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Abstract. The problem of data privacy is to verify that confidential
information stored in an information system is not provided to unau-
thorized users and, therefore, personal and other sensitive data remain
private. One way to guarantee this is to distort a knowledge base such
that it does not reveal sensitive information. In the present paper we
will give a universal definition of the problem of knowledge base distor-
tion. It is universal in the sense that is independent of any particular
knowledge representation formalism. We will then present a basic and
general algorithm for knowledge base distortion to guarantee data pri-
vacy. This algorithm provides us with upper bounds for the complexity
of the distortion problem. Moreover, we examine heuristics to improve
its average performance.
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1. Introduction

Our modern information society is based on the sharing and integration of
information. Almost all organizations (public and private) need to collect
and automatically process lots of data where some of it, in particular per-
sonally identifiable information, needs protection. That means access to that
information should be restricted such that data privacy can be guaranteed.
Although technology alone cannot address all privacy concerns, it is impor-
tant that information systems take responsibility for the privacy of the data
they manage, see for instance [1].

Information stored in a system usually is protected against unauthorized
access such that users only are allowed to access a limited portion of it. In
this situation the following questions arise:
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1. What can a user infer from the information to which he has access?
2. Can the system guarantee that a user cannot obtain knowledge about

sensitive information?

Controlled query evaluation [3, 4, 5] is a very successful approach to
privacy preserving query answering. The idea is that each time a query is
evaluated it is checked whether the answer would leak sensitive information
to the user. If this is the case, then the answer to the query is distorted.
There are basically two possible distortion methods: the answer can simply
be refused [15] or the system can give an incorrect answer (that is it lies) [8].
The framework of controlled query evaluation has been applied to a variety of
data models and control mechanisms, see for instance [3, 4, 5]. However, most
of these applications have been made in the area of complete systems. A re-
markable exception is [6], which, like the present paper, deals with incomplete
logical databases.

Recently, a static variant of controlled query evaluation has been devel-
oped [7]. There the idea is to construct, in a preprocessing step, a so-called
inference proof or privacy preserving database or knowledge base that can
respond to any query without leaking private information. Of course, this
inference proof database should be as close as possible to the original unpro-
tected database. That means as little changes as necessary have been made
to it and hence the system only lies when it is absolutely necessary for not
leaking sensitive information.

In this paper, we will present a first general study of this static approach
to controlled query evaluation from the perspective of knowledge base sys-
tems. We will give the fundamental algorithms and establish basic results
about them. We start with the following general definition which will be
made precise in Section 2.

The problem of knowledge base distortion for data privacy consists in
finding a subset KB′ of a given knowledge base KB such that KB′ is a maximal
privacy preserving subset of KB.

This definition is universal in the sense that it does not depend on
a particular knowledge representation language. Also in Section 2 we will
introduce our running example which is used to illustrate all notions and
algorithms.

We will then in Section 3 introduce a universal algorithm to find such a
maximal privacy preserving subset for any (unsecure) knowledge base. The
algorithm implements a simple depth first search strategy which, again, does
not depend on the knowledge representation language. It only assumes that
we can decide whether a knowledge base preserves privacy. Therefore, the
algorithm cannot make use of sophisticated techniques and is more or less
straightforward, which has the advantage that it can be applied to a great
variety of formalisms.

In Section 4 we will make use of this algorithm to establish upper bounds
on the complexity of the knowledge base distortion problem. Using an oracle,
we give a general theorem that again does not depend on the formalism used
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for knowledge representation. However, we will also state corollaries about
the complexities of the distortion problem for particular languages and logics
such as classical propositional logic and several description logics.

