the recent work of Kaminski and Smolka



[27] in the propositional hybrid logic context; they alscoatia higher-order perspective):

Doy (se) = Ao AW, IVl W £ VA GV
Ep0)~(m0) = APpmor @ V D&
Nu0)=(um0) = APpson B (9 A 2 (D @)
Qs (pm0)= (o) = AW Apoor @ W

This illustrates the potential of our embedding for encgdjoantified hybrid logic, an issue that
we might explore in future work.

For definingQ M £°TT-propositions we fix a s&fV*T7 of individual variables of type, a set
PVSTT of propositional variables of type — o, and a seSY M7 of k-ary (curried) predicate
constants of types— ... — ¢ — (u — o). The latter types will be abbreviated &s— (1 — o) in

the remainder. Moreover, we fix a s&t’? of accessibility relation constants of type- 1 — o.

Definition 3.2 (QM LT -propositions) QM LT -propositions are defined as the smallest set
of simply typed\-terms for which the following hold:

e Each variable®, ., € PV*'" is an atomic@ M L5 -proposition, and it/ € TV (for
i=1,...,n)andks_0 € SYM'T, then the term(k X! ... X"),_, is an atomic
QM LT proposition.

o If ¢ andy are QM L5 -propositions, then so are ¢ andg V ).

o If r, ., € STT is an accessibility relation constant andils anQM L™ -proposition,
thenOr ¢ is aQM LT -proposition.

o If X, € 7V is an individual variable and is a QM £>* T -proposition thedT*(\X,. $)
is aQM LT -proposition.

o If P,, € PV*™T is a propositional variable and is a QML

" °(AP,.-¢) is aQM LT -proposition.

-proposition then

We writed, ¢, V.X,.¢, andV P, _,.¢ for Or ¢, ITI'(AX,.¢), andII*7°(A\P,_.. ¢), respectively.

Because the defining equations in Definition 3.1 are therasdlwmulas in simple type theory,
we can express proof problems in a higher-order theoremepedegantly in the syntax of quan-
tified multimodal logic. Using rewriting or definition expdimg, we can reduce these representa-
tions to corresponding statements containing only thechasinectives-, Vv, =, I1*, andII#~°

of simple type theory.

Example 3.3 The following QM LT proof problem expresses that in all accessible worlds
there exists truth:
0,3P,... P

The term rewrites into the followingn-normal term of type. — o

AW, YYo= (r W Y)YV (VP (P Y))



Next, we define validity oM £5TT propositionsp,,_., in the obvious way: &M L-proposition

¢.-o is valid if and only if for all possible worlds,, we havew, € ¢,_,, that is, if and only if
G0 wy, holds.

Definition 3.4 (Validity)
Validity is modeled as an abbreviation for the following pimtyped\-term:

valid = g0 VW0 W

Example 3.5 We analyze whether the propositiéh 3P,_,. P is valid or not. For this, we
formalize the following proof problem

valid (0, 3P,_,. P)
Expanding this term leads to
VWM.VYM.—\(T WY) vV (ﬁVXM_,O.—!(X Y))
It is easy to check that this term is valid in Henkin semanteg X = \Y,. T.
An obvious question is whether the notion of quantified mudtilal logics we obtain via this

embedding indeed exhibits the desired properties. In tlkesextion, we prove soundness and
completeness for a mapping @M L-propositions ta@ M L7 -propositions.



4 Soundness and Completeness of the Embedding

In our soundness proof, we exploit the following mappind 3= models into Henkin models.
We assume that th@ M L logic L under consideration is constructed as outlined in Section 2
from a set of individual variableg), a set of propositional variablg®), and a set of predicate
symbolsSY M. LetO,., ...,0,.. forr® € S be the box operators df.

Definition 4.1 (QM LT logic L5777 for QML logic L)
Given anQM L logic L, define a mapping as follows:
X = X, foreveryX € 7V
P =P,., foreveryP € PV
fe = kuin_(u0) fOr n-aryk € SYM
7 = Tusu-0 fOr everyr € S
The QM LT logic LS77 is obtained fromL by applying Def. 3.2 witht V577 = {X | X ¢

IV}, PVSTT = (P | P € PV}, SYMSTT = {k | k € SYM}, andS*TT = {r | r € S}. Our
construction obviously induces a one-to-one corresparelebetween languagdsandLS77.

