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Abstract
To determine the performance of an artificial neural network in transcranial color-coded duplex
sonography (TCCS) diagnosis of middle cerebral artery (MCA) spasm. TCCS was prospectively
acquired within 2 h prior to routine cerebral angiography in 100 consecutive patients (54M:46F,
median age 50 years). Angiographic MCA vasospasm was classified as mild (<25% of vessel caliber
reduction), moderate (25–50%), or severe (>50%). A Learning Vector Quantization neural network
classified MCA spasm based on TCCS peak-systolic, mean, and end-diastolic velocity data. During
a four-class discrimination task, accurate classification by the network ranged from 64.9% to 72.3%,
depending on the number of neurons in the Kohonen layer. Accurate classification of vasospasm
ranged from 79.6% to 87.6%, with an accuracy of 84.7% to 92.1% for the detection of moderate-to-
severe vasospasm. An artificial neural network may increase the accuracy of TCCS in diagnosis of
MCA spasm.

© Humana Press 2008
Correspondence to: Jaroslaw Krejza, Jaroslaw.krejza@uphs.upenn.edu.

NIH Public Access
Author Manuscript
Neuroinformatics. Author manuscript; available in PMC 2009 October 9.

Published in final edited form as:
Neuroinformatics. 2008 ; 6(4): 279–290. doi:10.1007/s12021-008-9023-0.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Keywords
Ultrasound; Cerebral blood vessels; Vasospasm; Artificial neural networks; Transcranial Doppler;
Diagnosis; Blood velocity; Velocimetry; Brain arteries; Ischemia; Stroke

Introduction
Transcranial Doppler sonography evaluation of blood flow velocities in the cerebral arteries
allows for the rapid detection and serial assessment of cerebral vasospasm, because flow
velocity increases with narrowing of the vessel (Aaslid et al. 1984; Babikian et al. 2000).
Transcranial color-coded duplex sonography (TCCS) has recently facilitated more accurate
determination of intracranial blood flow velocities (Bogdahn et al. 1990; Krejza et al. 2000).
Considerable efforts have been devoted to discerning critical velocity thresholds that reliably
differentiate cerebral vasospasm from hyperemia or physiologic blood flow (Lysakowski et
al. 2001; Mariak et al. 2002; Krejza and Baumgartner 2004). As numerous physiologic factors
influence blood flow velocities in a particular vascular segment, isolated velocity thresholds
may be limited in their diagnostic accuracy. The shape of the pulsatile Doppler waveform
provides further information and waveform analysis may yield several useful numerical
parameters (so-called Doppler parameters) (Krejza et al. 1999; Babikian et al. 2002). The
complex nature of velocity waveform analysis precludes rapid visual assessment for the
detection of vasospasm, yet intelligent support system may be ideally suited for this task.

We applied artificial neural networks (ANNs) methodology to detect middle cerebral artery
(MCA) spasm based on multi-parametric analysis of TCCS velocity data using digital
subtraction angiography as a reference standard. The primary features of ANNs are the capacity
of learning and the ability of approximation any nonlinear relationships that may defy simple
mathematical relationships between input and output variables. Typical applications of ANNs
include signal processing or forecasting, pattern recognition, and discrimination (Bishop
1997; Haykin 1999). Biomedical applications of ANNs have extended the scope of traditional
statistical methods for data analysis. ANNs applications in clinical medicine have rapidly
evolved in the last few years (Bishop 1997; Smith et al. 2003; Lisboa and Taktak 2006).
Examples of successful clinical applications of ANNs include the detection of myocardial
infarction with ECG signal analysis, diagnosis of tumor histology based on microscopic
smears, forecasting and pattern recognition of the intracranial pressure signal (Koss et al.
1997; Swiercz et al. 2000), or data classification for computer-aided diagnostics in many other
clinical problems (Siermala et al. 2007). These recent clinical applications suggested that
ANNs may also be used to diagnose and classify cerebral vasospasm based on TCCS
measurements. We evaluated the performance of Learning Vector Quantization (LVQ), a
neural network architecture particularly adept in classification problems, and used
angiographic data to determine a priori the desired outputs of the neural network. The results
obtained with LVQ networks were compared with classification performed by the Support
Vector Machines (SVM) algorithm, which is the method closely related to neural networks
and in many application gives comparably high accuracy.

