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Abstract. We present an extension of the mosaic method aimed at cap-
turing many-dimensional modal logics. As a proof-of-concept, we define
the method for logics arising from the combination of linear tense opera-
tors with an “orthogonal” S5-like modality. We show that the existence
of a model for a given set of formulas is equivalent to the existence of a
suitable set of partial models, called mosaics, and apply the technique not
only in obtaining a proof of decidability and a proof of completeness for
the corresponding Hilbert-style axiomatization, but also in the develop-
ment of a mosaic-based tableau system. We further consider extensions
for dealing with the case when interactions between the two dimensions
exist, thus covering a wide class of bundled Ockhamist branching-time
logics, and present for them some partial results, such as a non-analytic
version of the tableau system.

1 Introduction

The mosaic method has been introduced in algebraic logic as a way of proving
decidability of the theories of some classes of algebras of relations [18,19]. The
basic idea consists in showing that the existence of a model is equivalent to the
existence of a (possibly finite) suitable set of fragments of models, called mosaics.
The power of the method comes from the fact that, given a formula, one does
not need to generate a full model in order to prove its satisfiability: it is enough
to show that there exists such a set of mosaics. As a by-product, one obtains a
decision procedure for the logic whenever such a (finite) set exists.

The mosaic method has been recently applied to prove decidability, complex-
ity results and completeness of Hilbert-style axiomatizations for several modal
logics [14,17,29]. With regard to temporal logics, a first work considering an
adaptation of the technique to the linear temporal logic of general time is [16], in-
cluding, as an application, the development of a mosaic-based semantic tableaux
system, along with a method for automated theorem proving. The authors also



discuss the generalization of these results to particular flows of time by suggest-
ing possible modifications of the conditions defining mosaics and saturated sets
of mosaics. Further works using mosaics in temporal logics established complex-
ity results for the logic of until over general linear time [23] and the logic using
both since and wuntil over the reals [26] (see also [24,25] for more recent and
general accounts on mosaics and complexity topics). In [21], a variant of the
mosaic method has been used to prove decidability of a so-called temporal logic
of parallelism, mentioned also in [27]. In [21], it is also shown that this logic does
not enjoy (the usual form of) the finite model property and thus that the mosaic
method is in some cases a more powerful tool for proving decidability.

In this paper, we consider the method described in [16] for linear-time logic
as our starting point and propose an extension able to deal with logics arising
from the combination of linear temporal operators with an “orthogonal” S5-
like modality. The resulting logic is described in [31] (in the case of general
linear time). Alongside the linear-time mosaics (defined essentially as in [16]),
which we will call vertical mosaics, we will consider also “orthogonal” horizontal
mosaics. We will show that, as long as no interaction occurs between the two
dimensions, the results of [16] extend to our case. Namely, we will prove that the
existence of a model for a given set of formulas is equivalent to the existence of
a suitable set of mosaics, and will apply the technique not only in obtaining a
completeness proof for the corresponding Hilbert-style axiomatization, but also
in the development of a mosaic-based tableau system. We will further show that
a finite fragment of the language is enough for setting up the necessary sets of
mosaics, thus obtaining a decision procedure for the logic, even a tableau-based
one, as well as corresponding complexity bounds.

By following the classification described in [31], we will also define conditions
modeling possible interactions between the two dimensions, thus covering a hi-
erarchy of logics that culminate in the bundled Ockhamist branching temporal
logic of general time. This logic corresponds to the logic of Kamp frames of [22],
which differs from the logic of Ockhamist frames described in [31] only in the
fact that the atomic harmony assumption, i.e., the evaluation of atomic formu-
las is given with respect to nodes of a tree and not to pairs (node, branch), is
relaxed there. Though our mosaic definitions do not lead to a proof of decid-
ability when interactions between the vertical and the horizontal components
are considered, they still allow for giving non-analytic but interesting tableau
systems for the logics. These tableau systems, inspired by the one described in
[16] for linear-time, are strongly based on mosaics and are thus quite different
from the standard semantic tableau systems for modal logics. The definition of
the tableau rules follows very naturally from the mosaics definitions (each rule
corresponding to a property that the mosaics are required to satisfy), and al-
lows for an extremely clear and appealing representation of the (counter) model
under construction. Indeed each node of a tableau can be seen as a snapshot of
a fragment (at most six points) of such a model. Soundness and completeness
are proved by exploiting the equivalence between the existence of a model and
the existence of a saturated set of mosaics. We believe that these features make



our tableau systems useful and appealing even in the cases for which analyticity
could not be obtained, and for which some subsequent form of loop checking, to
be better investigated, may perhaps be applied in order to retry decidability.

The treatment in the whole paper is strongly modular, both in terms of
definitions and proofs, along the two dimensions, i.e., with respect to the possible
restrictions applied to the linear order, e.g., density, discreteness, existence of
starting/final points, and with respect to the interaction properties considered.
Indeed, though many of the results presented here have been shown using other
techniques, we believe that the mosaic method is interesting in itself as it provides
a uniform way of establishing such metaproperties for large classes of logics.

We also remark that, although our focus here has been on a two-dimensional
temporal logic, the approach is more generally suitable to the case of many-
dimensional modal logics [9] and seems to work well as long as possible extensions
concern properties of a single dimension not interacting with the others. In the
case of interactions between the components, only partial results are achieved
and further work needs to be done. This seems to be related to analogous prob-
lems encountered in the field of combination of modal logics when considering
transfer of results, e.g., finite axiomatizability or decidability, from the compo-
nent logics to the combined one [15]. While such results are generally proved
in the case of independent combinations of modal logics, e.g., in their fusion,
very few general transfer results hold when their product is considered. Indeed
the logics that we consider here are closely related to examples of products of
epistemic and temporal/dynamic logics [5,13] and the commutativity-like prop-
erty (weak diagram completion) that we will use in the next sections roughly
corresponds to the perfect recall property of systems modeling the behavior of
agents that “do not forget”. Other examples of related logics are those based
on the so-called T' x W frames of Thomason [27,4,21]. These are more purely
two-dimensional logics in the sense that the semantical structures are based on
rectangular frames given by the product of a linear order (T, <) with a given set
W, on which an equivalence relation ~; is defined for each ¢t € T'. The difference
with respect to our frames is that there we have one single linear order and thus
all the time-lines are “synchronized”. Closer to the Ockhamist frames that we
use are the Kamp frames presented in [27], where only the past of ~-related
points is required to be synchronized.

We proceed as follows. In §2, we describe the logics of interest, and delimit
the scope of applicability of our method. In §3, we define the mosaic method for
the target class of logics and prove, modularly, that satisfiability is equivalent
to the existence of a suitable set of vertical and horizontal mosaics. In §4, we
consider applications of the method to the proof of completeness of Hilbert-style
axiomatizations, to the formulation of mosaic-based tableau systems, and to the
proof of decidability and complexity upper bounds. Finally, in §5, we discuss the
pros and cons of the method, compare it with the literature, and propose some
directions for future work.



2 Combinations of tense and modalities

In this section, we present the logics that will be considered in the following;
for further references, see [31,22]. The language consists of a set of classical
connectives enriched by the linear temporal operators G and H and by the path
quantifier V.

Definition 1. Given a denumerable set P of propositional symbols, with p € P,
the set F of (well-formed) (Ockhamist) formulas is defined by the grammar

Au=p| -A| ANA| GA | HA | VA.

The set of atomic formulas (or atoms) is P. The complexity of a formula is
the number of occurrences of connectives (-, A), operators (G, H) and path
quantifiers (V).

The intuitive meaning of G and H is always in the future and always in the
past, respectively, with regard to a single branch. The path quantifier V allows
one to switch from a branch to another: intuitively, VA holds at a node s iff A
holds in all the branches starting from the node s. Derived connectives, operators
and quantifiers (e.g., L, D, V, F, P and 3) are defined as is standard.

Our development and results are modular with respect both to the properties
of the linear and the branching dimensions of the logics. Next, we settle their
underlying linear temporal semantic structures.

Definition 2. A (strict) linear order is a pair (W, <) where < is a transitive
and irreflexive relation on the non-empty set W, such that for all x,y € W, if
x # y then either x <y ory < x.

Other interesting properties of linear orders to be considered are:

(Fst) there exists z € W such that for all x e W, y < x;

(Lst) there exists y € W such that for allx € W, x < y;

(Nfst) for all x € W there is y € W such that y < x;

(Nlst) for all x € W there is y € W such that x < y;

(Dns) for all x,y € W, if x < y then there is z € W such that x < z < y;

(Udsc) for all x,y € W, if y < x then there exists z € W such that z < x and
there is no uw € W with z < u < x;

(Ddsc) for all z,y € W, if © < y then there exists z € W such that © < z and
there is no uw € W with x < u < z.

Fst/Lst guarantee the existence of a first/last (minimal/maximal) element,
respectively. Reciprocally, Nfst/Nlst respectively guarantee that a first/last ele-
ment does not exist. Dns guarantees that the order is dense. Finally, Udsc/Ddsc
guarantee, respectively, downward /upward discreteness, that is, the existence of
an immediate predecessor [successor for non-extremal elements.

Below, we will often confuse any meaningful (+ separated) sequence C of
these properties with the class of all linear orders that satisfy the conditions
in C. Namely, we will use () to denote the class of all strict linear orders and



(Dns+Fst+Nlst) to denote the class of all dense linear orders with a first element
and without a final element.
Let us now introduce also the branching dimension.

Definition 3. A tree is an irreflevive ordered set T = (W, <) in which the set
of the <-predecessors of any element of W is linearly ordered by <, that is, for
all z, y, z in W, if x < z and y < z then either x <y ory <z or x =y.

A path in a tree T is a maximal linearly ordered set of nodes. A branch in
a tree T is any set of nodes {y | y € m and x < y} for a given path ™ and a
node © € w. The least node x of a branch b is the initial node of b. The set of
all branches in T will be denoted by Br(T). If b and ¢ are branches and b C ¢,
then we say that b is a sub-branch of ¢ and c is a super-branch of b.

