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Abstract In this paper we discuss the use and potential advantages and disadvan-
tages of machine learning driven models in rental guides. Rental guides are a formal
legal instrument in Germany for surveying rents of flats in cities and municipalities,
which are today based on regression models or simple contingency tables. We dis-
cuss if and how modern and timely methods of machine learning outperform existing
and established routines. We make use of data from the Munich rental guide and
mainly focus on the predictive power of these models. We discuss the “black-box”
character making some of these models difficult to interpret and hence challenging
for applications in the rental guide context. Still, it is of interest to see how “black-
box” models perform with respect to prediction error. Moreover, we study adversar-
ial effects, i.e. we investigate robustness in the sense how corrupted data influence
the performance of the prediction models. With the data at hand we show that mod-
els with promising predictive performance suffer from being more vulnerable to
corruptions than classic linear models including Ridge or Lasso regularization.
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1 Introduction

Rental guides for flats are an official instrument in the German rental market, see
e.g. Kauvermann and Windmann (2016). Based on regular surveys, city councils
issue the average rent for flats given the flat’s facilities, like floor space, year of
construction and facilities such as well equipped kitchen or high standard bathroom.
Given available survey data one is interested in constructing a prediction model
for the rent per squared meter, given the input variables, which we call features
subsequently. Denoting the features as x and the rent per squared meter as y we are
interested in finding a good prediction model

y=/f(x)+e (D

where ¢ is considered as noise, mirroring market price variation. We denote y
subsequently also as response variable.

Before discussing the statistical approaches to tackle function f(x) in (1) we
want to add some more explanation about rental guides in Germany. These are used
as an instrument to infringe on a landlord’s constitutional rights to his property
(Art. 14 German Constitution). Therefore, a judge, in order to deny a landlord
a rent increase, will need a solid base for his judgment. Rental guides aim to fulfill
this purpose. This, in turn, seem to exclude “black box models” from the set of
instruments that one should use. Moreover, there is a significant amount of vested
interest involved in the process of rental guide creation which of course increases
the likeliness of data corruption to occur. Hence, careful and detailed guidelines for
rental guides are inevitable. With this being said, we can now approach rental guides
formally as a prediction model. We also refer to Kauermann and Windmann (2016)
and Fitzenberger and Fuchs (2017) for more details.

In times of increased usage of machine learning methods we can consider Eq. (1)
as a supervised learning setting. Hence, we may take advantage of the toolbox
of available machine learning algorithms to train or estimate a suitable prediction
model f. A classical model and in fact the commonly used model in practice
(so far) is to build the prediction model f via regression techniques. One approach,
developed by Aigner et al. (1993), is to fit a multiplicative-additive regression model
in two stages. The more common strategy is to use an additive regression model,
as discussed for instance in Fahrmeir et al. (2022). Regression models are one of
the legally permitted models for rental guides, besides very simple models based on
(contingency) tables, which we do not consider here in this article. Instead, we go
beyond the legally permitted models and want to explore more advanced tools of
machine learning as introduced, e.g. by James et al. (2017) and Hastie et al. (2017).

Regression models allow for interpretation due to their open box character. In
contrast, more complex machine learning makes direct interpretations often diffi-
cult. This leads to extended flexibility but ends up with a “black-box” character.
Still, one can achieve higher prediction accuracy. The recent developments in ma-
chine learning suggest to investigate their potential usage for rental guides. This is
the scope of this paper. We use classical regression models including penalized re-
gression and contrast these to regression trees (Breiman 1984) and ensemble models

@ Springer



Can machine learning algorithms deliver superior models for rental guides? 307

like averaging and boosting (Freund and Schapire 1999; Breiman 2001; Friedman
2001; Chen and Guestrin 2016) but also neural networks (Goodfellow et al. 2016).
A comparison is given in terms of model performance and predictive power.

Besides interpretability, the question of robustness of these models gets in the
foreground. We thereby focus on adversarial effects, see e.g. Biggio et al. (2013);
Szegedy et al. (2014); Biggio and Roli (2018); Madry et al. (2018) or Tsipras
et al. (2019). Adversarial effects are changes of the input variables to a machine
learning model that cause the model to make wrong predictions. We use the concept
of adversarial risk proposed in Javanmard et al. (2020); Mehrabi et al. (2021) to
quantify the robustness of machine learning based rental guides and compare these
to adversarial effects in regression models.

The paper is organized as follows: Sect. 2 shortly describes the data at hand.
In Sect. 3 we introduce all prediction models, emphasize some differences and
explain their essential hyper-parameters. Sect. 4 introduces the notion of standard
and adversarial risk which is then applied it to the rental data. The results of our
data analysis are given in Sect. 5 and a conclusion follows in Sect. 6.

2 Data and Software

As database we make use of the Munich rental guide data from 2019 containing n =
3024 sampled apartments for which we include p = 19 selected features Windmann
and Kauermann (2019, Table 2.7). The features and their respective description are
listed in Table 1. The features are apparently not independent and their Pearson
correlation coefficients are visualized in Fig. 1.