Moreover, letg = (¢" : IV — D, g** : PV — P) be a variable assignment fdr We
define the corresponding variable assignment

g=(g": V""" — D =D, ¢ : PV — P=D,,)

for LS77 so thaty(X,) = §(X) = g(X) andg(P,-,) = §(P) = g(P) for all X, € TVS"" and
P,., € PV,

Finally, a variable assignmeitis lifted to an assignment for variables, of arbitrary type
by choosing)(Z,) = d € D,, arbitrarily, if o # ¢, u — o.

We assume below thdt, 577, g andg are defined as above.

Definition 4.2 (Henkin model H% for QK7 model Q)
Given aQKr modelQ = (W, (R,),es, D, P, (L,)wew) for L, a Henkin model? = ({ D, }aer, I)
for LS77 is constructed as follows. We choose

e the setD,, as the set of possible world¥,
e the setD, as the set of individual® (cf. definition of 3*),
e the setD,,_, as the set of sets of possible worlbigcf. definition of 57*),*

e the setD,_,., as the set of relations?, ), ¢s,

and all other setd,, .5 as (not necessarily full) sets of functions fram, to Dg; for all
setsD, .3 the rule that everything denotes must be obeyed, in paaticwle require that
the setsD,»_,,) contain the element&,._, .., as characterized below.

1To keep things simple, we identify sets with their charasterfunctions.
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The interpretatior is as follows:

o Lethn (o) = kfor k € SYM and letX! = Xifor X € ZV. We choosd k(. €
D,n_(u-0) SUCh that
(TR)GXD), . g(XT),w) =T
for all worlds w € D, such thatQ,¢g,w E k(X',...,X"); that is, if
(g(Xh),...,9(X™) € I,(k). Otherwise(I k)(g(X}!),...,g(X"),w) = F.

o Letr,.,., =rforr e S. Wechoosdr,_,., € D,_,., such tha(Ir,.,.,)(w,w') =T
if (w,w") € R, inQand(Ir,_,.,)(w,w") = F otherwise.

It is not hard to verify that/% = ({ D, }ac7, I) is @ Henkin model.

Lemma 4.3

LetQ = (W, (R,),es, D, P, (I,)wew ) be aQK7 model and le#/% = ({D, }.c7, ) be a Henkin
model for@. Furthermore, lets,,., = s for s € L.

Then for all worldsw € W and variable assignmentswe have®), g, w = s in @ if and only if
V[w/wu]g (Su—mW,u) =T in HC.

Proof: The proof is by induction on the structure o€ L.

Lets = P for P € PV. By construction of Henkin modelf @ and by definition ofy, we
have forP, ., = P thatVy,/w, 15 (Puiwo Wy.) = §(Puso)(w) = T ifand only if Q, g, w |= P, that
is,w € g(P).

Lets = k(X',...,X")fork € SYMandX’ € TV. By construction of Henkin mode¥“
and by definition ofj, we have fork(X', ..., X") = (kn_(um0 X} ... X") that

Viw/wils (koo X, X W) = (LR)(9(X)), - g(X]) w) =T

ifand only if Q, g, w = k(X!, ..., X™), thatis,(g(X1),...,g(X™)) € L,(k).

Let s = =t fort € L. We haveQ,g,w = —s if and only Q,g,w [~ s, which is
equivalent by induction td/,,/w,); (tu-o Wy) = F and hence oV, w,jg = (tu-o Wu) =pn
Viwwilg (7 tuso) W) =T

Lets = (¢t v I) fort,l € L. We haveQ,g,w = (t vV [)ifand only if Q,g,w | t
or Q,g,w = I. The latter condition is equivalent by induction ¥, w4 (t,~0 W,) = T or
Viw/w,lg (limo W) = T and therefore t0, w1y (t0 W) V (Lo Wii) =y Viw/w,jg (fumo vV
Lo W) =T.