Methods and Results
The research protocol and informed consent were approved by the local ethics committee.
Informed consent was obtained from either the patient or responsible family member. One
hundred consecutive patients (54 men and 46 women; median age 50 years, range 18 to 74
years) were studied prospectively. TCCS was performed within 2 h prior to digital subtraction
angiography of the cerebral circulation. Clinical indications for cerebral angiography included
non-traumatic subarachnoid hemorrhage (n=46), intracerebral hemorrhage (n=31), post-
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operative evaluation of aneurysm clipping (n=12), intractable headache (n=6), brain tumor
(n=2), ischemic stroke (n=2), and traumatic subarachnoid hemorrhage (n=1).

Transcranial Color-coded Doppler Sonography (TCCS)
Following a 15-min rest period in supine position, TCCS was performed on a sonographic
scanner (Toshiba Applio, Toshiba Medical System, Tokyo, Japan) equipped with a 2.5 MHz
90° phased-array probe with B-mode and Doppler imaging. Proximal segments of the basal
cerebral arteries were insonated via a transtemporal and were identified on grayscale and color
imaging in relation to intracranial structures (Krejza et al. 2000). A 3-mm wide sample volume
was placed on the color image of the proximal MCA (M1) about 10 mm distal to the terminal
carotid or at the site of the highest flow velocity acceleration indicated by aliasing phenomenon.
A linear marker was placed under visual guidance on the color image of the insonated vascular
segment along the long axis of the vessel to determine the angle of insonation. The angle
between this linear marker and the ultrasound beam, displayed automatically on the screen of
the scanner, was considered a two-dimensional approximation of the angle of insonation. A
typical TCCS image of MCA spasm is shown on Fig. 1. Angle-corrected peak systolic (VPS),
mean (VMEAN), and end diastolic (VED) blood flow velocities were subsequently obtained.
Automated blood flow velocity determinations were used, although manual tracing of the
maximum frequency envelope of the Doppler waveform was used to obtain these values when
a weak Doppler signal was noted. An expert radiologist reviewed the TCCS data for quality
purposes and rejected 42 waveforms due to inferior quality. Further analyses were based on
the remaining 158 data sets, including waveforms of the left and right MCA.

Digital Subtraction Angiography (DSA)
Selective DSA of bilateral internal carotid arteries and at least one vertebral artery was
performed via the femoral artery using the Seldinger approach. Standard angiographic views,
including antero-posterior, lateral, and oblique projections (30 cm field of view), were obtained
routinely at injection rates of 6 ml/s and filming rates of three frames per second. Two experts
blinded to the TCCS results reviewed the DSA studies to determine the presence and degree
of cerebral vasospasm. Views illustrating the most severe degree of MCA narrowing were used
for comparison with TCCS. All measurements were performed using calipers on the digital
display. The spatial resolution of this technique is 0.1 mm. To quantify the degree of narrowing,
site of maximal reduction of the horizontal segment of the MCA was compared with the
“normal” section of the artery on both sides of the narrowed segment. The choice of a “normal”
diameter was made according to a standard algorithm of selection of a non-affected
denominator: choice 1: pre-narrowing segment; choice 2: post-narrowing segment; choice 3:
terminal portion of the parent artery (Suarez et al. 2002). Vasospasm was classified as absent,
mild (<25% of vessel caliber reduction), moderate (25–50%), or severe (>50%) (Lindegaard
et al. 1989; Mariak et al. 2002). Vessel diameter was also compared with the contralateral
vascular segment to facilitate classification of vasospasm.

Discordant angiographic readings were resolved by consensus with assistance of a third expert.
Probability of a vessel’s membership in each subclass based on ratings of three angiographic
raters was determined based on a model described by Uebersax (1992) and Bayes’ rule. A
vessel was then assigned to the subclass to which it had the highest probability of membership.