Given a tree T, a bundle B on T is a subset of Br(T) closed under sub-
branches and super-branches and such that every node of T belongs to some
branch in B. A bundled tree is a pair (T, B) where T is a tree and B is a bundle
onT.

By following the terminology of [12], we can define the following classes of
trees and bundled trees.

Definition 4. Let C be a class of linear orders. We define T (C) as the class of
all trees in which every path is in C, B(C) as the class of bundled trees (T, B)
such that T € T(C), BT(C) as the class of all bundled trees (T, B) such that
every path in the bundle B is in C.

The semantics of branching-time logics is commonly defined on the tree-like
structures given above (we refer the reader to, e.g., [31] for a rigorous presenta-
tion). However, when considering bundled trees, such a semantics can be given
in a more traditional Kripkean style by considering the so-called Ockhamist
frames [31] (closely related to the Kamp frames of [27]), i.e., triples of the form
(W, <, ~), in which W corresponds to the set of branches of the (bundled) tree,
< is the inclusion relation between branches and ~~ is the equivalence relation
of having the same initial node, as illustrated by Fig. 1.

Definition 5. LetC be a class of linear orders. A C-basic-frame is a triple (W, <
,~2), where (W, <) is a non-empty union of linear orders in C and ~ is an
equivalence relation on WW.

Other interesting properties of frames to be considered are:

(Dsj) for all x,y e W, if x ~y then x £ y;

(Wdc) for all z,y,y € W, if & <y ~ y/ then there exists ' € W such that
r~a <y

(Sde) for all x,y,z,a',2" € W, if x <y < z~2 and x ~ a’ < 2’ then there
exists y' € W such that y' ~y and 2’ <y’ < 2';

(Mb) for all z,y € W, if x ~y and x # y, then there exists ' € W such that
' = x and there is no y' € W with y' =y and 2’ ~y’;

(Mb™) for all z,y € W, if x is <-mazimal and x ~y then x = y.
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Fig. 1. A bundled tree (left) and the corresponding Ockhamist frame (right).

The property Dsj stands for disjointness of < and ~, and comes from the
fact that a node in a tree cannot be a descendant of itself. Wdc stands for weak
diagram completion and is a consequence of the linearity of the order relation in
a tree. Sdc is a strong form of Wdc and stands for strong diagram completion.
Finally, the mazimality of branches condition Mb models the fact that two dis-
tinct branches in a tree must have disjoint sub-branches. Mb™ is another way of
expressing the maximality of branches.

Below, we will often confuse any meaningful (+ separated) sequence D of
these properties with the class of all basic frames that satisfy the conditions in
D. Given a class C of linear orders, the elements of such a class will be dubbed
C-D-frames. The class of Ockhamist frames is usually defined to be the class of
()-(Dsj+Wdc+Mb)-frames.

As is standard, we obtain an interpretation structure for the logical language
by providing a frame with a valuation function.

Definition 6. A C-D-structure is a 4-tuple (W, <,~,V), where (W, <,~) is a
C-D-frame and V is a valuation function V : W — 2P, where P is the set of
propositional symbols.

In the literature, the semantics of Ockhamist branching-time logics is some-
times defined by requiring that the valuation function obeys particular condi-
tions, e.g., as in [22], that points ~-related satisfy the same set of atoms (we will
sometimes refer to this assumption as atomic harmony). We will see below how
our treatment can be adapted in order to deal with this case too.

The notion of truth with respect to a point in a structure is now easily
definable, having the temporal operators G and H operate along the <-lines of
points, and the quantifier V within ~-equivalence classes.

Definition 7. The satisfaction relation | for Ockhamist formulas over a C-D-
structure M = W, <,~,V) and a point uw € W is defined by:



M,ukp iff peV(u);

M,ulE—-A iff  M,ulE A;

MuEAAB iff M,ul= A and M,u = B;

M,u = GA iff M,vE A for all v such that u < v;
M,uEHA iff M,vE A for all v such that v < u;
M,uEVA iff M,vE A for all v such that u ~v.

This notion of C-D satisfaction extends to the motions of C-D-satisfiability, C-
D-validity and C-D-entailment as is standard.

Below, we will write £(C, D) to refer to the logic on the Ockhamist language
defined by the class of all C-D-structures.

Lemma 1. Let C be a class of linear orders. Then:

(1) L(C, () = L(C, (Ds)));

(i) L(C,(Dsj+Wdc)) = L(C, (Wdc+Sdc));

(1ii) L(C,(Dsj+Wdc+Mb)) = L(C,(Wdc+Sde+Mb~)) and both coincide also
with the logic defined over bundled trees in the class BY(C).

Proof. (i), (i) and the first equivalence in (7i7) can be shown by a trivial adap-
tation of analogous results proved in [31] in the case of general linear-time. We
obtain the last equivalence by noticing that there is a one-to-one correspondence
between elements of BT (C), for a given class C of linear orders, and Ockhamist
frames in which every linear component is in C. O

Given these equivalences, from now on we will focus on the logics £(C, D)
where D is one of our four target branching classes, that is: (), (Wdc), (Wde+Sdc)
or (Wdc+Sdc+Mb ™). This will allow us to span from the logic of basic frames
toward the logic of Ockhamist frames in a stepwise manner.

Moreover, though in the rest of the paper our reference, for what concerns
the semantical structures, will be the C-D-frames of Definition 6, Lemma 1 will
allow us to read our results also in terms of tree-like structures. In particular,
by Lemma 1, the final point of our hierarchy of branching classes (the one given
by the combination (Wdec+ Sdc+ Mb™)) corresponds, for C some class of linear
orders, to the class B*(C) of Definition 4. Notice, however, that many of the
classes of linear orders C considered here, i.e., C = (), C = (F'st), C = (Ddsc),
C = (Udsc) and C = (Dns), enjoy closure properties such that the classes B(C)
and B*(C) coincide?; see [12] for further details and a proof of this fact. Thus,
for such particular Cs, our results indeed extend also to the logic defined by the
class B(C).

3 In particular, B(()) = BT(()) implies that the logic £((), (Wdc + Sdc 4+ Mb™)) co-
incides with the Ockhamist logic of general time over bundled trees described in
[31].



3 The mosaic method

In this section, we give an extension of the definition of the mosaic method
for a linear tense logic, given in [16], to the case when an orthogonal modality
is introduced. By considering some interaction properties, a class of bundled
branching-time logics is covered.

Intuitively, the linear temporal (vertical, in our terminology) mosaics of [16]
can be seen as pairs (I, A) where I' and A refer to two points in a temporal
structure, such that the point associated to I' precedes (by the relation <) the
one associated to A. I' and A are indeed sets of formulas, namely formulas
that are satisfied at the corresponding point. Given this basic intuition, it is
reasonable to require that linear temporal mosaics satisfy some local coherence
conditions: as an example, given a mosaic (I, A), we want that if GA € I', then
A € A. Moreover, we are interested in considering particular sets of mosaics,
saturated in such a way that we are able to build a complete model by just
composing the mosaics contained in a given set of that kind. In other words, we
need to define the saturation conditions that a “good” set of mosaics is required
to satisfy. Basically, this amounts to making sure that each counterexample
occurring in the model we are building can be “cured”. In the context of linear
tense logics, a counterexample consists in the presence of a point w labeled with
a formula of the form FA such that all of its successors are labeled with —A. By
“curing” it, we mean adding a new point w’ to the structure (as a successor of
w) such that the labeling set of w’ contains A.

We keep here the intuition behind linear temporal mosaics [16] but need to
consider also horizontal mosaics, to take into account the branching nature of
the logics. Expectedly, these will be pairs (I, A) of sets of formulas, where the
sets now refer to ~-related points in the structure. Corresponding coherence
and saturation conditions will apply. Namely such a compatibility will consist
primarily in requiring as a coherence condition that I" and A agree with respect
to state formulas (which must include the propositional symbols in case we adopt
the atomic harmony approach). Saturation-wise, there is also the need to deal
with “branching counterexamples”, i.e., points labeled with a formula of the form
3A such that no ~-related point contains A. Of course, further requirements need
to be satisfied in order to cover all the necessary properties, namely regarding
the interaction between horizontal and vertical mosaics.

3.1 Mosaics

In the most general case, that is, when, as in Definition 6, no particular assump-
tions are made on the way atoms are evaluated, it is straightforward to check
that the set of state formulas can be defined recursively as follows:

1. if A is a formula, then VA is a state formula;
2. if A and B are state formulas, then A A B is a state formula;
3. if A is a state formula, then —A is a state formula.



If we are interested in logics where the evaluation of atoms depends only on the
state (and not on the particular path), i.e., if v ~ w implies V(v) = V(w), then
the following further base case needs to be added to the conditions above:

0. if A is an atomic proposition, then A is a state formula.

In any case, it is clear that satisfaction at any ~-related points in an interpreta-
tion structure agrees on state formulas.

The following definitions are essential in supporting the construction of sets
of mosaics based not necessarily on the whole Ockhamist language F, but on
suitable (possibly finite) sublanguages A C F. Below, unless otherwise stated we
consider fixed such a set A. As a minimal requirement, we will assume that A is
closed under subformulas and single negation (of non-negated formulas).

Definition 8. Let Iy A C A. We say that I and A are A-state-equivalent, and
we write I' ~4 A, if for each state formula A € A, A€ I if and only if A € A.

Definition 9. A point (on A) is a set of formulas I' C A satisfying the following
local conditions:

for every formula A € A,

(L1) AcT iff-A¢TI;
(L2) A=BAC el iff {B,C} CT;
(L3) if A=VB eI then BeT.

A point T is further said to be*:

— future unbounded (or a FU-point) if FT € I';

future bounded (or a FB-point) if (FGL)V (GL) € I';
— past unbounded (or a PU-point) if PT € I';

— past bounded (or a PB-point) if (PHL)V (HL) e I".

Definition 10. A mosaic (on A) is a pair (I, A) or just (I'), where I' and A
are points on A. We say that a mosaic (I, A) is a vertical mosaic iff it satisfies
the following vertical coherence conditions:

for every formula A € A,

(V1) if A=GB €I then B € A;
(V2) if A=HB € A then B € I';
(V3) if A=GB € I then GB € A;
(V{) if A=HB € A then HB € I".