Lets = O,¢ fort € L. We haveQ, g, w = O, t if and only if for all u with (w,u) € R,

we haveQ), g, u |= t. The latter condition is equivalent by induction to this ofer all « with
(w,u) € R, we haveVy, v, ); (t,-. V,) = T. Thatis equivalent to

Viuvidtw/wilg (T pepso W V) V (o Vi) =T
and thus to

V[w/WuMJ (VYH. (_‘<Tu—>u—>o Wu Yu) \% <tu—>o Yu))) =Bn V[w/WuMJ (DT t Wu) =T.
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Let s = VX.tfort € Land X € IV. We haveQ,g,w | VX.t if and only
if @, [d/X]g,w = t for all d € D. The latter condition is equivalent by induc-
tion to Vg x,jjw/w,g (tu=eW,) = T for all d € D,. That condition is equivalent to
V[U}/Wu}!] (HELﬁO)ﬁO()\XL-tU_)O Wu)) —Bn V[w/Wu]Q (()‘Vu' (HEHO)—»O ()‘Xt'tu—w Vu))) Wu) =
T and so by definition of II' t0 Vi w,s (I (um0))o(umo) AXituno)) W) =
Viw/w s (VX tyuso) W) = T

The case fok = VP. t wheret € L andP € PV is analogous te@ = VX. ¢t. O
We exploit this result to prove the soundness of our embeddin

Theorem 4.4 (Soundness foQKr semantics) Let s € L be a QML proposition and let
s,-0 = § be the correspondin@ M L™ proposition. If=577 (valids,,..,) then =¥ s,

Proof: By contraposition, assumg®¥™ s: that is, there is aQKr model Q =
(W, (R})res, D, P, (I,)wew ), & variable assignmentand a worldo € W, such that), g, w F~ s.
By Lemma 4.3, we havé/,, w, s (su~0W,) = F in a Henkin modelH€ for ). Thus,
Vi (VW (8,20 W) =5, V; (valids,,_,) = F. Hence =577 (valids,_,). O

In order to prove completeness, we reverse our mapping frenkid models t&Q K7 models.

Definition 4.5 (QM L logic LM~ for QM L"T logic L) The mapping is defined as the re-
verse map of from Def. 4.1.

The QML logic LM is obtained fromQM L% logic L by choosinglV = {X, | X, €
IVSTT}, Py = {P,u—m | P,u—»o c vaTT}' SyM — {lﬁ"a(,u—m ‘ ]{?an(‘u_,o) c SyMSTT}, and

S = {Fupmo | Tuopmo € ST}

Moreover, letg : ZV5TT U PVSTT — D U P be a variable assignment fér. The cor-
responding variable assignmept: 7V U PV — D U P for LM~ is defined as follows:

3(X) = §(X,) = g(X,) andg(P) = §(P,.,) = g(P..) forall X € TV andP € PV.
We assume below thdt, LM~ g andg are defined as above.

Definition 4.6 (QK 7~ model Q% for Henkin model H) Given a Henkin model
H = ({{Dj}aer,I) for QML logic L, we construct aQML model Q7 =

(W, (R,)res, D, P, (Iy)wew) for LM~ by choosing = D,, D = D,, P = D,.,%

and (R,)res = Dyojo- L€tEk = k(.0 and letX* = X?!. We choosel,,(k) such that
(g(X1),...,g(X™) € I,(k) if and only if

(TE)(g(X)),- ., 9(X]),w) =T.

Finally, letr = 7,_,,,. We chooseR, such thatw,w’) € R, if and only if (1r,_,_,)(w,w’) =
T.

It is not hard to verify tha@Q* = (W, (R,),es, D, P, (I,)wew ) Meets the definition d K~
models. Below we will see that it also meets the definitio®d « models.

2Again, we identify sets with their characteristic functson
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Lemma 4.7 LetQ” = (W,(R,)es, D, P, (I,)wew) be aQKzr~ model for a given Henkin
modeld = ({D,}aer, I). Furthermore, lets = 5,,_.,.

