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Abstract

Abstract Calcium ions (Ca2*) play a fundamental role in a variety of physiological functions in many
cell types by acting as a secondary messenger. Variation of intracellular Ca2* concentration
([Ca?™];) is often observed when the cell is stimulated. However, it is a challenging task to
automatically quantify intracellular [Ca2*]; in a population of cells. In this study, we present a
workflow including specific algorithms for the automated intracellular calcium signal analysis using
high-content, time-lapse cellular images. The experimental validations indicate the effectiveness of
the proposed workflow and algorithms. We applied the workflow to analyze the intracellular calcium
signals induced by different concentrations of H,O5 in the cell lines transfected by presenilin-1 (PS-1)
that is known to be closely related to the familial Alzheimer's disease (FAD). The analysis results
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imply an important role of mutant PS-1, but not normal human PS-1 and mutant human amyloid
precursor protein (APP), in enhancing intracellular calcium signaling induced by H,0O,.
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High content image analysis; Oxidative stress; Calcium oscillation; Familial Alzheimer's disease;
Mutant presenilin 1

Introduction

Alzheimer disease (AD) is a progressive neurodegenerative disease that causes dementia. The
neuropathological hallmarks of AD include a progressive loss of neurons, synaptic
degeneration, and a deposition of amyloid plaques and neurofibrillary tangles in specific brain
regions (LaFerla 2002; Hardy and Selkoe 2002). Ca%* play an important role in many neural
processes in AD, e.g. the proper calcium signaling is known to be crucial for synaptogenesis
and dendritic spine plasticity (LaFerla 2002; Smith et al. 2005). A number of studies have
reported different mechanisms by which intracellular calcium levels are affected (Smith et al.
2005; Zhou et al. 1996; Tu et al. 2006) in AD. However, the dysregulation of calcium
homeostasis during AD development is not yet clearly understood. Therefore, study of
intracellular calcium signal is very important to understand the underlying mechanisms of the
calcium signaling processes, and develop therapeutic strategies aiming to correct calcium
dysregulation that may benefit to slow down the progression of AD (LaFerla 2002).

High-content screening (HCS) has recently become an important and widely used technology
in disease diagnosis, drug target validation, and compound screening (Zhou and Wong 2006).
Using the HCS technology, the intracellular calcium signals can be represented by the
fluorescence intensity of the cells caused by the binding of Ca2* ions with fluo-4 or other
Ca2* indicator dyes (Kaestner et al. 2006; Jedrusik et al. 2007). Therefore, HCS enables the
quantitative analysis of the intracellular calcium signals at the single cell level using time-lapse
cellular images. Since it is not feasible to manually analyze and quantify a large number of
time-lapse images at the single cell level, a fully automated and reliable computerized system
is therefore needed. However, the existing HCS image analysis tools are inadequate to process
the calcium signal images, and this motivated us to propose a new workflow for calcium signal
image analysis using time-lapse images. To the best of our knowledge, this is among the first
efforts to develop a fully automated HCS workflow with properly designed algorithms for the
quantification of intracellular calcium signals at the single cell level.

The integration and implementation of these algorithms in the workflow requires a significant
amount of effort and new insights into applying these algorithms. Despite the fact that a number
of techniques for the sub-components of the workflow have been previously reported, no single
method can be used for a different application without alteration. The main challenges in cell
segmentation arise due to cell touching, different cell shapes, variations of cell size, and low
intensity contrast (Adiga et al. 2006; Nattkemper 2004). In two separate papers by Lin et. al.
(2003, 2005), the intensity gradient and shape information are combined to separate the
clustered nuclei. However, when the shape of cells cannot be well outlined, for example, the
method will fail in segmenting the cells with low intensity contrast. In the case of active contour
methods (Osher and Sethian 1988; Malladi et al. 1995; Sethian 1999; Xiong et al. 2005; Xu
and Prince 1998), the segmentation results strongly depend on the initialization of the cell
boundaries. Some rigid registration methods have been implemented in the National Library
of Medicine Insight Segmentation and Registration Toolkit (ITK) (http://www.itk.org/) for
image displacement correction. However, all of these methods make use of the intensity
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correlation between the fixed and moving images. Therefore, they fail due to the variation of
intracellular calcium signals over time.