We say that a mosaic (I, A) is a horizontal mosaic iff it satisfies the following
horizontal coherence condition:

(H1) I and A are A-state-equivalent.

4 Notice that the definitions of future/past (un)boundedness require, mutatis mutan-
dis, that the corresponding formulas FT, (FGL) v (GL),PT,(PHL) Vv (HL) € A.



A singular mosaic (I') is both a vertical and a horizontal mosaic.
We say that a mosaic is a FU/FB/PU/PB-mosaic if it is composed only of
FU/FB/PU/PB-points, respectively.

Let us now consider sets of mosaics.

Definition 11. The set of points of a set of mosaics S (on A) is the set Points(S) =
{RCA|(2) €S or there exists (I, A) € S with 2 =T or 2= A}.

Vertical mosaics are subject to the following saturation properties.

Definition 12. A set S of vertical mosaics (on A) is a ()-vertically saturated
set of mosaics (on A) (a ()-VSSM for short) if it satisfies the following ()-vertical
saturation conditions:

for every 2 € Points(S),

(SV1) if FA € 2 then there exists (2,I') € S with A € I';
(SV2) if PA € 2 then there exists (I, 2) € S with A€ I';

for every mosaic (I, A) € S,

(SV3) if FAe I, then:

(i) Aec AorFAe A; or

(i) there exist (I, 2),(82, A) € S with A € 2;
(SV4) if PA € A, then:

(i) Ac I orPA€T; or

(ii) there exist (I, 12),(82, A) € S with A € §2.

Additional vertical saturation conditions of interest are:

for every mosaic (I, A) € S,

(SVDns) there exists {2 € Points(S) such that (I, 2), (82, A) € S;
(SVUdsc) if FA € I, then:

(i) Ac AorFAe A; or

(i) there exist (I, 2),(§2, A) € S with {A,-FA} C 2;
(SVDdsc) if PA € A, then:

(i) Ae I orPAeT; or

(i) there exist (I, 2),(82,A) € S with {A,-PA} C 2.

Given a class C of linear structures, S is said to be C-vertically saturated
(a C-VSSM for short) if S is a ()-VSSM that further satisfies the following

conditions, corresponding to each property in C:

— F'st/Lst/Nfst/Nlst correspond to requiring that S is a set of PB/FB/PU/FU-
mosaics, respectively;

— Dns corresponds to requiring that SVDns holds;

— Udsc/Ddsc correspond to requiring SVUdsc/SVDdsc hold, respectively.

Horizontal mosaics are also subject to saturation properties.

10



Definition 13. A set S of horizontal mosaics (on A) is a horizontally saturated
set of mosaics (on A) (a HSSM for short) if it satisfies the following horizontal
saturation condition:

for every 2 € Points(S),

(SH1) if JA € 2 and A ¢ (2 then there exists I' € Points(S) such that (2,T") €
Sand Ael.

We now need to consider the joint effect of vertical and horizontal mosaics.

Definition 14. Let C be a class of linear orders. A C-basic-structure of mo-
saics is a pair S = (Sy,Sy) such that Sy is a C-VSSM, Sy is an HSSM, and
Points(Sy) = Points(Sg). The set of points of the structure of mosaics S is
precisely Points(S) = Points(Sy) = Points(Sk).

Additional combined conditions of interest are:

(SWdc) if (£2,T") € Sy and (I, A) € Sy then there exists ® € Points(S) such
that (@, A) € Sy and (2,P) € Su;

(STrn) if (I, A), (A, 2) € Sy then (I,12) € Sy;

(SCon) if (I, 2),(A, 2) € Sy then either I = A, or (I, A) € Sy or (A, T) €

Sv,'

(SSde) if (&,92),(2,T), (P, A) € Sy and (P,¥),(I,A) €
Y € Points(S) such that (¥,7), (T, A) € Sy and (

(SMb~) if (I A) € Sy and GL € I then I = AS.

S then there exists
0, T) € Sy;

Given one of the target branching classes D, S = (Sy, Su) is said to be a C-
D-structure of mosaics if S is a C-basic-structure of mosaics that further satisfies
the following conditions, corresponding to each class D #():

— D =(Wdc) requires that SWdc, STrn and SCon hold;
— D =(Wdc+Sdc) requires that SWdc and SSdc;
— D =(Wdc+Sdc+Mb~ ) requires SWde, SSdc and SMb~ to hold.

Given a structure of mosaics S and a set of formulas I', we say that S is a
structure of mosaics for I' if there exists {2 € Points(S) such that I' C 2.

3.2 Mosaics and satisfiability

We will now show that the existence of a saturated set of mosaics for a given set
of formulas corresponds to the existence of a model for such a set.

Definition 15. Let F = (W, <,~) be a frame. A chronicle for F on A is a
Sfunction § assigning a subset of A to every element of W such that the following
conditions are satisfied: for every v,v' € W,

(i) A€d) iff ~A ¢ s(v);
(i) ANB € d(v) iff {A, B} Cé(v);

® Notice that the SMb~ condition only makes sense if we require that GL € A.
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(i11) if VA € §(v), then A € §(v);

() if GA € §(v) and v < v, then {A,GA} C §(v');
(v) if HA € 6(v) and v' < v, then {A,HA} C §(v');
(vi) if v =" then 6(v) ~4 6(0V').

We say that a chronicle § is based on a structure of mosaics S = (Sv,Su),

defined on the same A, if:

(vii) if v < v’ and there is no v" such that v < v" < v', then (§(v),d(v)) €
SV;
(viiii) if v ~ o', then there exist vi ~ ... ~ v, such that v = vy, v/ = v, and
(0(vi),0(vig1)) € Sy for 0 <i<n.

Let D be a target branching class and S be a structure of mosaics. Given a
C-D-frame F and a chronicle 6 for it, the pair (F,0) will be referred to as a
C-D-chronicled frame based on S.

Conditions (i) — (vi) are the analogous of the coherence conditions in the
definition of vertical and horizontal mosaics. Conditions (vii) and (viii) ensure
that the chronicle is built out of mosaics from a given structure.

Definition 16. Let F = (W, <,~) be a ()-()-frame, v € W, § a chronicle for
F and A a formula. An element (v,FA) is a vertical future defect of (F,0) if:
(i) FA € 6(v); and
(i1) (i) for every v’ € W such that v < v', we have A ¢ 6(v').

(v,PA) is a vertical past defect of (F,d) if:

(i) PA€§(v); and
(i1) for every v' € W such that v < v, we have A ¢ §(v').

Finally, (v,3A) is a horizontal defect of (F,0) if:

(i) 3A € 6(v); and
(i1) for every point v € W, if v ~ v then A ¢ v'.

Lemma 2. Let D be a target branching class in {(), Wdc), (Wdc+ Sdc)}, S =
(Sv, Su) a ()-D-structure of mosaics, (F = (W, <,22),0) a finite ()-D-chronicled
frame based on S and o a defect on (F,0). Then there exists a finite ()-D-
chronicled frame based on S that extends (F,0) and such that o is not a defect
m it

Proof. The proof proceeds by showing how to cure vertical and horizontal defects
and how to guarantee that the resulting frame is still of the required type. Notice
that if D # (), the procedure may require the addition of more than one point.

Curing of vertical defects. Vertical defects are cured in the same way as de-
scribed in [16]. We recall the case of a linear future defect; the treatment
of past defects is just symmetrical. Let « be (v, FA) for some v € W and
some formula A. We can consider a v’ that is the <-maximal element of W
such that FA € v'. Since d is a defect of (F,J), such a v’ exists. By curing
the defect (v',FA), we will also cure all the defects (w,FA) for w < v'. We
have two subcases:
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(a) v’ is the greatest element of W according to <. Then, by the saturation
condition SV1, there is a mosaic (I}, I']) in S such that I'j = §(v') and
A € I'{. We can define a new frame F’' = {W' <’ ~'} obtained by adding
a new element v” labeled with I']. Namely, we define W = WU{v"}, </
as the smallest linear order relation containing < and such that w < v”
for every w € W and ~'=~ U{(v",v")}. We can associate to F’ a
chronicle §’ that extends § by assigning I'] to v”.

(b) v' is not the <-greatest element of W. Then, there exists an element
v € W such that v is the immediate successor of v/, according to the
relation <, and, by the maximality of v', =FA € §(v”). By the condition
SV3, there exist two mosaics (Ag, A), (4, Ay) € S such that Ay = §(v'),
A; =6(v") and A € A. Then we define an extension F’ = {W', </, ~'},
by inserting a point v* between v’ and v”. A chronicle ¢’ for F”’ is obtained
by extending § with the assignment §'(v*) = A.

Curing of horizontal defects. If « is a horizontal defect, i.e., A = JA’ for some A’,
then, by the saturation condition SH1, we know that there exists (A, A") €
Sy such that §(v) = A and A € A’. Then we define a frame F/ = W', <’
,~), where W = WU {v'}, <’=< and =’ is the reflexive, symmetric and
transitive closure of ~ U{(v,v")}. We can associate to F’ a chronicle ¢’ that
extends & by assigning M’ to v'.

Preserving relational properties. According to the procedure described above,
curing a defect on a ()-(Wdc)-chronicled frame may produce a chronicled
frame that is not of the same type. Namely, the curing of o could generate
in the new frame F' = (W', <’,~') a counterexample to the property Wdc,
i.e., three points vy, wy and w} in W’ such that v; <" w; ~' w] but such
that there is no point v] in W’ for which v; ~' v{ and v{ <" w} hold. Such
situations, which will be referred to as Widc-defects, need to be repaired in
a different way according to the fact that D also contains Sdc or not.