The algorithm as presented before performs an uninformed search. De-
pending on the procedure that decides whether a knowledge base is privacy
preserving, we obtain heuristics that improve the performance of the search
algorithm. The basic idea is that in case a knowledge base KB is not privacy
preserving, the decision procedure cannot only return the value false but it
can provide information about which elements of KB are responsible for the
security breach. We can then use this information to remove those elements
from KB first that leak the most information, that is those elements that are
used in the most derivations of secrets. This is closely related to the method
of axiom pinpointing for description logics [14] that originally has been devel-
oped to provide explanations why a certain consequence holds in a knowledge
base. We will present in Section 5 a variant of our algorithm that implements
such a heuristic and thus operates in an informed way. Again, we will use our
running example to support this heuristic and to illustrate its impact.

Finally Section 6 concludes the paper and hints at future research di-
rections in the realm of knowledge base distortion to guarantee data privacy.

2. Problem setting

In this section we set the formal stage for the paper. We give definitions of the
notions we will employ and we present the precise statement of the problem
we are going to examine. Moreover, we introduce the running example to
illustrate our approach.

We consider languages simply to be sets of formulas (without further
structure). In particular, we need two languages LA and LS (note that they
may be equal) where

1. LA is used to state the assertions stored in the knowledge base and
2. LS is used to specify the secrets that should not be revealed to the

public.

Thus we define:

1. a knowledge base KB is a finite set of formulas of LA,
2. a secret S is a formula of LS .

We will use SC to denote finite sets of secrets.
We also need a decidable and monotone consequence relation Con be-

tween knowledge bases and secrets. Thus we set

Con ⊆ Pfin(LA)× LS ,

where Pfin denotes the finite power set operator. If a secret S is a consequence
of a knowledge base KB, formally Con(KB, S), then this means that the secret
can be inferred from the knowledge base. In other words, if an agent has access
to the knowledge base, then using the information from the knowledge base
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he may derive the secret S. In that case, the secret is revealed and privacy is
violated.

Definition 1. A knowledge base KB preserves privacy with respect to a set
of secrets SC if for each S ∈ SC we have ¬Con(KB, S).

Usually, a user also has a priori knowledge, which is knowledge the user
has without accessing the knowledge base. This may be, for instance, gen-
eral background knowledge about the application domain. In our model such
a priori knowledge is integrated in the consequence relation. The following
example shows how the consequence relation takes care of the a priori knowl-
edge

Example 2. Our running example is concerned with medical information
which, of course, is highly sensitive. Hospitals in Switzerland are legally ob-
ligated to report detailed information about the administered treatments to
the Swiss Federal Statistical Office (SFSO). The SFSO uses this information
to annually create statistics about health care in Switzerland [10]. The col-
lected data includes sociodemographic information about the patients (sex,
age, region of residence, etc.) as well as administrative data (kind of insur-
ance, length of stay in hospital, diagnosis). Here we will not use real world
data from this statistics (see [16] for privacy issues of the real world data),
but only use the same kind of information the SFSO statistics provide.

We assume that the knowledge base KB includes the following facts.

1. If a patient lives in Region A, then that patient’s diagnosis is broken
leg, cancer, or aids:

RegionA→ brokenLeg ∨ cancer ∨ aids. (A.1)

2. Patient 1 lives in Region A:

Patient1→ RegionA. (A.2)

3. Patient 1 does not receive a high cost treatment:

¬(Patient1→ highCosts). (A.3)

Further, we assume that the following facts are a priori knowledge:

1. A cancer diagnosis entails a high cost treatment:

cancer→ highCosts. (P.1)

2. An aids diagnosis entails a high cost treatment:

aids→ highCosts. (P.2)

For a knowledge base T and a secret S, we define the consequence
relation Con by

Con(T, S) if and only if T ∪ {(P.1), (P.2)} |= S

where |= is the entailment relation of classical propositional logic. Note that
(P.1) and (P.2) need not be part of T but still may contribute to the reasoning
process.
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For our knowledge base KB, we find, for example, that

Con(KB,Patient1→ brokenLeg).

That means if an agent has access to the knowledge base, then he may infer
that Patient 1 has the diagnosis broken leg. Hence, privacy is violated if
we assume that a patient’s diagnosis is sensible information that should be
kept secret. Again note that the knowledge base alone would not allow for the
conclusion Patient1→ brokenLeg. It is the knowledge base plus the additional
a priori knowledge that leads to the information leakage.

