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Abstract 
 
Recent research has shown that there is a strong correlation between the functional properties 
of a neuron and the morphological properties of dendritic spines. Morphological analyses 
typically involve a significant component of computer-assisted manual labor, which is time-
consuming and susceptible to operator bias.  Existing automatic or semi-automatic approaches 
can largely reduce user efforts, by automatically detecting the dendritic spines with little human 
interaction required during the processing. However, problems such as degraded detection 
performance for images with larger pixel size (e.g. 0.125 m /pixel instead of 0.08 m /pixel) still 

exist. Moreover, the shapes of detected spines are also distorted. For example, the “necks” of 
some spines are found to be missing. In this article, we present an oriented Markov random field 
(OMRF) based algorithm that improves the detection of spines as well as their geometric 
characterization. We begin by the identification of a region of interest (ROI) in the image 
containing the dendrites and spines. For this, we introduce an adaptive procedure for identifying 
the background region of the image. Having identified the ROI, the OMRF model is next 
discussed within a statistical framework and the segmentation is solved as a maximum a 
posteriori estimation (MAP) problem, whose optimal solution is found by a knowledge-guided 
iterative conditional mode (KICM) algorithm. The validation results show that the proposed 
algorithm not only provides a more accurate representation of the spine shape, but also 
improves the detection performance for existing algorithms by more than 50% with regard to 
reducing both the misses and false detection.  
 
 
I Introduction 
 
    The dendrites are cellular extensions of a neuron with many branches, where more than 90% 
of input to the neuron occurs. The dendritic spine is a small (sub-micrometer) membranous 
extrusion of the dendrites that contains the molecules and organelles involved in the 
postsynaptic processing of the synaptic information. The remarkable ability of dendritic spines to 
change shape rapidly, viz. the spine plasticity, is implicated in motivation, learning, and memory 
[1][2]. The abnormalities in dendritic spine morphologies are believed to be associated with a 
variety of brain disorders. In particular, neuron morphology is illustrative of neuronal function 
and can be instructive in the dysfunction seen in neurodegenerative conditions such as 
Alzheimer’s disease and Parkinson’s disease [3][4]. Cognitive disorders such as autism, mental 
retardation and fragile X Syndrome [5][32], may also be resultant from abnormalities in dendritic 
spines, such as the number of spines and their maturity status. 
 
    Modern fluorescence microscopy methods, such as confocal laser scanning microscopy 
(CLSM) and two-photon laser scanning microscopy (2PLSM), provide powerful tools to study 
dendritic spine structures. Currently the analysis of neuronal images generated by these 
microscopes has remained largely manual. The accuracy of manual detection performed by a 
trained expert is usually higher compared with the automatic results, even with the possible bias 
problem. However, usually such analyses are still extremely time-consuming even with the 
computer assistance, which makes it infeasible to manually analyze a great amount of data. 
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Automation with compatible detection accuracy is thus in great need for dendritic spine analysis. 
Recently, some automatic dendritic spines analysis algorithms have been provided for both in 
vitro [6]-[11] and in vivo [33] images. Koh et al. propose a geometric approach for automatically 
detecting and quantifying the structure of dendritic spines [6]. Xu et al. propose a new attached 
spine component detection algorithm by using two grassfire propagations [7]. Based on Koh’s 
approach, Weaver et al. describe a package which is capable of morphometry on an entire 
neuron, by combining the spine detection algorithms with dendritic tracing algorithms [8]. Cheng 
et al. propose an automatic spine detection pipeline based on the adaptive thresholding and 
local dendrite morphology analysis [9]. Bai et al. [10] used an unsharp mask filter to partly 
correct the inhomogeneity of image intensity. A global threshold computed using a histogram-
based strategy is used to segment the neuron structures from the background. Zhang et al. [11] 
apply a curvilinear structure detector to extract the boundaries as well as the centerlines for the 
dendritic backbones and spines. A classifier using Linear Discriminate Analysis (LDA) is further 
built to help improve the accuracy of spine detection. Although these algorithms can greatly 
reduce the human labor, problems still exist. For instance, the efficiency of detection will 
degrade for images with larger pixel sizes, in which the spines occupy relatively few pixels. Also, 
the above mentioned algorithms are prone to break the spine necks: pixels in spine neck 
regions usually have low intensity values and are likely segmented as background, which cause 
the spines to be broken into several detached components thereby further degrading spine 
detection performance. To deal with these issues, here we propose a novel maximum a 
posteriori - oriented Markov random field (MAP-OMRF) framework for dendritic spine 
segmentation.  
 