(a) Let D = (Wdc). Since (F',4") is based on S, by the transitive closure
ensured by property STrn and by condition (vii) in Definition 15, there
exists (8’(v1),d’'(w1)) € Sy. Moreover, by condition (viéi) in Definition
15, there exists a sequence wy =~ ... ~ w, such that w, = w] and
(0" (w;), 6" (wig1)) € Su for 0 < i < n. By construction, for 0 < i < n, the
sequence v1 <" wy ~ w; also represents a Wdc-defect. All such defects
will be cured by applying, in turn, to all the 0 < i < n, the following
procedure. Let v; be the last point added to cure a defect (as a base
case it will coincide with v1) and (F”',6") the chronicled frame obtained
as a result of the (¢ — 1)-th step (6” = ¢’, if ¢ = 1). Then the sequence
v; <" w; >~ wiyq1 is a Wde-defect. As a result of the (i — 1)-th step
(or by hypothesis, if i = 1) we have (8" (v;),d”(w;)) € Sy. Then, by
the saturation condition SWdc on S, we know that there exists a point
A € Points(S) such that (A, 6" (wiy1)) € Sy and (6" (v;), Q) € Su. It
is then possible to build a new frame by extending F” with a further
point v; 41 and associate to it a proper chronicle that is the extension of
0" assigning A to v;1+1. Condition SCon allows for positioning the new
point properly along the <”-order. Such a procedure will eventually cure
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all the defects in the sequence and thus also the one related to the triple
(v1,wy, wh).

(b) Now let D = (Wdc + Sdc). There are three possibilities: (i) the Wdc-
defects arise from the curing of a vertical defect made by inserting a
point in the middle of a linear order (case (b) in the curing of a vertical
defect above); (i) the Wdc-defects arise from the curing of a vertical
past defect occurring at a point at the bottom of a linear order; or (iiz)
the Wdc-defects arise from the curing of a horizontal defect. In the case
(), we notice that the possible Wdc-defects are also counterexamples to
Sdc, since Wdc and Sdc combined give the frame the shape of a (partial)
grid, with < operate vertically and ~ operate horizontally. We can use
the saturation condition SSdc in order to add new points and eliminate
such counterexamples. As an example, consider the case when a point v,
has been inserted between two points vy and vy such that vy ~ v and
vy =~ v). The resulting defect can be cured by adding a point v} between
vy and vh such that v; ~ v]. Condition Ssdc ensures that a v] with
the proper labeling exists. In both the cases (i) and (iii), we deal with
simple Wdc-defects and the frame can be extended by using condition
SWdc, as described in point (a) above. O

In the following, when not working with the full language, we will anyway
often require that the labeling set of formulas on which mosaics are defined is
closed with respect to some properties. We will let such closure properties depend
on the particular class of linear orders and the particular target branching class
considered.

Definition 17. Let C be a class of linear orders and D a target branching class.
A set A of formulas is said to be C-D-closed if the following conditions are
satisfied:

(i) A is closed under subformulas and single negations (of non-negated formu-
las);
(i) if Fstis in C, then (PHL)V (HL) € A.
(i) if Lst is in C, then (FGL)V (GL) € A;
(iv) if Nfst is in C, then PT € A;
(v) if Nist is in C, then FT € A;
(vi) if Mb~ is in D, then GL € A.

Now we can use the procedure described in Lemma 2 to build, via an w-
construction, a structure of the given type. The following result from [31] will
be useful in order to ensure that relational properties are preserved during the
construction.

Lemma 3. Let D be a target branching class and F = {F\ | A < u} a set of
()-D-frames indexed on the ordinal p such that F\ C Fyx for all A < XN < p.
Then the union I = J,_, Fx is a ()-D-frame.

14



Theorem 1. Let C be a class of linear orders with C not including any of Udsc
and Ddsc, D a target branching class and I' a set of formulas. Then, I" is C-D-
satisfiable iff there exists a C-D-structure of mosaics for I.

Proof. (=) Let M = (W, <,~,V) be a C-D-structure satisfying I and let u € W
be a point such that M,u | I'. Given a set A’, which contains I" and is C-
D-closed, we can associate a different fresh atom, i.e., an atom that is not in
A’ to each world in WS, Let A” be the smallest C-D-closed set of formulas
containing such atoms and A = A’ U A”. We associate a subset of A to every
point of W as follows: for every v € W we define A, = {A € A | M,v
At U{p,J U{-p | p € A” and p # p,}, where p, is the atom associated to
v. Then we define the set Sy = {(A,, Ay) | v,v" € Wand v < v'} U{(4,) |
v € W and for all v/ € W we have v £ v' and v/ £ v}. Similarly, we define
Sy ={(A,,Ay) | v,v" € W and v ~v'}. Tt is easy to verify that S = (Sv, SH)
is a C-D-structure of mosaics. In fact, coherence and saturation conditions are
clearly satisfied since the definition of each point in S comes from the labeling
of the corresponding point in a C-D-structure and the use of fresh atoms ensures
that each world in W gives rise to a distinct point in S. Furthermore S is a
structure of mosaics for I" since I' C A,, and A,, € Points(S). (<) Let S be a
C-D-structure of mosaics for I' on a C-D-closed labeling set A of formulas. As in
[16], we build a model for I" step by step by using the mosaics in S as building
blocks. The procedure described in Lemma 2 will be used to cure the defects.
Namely, we define a sequence o containing all the formulas FA, PA, 94 in A
such that each such formula occurs infinitely often in ¢ and proceed as follows.

Notice that we cannot guarantee that the result of each step of the construc-
tion is a C-D-chronicled frame because some of the properties (both linear and
branching) will only emerge in the limit step. Namely, during the intermediate
steps of the construction we will work with ()-D-chronicled frames, for D =(),
D =(Wdc) and D=(Wdc+8dc), and with ()-(Wdc + Sdc)-chronicled frames if
D =(Wdc+Sde+Mb™).

[STEP 0] First, let us consider a mosaic p in S such that p is a mosaic for I"
(since S is a structure of mosaics for I', such a mosaic exists). Moreover, since by
definition Points(Sy) = Points(Sm), we can assume, without loss of generality,
that p is a vertical mosaic. We can define Fy = {Wy, <o,~0} as follows. If
i = (Ag) is a singleton, then we define Wy = {wg}, <o= 0 and ~g= {wg, wp}.
Furthermore, we associate to Wy the chronicle §p defined as do(wg) = Ag. If
p = (Ag, Ay) is a vertical mosaic in Sy, then we define Wy = {wg, w1}, <o=
{(wp,w1)} and ~p= {(wo,wo), (w1,w;1)}. We associate to Wy the chronicle dy
defined as dp(wp) = Ag and Jp(w1) = A;. In both cases Fp is a ()-D-frame and
do is a chronicle for Fy based on S.

[STEP n+1] Assume that we have already defined a ()-D-frame (a ()-(Wdc+
Sdc)-frame if D=(Wdc+Sde+Mb™)) F,, and a chronicle §,, for F,, based on S.
Then we consider the (n + 1)-th formula A in the enumeration o. By using

¢ By adapting the result from the Léwenheim-Skolem theorem (see, e.g., [28]), we can
assume, without loss of generality, that W is countable.
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the procedure described in Lemma 2, we can define a ()-D-frame F,4; and a
chronicle §,,41 for it such that for each defect (w, A) in (F,,d,), we have that it
is not a defect in (F41,0n41)-

Notice that if D=(Wdc+Sdc+Mb™), we just apply the procedure described
for D = (Wdc + Sdc). Moreover, in some cases, depending on the nature of C,
we slightly refine the procedure described in Lemma 2. Namely, if C contains
Dus, then, as suggested in [16], when curing vertical defects we add not only
the mosaics specified by the procedure of Lemma 2 but also, between all the
neighboring points, all the mosaics that can lay in the middle. Condition SVDns
ensures that there is at least one such mosaic for each pair of neighboring points.

[STEP w] Now we can just take the infinite unions F = J,c, Fi and § =
Uico 9i- The special curing procedure described above for the dense case guar-
antees that the process will finally produce a frame which is dense. In the case of
the other linear properties possibly contained in C, it is the definition of mosaic
itself to guarantee that the property is enjoyed by the frame obtained in the
limit step.

Then, by Lemma 3, F is a C-D-frame, for D = (), D = (Wdc) or D =
(Wdc+ Sde). In the case when D=(Wdc+Sdc+Mb ™), in the intermediate steps
of the construction we have frames (with associated chronicles) which enjoy
Wdc and Sdc but not necessarily Mb~. However, condition SMb™ ensures that,
at each step i, a <-maximal point w can be ~-related to a point v distinct from
w only if GL ¢ ¢;(w). But this implies that w contains a vertical future defect,
which in some later step will be cured by inserting some point above w. Thus in
the final construction we have that also Mb~ is satisfied. Furthermore, in all the
cases, by the construction we have no defects in (F, ¢), since the enumeration in
o ensures that if a defect becomes actual at some step, then we cure it in a later
step.

We can easily obtain a C-D-structure by endowing F' with a valuation V
induced by §. Namely, let F be (W, <,~); then we define a structure M =
(W, <,~,V), where V is such that for all u € W and for all atomic propositions
p, p € V(u) iff p € §(u). By recalling that we used a mosaic for I" as a foundation
stone of our construction (STEP 0), we conclude that M is a C-D-structure that
satisfies I O

Corollary 1. Let C be a class of linear orders with C not including any of Udsc
and Ddsc, D a target branching class and I' a set of formulas. Then I' is C-
(Dis+ Wdc)-satisfiable iff there exists a C-(Wdec+Sdc)-structure of mosaics for
I'. I is C-Ockhamist-satisfiable (i.e., by Lemma 1, satisfiable in the logic defined
over bundled trees in the class BY(C) [12]) iff there exists a C-(Wdc+Sdc+Mb™ )-

structure of mosaics for I'.

Proof. This follows straightforwardly by combining the result of Theorem 1 and
the equivalences of Lemma 1. O

In the case where no interactions between the components are considered,
i.e., when D = (), it is possible to give a proof based on a labeling set which is
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finite. This observation will be crucial in obtaining a result of decidability (see
Section 4.3 below). We remark that in this case we are able to deal also with
discreteness properties.

Theorem 2. Let C be a class of linear orders and I' a finite set of formulas.
Then, I' is C-()-satisfiable iff there exists a C-()-structure of mosaics for I on a
finite labeling set.