For developing and coding we use Python 3, see Van Rossum and Drake (2009).
As IDE (Integrated Development Environment) we use Spyder 4.5.0, see Raybaut
(2009). For building statistical models we use Statsmodel (Seabold and Perktold
2010) and Scikit (Pedregosa et al. 2011) API’s (Application Interface) with its latest
versions.

3 Prediction Models
In this section we shorty describe the different types of prediction models used in
this paper. A short summary including the models’ standard performance hyper-

parameters are provided in Table 3.

3.1 Regression Model

Given features X = (x1,...,Xp), we predict the rent per square meter via the model
A ~ ~ ~ ~ p ~
FB) = Bo+Praxi+...+ Bpxp = o+ D x;h. @
i=1
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where BO denotes the intercept and ,30, ey ,é p are estimated by least squares
method, i.e. by minimizing the residual sum of squares (RSS)

n

RSS(B) =) (y(i) _ X(i)ﬂ)

i=1

2

3)

where x® = (1, x?), cees xg)) and B = (Bo, - .., Bp), with superscript (i) referring
to the observed data and i = 1,...,n. We also write f(x) := f(x;B) and §y := xf8
as shorthand. In the application, the model is extended by including non-linearities
for the metrical covariates. To be explicit, we replace the linear fit by a spline-based
fit using tools extensively described in Wood (2017).

Given our response variable y, our inputs x and our prediction model f(x), the

loss function for measuring errors between y and f (x) is denoted by £(y, f (x)).
We use the quadratic loss
2

(. f&) = (v- f ) )

for the applications in this paper.
3.2 Regression Trees

Basically all tree-based methods arise from partitioning the feature space into a set
of hyperrectangles, and then fit a simple model in each of the hyperrectangles
which are summed up as an ensemble of subtrees to give a final prediction model.
Amongst several types of algorithms, here we focus on the most common CART-
algorithm (Classification and Regression Trees). To be specific, regression trees,
following Breiman (1984) and Hastie et al. (2017), are built by dividing the fea-
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ture space R? into K distinct and non-overlapping hyperrectangles R;, ... Rk that
minimize the RSS given by

2

f > (v = r) ®)

k=11eRy

where yg, is the mean response for the observations within the kth hyperrectangle,
i YRy = 2 rer X y® /| Ry |. For computational runtime reasons one takes a top-
down, greedy approach that is known as recursive binary splitting, see Breiman
(1984). In order to perform recursive binary splitting, the algorithm needs a starting
point. Therefore, we first need to find a feature x; and a cutpoint s such that splitting
the feature space into the regions {x | x; < s} and {x | xx > s} leads to the greatest
possible reduction in RSS. We consider all features x1, . .. x, and all possible values
of the cutpoint s for each of the features, and then choose the feature and cutpoint
such that the resulting tree has the lowest RSS. Once found, this feature is called the
root of the tree. More precisely, for any p and s, we define the pair of half-planes

Ri(p.s):={x|xp <s}and Ry(p.s) :={x | x5 > s}, (6)

and we seek the value of p and s that minimize the equation

3 (y(i)—ﬁR1)2+ 3 (y‘i)—ﬁRz)z, )

i|xDeR(D.5) i| xDeR(p,5)

where yr,, Vr, are the mean response for the observations in Ry (p, s) and R»(p, s),
respectively. The splitting procedure is now continued on each half-plane and the
splitting process is continued until a stopping criterion is reached. For instance, we
may continue until no region contains more than five observations. This procedure
comes often with a very complex resulting tree, which is likely to overfit. Therefore,
a procedure called cost-complexity tree pruning, suggested by Breiman (1984), is
obtained by removing a sequence of subtrees. This procedure is applied after fully
growing the tree and is described as follows: A large tree Ty is grown and the
splitting process only is stopped when some minimum node size (say 5) is reached.
Then, this tree is “pruned” by finding a subtree T & Tj. Let |T'| denote the number
of terminal nodes in tree 7 and let RSS(T) be the residual sum of squares given in
Eq. (3) for tree T. We define the criterion

Co(T) = RSS(T) + a |T|.

For given o we aim to find the subtree 7, C T, which minimizes Cy(7). The
tuning parameter o > 0 governs the tradeoff between the tree size and its goodness
of fit to the data. Large values of « result in smaller tress 7, and conversely for
smaller values of «. As the notation suggests, with « = 0 the solution is the full
tree Ty. For each o one can show that there is a unique smallest subtree 7, that
minimizes Cy (7). To find 7T, we use weakest link pruning, that is we successively
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collapse the internal node that produces the smallest per-node increase in RSS, and
continue until we produce the single-node (root) tree. This gives a (finite) sequence
of subtrees, and one can show this sequence must contain 7y, see Breiman (1984);
Hastie et al. (2017). Estimation of « is achieved using cross-validation. The final
prediction model is then contained in the final tree Ty.