In this example both LA and LS are the language of propositional logic
and we also use this language to represent the a priori knowledge and the
definition of Con. However, that need not necessarily be the case. For exam-
ple, in a description logic based approach, the a priori knowledge may be
ontological knowledge which is expressed via subsumption relations between
concepts (expressed in a TBox) whereas the knowledge base may be asser-
tions (in the form of an ABox). The consequence relation Con would then be
defined as entailment with respect to the TBox.

We are now in the position to state the general definition of the knowl-
edge base distortion problem.

Definition 3. The distortion problem for a knowledge base KB with respect
to a set of secrets SC is to find a subset KB′ of KB such that

1. KB′ preserves privacy with respect to SC and
2. for all KB′′ ⊂ KB with card(KB′) < card(KB′′) we have that KB′′ does

not preserve privacy with respect to SC.
We call such a knowledge base KB′ a solution of the distortion problem.

A solution KB′ of the distortion problem for KB with respect to a set
of secrets SC is a maximal subset of KB that preserves privacy for SC. Note
that such a solution need not be unique. In Example 2, for instance, we could
remove any of the three facts from KB and we would obtain a knowledge base
that does preserve privacy with respect to SC = {Patient1→ brokenLeg}.

According to our definition, solutions are maximal with respect to car-
dinality. Another possibility would be to require a solution to be maximal
with respect to the subset relation. Clause 2 of Definition 3 would then read:

for all KB′′ ⊂ KB with KB′ ( KB′′ we have that KB′′ does not preserve
privacy with respect to SC.

However, this leads to different solutions than Definition 3 as the fol-
lowing example shows.

Example 4. Let KB consist of (A.1), (A.2), (A.3) plus the following:

1. Patient 2 lives in Region A:

Patient2→ RegionA. (A.4)

2. It is not the case that Patient 2’s diagnosis is broken leg:

¬(Patient2→ brokenLeg). (A.5)
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We want to hide two secrets:

SC = {Patient1→ brokenLeg,Patient2→ highCosts}

where the second secret means that Patient 2 receives a high cost treatment.

Further, let Con be the same as in Example 2. As above, KB is not
privacy preserving with respect to SC and the question is what elements do
we have to remove from KB to obtain a solution to the distortion problem.

Simple logical reasoning shows that KB′ := KB \ {(A.1)} preserves
privacy with respect to SC. Indeed, KB′ is a solution to the distortion problem
since it is a maximal privacy preserving knowledge base. The only knowledge
base with greater cardinality is KB which does not preserve privacy.

The knowledge base KB′′ := KB \ {(A.2), (A.4)} also preserves pri-
vacy. However, it is not a solution to the distortion problem since there is a
knowledge base with greater cardinality (namely KB′) that preserves privacy.
However, KB′′ is a solution with respect to subsets since none of its strict
supersets preserves privacy with respect to SC. Note that it is easy to find a
solution with respect to subsets: one can simply remove element by element
from the knowledge base until privacy is preserved. Finding a solution with
respect to cardinality is harder. It the next section we present a backtracking
algorithm that performs a bounded search to find such a solution.

3. Algorithms

We are going to present a depth first search algorithm to solve the distortion
problem for a knowledge base KB. The basic idea of a depth first search is as
follows. Check whether KB is privacy preserving. If so, answer KB; otherwise
remove an element from KB which gives a knowledge base KB′ and check
whether that is privacy preserving. If so, answer KB′; otherwise remove an
element from KB′ which gives a knowledge base KB′′ and check whether that
is privacy preserving and so on.

Of course, this algorithm only finds a solution that is maximal with
respect to the subset relation. In order to obtain a solution that fits our def-
inition (that means it is maximal with respect to cardinality), the algorithm
cannot immediately return a privacy preserving knowledge base but it has
to backtrack and check whether it finds a larger one. Only if it has tried
all knowledge bases, it can be sure to have found the largest one. However,
once the algorithm has found a privacy preserving knowledge base, there is
a trivial way to prune the search space: the algorithm only has to consider
knowledge bases that have greater cardinality than the one already found.