Proof. (=) Since I is C-()-satisfiable, there exist M = (W, <,~,V) and u € W
such that M,u |= I'. Let A be the smallest C-()-closed set of formulas containing
I'. We will show that there exists a structure of mosaics on A for I

We can easily infer a set of mosaics on the labeling set A from M. We
associate a subset of /A to every point of W as follows: first we define A,, = {A €
A M,w = A} for every w € W. Then we define the sets Sy = {(Ay, A,) |
w,w € Wand w < w'} U {(Ay) | w € W} and Sg = {(Aw, 4),) | w,w' €
Wand w ~ w'} U{(Ay) | w € W}. It is easy to verify that S = (Sv,Sy) is
indeed a C-()-structure of mosaics. In fact coherence and saturation conditions
are clearly satisfied since the definition of each point in .S comes from the labeling
of the corresponding point in a C-()-structure. Furthermore S is a structure of
mosaics for I', since I' C A,, and A, € Points(S).

(<) The thesis follows from a construction analogous to that in the proof of
Theorem 1 (right-to-left direction). Clearly, restricting to consider structures of
mosaics based on a finite labeling set does not affect the previous result.

In this case, we can also consider classes of linear orders satisfying Ddsc
and/or Udsc. Namely, if C contains UDsc, then in cases like (b) for the curing of
vertical future mosaics (Lemma 2), we proceed by adding a point v* between v’
and v” such that {A, -FA} C §’(v*). Condition SVUdsc ensures that there exists
a mosaic allowing that. If C contains DDsc, then we proceed symmetrically in
the case of vertical past defects. The fact that the labeling set is finite guarantees
that only a finite number of formulas of the form FA or PA occurs in any point.
Hence, between any two points, we will insert only finitely many points during
our w-construction.

4 Applications

In this section, we study some applications of the mosaic method defined above.
In particular, we describe a mosaic-based proof of completeness for a Hilbert-
style axiomatization for our Ockhamist branching temporal logics, we formulate
and study mosaic-based tableaux systems, and study the decidability of some of
these logics.

4.1 Hilbert-style completeness via mosaics

One of the possible applications of the mosaic method is in proving the com-
pleteness of a given deduction system (as, e.g., in [21,16]). In fact, Theorem 1
can be used to simplify the standard proof of completeness: given a consistent
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set of formulas we do not need to create a model satisfying it; a structure of
mosaics will suffice.

A standard ([31]) proof of completeness for axiomatic systems capturing the
logics presented here consists in taking maximal consistent sets and defining two
relations <™ and ~M on them, based on the formulas they contain, i.e.,

I <MAiff {A|GAeI'}CA and I'~M Aiff {A|VAeI'}CA.

The idea is that such relations can be used as the basis for building a structure
by a procedure of elimination of counterexamples [2,3,31]. If we use mosaics,
then part of this procedure is already contained in the assert of Theorem 1 and
it suffices to show that the structure (Sy,Sp) is a structure of mosaics of the
given class, where Sy is the set of all pairs (I, A) of maximal consistent sets
such that I' <™ A and Sy is the set of all pairs (I, A) of maximal consistent
sets such that I" ~M A,

Hilbert-style axiomatizations Here we list some axioms and rules of inference
that will give rise to a hierarchy of Hilbert-style axiomatizations for the logics
considered. Here we will consider strong completeness and, as in Theorem 1,
drop the discreteness conditions Udsc and Ddsc. We remark that, by exploiting
the result of Theorem 2, a proof of weak completeness would be possible for
axiomatizations capturing also discreteness but in a setting with no interactions
between the components, i.e., for D = ().

Vertical axioms (for general linear-time)

(CL) Any tautology instance of classical propositional logic
(Kg) G(A D> B) D (GADGB)

(Kn) H(AD> B) D (HADHB)

(GP) A D GPA

(HF) A D HFA

(L1) FADG(FAV AVPA)

(L2) PADH(FAV AVPA)

(TRANSs) GA D GGA

(TRANSy) HA D HHA
Axioms for particular linear flows

(FstA) HLVPHL

(LstA) GLVFGL

(NfstA) PT

(NistA) FT

(DnsA) FADFFA A PADPPA

Horizontal axioms (S5 with respect to the operator V)

(Kv) Y(AD B) D (VADVB)

(V1) VA D WA
(V2) VAD A
(V8) A>V3A
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Branching axioms (compositional and harmonic properties)

(WdcA) PA D VPIA
(Mb—A) GLATFAD A
(AtmA) p D Vp,for peP.

Rules of deduction

(MP) 1If A and AD B then B

(Necg) If A then GA

(Necy) If A then HA

(Necy) If A then VA

(Irr)  If ((Vp AHV=p) D A) then A, for p € P not occurring in A,
(Irrg) If ((p AH=p) D A) then A, for p € P not occurring in A.

For each of our £(C, D) logics of interest, such that Udsc and Dsc are not in
C, we can obtain an axiomatization H(C, D) by including:

— the vertical axioms for general linear time
(CL,Kg,Ky,GP,HF,L1,L2, TRANS, TRANSY),
the horizontal axioms
(Kv,V1,¥2,V38),
and the necessitation rules
(Necg, Necy, Necy);

— axioms for particular linear flows
(CA), for each condition C listed in C;
— additional axioms and rules for particular target branching classes
e D=(Wdc)
(WdcA);
e D=(Wdc+Sdc)
(WdcA, Irr)7;
o D=(Wdc+Sdc+Mb™)
(WdcA, Irr, Mb~ A).

In the case when the atomic harmony assumption is satisfied (see Section
2), a proper axiomatization can be obtained [31] by adding the axiom (AtmA).
Moreover, the rule (Irr) can be reformulated as (Irrg).

" As an alternative formulation, we notice that in [30], Zanardo proposes the following
two rather complex (but with a standard form) Hilbert-style axioms:

(DW1) P(VAAGB) AH—(B A30)
DV[GA1 APC D P(AA(CVPC))AG(C D GAy))

(DW2) [HAAH-(BA3CAF(BAAA3CL))APKVAL AGB)]
D V[GB:1 D P(41 AG(C D G(C1 D GB1)))]

The addition of such axioms to H(C, (Wdc)) gives rise to an axiomatization for the
logic L(C, (Wdc+ Sdc)); see [30] for a proof.
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Given a class C of linear orders, and a target branching class D, the notions of
H(C, D)-theoremhood, H(C, D)-derivability and H(C, D)-consistency are defined
in the standard way. A set I" of formulas is further said to be mazimally H(C, D)-
consistent if either A € I' or =A € I for every A € F. If I' is not H(C, D)-
consistent, it will be called H(C, D)-inconsistent.

Completeness via mosaics In the rest of this section, for C a class of linear
orders and D a target branching class, we will denote with MC¢ p the set of
maximal consistent sets of formulas generated by the axiomatization H(C, D).
We will prove completeness of the given axiomatizations by using mosaics and
by adapting known results, mainly from [31] and [7], where axiomatizations very
close to ours are presented.

Theorem 3. Let {2 be a set of formulas and C a class of linear orders such
that Udsc and Ddsc are not in C. If 2 is H(C, ())-consistent, then there exists a
C-()-structure of mosaics for 2.

Proof. We have to show that there is a C-()-structure of mosaics for £2. Let our
labeling set be the set of all formulas. Then we define the set Sy as follows:

Sy ={(I')|I"'e MC¢} U
(LAY | I, A€ MCe and {A|GAe I} C A} (1)

It is easy to prove that the following definitions are equivalent to (1).

Sy ={(I")[I" € MC¢,} U
((I'A)| A€ MCey and {A|HA€ A} C T} (2)

Sy ={(I")[I" e MC¢} U
{(IA) | IA€ MCc( and {FA| Ae A} C T} (3)

Sy ={(I')|I"'e MC¢,} U
((IA)| A€ MCey and {PA| Ac T} C A} (4)

Similarly we can define Sy as:

Sag=A{)[I"'e MCcy} U
(I A)|[,Ae MCe and {A| YA€ T} C A} (5)

which can be proven to be equivalent to:

Sp={I")|I'eMCc}tU
{(ILA)|T,A€ MCey and {3A| Ac A} C T} (6)

Now we define S = (Sy, Sy) and claim that S is indeed a C-()-structure of
mosaics. By Definition 14, we need to prove that:
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(i) Sy is a C-VSSM;
(ii) Sy is an HSSM;
(iii) M € Points(S) implies M € Points(Sy) and M € Points(Sg).

The proof uses the same arguments in the proof of completeness of [31].
Firstly, by using classical tautologies and (V2), we can show that each I' €
Points(S) is a point. In particular, in the case of C containing Fst, Lst, Nfst or
Nlst, the corresponding axiom directly ensures that each point is a PB-point, an
FB-point, a PU-point or an FU-point, respectively.

Moreover, by (1) and (TRANSq), each element of Sy is a vertical mosaic
and, by (5) and (V2) (and (AH) if atomic harmony is assumed), each element
of Sy is a horizontal mosaic.

Also, by standard Kripke-style methods (see [31]), one can show that if
FA(PA,JA) € I', then there exists a A such that A € A and (IA) € Sy
((A, I") € Sy, (I,A) € Sy). This implies that Sy is a ()-VSSM and Sg is an
HSSM. With regard to point (i), when C is some particular class of linear orders,
we can refine this result by observing that:

— in the case of C containing Fst (Lst, Nfst or Nlst), we have automatically
that Sy is a set of PB (FB, PU, or FU, respectively)-mosaics and thus a
C-VSSM;

— in the case when C contains Dns, Udsc or Ddsc, the axioms (DnsA), (UdscA)
or (DdscA) can be used to prove the corresponding saturation properties on
S, by using the standard techniques of, e.g., [1].

Finally, as for (iii), we observe that, by (1) and (5), Points(Sv) = MC¢ =
Points(Sg).

By considering the standard result [31] according to which every consistent
set of formulas is contained in a maximal consistent set of formulas, we have
that there exists a 2’ such that 2 C 2’ and 2’ € Points(S) and thus that S is
a structure of mosaics for 2. d

Theorem 4. Let (2 be a set of formulas and C a class of linear orders such that
Udsc and Ddsc are not in C. If £2 is H(C, (W dc))-consistent, then there exists a
C-(Wdc)-structure of mosaics for §2.