3.3 Random Forests

If we consider a regression tree as our statistical model, bagging regression trees,
as proposed by Breiman (1996), is an aggregation of B bootstrap samples

(X*l,y*l) , (X*Zy*Z) e, (X B’y*B) ,

sampled randomly from the original training data with replacement, having all the
same size. Then for each bootstrap sample x*?, a corresponding bootstrap replication
regression tree T* is grown, for all b = 1,..., B. Together all B _regression
trees 7*!, T*2, ... T*B are summed up to fit a final prediction model Jag(x). This
model is given by the arithmetic mean of the predictions obtained from the B trees
T, 7*2, .. T*B ie.

B

~ 1

fow® =5 > T ®)
b=1

Random forests, see e.g. Breiman (2001) and James et al. (2017), are basically an

extension of bagging. It fits regression trees 7*b as base regressors on each of all the
b =1,..., B bootstraps. However, when splitting each node during the construction
of a tree (as described in Sect. 3.2), the best split is found from a random subset
of the features (see hyper-parameter max_features in Table 3). Hence, instead of
considering all p features x1,..., X, a split is considered from a random sample of
m < p features chosen as split candidates. The final prediction model is then given
by

B

~ 1 ~
S =53 T, ©
b=1
forb=1,...,B.

With these two variations of randomness, we decrease the prediction error of
random forest prediction models and increase prediction performance. This will
also be visible on our experiments later in the paper.

3.4 Boosting
A weak learner is defined to be a regression model that is only slightly correlated

with the true prediction. Boosting, originally proposed by Schapire (1990) for clas-
sification tasks, answers the question, if a set of weak learners can be put together
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312 O. Trinkaus, G. Kauermann

to form a strong learner. As in the above supervised learning problems, the goal is
to find a function f that best predicts the output variable y from the input variables
X1,...,Xxp. Let £(y, f(x)) be the {,-loss. Then, we want to minimize this loss
formally by

~

J = argmin gy Ey ([E(y, f(x))]. (10)

The idea of boosting is to predict the response y by fitting an additive model

M
F® =" ymtm(x) (1)
m=1

for M € N, y,, € R as weight and 1,,(x) € T, where T denotes the class of base
or weak learners, e.g. the class of regression trees. This is optimized in a forward
stage-wise manner, meaning at each stage, one fixes the errors of its predecessor.

3.4.1 Steepest Descent

Unfortunately, choosing the best function ¢ at each step for an arbitrary loss func-
tion £ is a computational infeasible optimization problem in general. Therefore, we
restrict our approach to a simplified version of the problem. There are basically two
methods: The very first algorithm is called Adaboost using a specific exponential
loss function and small stumps which are usually smaller than the trees build with
gradient tree boosting (gradie), as explained in the next section, see also Freund and
Schapire (1996). In this paper we use a more flexible way of updating the model to
its predecessors called gradient descent. It is a first-order iterative optimization algo-
rithm for finding a local minimum of a differentiable convex loss function going in
the opposite direction of the gradient at a point. This is the direction of the steepest
descent (Cauchy 1847), which is given by the negative gradient —g( /') of a function
f. The gradient g( /) of a real-valued, p-dimensional function f is defined as

af
8x1
d d
g(f)iza—f€1+"'+a—f€p= s (12)
X1 xp i
axp
where the ey, ..., e, denoting the unit vectors.

3.4.2 Gradient Tree Boosting

Gradient Tree Boosting (Breiman 1997; Friedman 2001) uses regression tress of
fixed size as base learners. It specializes the approach above to the case where the
base learner f,,(x) is a Jy,-terminal leaf regression tree. More precisely, let F be
the set of regression trees. Each tree comes with a respective partition of the feature
space Rj, j =1,2,...,J induced by the terminal node of the tree. In this case, at
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the mth step one fits a regression tree f,(x) to the previous pseudo-residuals using
steepest descent by

PO o _g® D, f(xD))
I [W ’ (3

where f;,—; represents the combined prediction from the ensemble of trees up to the
(m — 1)th iteration in the gradient boosting process. These pseudo-residuals forming
a new data set {(x®, r('))}l_1 which 1, gets fed with. Now, the output #,,(x) for
input x can be written as the sum:

:|f(x(i))=fm—1(x(i))

Jm
Fn®) = bjmlg;, ). (14)
Jj=1
where b, = J;m, the mean of the y(') predicted in region R, and 1g;, (x)
denotes the indicator function. We optlmlze this expression and replace the b;,,’s
by calculating the one-dimensional y;,,’s in each of the trees regions R ;. Hence
we write

Im
Jn®) = fu1(®) + Y Vimlr;,, (%),
. (15)
yim =argmin, 3 3 (50 = (furr 6D + 7))

x(i)Eij

To control overfitting we take a sensible amount of trees (parameter: n_estimators)
and a further shrinkage by v, the learning rate (parameter: learning_rate), which
can be plugged into the update rule (15) as follows:

JIm
Sn®) = fn1 )+ - Yjmlg,, ®), 0<v <1 (16)
j=1

3.4.3 Stochastic Gradient and Extreme Boosting

Another way to apply gradient boosting is to fit the trees only on subsamples. This is
called Stochastic Gradient Boosting (Friedman 2001). The size of each tree can be
controlled either by setting the tree depth via max_depth or by setting the number
of leaf nodes via max_leaf_nodes, see Table 3.