For all worldsw € W and variable assignmentswe haveV), /w, g (5u-oW,) = T in H if
and only ifQ¥, g, w = s in Q.

Proof: The proof is by induction on the structure9f., € L and it is analogous to the proof
of Lemma 4.3.

|

With the help of Lemma 4.7, we now show that @&~ models we construct in Def. 4.6
are in fact alway€ QK models. Thus, Henkin models never relat€YK 7~ models that do not
already fulfill theQK criterion.

Lemma 4.8 LetQ = (W,(R,)es, D, P, (I,)wew) be aQKzr~ model for a given Henkin
modelH = ({ Dy }aer, I). ThenQ is also aQKm model.

Proof: We need to show that for every variable assignngeand formulas = 5, the set
{fwe W | Q"gwl s}isamember off in Q. This is a consequence of the rule that
everything denotes in the Henkin modgl To see this, consid&¥;s, ., = V,(AV,.5,-0V)
for variableV,, not occurring free ins,_,. By definition of Henkin models this denotes that
function fromD,, = W to truth valuesD, = {T', F'} whose value for each argumentc D,
is Viw/v,14(s V), thatis,s,, ., denotes the characteristic functiam € W. Vv, 1g (5u=0Vy) =T
which we identify with the sefw € W' | Vi v,14 (5,~0V,) = T'}. Hence, we havgw € W |
Viw/vilg (8u-0Vy) = T} € D,..,. By the choice of” = D,,_,, in the construction of)”" we know
{we W | Vg (5u-0V,) =T} € P. By Lemma 4.7 we gefw € W | Q", g, w = s} € P.

O
Theorem 4.9 (Completeness foQKm models) Lets,.., be aQML5TT proposition and let
s = 5,, be the correspondin@ M L proposition. If=%" s then=577 (valids,,,).

Proof: By contraposition, assumgs’7 (valids,.,): there is a Henkin modeH =
({Da}aer,I) and a variables assignmegtsuch that, (valids,-,) = F. Hence, for some
world w € D, we haveVy,w, |y (5,-.W,) = F. By Lemma 4.7 we then g&”, g, w [£¥™ s
for s = 5,., in QK7 modelQ for H. By Lemma 4.8 we know thap” is actually aQKr
model. HencefQ¥™ s. Box

Our soundness and completeness results obviously alsp tagphgments 0O M L logics.

Corollary 4.10 The reduction of our embedding to propositional quantifiadtimodal logics
(which only allow quantification over propositional varias) is sound and complete.

Corollary 4.11 The reduction of our embedding to first-order multimodalidsg(which only
allow quantification over individual variables) is sounddacomplete.

Corollary 4.12 The reduction of our embedding to propositional multimddgics (no quantifi-
cation) is sound and complete.
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5 Applying the Embedding in Practice

In this section, we illustrate the practical benefits of anbedding with the help of some simple
experiments. We employ off-the-shelf automated higheorttim provers and model generators
for simple type theory to solve problems in quantified muttdal logic. Future work includes
the encoding of a whole library of problems for quantified imubdal logics and the systematic
evaluation of the strengths of these provers to reason abenu.

In our case studies, we have employed the simple type thedoyrated reasoners LEO-II,
TPS [5], IsabelleM and IsabelleéPThese systems are available online via the SystemOnTPTP
tool and they exploit the new TPTP infrastructure for typeghkr-order logic [12].

The formalization of the modal operators (Def.4.1) and tbeom of validity (Def. 3.4) in
THF syntax [12] is presented in Appendix A. As secured by Heotetical results of this paper,
these few lines of definitions are all we need to make simpde tieory reasoners applicable to
quantified multimodal logic.

If we call the theorem provers LEO-II and IsabelleP with tfiig, then they try to find a
refutation from these equations: they try to prove theipmgistency. As expected, none of the
systems reports success. The model finder IsabelleM, howavewers in 0.6 seconds that a
model has been found. IsabelleM employs the SAT solver ZChaf

When applying our systems to Example 3.5, we get the follgwasults (where-/t repre-
sents that a proof has been found seconds and /t reports that no proof has been found within
t seconds): IsabelleR: /1.0, LEO-II: +/0.0, TPS:+/0.3. IsabelleM does not find a model (this
also holds for the examples below).