Proof. We can define a structure of mosaics S as in Theorem 3. Then, by using
the axiom (WdcA) and standard compactness techniques [31], we have that S
enjoys SWdc. Moreover, as proven in [31], the set Sy enjoys transitivity (STrn)
and connectedness (SCon) and is therefore a C-(Wdc)-structure of mosaics. O

In the case of (Wdc+Sdc)-structures, we refer to an axiomatization enriched
by the rule (Irr) (see above), which forces the construction of irreflexive models
[6,7]. Namely, such a rule allows for giving each point a unique “name”, in the
sense that each point is characterized by the fact of being the <-minimal point
where a certain atom holds.

We can define a structure of mosaics in a way very similar to that of Theorems
3 and 4. However, we will now restrict our attention to a subset of maximal
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consistent sets, the so-called Irr-sets (see also [7] for an illustration of their use
in proving completeness).

Definition 18. A set I' of formulas is an Irr-set iff for all n > 0, for all
01y, On € {F,P,3}, for all formulas Ao,..., A, if

Ao ANO1(A1 A O2(Aa A ... On(Ay) .. ) el
then there is a propositional variable p € P such that
Ao AN O1(A1 AQ2(As AL On(An AGp AH-3p)...)) el

Definition 19. Let C be a class of linear orders. We define the set IMC¢ (wdc+Sde)
by saying that I' € IMC¢ (wactsde) iff I' is an Irr-set and I' € MC¢ (wdctsdc)-

Theorem 5. Let 2 be a set of formulas and C a class of linear orders such that
Udsc and Ddsc are not in C. If £2 is H(C,(Wdc + Sdc))-consistent, then there
exists a C-(Wdc+Sdc)-structure of mosaics for §2.

Proof. As in Theorems 3 and 4, we will build a structure of mosaics and show
that it is indeed a C-(Wdc+Sde)-structure of mosaics for 2.

Firstly, we notice that if {2 is consistent then it can be extended to a set
2" which is a set in IMC¢ (wdetsdc), possibly by extending the set of atoms
considered (see, e.g., [7] for a proof of this fact). Let our labeling set be the set
of all formulas in such a (possibly extended) set of atoms. Then, similarly to the
proof of Theorem 3, we define the set Sy as follows:

Sy ={(I") | I' € IMC¢ (wdctsdc)} U
{(F7 A) | Fa Ae IMCC,(WchrSdc) and {A | GA € F} - A} (7)

and the set Sy as follows:

Sy = {(F) | I e IMocy(WchrSdc)} U
{(I°4) | I A € IMCc (wac+sdc) and {A | VA€ I'} C A} (8)

As in the proof of Theorem 3, equivalent definitions are possible (we omit
them). Now we claim that S = (Sy, Sg) is a C-(Wdc+Sdc)-structure of mosaics
for (2.

First of all, we notice that it is not difficult to extend the results of Theorems
3 and 4 to this case. In particular, we refer the reader to the treatment in [7]:
vertical and horizontal saturation conditions are satisfied as a direct consequence
of [7, Lemma 7.7.6] and SWdc holds because of [7, Lemma 7.7.9].

It remains to show that S enjoys SSdc. We know (as a direct consequence of
Lemma 7.7.7 in [7]) that S enjoys a variant of the property (Dsj) (as defined in
Section 2), i.e., if (I;A) € Sy and (A, A’) € Sy then (I, A’) ¢ Sy. Moreover,
as proved in Lemma 7.7.9 of [7], S enjoys S-Wdc. By observing that the two
properties imply S-Sdc, we have the assert.

This shows that S is a C-(Wdc+Sdc+Mb™)-structure of mosaics. Since {2 C
§2" and 2 € IMC¢ (wc+Sdetnv-), S is a structure of mosaics for §2. O
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Fig. 2. Sample graphical representations of partial tuples.

Theorem 6. Let (2 be a set of formulas and C a class of linear orders such that
Udsc and Ddsc are not in C. If 2 is H(C, (Wdc+ Sdc+ Mb™))-consistent, then
there exists a C-(Wde+Sdc+Mb~ )-structure of mosaics for 2.

Proof. We only need to prove that the structure S, defined as in the proof of
Theorem 5, but with respect to IMC¢ (W detSde+np-), also enjoys SMb™. By the
sake of contradiction, assume there exist I', A such that GL € I, (I, A) € Sy
and I" # A. Then there exists A € A such that A ¢ I'. By (I, A4) € Sy and
A € A, it follows A € I'. Then, by using the axiom (Mb~A), we get A € I
(absurd). O

4.2 Mosaic-based tableaux

It is relatively simple to extract quite appealing semantic tableau systems for
our logics directly from the mosaics definition. The syntactical elements of our
tableaux systems are partial 6-tuples properly labelled with sets of formulas, plus
the particle CLOSED that will stand for an absurd. Rigorously, a partial 6-tuple
is simply a partial function © : {ul, ur, ml, mr,dl,dr} / 27. The letters d, m,u
and [, r used in naming the elements of the domain of ©, the positions, stand for
down, middle, up, and left, right, respectively. We will often depict these partial
tuples graphically as shown in Fig. 2, omitting the undefined entries from the
graphical representation, and assuming that, whenever defined, O(p) = 6, for
p € {ul,ur,ml,mr,dl,dr}. In Fig. 2, we also depict the general form of the
(linear only) 3-tuples used in [16], as well as of the tuples with the upper-right
and down-left entries undefined (for illustration purposes).

The semantics is simple. A structure M = (W, <,~,V) is said to satisfy a
tuple © : {ul,ur,ml,mr,dl,dr} / 27 in which case © is said to be satisfiable,
if there exists a function w : {ul, wr,ml, mr,dl,dr} + W such that the following
conditions hold:

— for every p € {ul,ur,ml, mr,dl, dr},
e w(p) is defined iff O(p) is defined;
o if w(p) is defined then M, w(p) = O,;
— for every h € {l,r},
e if O(dh) and ©(mh) are both defined then w(dh) < w(mh),
o if O(dh) and ©(uh) are both defined then w(dh) < w(uh),
o if ©(mh) and O(uh) are both defined then w(mh) < w(uh);
— for every v € {d, m,u},
e if O(vl) and O(vr) are both defined then w(vl) ~ w(vr).
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Fig. 3. General shape of tableau rules.

We also define the particle CLOSED to be unsatisfiable.

This explains well why we will work, in the general case, with such tuples:
3 vertically related points by 2 horizontally related points are what we need to
be able to express all the mosaic conditions of the previous section (namely, the
most complex one, that is strong diagram completion). Indeed, we can directly
produce tableau rules that correspond to the mosaic conditions, either unary
(aR), or binary (GR) leading to a bifurcation in the tableau, as shown in Fig. 3.

The rules are given in Figures 4, 5, 6, 7 and 8. Dots represent context around
the highlighted entries of the tuples that is meant to be preserved by the rules,
but which can always be erased (neglected) using the deletion rule DelR in Fig. 4.
In fact, the dots in the rule DelR represent the fact that any entry in a partial
tuple can be deleted. Similarly, for instance, the dots in CutR represent the fact
that we can apply a cut in any entry of a partial tuple, while there are rules,
such as VR2(left) in Fig. 5 or =GR in Fig. 7, where the dots specify that only
some of the context is meant to be preserved.

Fig. 4 also presents the basic propositional rules stemming (almost) immedi-
ately® from the definition of point in a mosaic structure, Definition 9, including
in particular the unrestricted cut rule CutR and the closure rule CIsR.

Notice that a common rule for ——-elimination such as

® The immediate counterparts of condition (L.2) in Definition 9 are obviously the rule
AR and a form of A-introduction that could be expressed by a rule such as the one
depicted below.

T,AB
..[AB,AANB]..

However, in the presence of CutR, it is not difficult to see that this rule turns out
to be equivalent to the much more usual rule =AR, that we include.
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B DelR § : B N : B CutR CLOSED ClsR
IA |0 =A
] AR
...[LAANB. A, B|...
L =(ANB). ..
- - -AR
. [Lo(AADB),-4|... ...[L~(AAB),-B|...

Fig. 4. Propositional and simplification rules.

-—R

is not listed, since it is redundant given the (powerful) presence of CutR.

In Figure 5, we have the rules corresponding to the coherence conditions on
mosaics, both for what concerns the vertical and the horizontal components. In
Fig. 6, we find “special” coherence-based rules, namely AtmR rules capturing the
atomic harmony assumption, rules NfstR and NlstR expressing unboundedness
towards the past and towards the future, respectively, and rules Mb™R corre-
sponding to the property of the maximality of branches. Rules corresponding to
the saturation properties are presented in Fig. 7, where we have rules that mimic
the curing of defects of Section 3.2, and in Fig. 8, where the special conditions
on boundedness, discreteness and density of linear flows are captured together
with rules that allow for representing the properties Wdc and Sdc.

We can now define a hierarchy of tableau systems R(C, D) for each of our
logics £(C,D) (but with Udse, Ddsc not in C), by including:

25



T .. [ THA
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VR — VR2(left) ———— VR2(sight)

Fig. 5. General coherence-based rules.

Lpl 4]
) AtmR(left) T AtmR(right)

I p|A,p I'\p|A,p

NfstR - Ntk

Mb~R(left) ' : Mb ™ R(right)

Fig. 6. Special coherence-based rules.
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I,-GA |...
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[T -HAL...
... [AHAA|..
T,—HA |...

-A
A HA AL

-GR2 —-HR2

Fig. 7. General saturation-based rules.

FstR

r=G1...

SdcR

Fig. 8. Special saturation-based rules.
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— the propositional and simplification rules
DelR, CutR, CIsR, AR, -AR,
the linear-time rules®
GR, HR, =GR, -HR, -GR2, -HR2,
the branching rules
VR, VR2(left), VR2(right), =VR;
— rules for particular linear flows
CR, for each condition C considered;
— additional rules for particular target branching classes
e D=(Wdc)
WdcR;
e D=(Wdc+Sdc)
WdcR, SdcR;
o D=(Wdc+Sdc+Mb™)
WdcR, SdcR, Mb~R(left), Mb~R(right).