In this paper we use an implementation of a gradient tree boosting algorithm
(gradie ) as described in (Pedregosa et al. 2011). We further use extreme-boost-
ing(xgbreg) (Chen and Guestrin 2016) which uses a second order Taylor approx-
imation in the loss function to weight the leafs inside of a tree, see Eq. (31) in
Appendix. The idea was proposed by Friedman et al. (2000). For parameter details
see Table 3.

@ Springer
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3.5 Nearest Neighbours

The principle behind the k-Nearest-Neighbour method (KNN) used for regression,
see Altman (1992), is to find k observations that are closest in distance to the new
point x(©, denoted by N'@. Then f(x(?) is estimated using the average of all the
training responses in A'®, namely

2 mee (o)y(i)
f&x?) = W (17)

The number of samples can be a user-defined constant (K-nearest neighbour learn-
ing), or vary based on the local density of points (radius-based neighbour learning).
The distance can, in general, be any metric measure: standard Euclidean distance
is the most common choice. Sometimes it make sense to assign more weight to
the nearer neighbours. A common technique to achieve this is to define weights
by the inverse of the distance between x(®) and a neighbour x*), doing so for all
x®) e N see also Cunningham and Delany (2020).

Following Pedregosa et al. (2011), the problem of finding the right nearest neigh-
bour algorithm relies on the size of the sample data and the feature space. For small
data sets in both directions, the sample size and the features space, respectively,
one usually uses the brute-force algorithm. It computes the distance of all pairs of
points in the data set. In our experiment we use this method, since the data-set is
relatively small. For details on the hyperparameters see Table 3. As the number of
data grows, calculating all these distances is computational infeasible. Therefore
a method called K-D-tree can be applied, see Mehlhorn (1988); Pedregosa et al.
(2011); Bentley (1975) for details.

3.6 Neural Networks

In this paper we focus on multilayer perceptrons (mlpreg) (Goodfellow et al. 2016)
as a neural network regression model. Since the data flow only in forward direction,
it is also known as feed-forward neural network. This network defines a mapping
vy = f(x; [i) with j as predictor for given input variables x, where the values of the
parameter B are learned (estimated) from the data. Typically, one aims to minimize
the squared prediction error E((§ — y)?). Such a network usually is represented
by a composition of many different functions. For example we might have three
functions fM, £ and £B connected to form f(x) = fPBI(fRI(f(x))). The
function £ is called first layer, f[?! is called the second layer and so on. The
overall length of the chain gives the depth of the model. The final layer is called
the output layer and the layers before the final layer are so-called hidden layers.
The hidden layer functions themselves are multivariate but simple in their structure.
They incorporate a weighted sum of the input combined with an activation function.
One can rewrite the j-th component of the functions as f /.[k] (xe=1; wy jrbr,j) =

¢(x[k_1]TWk,~ + by, j), where x*~11'is the (multivariate) output of the previous
layer with x[% = x. The weights wy ; and the intercept by ;(the so-called bias) for
k =1,2,... are the parameters, which need to be determined data driven. The set
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of all parameters defines 8 and leads to the trained model f(x; ﬁ ). The function
¢(.) is called the activation function, which is known. With this setup we can now
find optimal weights such the prediction error gets minimized. To do so one can use
cross-validation so that the model is trained on one part of the data and tested on
the other part. We do not want to get in more technical details here, since the field
of neural networks became so massive with numerous introductory literature. We
refer to Goodfellow et al. (2016) or Hastie et al. (2017) for more details, or to Borth
et al. (2023).

4 Performance Measures

After having introduced the different models which will be used for constructing
rental guides, we need to define the performance measures applied subsequently.
We will thereby look not only on the prediction error but also on the robustness,
utilizing the concept of standard and adversarial risk introduced in Javanmard et al.
(2020); Mehrabi et al. (2021), just in case of the £,-Loss.

4.1 Standard Risk

We define the standard risk

SR(f) == /By [ — f(x))?] (18)

to be the prediction loss of an estimator f on an (uncorrupted) test data point x and
where (X, y) ~ P is drawn from some common law P. An empirical estimate for
SR is given by

n

SR(/f) = % > (v - £ (x(”))z, (19)
i=1

where f_i is the prediction model fitted on data omitting the ith observation.
4.2 Adversarial Risk

An adversarial attacked model fg is a prediction model f just with a corruption of
the data coming from predefined perturbation sets S := {§ € R? : ||§]|¢, < €} C R?.
The adversary has the power of € perturbing each data point x® by adding an
element of S. The main idea of assessing the adversarial risk is to measure the
robustness of the model. We quantify how much does the prediction change if
a single or multiple input variables are false, i.e. perturbed from its original value.
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316 O. Trinkaus, G. Kauermann

We define the adversarial risk as

AR(/,S) = \/ By [gleag(y — fc+ 8))2} (20)

which is the expected prediction loss of a predictor f on an adversarially corrupted
data point according to some attack or mistake model. Stated differently, the adver-
sarial risk measures how adverse the predictor f can perform in prediction when it
is fed with adversarially corrupted data.