In the following we provide a pseudo code implementation for such a
depth first search procedure. It consists of the following three functions where
the argument A is a knowledge base.

1. depthFirst(A) is the main function. It is a simple wrapper function
that calls doBoundedSearch(A,−1, ∅).
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2. doBoundedSearch(A, bound, closed) recursively performs a depth first
search for a solution to the distortion problem. The search tree is pruned
if the knowledge base that is currently investigated does not have more
than bound elements. Moreover it only looks for solutions that contain
closed as a subset.

3. isPP(A) tests whether A is privacy preserving.

We assume that the set of secrets SC is globally available and hence we
do not pass it as an argument to isPP. Let us now give some comments on
the implementation of doBoundedSearch. First, it is checked, whether A is
privacy preserving. If so, A is returned; otherwise subsets of A are searched
as follows where the variable result stores the best solution found so far and
bound stores its size. An element a of A which does not belong to closed is
removed from A which gives a knowledge base C. If the size of C is greater
than bound, then doBoundedSearch is called recursively with the arguments
C, bound, and closed. There it is important that closed is passed as value
and not as reference (or that one passes a reference to a copy of closed).
That is to guarantee that the call to doBoundedSearch does not change the
value of closed. When this recursive call returns, all subsets of A \ {a} have
been searched and if a privacy preserving subset has been found, the variables
result and bound are updated. The assertion a is then added to closed, which
means that in the following only subsets of A that contain a will be searched.
This process is iterated for all a in A that do not belong to closed.

We saw in Example 2 that the solution to the distortion problem need
not be unique. Our algorithm, as we presented it, will only compute one
solution but not produce the complete list of all solutions. However, it is
easy to adapt it such that it will answer all solutions. Instead of looking
for privacy preserving subsets with size greater than the current bound the
algorithm should look for possible solutions with size greater or equal than
the current bound. If such a knowledge base has been found then

1. its is added to the list of solutions if its size equals the bound,
2. the list of solutions is cleared (all its elements are dropped) and the

newly found solution is added (this is then the only element of the list)
if its size is greater than the current bound.

Another possible adaption concerns the problem that our algorithm
treats all axioms of the knowledge bases in the same way. It does not take
into account that some axioms may be more important than others and that it
should first try to remove the less important axioms. It may even be better to
remove two less important axioms than one important axiom. This problem
can be solved by assigning a weight to each axiom in the knowledge base such
that the more important an axiom is the greater its weight is. The search
algorithm is then adapted such that it no longer looks for a knowledge base
with maximal cardinality but for one with maximal weight. That means the
sum of the weights of its axioms should to be maximal.
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Algorithm 1 depthFirst(A)

Require: A is a knowledge base
Ensure: returns a solution to the distortion problem for A with respect to a

given set of secrets SC
Ensure: returns null if no subset of A preserves privacy with respect to SC

return doBoundedSearch(A,−1, ∅)

Algorithm 2 doBoundedSearch(A, bound, closed)

Require: A is a knowledge base with card(A) > bound
Require: bound is an integer
Require: closed is a subset of A
Ensure: returns a solution to the distortion problem for A with respect to

a given set of secrets SC which contains more than bound elements and
which is a superset of closed

Ensure: returns null if no such solution exists

if isPP(A) then
return A

end if
result← null
B ← A \ closed
for all a ∈ B do
C ← A \ {a}
if card(C) > bound then
subResult← doBoundedSearch(C, bound, closed)
if subResult 6= null then

bound← card(subResult)
result← subResult

end if
end if
closed← closed ∪ {a}

end for
return result

Example 5. We will illustrate the algorithm with an example run. Note that
we choose not the best order in the forall loop. This is to show the pruning of
the search tree and to later compare this algorithm with the informed search.