Descriptions of Classifications Tools and Experimental Results
The basic descriptive statistics of data used in the study are presented in Table 1—both for the
entire data set and for the each of four classes of vasospasm. As it can be noticed from data
statistics, the mean values of peak systolic (VPS), mean (VMEAN), and end diastolic (VED)
blood flow velocities increase with the increase of the vessel caliber reduction due to the
development of vasospasm. For example, the mean values of all the blood velocities for patients
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with severe vasospasm are more than twice higher than for patients without reduction of the
MCA diameter. Nevertheless, taking into account standard deviations of the blood velocities
and comparing the inter-class data distribution (clearly visible in Fig. 4 and Fig. 5), one can
say that data belonging to different classes of spasm occupy overlapping regions in the (VPS–
VMEAN–VED) input space. The above observation justifies the efforts to find the classifiers,
which are able to learn from data, how to generate optimal nonlinear boundaries between
different classes of vasospasm.

Learning Vector Quantization (LVQ) Neural Networks
Learning Vector Quantization is a classification neural network (Kohonen et al. 1988), which
assigns a vector representing multi-dimensional experimental data to one of several classes.
The classes are defined by the user, so training of the LVQ network is performed in a supervised
manner. An LVQ network consists of two computational layers: a competitive layer (Kohonen
layer), which learns to detect regularities and correlations in the input vectors presented to the
network and assigns them to as many subclasses as the number of neurons that the layer
contains; an output or linear layer, which transforms the competitive layer’s output subclasses
into target classes, defined by the user. The general architecture of the LVQ neural network,
which assigns the input vector x (of the length N) to one of M classes, is presented in Fig. 2a.

The basic version of the algorithm, used to train the Kohonen layer of an LVQ network, may
be presented as follows (Fine 1999).

The distance of a training vector from each neuron (Processing Element, PE) is computed and
the nearest PE is declared to be the winner. The Euclidean distance between a training vector,
x, and each PE’s weight vector, wi, is computed according to the standard formula:

(1)

where N is the number of elements in the input vector, x (a dimension of the input space).

If the winning neuron is in the same class as the training vector (this class is known a priori in
the supervised training mode), it is moved towards the training vector according to

(2)

where 0<α<1 is the attraction coefficient.

If the winning neuron is not in the same class as the training vector, it is moved away (repulsed)
from the training vector, according to:

(3)

where 0<γ<1 is the repulsion coefficient.

During the training process, neurons assigned to a class migrate to the region associated with
their class. As a result of the training process, the input space is divided into so-called Voronoi
polytopes; the number of the polytopes is equal to the number of neurons (processing elements)
in the Kohonen layer. The competitive neurons create the centers of the polytopes (marked as
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 in Fig. 2b); each input vector presented to the network is identified with the nearest subclass
center, according to Euclidean distance (sometimes other distance measures are chosen for
training and classification). The boundaries, found by the competitive layer, depend only on
the distance between the input vectors. In the classification mode, the competitive layer
computes the distance between an input vector and each neuron, and again, the nearest
processing element is declared to be the winner. The output of this neuron is set to “1”, while
the outputs of all the other neurons are set to “0”. The competitive layer splits the input space
into S1 subclasses (S1 is the number of neurons in the Kohonen layer), which in turn are
combined by the linear layer to form S2 target classes, specified by the user (S2 should never
be greater than S1).

Unlike the widespread binary classifiers—the perceptrons, LVQ networks can classify any set
of input vectors, not just linearly separable sets of input vectors. The decision boundaries (i.e.
the borders, separating different classes) may form shapes in multidimensional space, which
are more complex than ordinary hyperplanes, as it is shown in Fig. 2b, where the regions
assigned to different classes are non-convex. The only requirement is that the competitive layer
must contain enough neurons and each class must be assigned enough competitive neurons.

Learning Vector Quantization (LVQ) is commonly regarded as a flexible and robust non-
parametric statistical classifier. LVQ is a method for training competitive networks in a
supervised manner, which means that (in opposition to the ‘standard’ competitive neural
networks) the available information about assignment of input vectors into target classes may
be fully utilized. Classification problems may be, of course, solved also with the use of
networks with continuous outputs, e.g. the multilayer perceptrons (MLP) or radial basis
function (RBF) networks. In the LVQ network, as with the RBF network, each hidden unit can
be thought of as representing a point in N-dimensional space. In both network types outputs
of the hidden units are based on the proximity of the input vector; however the difference
between the two is that in an RBF network, several Gaussian hidden units can have significant
outputs, while in the LVQ network the output of all but one competitive unit is zero. The final
output of both network types is determined by the weights of the linear output unit, so in the
case of RBF networks additional post-processing stage is required to determine the final (1 of
M) class, the input vector belongs to. For example, it is necessary to establish thresholds for
the RBF outputs, on which it can be decided if the output should be accepted or neglected—
such threshold values will be always subjective.