In the case we assume atomic harmony, the system will also contain the rules
AtmR(left) and AtmR(right).

As usual, in any of these tableau systems, a tableau is a (possibly infinite)
tree built from a given root by application of the tableau rules. A tableau whose
root is a tuple © will be dubbed a tableau for ©. We say that a tableau is closed
if all its branches end with the particle CLOSED. Otherwise, the tableau, as well
as the corresponding branch, are said to be open. Further, a tableau is said to be
erhausted if it is open but no further rules can be applied to its open branches.

In Figure 9, as an example, we show a closed tableau for the negation of the
axiom WdcA.

The following is a straightforward technical result which will be useful later
on.

Lemma 4. If there is a closed tableau for a given tuple ©, then:

(i) there exists a tuple ©° for which the exact same tree is also a closed tableau,
such that ©° is defined at exactly the same positions as © and, at each
defined position p, (92 Cfin Op;

(ii) the exact same tree is also a closed tableau for any tuple OF defined at all
the positions where © is defined and such that, at each defined position p,
0, COF.

Proof. For (i), observe that in each rule of the system the number of “rele-
vant” formulas (i.e., those necessary in order to make the rule applicable) in the
premises is finite. The thesis follows by noticing that the number of rules applied
in a closed tableau is finite. As for (i7), just observe that all the rules applied
in the closed tableau for © can still be applied if we have as a root a tuple OF
such that all its positions extend those of ©. O

9 Collecting just the propositional and simplification rules, plus the linear-time rules,
we get a tableau system that is essentially the same as the one described in [16].
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PAA-YP3A

AR

[PAA—VP3A,PA,—VP34]

-HR

PAA—VPIA,PA,—VP3A
A |

-VR

PA A —VP3A,PA, ~VPIA[-P3A]
A

WdcR

PAA —VP3A, PA, VPIA|-PIA
A

HR

PA A —VP3A,PA, -VPIA]-P34]
A —34 |

VR2(right)
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A,-3A —JA

VR

PAA—VP3A,PA, ~VPIA|-P3A
A,—3A,-A —34

ClsR

CLOSED
29

Fig. 9. A closed tableau for the negation of WdcA.



An R(C,D)-tableau is a tableau built by using only rules in R(C, D). Given
aset I' C F, we say that it is R(C, D)-consistent if there is no closed R(C, D)-
tableau for [I']. The set I' is further said to be mazimally R(C, D)-consistent if
either A € I' or A € I for every A € F. If I' is not R(C, D)-consistent, it will
be called R(C, D)-inconsistent.

Theorem 7. For each class C of linear orders such that Udsc and Ddsc are not
in C and each target branching class D, the tableauz system R(C,D) for the logic
L(C,D) is sound.

In order to show soundness (that is, if a set I' of formulas is inconsistent
then it is not satisfiable by a C-D-structure) it suffices to check, for each tableau
rule, that if its numerator is satisfiable then so must be at least one of the
denominators. Also this proof is routine and we thus omit it.

Theorem 8. For each class C of linear orders such that Udsc and Ddsc are not
in C and each target branching class D, the tableauz system R(C,D) for the logic
L(C,D) is complete.

Proof. For completeness, we must prove that if a set I" of formulas is R(C, D)-
consistent then it is C-D-satisfiable. Taking advantage of mosaics, we will show
that there is a C-D-structure of mosaics for I'. Concretely, we will define a unique
C-D-structure of mosaics that contains points corresponding to all R(C,D)-
consistent sets.

Let S = (Sv, Su) be such that:

— Sy contains precisely
e (A) for each maximally R(C, D)-consistent set A, and
e (2, A) for each pair of maximally R(C, D)-consistent sets {2, A such that

: 4]
there is no closed tableau for .

— Sy contains
e (A) for each maximally R(C, D)-consistent set A, and
o (2, A) for each pair of maximally R(C, D)-consistent sets {2, A such that
there is no closed tableau for [2]A4].

As I' is R(C, D)-consistent it can be extended to a maximally R(C, D)-consistent
set I, e.g., by considering one of the open branches of a CutR exhausted C-D-
tableau for [T']. Hence, I’ is a point of S. Therefore, all we need to show is that
S is indeed a C-D-structure of mosaics.

The proof will be modular with respect to local, vertical, horizontal and com-
positional properties. Namely, one can notice that in what follows each condition
C will be proved to be satisfied by S by using only the rules present in the sys-
tems R(C, D) for those classes C and D such that a C-D-structure of mosaics is
required to satisfy C.

The first part of the proof, concerning local and vertical conditions, follows
from the one in [16]; we will omit most of the details.
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Local conditions. First of all, it is easy to notice that any maximally R(C,D)-
consistent set is a point (on F). Condition L1 follows immediately from
maximal consistency. For condition L2, assume BAC € I" and either B ¢ I’
or C ¢ I'; by using AR, one gets a closing situation, which contradicts the
consistency of I'. The other direction of L2 is proved similarly by using =AR
and ClsR; condition L3 follows from VR and ClsR.

Vertical coherence conditions. As in [16], by using GR, HR and ClsR, we have
that each (£2, A) € Sy is a vertical mosaic.

Horizontal coherence conditions. To prove that (£2, A) € Sy is a horizontal mo-
saic, we must show that {2 and A are state-equivalent (property H1). We
proceed by induction. As a base case, we have that if VA € 2 and VA ¢ A
(or vice-versa, without loss of generality) then -VA € A. But by using
VR2(left/right) we would get to a closing situation on VA, which contradicts
(.Q, A) e Sy.

In case we assume atomic harmony, we have a further base case concerning
atomic propositions. If p € 2 and p ¢ A (or vice-versa, without loss of
generality) then —p € A. But using AtmR2(left/right) we would get to a
closing situation, which again contradicts (2, A) € Sg.

Then we have two step cases, for the boolean connectives A and —. Assume
that A and B are state-formulas. (i) If AAB € 2 and AANB ¢ A (or
vice-versa, without loss of generality) then ~(A A B) € A. Using AR we
conclude that A, B € {2 and by the induction hypothesis also A, B € A. But
using ~AR both branches would get to a closing situation, which contradicts
(£2,A) € Sg. (it) If "A € 2 and -A ¢ A (or vice-versa, without loss of
generality) then A € A. Using the induction hypothesis also A € (2, leading
to a closing situation, which contradicts (2, A) € Sg.

Vertical saturation conditions. Vertical saturation conditions SV1-SV4 can be
proved as in the linear case [16], by using -GR, =HR, =GR2 and —HR2,
respectively, plus cutR to get maximally consistent sets.

Conditions on particular linear flows. In the special cases when C includes the
properties Nlst, Lst, Nfst or Fst, we can prove that the maximally R(C, D)-
consistent sets are FU, FB, PU or PB-points, respectively, by using NlstR,
LstR, NfstR and FstR, respectively. We prove the claim for the property
Nlst. Let I" be a maximally R(C,D)-consistent set, for C containing Nlst,
and assume for the sake of contradiction that it is not an FU-point, i.e., that
-GL ¢ I', which implies GL € I'. By applying the rule NlstR, we get a
position containing both G and —G_L.

As further vertical saturation conditions, let us consider density (SV-Dns).
Let (A,I') € Sy. Then, using DnsR, it is clear that there is also no closed
r
tableau for . Hence we can use cutR to maximize and obtain a maximally
4]
r
consistent set {2 such that [©2]can also not be closed, which guarantees, using

DelR, that (A, ), (2,') € Sy.
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Horizontal saturation conditions. We have to prove that S satisfies SH1. Let A
be maximally consistent and =V—-A € A. Using —=VR and cutR to maximize
we get a maximally R(C, D)-consistent {2 such that A € 2 and (A, 2) € Sy.

SWdc. Let (I A) € Sy and (£2,1") € Sy. We first show that there is no closed

tableau for . If this root could be closed, using Lemma 4 there would

be finite subsets Ay C A and 25 C {2 such that also EB could be closed.
0

But (I, A) € Sy and (£2,I") € Sy which implies that P(A 20),3(A\ Qo) € I
Therefore we could also build a closed tableau for [I'] by just using -HR, =VR
and AR, which contradicts the consistency of I

Hence, there is no closed tableau for . Therefore, we can use WdcR and
then cutR to maximize and obtain a maximally R(C, D)-consistent set &

such that can also not be closed, which guarantees, using DelR, that
(£2,0) € Sy and (A, P) € Sy.

STrn. Let (2,1),(I,A) € Sy. To prove that (2,4) € Sy we just need to
check that there is no closed tableau for . If this root could be closed,
using Lemma 4 there would be finite subsets A9 C A and {2y C {2 such

that also could be closed. But (£2,1"), (I, A) € Sy which implies that
0

P(A £2),F(A\ Ag) € I'. Therefore we could also build a closed tableau for
by just using -HR, =GR, AR and DelR, which contradicts the consistency
of I'.

SCon. Let (A, IN),(£2,I') € Sy with A # 2. To prove that (£2,A) € Sy or
(A, 2) € Sy we just need to check that there cannot be closed tableaux for

both and . If that were the case, using Lemma 4 there would be finite

subsets Ap, Ay € A and 2, 2] C {2 such that also and could be
closed. Notice that A # (2 and let B be some formula SL[IJCh that % € A and
B ¢ 2, ie., "B € (2. Let Ag = Ay U A and 25 = 25 U (2.

Since (A, I'), (£2,I") € Sy, we have that P(BA (A Ao)),P(-BA (A 2)) € I
Therefore we could also build a closed tableau for [I'| by using =HR, AR,
—HR2, DelR, CIsR and CutR on P(=B A (A 2)) and =B A (A ) (see
Figure 10

SSdc. The construction is similar to that for SWdc. Let (I', A), (§,¥) € Sy and
(2,1),(2,12) € Sy. We first show that there is no closed tableau for

4
102 . For the sake of contradiction, let us assume that this root can
7/7]
be closed. Then, by using Lemma 4 there would be finite subsets I, C I,
Iy A0|

Ay C A, &9 C @ and ¥y C ¥ such that also 7] could be closed.
@[]

But (I, A),(®,¥) € Sy and (2,1),(9,2) € Sy imply that F(A IH A
INA Ao), P(ANPoAT A\ W) € 2. Therefore we could also build a closed tableau
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for [2] by just using “HR, =GR, =VR and AR, which contradicts the consis-
tency of 2.
4]

r
Hence, there is no closed tableau for [ . Therefore, we can use SdcR
37|
and then cutR to maximize and obtain a maximally R(C, D)-consistent set
A
{2’ such that 02|¢7| can also not be closed, which guarantees, using DelR,
o\

that (£2,2') € Sg and (¥, ('), ({2', A) € Sy.