Consider the knowledge base KB and the set of secrets SC from Exam-
ple 4. An example run of the uninformed search makes calls to isPP with the
following arguments:

1. KB.
2. KB \ {(A.2)}.
3. KB \ {(A.2), (A.3)}.
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Algorithm 3 isPP(A)

Require: A is a knowledge base
Ensure: returns true if A preserves privacy with respect to SC
Ensure: returns false otherwise

privacyPreserving ← true
i← 1
while privacyPreserving and i ≤ card(SC) do

privacyPreserving ← not(Con(A,SCi))
i← i + 1

end while
return privacyPreserving

4. KB \ {(A.2), (A.3), (A.4)}. This is a privacy preserving knowledge base
with size 2. In the following only knowledge bases with size larger than
2 will be considered.

5. KB \ {(A.2), (A.4)}. This is a privacy preserving knowledge base with
size 3. In the following only knowledge bases with size larger than 3 will
be considered.

6. KB \ {(A.3)}.
7. KB \ {(A.4)}.
8. KB \ {(A.5)}.
9. KB\{(A.1)}. This is a maximal privacy preserving knowledge base and

we are done.

In total, we needed nine calls to isPP.

4. Complexity

In this section we establish basic results about the complexity of the knowl-
edge base distortion problem. We refer, for instance, to [9] for a detailed
introduction to the complexity theoretic notions we use here.

Definition 6. The underlying decision problem of the distortion problem for
a knowledge base KB is to decide whether there exists a solution KB′ of the
distortion problem for KB such that card(KB′) > k for a natural number k.

In the following we will only talk about our underlying decision prob-
lem when we mean the underlying decision problem of the distortion problem.
Looking at our algorithms we see that to solve the underlying decision prob-
lem for a knowledge base KB and a natural number k, it is enough to call
doBoundedSearch with the arguments (KB, k, ∅). If that call returns a knowl-
edge base, then the answer to the decision problem is true; if it returns null,
then the answer is false.

The consequence relation Con is an important ingredient in the defini-
tion of the distortion problem and its underlying decision problem. Thus the
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complexity of Con contributes essentially to the overall complexity of our un-
derlying decision problem. We will first abstract away from this by assuming
that we have an oracle at hand which decides the Con relation. Then the fol-
lowing non-deterministic procedure solves our underlying decision problem:

1. guess a subset KB′ of KB,
2. if card(KB′) ≤ k then reject,
3. if KB′ preserves privacy with respect to SC then accept else reject.

Observe that all three steps of this procedure can be performed in polynomial
time (the third step makes card(SC) many calls to the oracle). Thus we have
the following result.

Theorem 7. Assume that we are given an oracle L that decides the Con
relation. Then our underlying decision problem belongs to NPL.

Let us now look at the complexity of concrete instances of the distortion
problem. We begin with a setting like in Example 2. LA and LS are sets of
classical propositional formulas. For a knowledge base KB and a secret S,
the relation Con(KB, S) is defined to hold if and only if KB ∪ P |= S where
P also is a set of classical propositional formulas that models the a priori
knowledge. In this case the Con relation belongs to coNP and we get the
following corollary.

Corollary 8. Assume that Con belongs to coNP. Then our underlying decision
problem belongs to Σp

2.

Another important case for applications are very expressive description
logics. For such logics, deciding Con has a high complexity which then de-
termines the complexity of our underlying decision problem. Consider, for
example, the description logic SHIQ, see [12], which includes transitive and
inverse roles, role hierarchies, and qualified number restrictions. Deciding the
Con relation for this logic is an ExpTime problem. Therefore, we immediately
get the following corollary about the distortion problem for SHIQ.

Corollary 9. Assume that Con belongs to ExpTime. Then our underlying
decision problem belongs to ExpTime.

At the other end of the complexity spectrum are application where the
Con relation is decidable in polynomial time. Let us mention, for example,
lightweight description logics that recently have been developed for data in-
tensive applications. These logics are not as expressive as other description
logics but they exhibit an excellent (at most polynomial time) run-time be-
havior. There are two important families of such logics: the EL family [2]
which still can model several medical ontologies and the DL-Lite family [11]
which allows for a separation of TBox and ABox reasoning.