Moreover, in the LVQ network the structure of neuronal activity related to the performance of
the network can be visualized directly by examining the coefficients (weights) for the
competitive neurons that are related to each recorded neuron. It allows to control the number
of neurons in Kohonen layer (changing the ‘granulation’ of Voronoi polytopes) and, in that
way, to influence the shapes of class boundaries relatively easily.

The above features of the LVQ networks looked promising enough to choose this type of a
neural classifier to solve the classification problem of the degree of MCA narrowing based on
TCCS and DSA examination.

Support Vector Machines (SVM)
A Support Vector Machine (SVM) performs classification by constructing an N-dimensional
hyperplane that optimally separates clusters of vector into two non-overlapping groups
(Cristianini and Shawe-Taylor 2000). The cases with one category of the target variable are
on one side of the plane and cases with the other category are on the other side of the plane.
The vectors near the hyperplane, which determine the maximal margin for separation, are called
the support vectors.
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Unfortunately, this is not generally the case, so SVM must typically deal with separating the
points with nonlinear curves (not a linear hyperplane), handling the cases where clusters simply
cannot be completely separated and handling classifications with more than two categories.

In some cases the optimal linear separation can be performed after data transformation from
original input space to the feature space. The transformation is usually nonlinear and increases
the dimensionality of the original data vectors, as it is shown in Fig. 3a. Nevertheless, when
the optimal hyperplane is found in the feature space, after re-mapping data vectors to the
original input space, the decision boundary may be highly nonlinear.

So-called kernel functions allow to find the optimal separating hyperplane without mapping
the input data to the feature space. Many kernel mapping functions can be used—probably an
infinite number. But a few kernel functions have been found to work well in a wide variety of
applications, i.e.:

(4)

(5)

(6)

where x is the input vector and xi is the i-th support vector.

SVM models are closely related to neural networks; e.g. a SVM model using a sigmoid kernel
function is equivalent to a two-layer, feed-forward neural network. Using a kernel function,
SVM’s are an alternative training method for polynomial, radial basis function and multilayer
perceptron classifiers in which the weights of the network are found from available data, by
solving an optimization problem.

The default and recommended kernel function is Gaussian (Radial Basis Function—RBF).
Furthermore, the linear kernel is a special case of the RBF. A sigmoid kernel behaves the same
as a RBF kernel for certain parameters. The RBF function has fewer parameters to tune than
a polynomial kernel, and the RBF kernel has less numerical difficulties.

It should be however noticed, that even with the use of sophisticated kernel functions, perfect
separation may not be possible, or it may result in a model with so many feature vector
dimensions that the model does not generalize well to other data; this is known as over fitting.
The architecture of the SVM classifier with kernel functions is shown in Fig. 3b.

Classification Results
An LVQ neural network and an SVM classifier were constructed based on TCCS velocity data
and angiographic classifications of cerebral vasospasm. Four categorical descriptions of MCA
vasospasm (normal, mild, moderate, and severe) on DSA defined the outputs of the constructed
classifiers. TCCS determinations of blood flow velocities (VPS, VMEAN, and VED) were used
as input variables for the LVQ network and the SVM model. The LVQ neural network and the
SVM classifier were expected to automatically assign the set of three MCA blood flow
velocities to a particular class of vasospasm.
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In the group of 158 arteries included in analysis, mild vasospasm was angiographically
diagnosed in 15, moderate in 17, and severe in nine. The kappa coefficient for interobserver
agreement in angiographic diagnosis of the MCA spasm resulted in a kappa value of 0.80. The
agreement between two radiologists, who classified the MCA spasm, appeared to be somewhat
lower, at κ = 0.63.