    Markov Random Field (MRF) models were first proposed for image processing by Geman 
and Besag [25]-[27]. Since then, they have been intensively studied in this field for various 
applications, largely because of their ability to encode expected spatial correlations through 
contextual constraints of neighboring pixels. Usually, the correlation structure is such that pixels 
are expected to have the same or similar intensities, i.e. the image is piecewise constant or 
piecewise continuous. In the literature, the MRF based segmentation methods have been widely 
applied to medical images obtained from many modalities operating across a range of 
application areas. These include, but not limited to, cardiac imaging [12]-[13], brain imaging 
[14]-[18],[29]-[30], digital mammography [19]-[20] acquired by magnetic resonance imaging 
(MRI), ultrasound, positron emission tomography (PET), and electron microscopy.  
 
    Despite the successful applications in medical image segmentation, MRF methods have 
seldom been used in dendritic spine detection, partially because of the need to specialize these 
models to address the specific problems discussed previously concerning spine segmentation. 
To deal with these issues, the OMRF model is proposed in this paper.  By encoding the location 
orientation of the spines relative to the dendrite, this model allows us to overcome many of the 
segmentation challenges mentioned above. To reduce the computation complexity and make 
the algorithm more robust to the background noise, a region of interest (ROI) estimation 
algorithm, which is based on an iterative spline background correction, is also proposed. Finally, 
we present a knowledge-based iterated conditional modes (KICM) algorithm in which biological 
constraints are incorporated in the transition matrix. Compared with the normal ICM algorithm, 
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the segmentation performance of KICM is much improved because of its ability to accurately 
locate the spine base.  
    The paper is divided into the following parts: how to obtain the images are first discussed in 
Section II. Then, the algorithms are presented in Section III, where the OMRF model is 
proposed. We also describe the computation of the orientation map needed by the OMRF, as 
well as the ROI estimation algorithm. The KICM optimization scheme is discussed next. In 
Section IV, the segmentation and detection results are compared with other existing methods 
and validated manually. Finally the conclusion is provided and the future works are discussed in 
Section V. 
 
II Image acquisition  
 
    Brain slices from the hippocampus were prepared from rat pups (P7) and cultured as 
described in Alvarez et al [21]. Slices were transfected with a green fluorescent protein (GFP) 
expressing vector and pyramidal neurons were identified based on their characteristic 
morphology at 7-20 days post-transfection (DPT). Neuronal morphology was studied using 2-
photon laser scanning microscopy (2PLSM) and a custom-built microscope with a water 
immersion objective (Olympus LUMPlanFI/RI 60x, NA=0.9). The excitation wavelength was 910 
nm provided by a Verdi 10-V.-Mirra laser (Coherent). Measurements performed on 100 nm 
diameter yellow-green fluorescent microspheres (FluorSpheres, Molecular Probes) indicated 
that the point-spread function of the microscope placed a lower limit on measurable widths of 
550 nm.  
 
    Images (512 x 512 pixels) of apical and basal dendrites of hippocampal pyramidal neurons 
were acquired at zoom 3 and 5 (image field, 64x64 µm and 42x42 µm, respectively). The 3D 
image stacks were 16-bit grey-scale with 1 µm optical section spacing with 20-36 slices in each 
stack. The analyzed dataset includes a variety of genotypes to ascertain how well our algorithm 
detects spines with a wide distribution of morphologies. The manual analysis of spine density, 
length, and width was performed by observers who were blind to the genotype by using in-
house developed software [21, 31]. Spine lengths were measured from the junction with the 
dendritic shaft to the tip. To determine head width and primary dendrite thickness, the 
fluorescence was measured in a line across the structure. The width of the distribution where 
fluorescent intensity fell to 30% of maximum was calculated as the results. 
 