In this study, we present a novel computational system for automated calcium signal analysis
at the single cell level using time-lapse images. Figure 1 provides a flowchart of the proposed
workflow that consists of three major modules: cell segmentation, image displacement
correction, and calcium signal analysis, with the introduction of some novel algorithms. The
rest of this paper is organized as follows: in the “Materials and Methods” section, we present
the detailed information of the cellular images, and the implementation details of the workflow;
the experimental validation, application on the real data, and discussion are provided in the
“Results and Discussion” section; and the conclusion remark is given in “Conclusions” section.

Materials and Methods

Materials

In this study, we used four cell lines: Chinese Hamster Ovary (CHO), CHO stably transfected
with human APP (7W), CHO stably transfected with human mutant presenilin-1, M146L
(ML60), and CHO stably transfected with Human wild-type (PS106). These four cell lines
were grown in the conditions as published previously by Xia et al. (1997). In brief, after the
cells were loaded and attached to 96 well plates, the cells were treated with Fluo-4 plus F127
(4M/ 5M, both from Molecular Probes, Invitrogen) in Dulbecco's Modified Eagle's Medium
(DMEM) without Ca%* and Fetal Bovine Serum with/without H,0,, incubated at 37 °C for
30 minutes, and then 25 for another 30 minutes. The plates were then moved to the IN Cell
Analyzer 1000 (GE Healthcare Life Sciences) for imaging. We collected images every one
minute for a total of 120 minutes for each well. Hoechest staining (Molecular Probes,
Invitrogen) of cell nuclei was also employed in the incubation of the cells to count the total
cell number. Figure 2 provides one example image generated in this study.

Cell Segmentation

To extract the calcium signals inside cells, we needed to segment cells accurately. The initial
cell segmentation results were also needed for the subsequent displacement correction
algorithm. In the proposed segmentation method, we first separated cell pixels from the
background using an adaptive thresholding method (Sahoo et al. 1988; Sezgin and Sankur
2004; Wahlby et al. 2002; Lindblad et al. 2004; Otsu 1978). Although cells are separated from
the background using the adaptive thresholding method, the cell clusters cannot be separated.
Cell detection is very important in order to separate the cell clusters by identifying ‘seeds’ or
initial contours for the subsequent segmentation methods, e.g. marker controlled watershed,
Voronoi, level set, and sneak algorithms. We propose a cell detection method using the
Gaussian filtering (Lindeberg 1998) and gradient vector field (GVF). Finally, the clustered
cells are segmented using the cell detection results and marker controlled watershed method
(Adiga et al. 2006; Lin et al. 2003; Beucher 1992; Vincent and Soille 1991).

Adaptive Thresholding—Global threshold, e.g. Otsu thresholding, cannot generate good
binary results because the intensity of the cells (calcium signals) is uneven. Herein, an adaptive
thresholding algorithm is implemented based on a background correction method (Wahlby et
al. 2002; Lindblad et al. 2004). The adaptive thresholding method can be written as:
Cxy)=q(I(x,y) = B(x,y)—c"0); ")

where I(x, y) is the cellular image; B(x, y) is the estimated background image; c is a control
parameter; more pixels are classified into background with a larger value of ¢, and more pixels
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are classified into object with smaller value of c. We set c=1.5 experimentally. og is the standard
deviation of B(x, y). q(z) is an indicator function: if z>0, q(z)=1, else q(z)=0. If C(x, y)=1, pixel
(x, y) is classified as a part of the object, otherwise, the pixel (x, y) is classified as a part of the
background. In the binary image, the noisy fragments are removed based on their size, and the
small holes are filled by removing them as the noisy fragments in the inverse image.