Input vectors to the LVQ network were preprocessed using the MinMax Table transformation
for all numerical experiments and the ‘In-Class Winner Always Learns’ algorithm was
employed in LVQ training (Bishop 1997). Table 2 illustrates the diagnostic performance of
two LVQ architectures in the four-class discrimination task. The overall classification rate (the
ratio of the sum of correctly recognized cases in each class to the total number of cases
classified) increased with the number of neurons in the Kohonen layer. The classification rate
varied from 64.94% for eight competitive neurons to 72.34% for 16 competitive neurons. Table
2 also contains classification results for individual classes of vasospasm in the form of a
confusion matrix. For ideal classification, the matrix should contain ones on the diagonal and
zeros everywhere outside the diagonal. Each column of the matrix summarizes the
classification of cases, which truly belong to a specific class; the numbers in this column
represent the percentage of cases from this class, which were classified by the network as
belonging to consecutive classes.

The results of the four-class separation task, performed by the SVM classifiers with two kernel
functions—RBF and sigmoid, are presented in Table 3. The overall classification rate is
noticeably higher than for the LVQ networks (77.85% for both kernel functions), but the more
careful analysis of the confusion matrices shows the drawbacks of the classification. The higher
accuracy was obtained due to almost perfect classification of the normal category (patients
without MCA narrowing), while the other categories of vasospasm were diagnosed much worse
than by the LVQ networks. As the number of patients not suffering from vasospasm reaches
74% of the entire population used in the study, increasing the classification rate for this group
highly influences the overall classification accuracy. It can be also noticed that almost all the
patients with mild vasospasm were assigned by the SVM to the ‘no spasm’ category.

In a series of successive numerical experiments, groupings of the classes of vasospasm were
used to define broader classifications of cerebral vasospasm. Table 4 details the classification
results for the LVQ network trained to recognize any degree of vasospasm, thus the decision
boundary in the training process was created between the normal artery state and any degree
of vasospasm. In this case, the overall classification rate varied from 79.57% for eight
competitive neurons to 87.57% for 16 neurons in the Kohonen layer. The performance of the
SVM model in the same classification task is presented in Table 5. The overall classification
rate varied from 81.65% for the sigmoidal kernel function to 82.91% for the RBF kernel.

Table 4 shows the classification results for the LVQ network trained to detect moderate to
severe vasospasm (i.e. the decision boundary corresponds to 25% of vessel caliber reduction).
In this case, the overall classification rate varied from 84.67% for eight competitive neurons
to 92.09% for 16 neurons in the Kohonen layer. The corresponding results for the SVM
classifier, presented in Table 5, varied from 93.04% for the sigmoidal kernel function to 93.67%
for the RBF kernel. It should be noticed that the classification accuracy for the SVM model
was slightly better than for the LVQ networks, even with higher number of competitive
neurons.

Table 4 shows the classification results for the LVQ network trained to recognize severe
vasospasm (i.e. to detect at least 50% of vessel caliber reduction). In this case, the overall
classification rate varied from 66.00% for eight competitive neurons to 88.22% for 16 neurons
in the Kohonen layer. Table 5 shows the performance of the SVM model in the same
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classification task. The overall classification rate is equal to 94.94% for both kernel functions
used in experiments, however the analysis of the confusion matrix discloses serious drawback
of the SVM performance. Almost all the data points were assigned to the class with no spasm
or mild and moderate spasm; only one vector of nine allover classified was correctly assigned
to the class of severe spasm. So, in the sense of proper location of the decision boundary, the
LVQ networks behaved much better in diagnosis of severe spasm.

The lowest classification accuracy was obtained when four classes of vasospasm were detected
at the same time, ranging from 65% for a smaller LVQ network architecture to over 72% for
a more complex LVQ network. The diagnostic performance of the test is low, however, simple
visual examination of the data distribution can explain this performance for the neural
classifiers. Figure 4 illustrates the 3-D view (in VPS–VED–VMEAN coordinate system) of the
desired four-class assignment, determined from angiographic data. The projections of the same
data set onto the (VPS–VED) plane are shown in Fig. 5.

In the next series of experiments, the data set was divided into three classes of vasospasm.
Table 6 shows the classification results for the LVQ network with nine neurons in the Kohonen
layer trained to recognize three classes of vasospasm. When two different groupings of classes
of vasospasm were employed, the overall classification rate of the LVQ network remained
similar (76.49% versus 77.27%). Even when the LVQ architecture was more complex
(employing 15 neurons in the Kohonen layer), no significant differences were noted in the
classification of vasospasm. The accuracies of the SVM classifiers for the same divisions of
the data set into three classes are shown in Table 7. The results are better than for the LVQ
networks (82.91% and 79.75% for the RBF kernel), however the class boundaries have not
been established properly. Most of data, which in fact belong to the class of mild (or mild and
moderate) spasm was assigned by the SVM model to the class of no spasm.