Corollary 10. Assume that Con belongs to P. Then our underlying decision
problem belongs to NP.
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5. Heuristic

The algorithm for doBoundedSearch performs well if it finds the ‘right’ ele-
ments to remove from the knowledge base as early as possible. That is it has
to make a clever choice with which element a ∈ B it will start in the forall
loop. So far there is no heuristic built into the algorithm that supports this
choice: the loop may iterate in any order through B. Actually, there is no
information available to make this an informed choice that selects the ‘right’
elements early. However, depending on the implementation of the decision
procedure for Con, there exists a simple heuristic that can be added to our
algorithm. We only need that if Con(KB, S) holds, then a call to Con(KB, S)
returns a small subset KB′ of KB such that already Con(KB′, S) holds.

This is the case, for example, if the implementation of Con performs a
proof search. That means a call to Con(KB, S) tries to construct a derivation
of S from KB. If Con(KB, S) holds, it can provide a list of elements a1, . . . , am
of KB that were actually used in the derivation of S. Since we are looking for a
subset KB′′ of KB such that Con(KB′′, S) does not hold anymore, it seems to
be a good choice to remove one of the ai above from KB in order to construct
a candidate for KB′′. If we removed an element b different from a1, . . . , am,
then the derivation of S would still be possible, that is Con(KB\{b}, S) holds.
Of course, removing an element ai does not guarantee that Con(KB\{ai}, S)
does not hold since there may be other derivations of S from KB that do not
make use of ai.

We are not only interested in preserving one secret but a whole set of
secrets {S1, . . . , Sn}. Thus in Algorithm 3, we may not only check Con(A,Si)
until privacy is violated; instead we can check Con(A,Si) for all 1 ≤ i ≤ n and
keep track of which elements of A are used most often to construct derivations
of secrets. If we build C by removing an element ai of A that has been used in
several derivations, then chances are good that C will preserve several secrets.
Hence, Algorithm 3 should not return a boolean value but additionally also
a priority queue of elements of A that were used to build the derivations of
the secrets. For that queue, the more derivations an element as been used in,
the higher priority it receives. The forall loop in Algorithm 2 can make use
of this queue to start with an element of maximal priority.

We will now present pseudo code for a variant of isPP that returns such
a priority queue. To do so we assume that the function Con(A,S) returns
a pair (result, list) where result is true if and only if S is derivable from
A, and additionally, if S is derivable, then list contains those elements of A
that have been used in the derivation of S. For instance, Con(A,S) returns
(true, ∅) if S follows from the a priori knowledge alone.

Example 11. Consider the knowledge base KB and the set of secrets SC from
Example 4. A call to isPP2(KB) first tries to derive Patient1 → brokenLeg
from KB. It will find such a derivation using (A.1), (A.2), and (A.3). Then
the algorithm tries to derive Patient2 → highCosts. Again, it will find such
a derivation using (A.1), (A.4), and (A.5). Therefore, the returned queue
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Algorithm 4 isPP2(A)

Require: A is a knowledge base
Ensure: returns (true, ∅) if A preserves privacy with respect to SC
Ensure: returns (false, queue) otherwise where queue contains elements of A

that have been used in derivations of secrets

privacyPreserving ← true
queue← ∅
for all a ∈ A do
numberOfUses[a]← 0

end for
for i := 1 . . . card(SC) do

(result, list)← Con(A,SCi)
if result then
privacyPreserving ← false
for all a ∈ list do
numberOfUses[a]← numberOfUses[a] + 1

end for
end if

end for
for all a ∈ A do

if numberOfUses[a] > 0 then
add a to queue with priority numberOfUses[a]

end if
end for
return (privacyPreserving, queue)

contains (A.1) with priority 2 as well as (A.2), (A.3), (A.4), and (A.5) all
with priority 1.