To motivate the adversarial attack in more detail, we first have to consider our two
types of features, namely metrically scaled and binary (categorical) variables. For
noising a metric feature x;, say, a value § € R is added to x; in such a way, that the
sum (x; + §) is still is inside the range of values of x ;. This means the sum ranges
between the minimum and the maximum realization of x ;. For binary features x;
this goes analogously, except that all possible values are 0 or 1. Hence, in binary
case, the perturbation is achieved by x; 4+ (—1)*/. This defines the perturbation set
S. We additionally restrict the number of perturbated variables and define the sets
Sk C S such that each element of Sy has exactly k elements which are unequal to
zero. In other words, in S we perturb exactly k features and leave the remaining
features unchanged. This leads to the adversarial risk

AR(fK) = \/Ey,x [ggz(y e+ 8))2] 1)

Apparently, AR(f, S) = maxg—1,., AR(f k).
We estimate (21) through

n

AR(f.k) := |max (l Z (y(i) — (@ 4 8)2) (22)

=1

where f_i is the prediction model fitted on data excluding the i-th observation.

5 Results

In this section we compare the performance of the models introduced above with
respect to the standard and adversarial risk, respectively. We abbreviate the different
models as follows: linear regression model (linear), decision tree (decisi), bag-
ging tree (baggin), random forest (random), gradient boosting (gradie), extreme-
boosting tree (xgbreQ), k-neighbours (kneigh), multi-layer perceptron (mlpreg).

5.1 Standard Risk

The standard risk for the different models is shown in Fig. 2, see also Table 2.
For the standard risk we have in descending direction decisi (2.70), baggin (2.61),
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Fig. 2 Standard risk (y-axis) of -
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Table 2 SR, AR and p Model SR AR P
linear 2.44 3.22 1.32
decisi 2.70 3.62 1.34
baggin 2.61 4.17 1.59
random 2.50 3.10 1.23
gradie 2.42 3.26 1.35
xgbreg 2.40 3.63 1.51
kneigh 2.56 3.24 1.27
mlpreg 2.45 3.16 1.29

kneigh (2.56), random (2.50), mlpreg (2.45), linear (2.44), gradie (2.42), xgbreg
(2.40). Hence, the best results are obtained by the boosting approaches xgbreg and
gradie followed by the classical linear and neural network mlpreg. Then we have
kneigh and random with almost equal results. At the end we have baggin and
decisi. Both of the last two regression models are also almost equal since baggin
is fitted using decisi as base regressors. It is reassuring to see that the “open box”
regression models performs quite well.

5.2 Adversarial Risk
5.2.1 Model Robustness (global Robustness)

We describe the results for § € S with k = 1. In other words, a single input variable
is perturbed. The highest adversarial risk is obtained by baggin (4,17), followed by
xgbreg (3,63). This is followed by decisi (3,62), gradie (3,26), kneigh (3,24),
linear (3,22). The lowest adversarial risks are given by mlpreg (3,16) and random
(3,10), see Fig. 3. Interestingly enough, linear regression is performing well, while
some models with small standard risk suffer from larger adversarial risk.

To get a sense of the robustness of the algorithms against adversarial attacks,
we also calculate the robustness measure p := AR/SR € R, the ratio between the
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adversarial risk and the standard risk. Usually we expect the adversarial risk to be
higher than the standard risk for corrupted data. This means that we expect p to be
always greater or a least equal 1.

For p in descending direction we have baggin (1.59), xgbreg (1.51), gradie
(1.35), decisi (1.34), linear (1.32). The models mipreg (1.29), kneigh (1.27)
showed equal robustness. Finally random (1.23) performend the best in terms
of robustness, see Fig. 4 and Table 2.