Cell Detection and Segmentation—To detect the cell centers, we first suppress the noisy
intensity maxima using Gaussian filtering with appropriate scale . The value of ¢ can be
chosen based on test images. In the filtered image, the noises are suppressed and the local
maxima correspond to the cell centers. However, some noises still exist. To further eliminate
the noisy local maxima, we detect the true cell centers in the gradient vector field (GVF) by
counting the number of particles converging towards them, which is described as follows. It
is a well-known fact that in an electric field, the electric field lines point to the positive
electrodes, and the free negative electrons move along the electric field lines and stop at these
electrodes. In GVF, the gradient-vector lines also point to the local maxima. Analogous to the
electron moving inside the electron field, we put one particle on each detected cell pixel and
pushed it along the gradient vector lines. Consequently, these particles stopped at these local
maxima. The movement of the particle is described in the pseudo code as shown in the next
page. Since no or very few particles stop at non-maxima and noisy local maxima, the true cell
centers can be identified by choosing the points that have many particles. Finally, cell clusters
are separated using the marker-controlled watershed algorithm. The representative detection
and segmentation results are provided in Figs. 3 and 4, respectively.
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Particle moving in gradient vector field (GVF) algorithm

M _ ; /*Detected cell pixel matrix in which the value of background pixel is 0 and cell

cel ?
pixel is 1*/
M, ; /*Gradient vector field matrix which consists of the gradient vectors of each
pixel*/
M, « zeros(m,n);

/*Particle distribution matrix whose elements are the number of particles that stop at each
pixel. We initialize its elements as 0*/

while( ExistNonZero(M ,,))
(x,,¥,) = find(M, ==1);/*find one detected cell pixel*/
(x,,,)=(0,0); /*(x,, »,) is used to record the stop pixel of the particle which is
put on the (x,,y,) */

while((x,, y)!= (X, ¥,))
(x| P y|) = move((xo: yn):Mgvr(xg:- yu));
/*move the particle from (x,,y,) along the direction of M, (x,,»,) to
pixel (x,,y,). If pixel (x,,y,) is a local maximum, the gradient vector
M, (x,,y,) will point to itself, and (x,,y,) ==(x,,,) which means the
particle stop at this point*/

end

Mpar(xl’yl) = Mpar(xlsy])+l;
/*the number of particles stop at pixel (x,, y,) increases one*/

end

Image Displacement Correction

In sequential image processing, the image displacement correction is necessary due to the
displacement of the positions of the microscope in different time points (Gustavsson et al.
2003). Since the cells are stationary in the images, the displacement between two consecutive
frames is the same as the displacement of cells inside them. In other words, we can correct the
displacement of two consecutive frames using the average of the displacements of some of the
selected cells inside them. This method using a few instead of all of the cells in the frame is
necessary because using all of the cells would require much more computation. Moreover, the
cells with low intensity contrast cannot be used because their displacement information is
unreliable because of their inaccurate segmentation.
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Cell Matching—To compute the displacement of cells in two consecutive frames, we need
to do the cell matching first. In other words, given one cell in the current frame, we need to
find the corresponding cell in the successive frame. In this study, we used an overlap area based
cell matching method (Chen et al. 2006). For easy understanding of this method, the detailed
definition of the dissimilarity measurement can be written as:

_%’ A NA;(@+1) #0;
d[j(t): dis’{().(l)l().(/+l)}
4 O, ’
R0k AiONA;+1)=0. .

where dj j(t) denotes the similarity measure between the i-th cell in frame t, C;(t), and the j-th
cell in frame t+1, Cj(t+1); Aj(t), Aj(t+1), Oi(t), Oj(t+1) and R;(t), Rj(t+1) are the area, centroids,
and radii of the cells C;(t) and Cj(t+1); dis{Oj(t), Oj(t+1)} means the distance between the

centroids Oj(t) and Oj(t+1). Then, the cell matching is done by choosing their nearest neighbor.

Cell Pairs' Selection and Displacement Correction—Since it is reasonable that cells
with higher intensity contrast have higher possibility to be well segmented, we select cells used
for the displacement correction with the following two steps: first, the minimum average
intensity of one cell and its matching cell Cj(t+1), denoted by Avg j(t), is defined as:

Avg; ; (1) =min {AVgi (1), Avg; (Hl)} ©

where Avgj(t) and Avg;(t+1) are the average intensity of cell and Cj(t+1) respectively; secondly,
the cells are selected according their minimum average intensity in the descending order. Then,
the displacement of two consecutive frames is corrected based on the average of the
displacements of the selected cells in the two frames. In this study, 100 cell pairs inside two
consecutive frames are selected for the displacement correction.