Discussion
TCCS may provide consistent and reproducible measurements of blood flow velocities in the
basal cerebral arteries (Krejza et al. 2000). A reliable diagnosis of vasospasm, however,
requires appropriate definition of a critical velocity threshold or a set of TCCS parameters
(Lysakowski et al. 2001; Mariak et al. 2002).

In our previous work, we used the receiver operating characteristics curve analysis to evaluate
the overall diagnostic performance of TCCS in the detection of MCA spasm (Mariak et al.
2002; Krejza et al. 2003). In that study, we employed a single blood flow velocity as an indicator
of vasospasm. We noted that TCCS may accurately classify vasospasm in up to 80% of cases.
In the setting of moderate-to-severe vasospasm, the diagnostic accuracy of TCCS reached 93%.
As a part of the study, we also established a VPS threshold value of 182 cm/s as the optimal
trade-off between sensitivity and specificity of the test. TCCS discrimination of any degree of
vasospasm with respect to an absence of vasospasm met limited success and we therefore
attempted to expand the set of parameters to successfully increase the accuracy of this method
(Krejza et al. 2003). Integration of the expanded data set may be impractical, however, for
routine clinical application. The development of an ANN and classification of data in multi-
dimensional space for this purpose may facilitate this endeavor.

We constructed a LVQ network to solve a pattern recognition task, discerning patterns of blood
flow velocity measurements that corresponded to angiographic classifications of cerebral
vasospasm. The pattern presented to the network inputs consisted of a set of blood velocities:
VPS, VED and VMEAN. The tasks performed by the LVQ network resemble the more
conventional problem of discriminate analysis, which may be understood as partitioning
multidimensional space into subspaces corresponding to the required classes of discrimination,
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where the number of dimensions in this hyper-space is equal to the number of analyzed
parameters (Johnson and Wichern 1992). During training, the LVQ network created the
boundaries of a selected number of sub-spaces corresponding to classes of vasospasm defined
on angiography.

Several aspects of the constructed LVQ network were arbitrarily selected. The categorization
scheme for cerebral vasospasm and subsequent groupings were user defined. This method of
data classification enabled us to split the dataset into two classes (i.e. perform binary
classification) and also study the performance of LVQ networks in the diagnosis of all primarily
selected vasospasm classes. In the binary classification problem, we could differentiate normal
angiographic findings from any class of vasospasm and distinguish severe vasospasm from
any other status of the MCA. Several variations in LVQ architecture, employing different
numbers of neurons in the Kohonen layer, were examined in various classification tasks. The
number of LVQ outputs varied and was equal to the number of user-selected classes of
vasospasm, while the number of inputs was always three: the values of VPS, VED and
VMEAN.

The diagnostic accuracy or classification rate of the LVQ networks varied depending on the
number of vasospasm classes delineated and the number of competitive neurons in the network
architecture. The overall classification accuracy decreased with the number of vasospasm
classes to be detected and increased with the number of neurons in the Kohonen layer.
Diagnostic accuracy could probably be further augmented by using LVQ networks with a
greater number of competitive neurons by splitting the input space into a greater number of
small sub-regions and it would be possible to obtain more complex shapes for the decision
boundaries. As each additional neuron is added to the Kohonen layer, the number of synaptic
weights in the network increases. Assuming that the LVQ network has three inputs and four
outputs, the number of synaptic weights assigned to each competitive neuron is equal to seven.
As the number of data sets used for training is constant (at least limited by the number of
patients examined), increasing the network complexity violates the condition known as the
Vapnik– Chervonenkis dimension (Haykin 1999). This states that there should be an adequate
number of training vectors compared to the number of network weights, and some researchers
claim that this proportion should even be about 10:1. Otherwise, the network learns to
memorize the training patterns and loses generalization abilities. In our experiments the number
of competitive neurons never exceeded 16, including four outputs in the LVQ network and
yielding 112 synaptic weights.