5.2.2 Feature Robustness (local Robustness)

We can take a look at the adversarial risk and see how perturbing the different
features contribute to the adversarial risk. That is we look at the quantities

AR(f.8) = \[Eyo [y — f(x+8)] (23)

for all § € Sg. This helps to specify which feature causes unrobustness of the
prediction. We do this for every feature and every learning model. This approach
can also serve as a robust feature importance measure. Not surprisingly at all, we
see that the different features have different effects on the models’ adversarial risk,
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Fig. 5 Adversarial risk of all 4.25
models for § € S
4.00 A
3.75 1 linear (3.22)
X decisi (3.62)
= 3.50 1 baggin (4.17)
= random (3.1)
3 3-251 [} gradie (3.26)
g xgbreg (3.63)
3 3.00 kneigh (3.24)
2754 mlpreg (3.16)
2.50 4
— T
7 8 91011121314151617
features
Fig. 6 Robustness of all models 1.6
for§ € S1
1.5
° —8— linear (1.32)
<€ 1.4 decisi (1.34)
.(% —A— baggin (1.59)
; 1.3 —<4 random (1.23)
o —»— gradie (1.35)
é 1.2 4 —#- xgbreg (1.51)
§ kneigh (1.27)
T 114 mipreg (1.29)
1.0 4

— T T T T T
01234567 8 91011121314151617
features

see Fig. 5. Also we can observe that even if one model performs better in terms of
a lower adversarial risk, it may have a higher unrobustness measure p, compare, for
example, kneigh and mlpreg in Figs. 5, 6 and Table 2.

Our experiment also shows that in total, there is no model which outperforms all
the other models in terms of standard and adversarial risk.

6 Conclusions

This paper studies the use and performance of machine learning regression models
when used for rental guides. We also study the models’ behaviour under adversarial
data corruption using data from the Munich rental guide. In Sect. 5 we compared
different machine learning regression models which seem to suite most for the case
of explaining rental prices for flats in German Rental Guides. Even if boosting
algorithms showed their equal prediction performance compared to the classic pre-
diction models like linear regression, the black-box character still remains: Rental
Guides need a differentiated and reliable (robust) information about which criteria
are influencing the net rental price in both, the positive and negative direction.

In Sects. 5.1 and 5.2 we showed the standard and adversarial performance of
the given models. In Sects. 4.2 and 5.2.1 we addressed adversarial regression by
building prediction models on top of corrupted data. We also compared the (local)
standard and adversarial risk of features which are highly influential of a model’s
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performance (see Fig. 5). This means that a model f may have a lower adversarial

risk than another model f "in terms of its predictive power. But, we found that
f ’ may possibly be more robust than f by looking at the robustness measure
p = AR/SR, see for example, kneigh and mlpreg in Figs. 5 and 6 and Table 2.
Local examples, meaning a feature-wise comparison can be found in Table 4. For
example within the feature “specialEquipment” baggin shows a higher adversarial
risk but lower robustness than xgbreg.

Concretely, in terms of both, the risk measures SR and AR on the one hand, and
the robustness measure p on the other hand, random, mlpreg, linear, and gradie
showed good predictive power with low adversarial risk and high robustness against
adversarial attacks, see Fig. 5. The model kneigh showed an overall moderate
performance and xgbreg showed a high adversarial risk.

Both models, decisi and baggin showed a higher standard and adversarial
risk than their competitors, but decisi has a similar robustness measure compared
to xgbreg. The worst performance is obtained by baggin with second highest
standard risk and highest adversarial risk resulting in the highest robustness measure.
Additionally, it should be mentioned that several features being highly vulnerable
when considered within the models baggin and decisi, see Table 2.

As a résumé, we see the resulting volatility of the models applied to (slightly)
corrupted data as explained in Sect. 5.2.2. This contradicts both demands for pre-
diction models being explained well on the one hand, and robust on the other hand.
It is therefore recommended to search for a model minimizing the trade-off between
predictive performance and adversarial risk. This helps to reduce the danger of gen-
erating machine learning regression models with misleading explanation. Therefore,
we conclude that the best way to overcome this issue, is to use classic regression
models. classic regression models may be supported by machine-learning tools to
make them more effective. But, machine learning models should not be used as
a replacement for classic regression models in the rental guide context.

7 Appendix

7.1 Tables
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Table 4 Standard and adversarial risk of all features for § € S7.

Model Feature SR AR 0

linear buildingType19 2,443 2,416 0,989
decisi buildingType19 2,702 2,783 1,030
baggin buildingTypel9 2,608 2,549 0,977
random buildingTypel9 2,513 2,503 0,996
gradie buildingTypel9 2,421 2,381 0,984
xgbreg buildingTypel9 2,405 2,394 0,996
kneigh buildingType19 2,562 2,482 0,969
mlpreg buildingTypel9 2,452 2,445 0,997
linear floorType 2,443 2,515 1,030
decisi floorType 2,702 2,796 1,035
baggin floorType 2,585 2,816 1,089
random floorType 2,503 2,778 1,110
gradie floorType 2,421 2,497 1,031
xgbreg floorType 2,405 2,627 1,093
kneigh floorType 2,562 2,820 1,101
mlpreg floorType 2,452 2,434 0,993
linear houseTypel9 2,443 2,465 1,009
decisi houseTypel9 2,702 2,848 1,054
baggin houseTypel9 2,568 2,750 1,071
random houseTypel9 2,487 2,552 1,026
gradie houseTypel9 2,421 2,419 0,999
xgbreg houseTypel9 2,405 2,512 1,045
kneigh houseTypel9 2,562 2,512 0,980
mlpreg houseTypel9 2,452 2,497 1,018
linear incompleteHeatingSupply 2,443 3,072 1,257
decisi incompleteHeatingSupply 2,702 2,804 1,038
baggin incompleteHeatingSupply 2,660 2,979 1,120
random incompleteHeatingSupply 2,505 2,505 1,000
gradie incompleteHeatingSupply 2,421 2,668 1,102
xgbreg incompleteHeatingSupply 2,405 2,689 1,118
kneigh incompleteHeatingSupply 2,562 2,518 0,983
mlpreg incompleteHeatingSupply 2,452 2,902 1,184
linear IsBySmooth 2,443 3,216 1,316
decisi IsBySmooth 2,702 3,623 1,341
baggin IsBySmooth 2,624 4,171 1,589
random IsBySmooth 2,519 3,098 1,230
gradie IsBySmooth 2,421 3,258 1,346
xgbreg IsBySmooth 2,405 3,626 1,508
kneigh IsBySmooth 2,562 3,244 1,266
mlpreg IsBySmooth 2,452 3,164 1,291
linear macroArea 2,443 2,561 1,048
decisi macroArea 2,702 2,711 1,003
baggin macroArea 2,612 2,859 1,095
random macroArea 2,512 2,623 1,044
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Table 4 (Continued)