Calcium Signal Analysis

The [Ca?*]; inside cells are represented by the average of fluorescence intensity of the cells as:

F — Fmin

Ca*t| =Kj———
[ ]' dFmax = Fnin (4)

where Kg is the ion dissociation constant (Kq=345nM), Fnin is the fluorescence intensity in
the absence of calcium, Fyax is the fluorescence intensity in the saturation of calcium, and F
is the average fluorescence intensity of the cells (Woodruff et al. 2002).

Intensity Normalization—To reduce the influence of the variation of background, an
intensity normalization method is implemented. First, the background of each frame is
estimated using the cubic B-spline (Lindblad et al. 2004; Otsu 1978). Then, we use the
estimated background to perform intensity normalization as:

B(x,y;1
BOYD s, =23, N,

4
I (x,yit)=
(33t) B (x,y:1) (5)

where 1'(x, y;t) is the t-th intensity normalized image; B(x, y;1) and B(x, y;t) are the estimated
background of the first and t-th frames, 1(x, y;t) is the t-th aligned image. After intensity
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normalization according to Eg. (5), all frames have roughly the same gray level background
as that of the first frame, so the variation of the background is effectively reduced.

Calcium Signal Extraction and Denoising—After displacement correction and intensity
normalization, the maximum intensity projection (MIP) image, denoted by Imip(X,y), is
generated as follows:

/
Inip (x,y)=max I (x, ;t}
mip (X, ) e (x, 30) ©

where 1'(x, y;t)is the t-th intensity normalized image, and N is the number of frames. In the
MIP image, cells have their highest intensity over all frames, as seen in Fig. 5. Figure 5a shows
part of the MIP image; Fig. 5b and c are parts of two single frames. Hence, we can segment
all of the cells accurately in the MIP image using the proposed segmentation method. Then,
the 3D cell boundaries (X, y, t) can easily be constructed by placing the boundaries of cells on
each aligned frame. Finally, the calcium signal inside each cell is extracted by averaging the
fluorescence intensity of cells and translated according to equation (5). In the extracted calcium
signals, noisy signals will most likely be induced by the bias of segmentation, displacement
correction, and intensity normalization. To suppress these noisy signals, the undecimated
discrete wavelet transform (UDWT) (Coombes et al. 2005) is employed. Figure 6 provides an
example of extracted calcium signals.

Oscillation Peak Detection—In this study, two patterns are observed in the extracted
calcium signals: some calcium signals remain constant, whereas others have oscillation peaks.
To detect the oscillation peaks of the second pattern, a peak detection method is implemented.
The idea of this method arises from the fact that a local minimum appears immediately
following a local maximum in the first-order backward differential signals, as seen in Fig. 7b.
The peak detection method consists of three steps: (1) the first-order backward difference of
the calcium signal is calculated; (2) the local maxima and minima whose absolute values are
larger than a given threshold, e.g. the standard deviation of the signal, are detected; and (3) the
points, around which the detected local maximum and minimum appear in sequence, are
identified as the oscillation points.

Results and Discussion

Validation of Segmentation

To evaluate the accuracy of the proposed segmentation method, we randomly selected 16
cellular images from four image sequences: three single frames and the MIP image in each
sequence. Four kinds of errors may occur in cell segmentation: over-segmentation, under-
segmentation, false negative (missed cell), and false positive (noise).

Two biologists validated these segmented images by manually counting the numbers of cells
and the four kinds of errors based on their experience. Table 1 provides the average of the
validations provided by the two biologists. On an average, 96.6% of the cells were correctly
segmented; 1.2% of the cells were over-segmented; 0.7% of cells were under-segmented; the
false negative rate was 1.8% and the false positive rate was 0.4%. The experimental results
indicate that the proposed segmentation method works effectively for this study. Analyzing
the four kinds of errors, we concluded that the over-segmentation problem often occurs in the
elongated cells in which some redundant maxima are not suppressed successfully. The missed
cells have very low intensity contrast, and it is difficult to segment them even manually. The
few false positives were caused by the noise speckles. Under-segmentation occurred when a
cell with low intensity overlapped with another cell with higher intensity. This happens due to
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the fact that only one local maximum is generated inside the cell with strong intensity. We
intend to address these problems in the future.