We also tried the Barcan formula and its converse:

BF : valid (VX,. O, (i) X)) D (0, VXee (Do) X))
BF~': valid (0,VX, (Pieuoo) X)) D (VX O, (e (ymro) X))

The results forBF and BF~! are IsabellePs /0.7, LEO-Il and LEO-IIP:+/0.0, TPS:+/0.2.
This confirms that our first-order quantification is constimnain.

The next example analyzes the equivalence of two quantifidtmodal logic formula schemes
(which can be read as “if it is possible for everything tobghen everything is potentialliy ”):

VR, s VPrs (s

(valid (OprVX,. (PX)) D (VX.Cgr(PX)))
~

(valid (3X,. Oz (P X)) D (Op3X. (PX)))

The results are: IsabelleR:/2.0, LEO-II: +/0.0, TPS#/0.2.

3|sabelleM is a model finder in Isabelle that has been madéadiin batch mode, while IsabelleP applies a
series of Isabelle proof tactics in batch mode.
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An interesting meta property is the correspondence betariem
valid VP, (-0 (©;0; P) D 0, P
and the(i, j, k, [)-confluence property:
VA,.VB,.VC.((tAB)AN(kAC)) = 3D,.((j BD) A (1C D)))

The results are: Isabelle;/3.7, LEO-II: +/0.3, TPS#/0.2. The problem encoding is presented
in Appendix C.

Future work will investigate how well this approach scalesrhore challenging problems. We
therefore invite potential users to encode their problentee THF syntax and to submit them to
the THF TPTP library.
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6 Conclusion

We have presented a straightforward embedding of quantifidtimodal logics in simple type
theory and we have shown that this embedding is sound andletaripr QK= semantics. This
entails further soundness and completeness results ohthedding for fragments of quantified
multimodal logics. We have formally explored the naturarespondence betwe&)Kr models
and Henkin models and we have shown that the we&K&rr— models do not enjoy such a
correspondence.

Non-quantified and quantified (normal) multimodal logica taus be uniformly seen as nat-
ural fragments of simple type theory and their semanticsdpk some weak notions such as
QK7~ models) can be studied from the perspective of the well wstded semantics of simple
type theory. Vice versa, via our embedding we can charaetessdame computationally interest-
ing fragments of simple type theory, which in turn may leagame powerful proof tactics for
higher-order proof assistants.

Future work includes further extensions of our embeddinglso cover quantified hybrid
logics [14, 15] and full higher-order modal logics [22, 31A first suggestion in direction of
higher-order modal logics has already been made [10]. Tioiggsal does however not yet ad-
dress intensionality aspects. However, combining thip@sal with non-extensional notions of
models for simple type theory [9, 32] appears a promisingation.
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A THF Formalization of Quantified Multi-Modal Logic in

Simple Type Theory
I i I e
% File ;. QW. ax
% Donmai n : Quantified multinodal |ogic
% Probl ens :
% Ver si on
% English : Enbedding of quantified nmultinmodal logic in
% simpl e type theory
% Ref s
% Sour ce : Formalization in THF by C. Benznuell er
% Nanes :
% St at us
% Rat i ng
% Synt ax :
% Comment s :
L8
% --- declaration of additional base type mnu
t hf (mu, type, (
mu: $t Type )).
% --- nodal operators not, or, box, Pi (for types nu and $i >$0)
t hf (mot , definition,
( mmot

= ( A [Phi: $i > $0o, W $i]
~( Phi @W) ) )).

t hf (nor, definition,
( nor
= ( ~N[Phi: $i > $0,Psi: $i > $o, W $i]
( ( Phi @W)
| ( Psi @W) ) ) )).

t hf (mbox, definition,
( nbox
=("[R 8% > 8% > %o,Phi: $i > $o, W $i]
PV $i]
(~(R@W@V)
| ( Phi @V) ) ))).

thf (mal | _i nd, definition,

N

[_Phi: m > $i > $o, W $i]
[ X: mu] :
( Phi @X @W) ) )).

thf (mal | _prop, definition,
( mall _prop
=(~[Phi: ( $i >%0 ) > % > $0o, W $i]
' [P: $i > $0] :
( Phi @P @W) ) )).