Model Feature SR AR 0

gradie macroArea 2,421 2,591 1,070
xgbreg macroArea 2,405 2,550 1,060
kneigh macroArea 2,562 2,624 1,024
mlpreg macroArea 2,452 2,628 1,072
linear modernizedFloor 2,443 2,865 1,173
decisi modernizedFloor 2,702 3,031 1,122
baggin modernizedFloor 2,613 2,940 1,125
random modernizedFloor 2,512 2,527 1,006
gradie modernizedFloor 2,421 2,671 1,103
xgbreg modernizedFloor 2,405 2,709 1,126
kneigh modernizedFloor 2,562 2,576 1,005
mlpreg modernizedFloor 2,452 2,830 1,154
linear noTerraceBalcony 2,443 2,444 1,000
decisi noTerraceBalcony 2,702 2,677 0,991
baggin noTerraceBalcony 2,610 2,501 0,958
random noTerraceBalcony 2,507 2,509 1,001
gradie noTerraceBalcony 2,421 2,417 0,998
xgbreg noTerraceBalcony 2,405 2,380 0,990
kneigh noTerraceBalcony 2,562 2,480 0,968
mlpreg noTerraceBalcony 2,452 2,476 1,010
linear noThermostaticValve 2,443 2,445 1,001
decisi noThermostaticValve 2,702 2,613 0,967
baggin noThermostaticValve 2,622 2,722 1,038
random noThermostaticValve 2,509 2,511 1,001
gradie noThermostaticValve 2,421 2,413 0,997
xgbreg noThermostaticValve 2,405 2,399 0,997
kneigh noThermostaticValve 2,562 2,555 0,998
mlpreg noThermostaticValve 2,452 2,438 0,994
linear openKitchen 2,443 2,509 1,027
decisi openKitchen 2,702 2,702 1,000
baggin openKitchen 2,549 2,870 1,126
random openKitchen 2,478 2,482 1,002
gradie openKitchen 2,421 2,447 1,011
xgbreg openKitchen 2,405 2,457 1,022
kneigh openKitchen 2,562 2,550 0,996
mlpreg openKitchen 2,452 2,502 1,020
linear rearBuilding 2,443 2,515 1,029
decisi rearBuilding 2,702 2,702 1,000
baggin rearBuilding 2,587 2,613 1,010
random rearBuilding 2,519 2,518 1,000
gradie rearBuilding 2,421 2,440 1,008
xgbreg rearBuilding 2,405 2,426 1,009
kneigh rearBuilding 2,562 2,511 0,980
mlpreg rearBuilding 2,452 2,512 1,024
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Table 4 (Continued)