Validation of Displacement Correction

To quantitatively validate the displacement correction, the intensity difference between the
fixed and moving images is often used. However, it is not suitable for this study due to the
variation of calcium signals over time. Herein, we randomly selected the MIP images of 50
sequences. Two biologists validated these MIP images using three scores: clear, blurry, bad.
Three MIP images were marked as'blurry’ by both biologists; one MIP image was labeled
as'blurry’ by one biologist. The rest of the 46 images were marked “clear’, and no sequence was
marked as ‘bad’. To further evaluate the displacement correction method, we compared the
rigid registration method in ITK with our method. We selected two sequences: one sequence
almost has no displacement, and the other has a significant amount of displacement. Figure 8
shows the displacement correction results. As we can see, the rigid registration method in ITK
generates bad correction results for both of the sequences, while the proposed method is
accurate and reliable for our image data.

Validation of Extracted Calcium Signals

In this study, three patterns of calcium signals were found: stable, ‘break out’, and oscillating.
Figure 6a-f show the representative images of these three patterns respectively. To validate the
extracted calcium signals, we randomly selected 100 calcium signals in each of the four image
sequences. For convenience, we viewed both the ‘break out” and oscillating patterns as one
(oscillation) class. Our biologists validated these calcium signals by comparing them with their
investigations. If the number and positions of the strong oscillation peaks of the extracted
calcium signals were consistent with their investigation results, the signal was labeled ‘C’ to
denote a correctly extracted calcium signal, otherwise the signal was labeled ‘W’ to denote a
wrongly extracted calcium signal. The experimental results demonstrated that all 400 calcium
signals were correctly extracted. This result shows that the proposed calcium signal extraction
method is reliable. Therefore, the biologists can conveniently investigate the calcium signal
inside any cell and analyze them quantitatively.

Analysis of Calcium Signals Inside Cells Expressing HAD PS-1 Exposed to H,O»

FAD has close relationship with the mutation of the PS-1 gene. FAD caused by this mutation
leads to the over production of amyloid-p (AB) and closely associates with dysregulation of
calcium homeostasis (Smith et al. 2005; Stutzmann 2005;Xia 2000) and the reactive oxygen
species, e.g. HyO,, were found to increase intracellular calcium levels (Fowler et al. 1998).
The reactive oxygen species can be formed by Ap in cultured neurons, and can be generated
in response to mitochondrial dysfunction or microglial activation (Hensley et al. 1994; Blass
etal. 1990; Colton and Gilbert 1987). In this study, we propose using a high-content time-lapse
cell imaging method to understand the mechanisms between the oxidative stress and calcium
signals inside cells transfected by PS-1 mutations. We designed an experiment as follows: Four
aforementioned cell lines were selected and treated with six different concentrations of
H,0,: 0.001, 0.01, 0.1, 1, 10, and 100 uM. Their cellular images were acquired by the GE IN
Cell Analyzer 1000. Using the proposed system, the calcium reaction signals inside the cells
were extracted and analyzed.

As previously mentioned, three patterns of calcium signals were found. The ‘break out’ pattern
was investigable in all of four cell lines treated with 10 and 100 uM H,0O,. In the ‘break out’
pattern, the [Ca2*]; jumps rapidly and drops down deeply just before the cells are killed due to
the deleterious effect of H,O,. Averaged, the intracellular calcium concentrations of cells
treated with 10 and 100 H,0O5, are higher than that of cells treated with the lower concentrations
of H,0,. The oscillating pattern is mainly investigated in cell sequences treated with 0.001,
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0.01, 0.1 and 1 uM H,0,. Figure 9 provides the percentage of oscillating cells of four cells
lines treated with 0.001, 0.01, 0.1 and 1 uM H,0,. As we can see, there are much more
oscillation response cells in the ML60 cell line than the other three cell lines. To test for
differences in cell oscillations caused by the cell line, the H,O5 level, and due to the interaction
between the two, we first performed the two-way ANOVA analysis (Cobb 1998;Dukes and
Sullivan 2007;Hsu 1996). As seen in Table 2, the effects of the cell line are significant while
the effects of H,O, level and interaction between them are not significant. Further, to find out
which cell line effects differ from each other, the Tukey-Kramer multiple comparison (Hsu
1996) test was employed, as seen in Table 3. We can see that there are significant differences
between the ML60 and the three other cell lines, while there is no significant differences
between the CHO, 7W, and PS106. Through the experimental results, we conclude that the
oscillating response cells in the mutant PS-1 cell line (ML60) are more easily detectable in all
four concentrations of H,O, than that of the three other cell lines. The evidence obtained
implies an important role of mutant PS-1, but not normal human PS-1 and mutant human APP,
in enhancing intracellular calcium signaling induced by H,0,.