One can readily see that the data assigned to specific vasospasm classes occupy overlapping
regions in the input space, spanned across the set of blood flow velocities. As the VPS, VED,
and VMEAN for a patient are correlated, the data are also placed around the diagonal of each
plot. A general trend of increasing velocities with vessel narrowing is clearly visible from the
Fig. 4 and Fig. 5, yet no specific velocity set exists which may separate the regions associated
with specific classes of vasospasm. The boundaries of these regions, corresponding to different
classes of vasospasm, would be very complicated and are more likely created by the biological
variability of cerebral vessels, than by the physical relationships between the class of vessel
narrowing and the increase in flow velocities. Nevertheless, with the software used in numerical
experiments it is possible to determine the contribution of individual network inputs to the
classification results. The ANN methodology confirmed our previous finding that the best
TCCS parameter for detection of MCA spasm is the peak systolic velocity (Mariak et al.
2002;Krejza et al. 2003).

The highest accuracy rate (85% for a smaller LVQ network architecture and 92% for more
complex LVQ structure) was obtained for binary classification, i.e. discrimination between
moderate-to-severe vasospasm from normal arterial states plus mild vasospasm. Such
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diagnostic performance may be regarded as very high, matching the results obtained with a
conventional diagnostic approach, in which evaluation of TCCS data was performed by a
human examiner. The relatively high accuracy of the conventional approach leaves minimal
room for further improvement and the performance of ANN may therefore be regarded as close
to perfect.

The accuracy for the binary classification of “no vasospasm” and “vasospasm of any severity”
was significantly lower and amounted to 80% for the smaller LVQ network architecture and
87% for the complex LVQ structure. As the accuracy obtained by a human investigator (and
estimated with ROC analysis) amounted to only 80%, our results suggest that an ANN may be
a useful method for future integration of such diagnostic data (Mariak et al. 2002; Krejza et al.
2003).

The similar conclusions can be made from the analysis of the performance of the second
powerful classification tool used in our experiments—the Support Vector Machine models.
Due to the location of the data in overlapping regions in the input space, the classification done
by SVM was also far from being perfect. For all the classification tasks, applied to specific
groups of spasm data, the SVM models seemed to outperform the LVQ networks. Nevertheless,
the class boundaries were not established properly by the SVM classifiers; it could be observed
that the spasm classes with the small number of data vectors were “absorbed” by the classes
with large number of members. It could be also noticed that for the SVM models the general
trend of improvement the classification accuracy for simpler divisions of the data set was
similar to these, observed for LVQ networks.

An important methodological consideration is that measures of performance for all methods
of diagnosing cerebral vasospasm are always calculated against cerebral angiography—the
“gold standard” in this particular clinical scenario. The angiography is not necessarily perfect
but is the best available method today. The kappa coefficient for inter-observer agreement in
angiographic detection of moderate-to-severe MCA spasm amounted to 0.80, whereas the
agreement between two radiologists in the detection of mild MCA spasm was even lower, with
a value of 0.63 (Krejza et al. 2003). As even expert classification of angiographic vasospasm
is only modest the accuracy of any diagnostic method will be limited when compared to this
gold standard. As a result of these limitations, the results generated by the ANN will always
be biased with this uncertainty and the best attainable accuracy can never reach 100%.

Conclusions
The LVQ network show superior performance in the two-class separation problem. For the
detection of moderate-to-severe MCA spasm, the classification accuracy reached 92% and
87% for identification of other classes of MCA vasospasm. Such diagnostic accuracy is better
than the results obtained by a human investigator and the classification may be simultaneously
determined for more than two classes of vasospasm.

Further improvements in diagnostic accuracy may be attained through increasing the number
of input variables by adding other clinical data and extracranial carotid blood flow parameters
(Lindegaard et al. 1989). In the numerical experiments, not documented in this study, also the
impedance index of pulsatility (PI), calculated as PI=(VPS-VED)/ VMEAN was used as the fourth
network input or in the combination with the selected pair of blood flow velocities. We also
used the vessel resistivity index (RI), which could be computed from original Doppler
recordings. The preliminary numerical experiments did not show significant improvement of
classification, when the additional variables have been added to the input vector. However, in
the case of the extended inputs in the three- or four-class classification problem, the number
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of competitive neurons in the LVQ networks could not be high enough, because the number
of the synaptic weights is limited by the number of training samples available.