SMb~. Let I, A be distinct maximally R(C, D)-consistent sets such that GL € I
(without loss of generality). We must show that (I, A) ¢ Sp. It suffices to
produce a closed tableau for [IJA]. Notice that as I" # A, there exists B such
that B € I' and B ¢ A, i.e., 7B € A. Thus, using Mb™R(left/right) we get

(I

into a closing situation.

Clearly, the unrestricted CutR rule is a problem with respect to implemen-
tations, also preventing us from obtaining tableau-based decision procedures for
the logics. However, in certain cases, namely when we consider the target branch-
ing class D = (), it is possible to use only analytical instances of the cut rule.
Let I" be a finite set of formulas. Given a tableau system R(C, D), we can define
its analytic restriction with respect to I" as the system R (C, D) obtained from
R(C,D) by replacing CutR with a version of the rule that can only introduce a
formula A € A, where A is the smallest (C, D)-closed set of formulas containing
I'. Note that in this analytic restriction, discreteness could be also considered,
e.g., by including in the system the following two rules:

...[AGAA.. .[T=HA]...

T =GA ... . [AHAA..
Acaa.. VbR L Toma).. PR
—A4,GA ~A,HA

[ T,=GA ... ... [AHA A

Theorem 9. Let C be a class of linear orders and I' a finite set of formulas. If
I' is Rp(C, ())-consistent then it is C-()-satisfiable.

Proof. By following the proof of Theorem 8, we can modify the definition of S by
requiring the points of S to be Rp(C, ())-consistent sets maximal in A, where A
is the smallest (C, ())-closed set of formulas containing I". The assert follows from
noticing that in the proof of Theorem 8, for showing only the conditions satisfied
by C-()-structures of mosaics, non-analytic cuts are never used and that all the
relevant rules are such that if all the formulas in the numerator are in A then
the same happens to all the formulas in the denominator. Finally, we notice that
the restricted version of the cut is enough for maximalizing sets, when required
by the proof, with respect to A. O

Theorem 9 gives the completeness of the analytic system with respect to the
logic L(C, ()). Its soundness is a trivial consequence of Theorem 7.
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—HR + applications of AR

r
Ao, B
CutR
r I, P(=B A (\ 2))
Ao, B, P(-B A (A £20)) Ao, B, ~P(=B A (A £2))
—HR + applications of AR CutR
r
F,P(_‘B/\(/\QO)) F,P(‘!B/\(/\Qo))
Ao, B, P(~B A (\ 0
0, I, ((20 ﬁB(A 0)) Ao, B,—~P(—=B A (A £20)), (=B A (A 0)) Ao, B,=P(=B A (A )), =B A (A )
DelR -HR2 + applications of AR AR

I',P(=B A (A 0))
20

Ao, B,P(=B A (A 20)) va(_'B/\(/\“QO))

20, B Ao, B,-P(=B A £2 -BA ), B
B A0, B,-PCB A A D)), B AN )) 0 B2 POE A AL, DB A A D)
(by hypothesis and Lemma 4) DelR ClsR
CLOSED 2 CLOSED
Ao, B,~P(=B A (A £20)), ~(=B A (A )|

(by hypothesis and Lemma 4)

CLOSED

Fig. 10. A tableau for the proof of the property SCon.
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Notice, instead, that, for proving conditions SWdc, STrans, SConn and SSdc
in Theorem 8 (i.e., when we consider target branching classes different from the
basic one), we make essential use of unboundedly complex formulas and that
in proving SConn we even use cuts on such formulas. This prevents us from
obtaining any obvious corresponding analyticity result.

4.3 Decidability via mosaics

Another interesting application of the mosaic technique, which we pursue here,
is in proving the decidability of a given logic and in obtaining an asymptotic
upper-bound on its decision problem. We will show how mosaics can be used in
order to prove decidability of the logics considered in the paper in the particular
case of basic structures. The proof follows the idea of the decidability proofs in
[16] and [21].

Theorem 10. The problem of checking satisfiability of formulas in the logic of
C-()-frames, for C a class of linear orders, is decidable.

Proof. Let A be a satisfiable formula. By following the same construction as in
the proof of right-to-left direction of Theorem 2 (just consider the finite set I’
as cousisting only of A), we can define a structure of mosaics for A on a finite
labeling set A.

Since A is finite, the number of possible mosaics, and thus of structures
of mosaics, on it is also finite. Given that checking coherence and saturation
conditions is decidable, we can take each pair of sets of mosaics in turn and
check whether it is a C-()-structure of mosaics for A. O

We can obtain an asymptotic upper bound by observing that the cardinality
of the set A, as defined in the proof of Theorem 10, is O(n), where n is the
complexity of A. It follows that the number of possible mosaics on that set
is O(2") and the number of structures of mosaics is O(22"). Coherence and
saturation conditions can be checked in polynomial time.

It is easy to see that the argument in the proof of Theorem 10 does not
extend to the logics L(C, D) for D # (). Namely, when there is some interaction
between the vertical and the horizontal components, the simple translation of
a model into sets of mosaics described in the proof above produces a structure
that does not necessarily satisfy all the saturation conditions required. This is
of course also related to the results of Section 4.2, where an analytic version
of the tableau system has been proven to be sound and complete only in the
case of the target branching class being the basic one. The possibility of cutting
with respect to the full language F is necessary there in order to get tableaux
completeness for logics £(C, D) where D # (); analogously, considering mosaics
defined on A = F would allow the construction of the proof of Theorem 10 to
provide a structure of mosaics satisfying all the saturation conditions (but then
the result of decidability would not follow since the number of possible mosaics
on F is infinite).
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In order to get a proof of decidability based on mosaics also for the other
classes of logics'?, it might be useful to consider a more complex, and branching-
oriented, notion of mosaic (more on this in Section 5).

The proof of decidability given here seems extremely appealing because of
its simplicity. We observe that it should also be possible to define a decision
procedure for the C-()-logics based on the tableau system of Section 4.2, by
exploiting analyticity of the cut rule in that case and properly avoiding the
repeated curing of the same defect.

5 Conclusions

We have proposed an extension of the mosaic method from a class of linear tempo-
ral logics to a two-dimensional logic obtained by adding an “orthogonal” S5-like
component, and we have treated several applications of the method. Namely we
have shown how the mosaic techniques can be used to prove completeness for
the corresponding Hilbert-style axiomatization, to define a sound and complete
tableau system and to obtain a decision procedure for the logic considered as
well as to establish an asymptotic upper-bound on its complexity.

In [16] the mosaic method has been proposed for the general linear-time
logics together with some variants capturing particular (i.e., dense, discrete,
bounded/unbounded) linear flows of time. The approach presented here can
be seen as a conservative extension of that method, in the sense that our presen-
tation is modularized with respect to a vertical (linear-time) and a horizontal
(55-like) component, in such a way that the first one consists of definitions and
proofs just imported from [16].

We have also considered the possibility of having interactions between the
two components, in order to treat logics that capture the idea of branching-
time. To that aim, our treatment has been parameterized along both the two
components: with respect to the class of linear orders considered, ranging from
the general to more specific ones (i.e., dense, discrete, etc.), and with respect
to the class of branching structures, according to a hierarchy leading from the
basic ones, where the two orthogonal components are independent, to “more
branching” ones, like the Ockhamist structures of, e.g., [31].

Namely, by letting C range over classes of linear orders and D over sets of
branching properties, we have considered a broad class of Ockhamist branching-
time logics £(C,D) and defined for them, by means of a fully modular presen-
tation, an extension of the mosaic method. Indeed, this two-dimensional view
allows for dealing, in a clear way, with the logics defined over Ockhamist struc-
tures where all the vertical components are in the same class of linear orders,
or, which is equivalent, to the class of bundled trees such that all the paths are
in the same class of linear orders. However while, as long as the vertical and

19 We recall that decidability of the logic £((), (Wdc + Sdec + Mb™)) is proved in [1],
using Rabin’s Theorem [20], which states the decidability of the monadic second
order theory of infinite binary trees. In [7], such a proof is adapted to the case with
atomic harmony.
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the horizontal component behave independently, all the results in [16] (proof of
Hilbert-style completeness, definition of a complete tableau system and proof of
decidability) can be proved to propagate, in the case when interactions between
the two components are considered we have some restrictions: a tableau system
can only be defined by allowing a non-analytic version of the cut rule and thus
the proof of decidability does not apply.

We believe that our approach, presented here with a focus on temporal logics,
can be seen as more generally suitable for dealing with many-dimensional modal
logics without interactions between the dimensions [9]. In such a context, mosaics
can be seen as an alternative to other techniques typically used in order to get
(the transfer of) decidability or completeness results, such as fibring [8].

Further work is required in order to capture properly, i.e., in a way that allows
for proving decidability, also logics where interactions are considered, such as the
branching-time logics seen in this paper or several logics of knowledge and time
[5,13] which present similar interaction frame properties. Our future research
will consider the possibility of having a more complex notion of mosaic, in some
way taking into account, already in the definition of the basic components of our
structures, the possible interactions between the dimensions (i.e., in the case of
temporal logics, their branching nature). As an example, we recall the treatment
in [21], where the decidability of a logic defined over rectangular frames consisting
of the cross product of a (vertical) linear order and a (horizontal) set of worlds, is
proved by using mosaics that are pairs of horizontal segments of points. We are
aware that, as a trade-off, an approach of this kind would probably compromise
(at least part of) the desirable modularity properties, with respect to the linear
treatment of [16], that the presentation proposed here enjoys.
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