% --- further nodal operators
thf (ntrue, definition,

19
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( ntrue
= ( mall _prop
@" [P $i > $0] :
( mor @P @( mot @P ) ) ) )).

thf (ntrue, definition,
( nfal se
= ( mal |l _prop
@~ [P: $i > $0] :
( mMmot @mntrue ) ) )).

t hf (mand, definition,
( mand
= ("~ [Phi: $i > $o,Psi: $i > $0] :
( mot @( nmor @( mmot @Phi ) @( mmot @Psi ) ) ) ) )).

thf (m npl, definition,
( mnpl
=(N[Phi: & > $o,Psi: $i > $0] :
( mr @( mot @Phi ) @Psi ) ) )).

t hf (ndi a, definition,
( mdia
=("M"[R $ >8%i > %o,Phi: & > $0] :
( mot @( nbox @R @( mot @Phi ) ) ) ) )).

t hf (mexi _i nd, definition,
( nmexi_ind
=( ™ [Phi: mu > % > $0] :

( mmot
@( mall_ind
@™ [ X m] :

( mot @( Phi @X) ) ) ) ) )).

t hf (mexi _prop, definition,
( mexi_prop
=(~[Phi: ($i >%0) >3%i > $0] :
( mot
@( mall _prop
@™ [P $i > $0] :
( Mot @( Phi @P) ) ) ) ) )).

% --- definition of validity
thf (mvalid, definition,
( nvalid
= ( "~ [Phi: $i > $0] :
P [w $i] :

( Phi @W) ) )).
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B THF Example: In all Worlds exists Truth

%File ;oexl.p

% Donai n : Quantified multinodal |ogic

% Pr obl ens :

% Ver si on

% English : In all accessible worlds exists truth.
% Ref s

% Sour ce : Formalization in THF by C. Benznuell er
% Names :

% St at us

% Rat i ng

% Synt ax :

% Comment s :

%--- include the definitions for qunatified multinodal |ogic

i nclude(’ QWL. ax’).

% --- provide a consant for accesibility relation r
thf(r,type,r:$i >$i >$0) .

% --- conjecture statenent
t hf (ex1, conj ect ure,
(mvalid @(nmbox @r @ (nmexi_prop @(~P:%i>%0]: P))))).
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C THF Example: Confluence Property of Accessibility Rela-
tions

% File ©oex9.p

% Domai n : Quantified nultinodal |ogic

% Probl ens :

% Ver si on

% English : Confluence property of accessibility relations
% Refs

% Sour ce : Formalization in THF by C. Benznuell er
% Names

% St at us

% Rat i ng

% Synt ax

% Commrent s :

% --- include the definitions for qunatified nultinodal |ogic

i nclude(’ QWL. ax’ ).

% --- constants for accesibility relations
thf (i, type, (
i $i >8%i >%0)).

thf(j,type,(
j: $i >8%i >%0)).

t hf (k, type, (
k: $i > $i > %0 )).

thf (I, type, (
l: $i >8$i >%0)).

% --- definition of confluence property
t hf (confl uence, definition,
( confluence
=(~Jl: $i >%i >%0,3: $i >8$i > $o,
Ki 8 >8%i > %o,L: $i > 8 > $0]
' [A $i,B &i,C $i]
(( (1 @A @B)
& ( K@A @C) )

= ? [D $i]
((J@B@D)
(L@c@b)))))).
% --- correspondence between axi om and confl uence property
t hf (conj, conj ecture,
( ( mvalid

@( mall _prop
@" [P $i > $0]
(ninpl @( miia @i @( mhox @]
@( nbox @k @( mdia @I
<=> ( confluence @i @j @k @I ) )).

@P) )
@P)))))