Alternative strategies may employ a more complex network structure. Such refinements, as
well as increasing the number of network inputs, require a much larger sample of TCCS data.
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Fig. 1.
56-years old woman 6 days after subarachnoid hemorrhage due to rupture of aneurysm of the
posterior cerebral communicating artery. a Digital subtraction angiography shows severe
vasospasm of distal M1 segment of the middle cerebral and A1 segment of the anterior cerebral
artery. b Transcranial color coded duplex sonography shows the spastic M1 segment in blue
(aliasing artifact), which enables for the operator to place the sample volume precisely at the
place of the highest velocity acceleration and correct for the angle of insonation, which is
substantial—43°. Mean flow velocity is 393 cm/s after correction for the angle. The finding
corresponds to patient’s hemiplegia
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Fig. 2.
a General architecture of the LVQ neural network, which assigns the input vector x (of the
length N) to one of M classes. The neurons in the competitive layer, which create the centers

of the subclasses are marked as . b The final split of the input space into classes by grouping
the Voronoi polytopes by the output (summation) layer of the LVQ network
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Fig. 3.
a General principle of the solution of the two-class separation by the Support Vector Machine
(SVM). The transformation from the original input space into the feature space allows to find
the optimal hyperplane, which perfectly separates the classes. Re-mapping to the original input
space results in the nonlinear decision boundary. b The architecture of the SVM model, which
uses kernel functions to perform data classification
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Fig. 4.
3-D plot of TCCS derived peak-systolic (VPS), end-diastolic (VED) and mean (VMEAN) blood
flow velocities based on four angiographic classes of MCA spasm
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Fig. 5.
a 2-D projection of the velocity data presented in Fig. 4 onto the VPS–VED plane. The
markers symbolize the same classes of vasospasm as in Fig. 4. b Distribution of the VPS for
four classes of vasospasm. Class codes correspond to the same classes of vasospasm as denoted
in Fig. 4. c Distribution of the VED for originally defined four classes of vasospasm. Class
codes correspond to the same classes of vasospasm as denoted in Fig. 4
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Table 2
The diagnostic accuracy of LVQ networks for discrimination of four categories of vasospasm increases with the number
of competitive neurons

VA1-des VA2-des VA3-des VA4-des

Number of neurons in Kohonen layer: 8

  VA1-act 0.7168 0.3529 0.1053 0.2222

  VA2-act 0.2478 0.5882 0.0526 0.0000

  VA3-act 0.0354 0.0588 0.7368 0.2222

  VA4-act 0.0000 0.0000 0.1053 0.5556

Overall classification rate=0.6494

  Number of neurons in Kohonen layer: 16

    VA1-act 0.8496 0.3529 0.2105 0.1111

    VA2-act 0.0442 0.5294 0.0000 0.0000

    VA3-act 0.0256 0.1176 0.7368 0.1111

    VA4-act 0.0796 0.0000 0.0526 0.7778

Overall classification rate=0.7234

Vasospasm is categorized as class 1—normal (VA1), class 2—mild (VA2), class 3—moderate (VA3), and class 4—severe (VA4). All LVQ networks
contained three input variables (TCCS velocity data) and four output variables (categories of vasospasm). Confusion matrices detail code of actual (act)
class (rows) versus code of desired (des) class (columns)
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Table 3
The confusion matrices, showing the diagnostic accuracy of SVM classifiers for discrimination of four categories of
vasospasm

VA1-des VA2-des VA3-des VA4-des

RBF kernel

  VA1-act 0.9646 0.9412 0.3158 0.2222

  VA2-act 0.0000 0.0000 0.0000 0.0000

  VA3-act 0.0354 0.0588 0.6842 0.6667

  VA4-act 0.0000 0.0000 0.0000 0.1111

Overall classification rate=0.7785

  Sigmoid kernel

    VA1-act 0.9823 1.0000 0.4211 0.2222

    VA2-act 0.0000 0.0000 0.0000 0.0000

    VA3-act 0.0177 0.0000 0.5789 0.6667

    VA4-act 0.0000 0.0000 0.0000 0.1111

Overall classification rate=0.7785

Vasospasm is categorized in the same way as for the LVQ networks (see Table 1); the inputs of the SVM classifiers were also the same
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