Model Feature SR AR 0

linear residential Area 2,443 2,508 1,026
decisi residential Area 2,702 2,743 1,015
baggin residential Area 2,602 2,671 1,027
random residential Area 2,509 2,491 0,993
gradie residential Area 2,421 2,446 1,010
xgbreg residential Area 2,405 2,424 1,008
kneigh residential Area 2,562 2,610 1,019
mlpreg residential Area 2,452 2,564 1,046
linear score2Kitchen 2,443 2,606 1,067
decisi score2Kitchen 2,702 3,119 1,155
baggin score2Kitchen 2,651 3,349 1,263
random score2Kitchen 2,500 2,814 1,126
gradie score2Kitchen 2,421 2,824 1,166
xgbreg score2Kitchen 2,405 2,734 1,137
kneigh score2Kitchen 2,562 2,688 1,049
mlpreg score2Kitchen 2,452 2,697 1,100
linear specialEquipment 2,443 2,549 1,043
decisi specialEquipment 2,702 2,740 1,014
baggin specialEquipment 2,651 2,739 1,033
random specialEquipment 2,497 2,535 1,015
gradie specialEquipment 2,421 2,551 1,054
xgbreg specialEquipment 2,405 2,574 1,070
kneigh specialEquipment 2,562 2,562 1,000
mlpreg specialEquipment 2,452 2,612 1,065
linear terraceRoofTerrace 2,443 2,495 1,021
decisi terraceRoofTerrace 2,702 2,702 1,000
baggin terraceRoofTerrace 2,652 2,739 1,033
random terraceRoofTerrace 2,497 2,500 1,001
gradie terraceRoofTerrace 2,421 2,454 1,014
xgbreg terraceRoofTerrace 2,405 2,470 1,027
kneigh terraceRoofTerrace 2,562 2,564 1,001
mlpreg terraceRoofTerrace 2,452 2,541 1,036
linear underfloorHeating 2,443 2,520 1,032
decisi underfloorHeating 2,702 3,044 1,127
baggin underfloorHeating 2,602 2,828 1,087
random underfloorHeating 2,515 2,529 1,006
gradie underfloorHeating 2,421 2,537 1,048
xgbreg underfloorHeating 2,405 2,516 1,046
kneigh underfloorHeating 2,562 2,542 0,992
mlpreg underfloorHeating 2,452 2,669 1,088
linear windowsSingleGlazing 2,443 2,482 1,016
decisi windowsSingleGlazing 2,702 2,807 1,039
baggin windowsSingleGlazing 2,588 2,617 1,011
random windowsSingleGlazing 2,509 2,509 1,000
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Table 4 (Continued)
Model Feature SR AR 0
gradie windowsSingleGlazing 2,421 2,440 1,008
xgbreg windowsSingleGlazing 2,405 2,402 0,999
kneigh windowsSingleGlazing 2,562 2,494 0,974
mlpreg windowsSingleGlazing 2,452 2,433 0,992
linear wwslIncomplete 2,443 2,656 1,087
decisi wwsIncomplete 2,702 2,679 0,992
baggin wwsIncomplete 2,630 2,556 0,972
random wwsIncomplete 2,484 2,484 1,000
gradie wwsIncomplete 2,421 2,384 0,985
xgbreg wwsIncomplete 2,405 2,438 1,014
kneigh wwsIncomplete 2,562 2,465 0,962
mlpreg wwsIncomplete 2,452 2,576 1,050
7.2 Algorithms
Algorithm 1 (Gradient boosting)
1: Input: Data set {(z®,y®}7_  loss function £(y, f(x)), number of iterations M.
2: Initialize model with a constant value:
ﬁ](.’lf) = arg min Z L(yi,7) (24)
v
3: for index m =1 to M do
4: Compute pseudo-residuals:
r@ = 75]}271 fori=1,...,n. (25)
5: fit a base learner (e.g. tree) t,,(z) to pseudo-residuals
6: Compute multiplier 7,, by solving the following one-dimensional optimization problem:
Ym = dTg min Z ‘é @ fm 1 ) +9 tm( )) (26)
7 Update the model: . .
Fm (@) = fr—1(2) + Ymtm (). (27)
8: Output: f(z) = far(z) = Zi‘n[:a Fn(2).
9: end for

@ Springer



328 O. Trinkaus, G. Kauermann

Algorithm 2 ((unregularized) XGBoost Algorithm)

1: Initialize model with a constant value:

fola) = argmin 3 €59, 3). (28)
7=t

2: for m =1 to M: do
3: Compute the ’gradients’ ¢, and ’hessians’ H,,:

D = W(y(i),f(ﬂw))] 29

gmla™) |: Af(x®) f(z):fmA(z)- 2
20y, f(2D))

Hy(aD) = [79 — } . 30

e @D | paymf 1) (0

_!?m(l'(l)) n
Hon (2(0) Ti=1

4: Fit a base learner (or weak learner, e.g. tree) using the training set {29, by solving

the optimization problem below:

. o >
%n:amfﬁnzgfgﬂmmﬁw{—%ﬁ%ggi—&uﬂh}- (31)
Fn(@) = v (@) (32)
5: Update the model: . . .
@) = fn1(@) + fin(@)- (33)
6: Output: f(z) = far(x) = Ll fin(@)-

7: end for

Algorithm 3  (Calculating the standard and adversarial risk in case of d € S, using

LOOCYV)

1: for index 7 in set of observations N = {1,...,n} do

2 drop ith observation from dataset

3 fit a regression-model f,i on the original dataset with ith observation removed
4 predict f_;(2(®)) on the original dataset

5: calculate mse(®

6: end for

7: calculate SR

8: for index i in set of observations N = {1,...,n} do

9: drop ith observation from dataset

10: fit a regression-model ];,,v on the original dataset with ith observation removed
11: corrupt i-th observation () by § € S; ¢ S

12: add corrupted ith observation back to get the original amount of N observations
13: predict f;f(a:(i)) on the original dataset

14: calculate mse(?)

15: end for
16: calculate AR
17: compare SR with AR
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