Hence the next try for a privacy preserving knowledge base will be the
knowledge base KB′ = KB \ {(A.1)} since (A.1) is the element with highest
priority in the queue. As shown before, KB′ is indeed privacy preserving and
we are done with two calls to isPP2 which is of course a great improvement
compared to nine calls in Example 5.

The example shows that this heuristic considerably improves the per-
formance of the search algorithm. There is also a simpler heuristic available
which works as follows. The function isPP3 works like isPP. That means,
using a while loop it looks for a secret that can be derived. When the first
such secret is found, it ends the loop and returns false. Additionally, and like
isPP2, it also returns a list of elements of the knowledge base that have been
used to derive the secret. However, since it stops when the first derivable
secret is found, it will not return priorities. The search algorithm that calls
isPP3 will then remove one of these returned elements from the knowledge
base to obtain the next candidate for a privacy preserving knowledge base.
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On the one hand this variant of the search algorithm will need more calls to
isPP3 than it would need calls to isPP2 since we do not have the priorities
to choose a ‘best’ element. On the other hand isPP3 makes less calls to Con
since it does not test all the secrets.

To compare these two heuristics we made some example runs on a pro-
totype implementation where the knowledge base and the secrets are proposi-
tional formulas and the consequence relation is the one from classical propo-
sitional logic. We are only interested in the number of calls to isPP and to
Con but not in the actual run time. Therefore, we employed a straightforward
implementation with no optimizations and we tested only very small knowl-
edge bases (50 formulas) that were randomly generated. For different sizes of
the solution we present a representative example in the following table where
Size is the size of solution of the distortion problem and isPP is the number
of calls to isPP (similar for Con, isPP2, and isPP3). We see that the more
complex heuristic performs better than the simple one as soon as more than
one element have to be removed from the knowledge base in order to obtain
a solution.

Uninformed Search Heuristic Simple Heuristic
Size isPP Con isPP2 Con isPP3 Con

46 1515534 9206278 12 300 20877 126066
47 52847 245677 8 200 2546 11564
48 3568 14993 4 100 52 231
49 679 10685 2 50 2 40

6. Conclusion and further work

We investigated the distortion problem which consists in generating a privacy
preserving knowledge base from a give unsecure knowledge base. We gave a
universal definition of that problem and first basic algorithms to solve it where
our definition and the algorithms are independent of the used knowledge
representation language. From our algorithms we derived upper bounds on
the complexity of the distortion problem both for the general case and for
particular logics. We also provided a heuristic to improve the average run-
time and illustrated its impact on the performance.

Future work will include the development of specialized algorithms for
particular knowledge representation languages. The aim is to make use of
optimized reasoning techniques that are available for a given logic to find
high-performance algorithms for the distortion problem of that logic.

Another direction of future research is to consider more general versions
of the distortion problem. We required a solution to be a maximal subset with
respect to cardinality. This is a form of minimal change, a notion that also
occurs in the theory of belief revision and updates. However, minimal change
means, in general, that as many consequences as possible should persist. To
achieve this, it can be necessary that elements not only have to be removed
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from a knowledge base but also new elements have to be added. As an exam-
ple, consider again a knowledge base about patients and diseases where the
knowledge base should guarantee the following privacy condition which can
be seen as a form of 2-anonymity [13]: it should be kept secret who exactly
has a given disease but a user may know two patients such that at least one
of them has the disease. In our running example we have that KB (together
with the a priori knowledge) implies that

Patient1→ brokenLeg (1)

which should be kept secret. We find a maximal privacy preserving knowledge
base KB′ by removing assertions from KB until (1) does not follow anymore.
Since we are only interested in 2-anonymity, we may then again add some
assertions to KB′ like Patient1 ∨ Patient3 → brokenLeg which was a conse-
quence of the original knowledge base KB but not of KB′. Of course, the
resulting knowledge base is not a subset of KB anymore; but with respect to
consequences it is closer to KB than any of its privacy preserving subsets.
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