Discussion

In this study, we proposed an automatic workflow for quantitative analysis of intracellular
calcium signals with well designed algorithms. The practical application of analyzing the
intracellular calcium signals of four cell lines indicates the effectiveness of the proposed
workflow. This workflow was designed mainly for cultured cells. The quality of the cellular
images in vivo is often worse than the cultured cellular images. Our algorithm was tested on
one in vivo cellular image and, as shown in Fig. 10a, the segmentation result was acceptable.
Therefore, the proposed workflow can be used for some in vivo cellular images. We also tested
the cultured neuron cell images and determined that, if the neurites are not very complex, the
segmentation result is acceptable, as seen in Fig. 10b. Therefore, the proposed workflow can
process some cultured neuron cells as well. Since the structure of the neuron images in vivo is
totally different with the cells we used, the proposed workflow is not currently suitable for
them. The input of the proposed system is the time-lapse cellular images whose intensity
characterizes the calcium signals inside cells. The output of the system is the intensity of single
cells over time, which is then mapped into the true calcium signals. Therefore, the calcium
indicators, for example, fluo-3, fluo-4, that can be quantitatively acquired by the microscope
can be processed using the proposed workflow.

Conclusions

In this study, we have proposed a computerized system to automate high-content, cellular
image sequence analysis for the quantification of calcium signals at the single cell level. The
proposed cell detection method detects the cells effectively. The displacement correction
method can generate reliable results using the cell matching method. The proposed intensity
normalization method ensures all the frames have a similar gray level of background. To avoid
the low intensity contrast problem, we delineate the boundaries of cells in the MIP image.
Finally, the calcium signals inside cells are quantified accurately, and the oscillation points are
detected using the proposed peak detection method. The validation results show that the
proposed system is reliable and effective. Using the proposed computerized system, the
biologists can conveniently analyze the quantified calcium signals of a population of cells at
the single cell level.

Information Sharing Statement

The software is developed in Matlab (version 7.0.1) on Windows XP platform. The sample
image sequences and the software are available upon request.
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Fig. 2.
Representative cellular images generated in this study
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Fig. 3.
Representative cell detection result using the proposed cell detection method
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Fig. 4.
Representative cell segmentation result using the detection results
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(©)

Fig. 5.
Comparison between the MIP image and single frames. (a) MIP image. (b), (c) are two single
frames
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Illustration of the peak detection. (a) Extracted calcium signal. (b) First order differential signal

Neuroinformatics. Author manuscript; available in PMC 2010 April 12.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnue\ Joyiny Vd-HIN

Lietal. Page 19

Fig. 8.

Comparisons between the rigid registration method in ITK and the proposed method. (a), (d)
MIP images of two selected sequences without registration. (b), (e) MIP images after using
rigid registration method in ITK. (c), (f) MIP images after using the proposed displacement
correction method
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Diagram of percentages of oscillating cells of four cell lines in four different concentrations
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Fig. 10.

Segmentation results of the in vivo cellular image and cultured neuron cell image. (a)
Segmentation result of in vivo cellular image. (b) Segmentation result of the cultured neuron
cell image
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Table 3

Results of Tukey—Kramer multiple comparison (¢=0.05)

Group pairs Estimated mean difference  Confidence interval s difference significant?
(CHO, ML60) -16.69 [-26.62, —6.76] Yes
(CHO, PS106) 185 [-8.08,11.78] No
(CHO, 7W) -0.19 [-10.12,9.74] No
(ML60, PS106) 18.55 [8.62,28.48] Yes
(ML60, 7W) 16.50 [6.57, 26.43] Yes
(PS106, 7W) -2.05 [-11.98,7.88] No
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