III Algorithms  
 
    Although 3D image stacks were acquired, our proposed algorithms are based on the 2D 
maximal intensity projection (MIP) images. This choice was made because: the resolution in the 
z- direction is much lower compared with that in x- and y- directions. For spines which are big 
enough, the 3D information in neighboring slices is helpful for detection. However, there are 
many spines which are so small that they only appear in one slice thereby limiting the utility of a 
full 3D approach. The same is true with the spine necks which are much thinner compared with 
the head components. Since the purpose of our algorithm is to solve the detection problem of 
small spines and the spine necks, we only propose 2D algorithms. Actually, because most of 
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the morphological information of the dendritic spine is included in the MIP image, 2D based 
automatic algorithms can effectively detect and measure the dendritic spines. This has been 
proved by several recently published papers [9]-[11].  
 
    The overall structure of our proposed algorithms is outlined in Fig. 1: in order to reduce the 
computational complexity and improve the detection performance, segmentation is performed 
only over a region of interest (ROI) covering the area around the dendrite. The algorithm for 
determining this ROI is provided in Sect. 3.1. The calculation of the orientation map used by our 
OMRF is then described in Sect. 3.2. Based on the ROI and orientation map, as well as the 
original image and the initial segmentation results, the OMRF model is proposed in Sect. 3.2 for 
the purpose of dendritic spine segmentation. Finally, the KICM algorithm which can efficiently 
find the final segmentation is presented in Sect. 3.3. 
 
                                    existing algorithms 

 
 
                                    algorithm in Sect. 3.1                                                                                       KICM 

 
                                                                algorithm   in Sect. 3.2 
 
 
 
 

Figure 1: structure of the proposed algorithms 

 
3.1 Region of interest 
 
    The main purpose of our ROI algorithm is to reduce the computation cost as well as improve 
detection performance by limiting the spine segmentation processing to a region surrounding 
the dendrites which is much smaller than the full image. In existing spine detection algorithms, 
simple physical constraints are applied to improve the detection results. For example, only those 
detected blobs within a certain distance to the dendrite are considered to be spines [5]-[11]. 
However, many background pixels are still contained in the local regions. These noisy 
background pixels not only increase the processing time, but also potentially increase the risk of 
misdetection. To deal with this issue, we propose a local ROI estimation method derived from 
an iterative spline based background correction algorithm (ISBC) [24]. The ISBC algorithm is 
initially proposed for solving the problem of large scale intensity variations and shading effects 
in the image caused by uneven illumination, however, it can also be applied to acquire the ROI 
with minimal modification. 
 
    The background is estimated and modeled by a cubic B-spline surface patch S . The value of 

a surface point of the patch S can be written as [24]: 

 kl kllk cvBuBvuS )()(),(                                                        (1) 
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where ),( vu is position of the pixel; klc is a control point of the surface (an evenly spaced 55 

grid of control points are used in this paper); kB and lB are the B-spline blending polynomials 

and the Cartesian product of the two functions is the weight given to the control point. Eq. (1) 
indicates that the estimated value of each pixel in the patch S  is the weighted summation of all 
control points. The control points are initially estimated by minimizing the Euclidean distance 
between the spline surface and the original image using least squares regressions.  For this 
process, neither the background nor the foreground has been determined yet, thus all of the 
pixels in the image are used in the fitting procedure.  Since the much brighter pixels in dendrites 
and spines (i.e., the foreground) are included in the background estimation stage, the initially 
estimated background must be adjusted. This is done by masking out the foreground pixels and 
applying the spline surface fitting to the refined potential background regions. The foreground 
pixels are determined through a simple thresholding procedure described below. The process of 
masking the foreground and recomputing the background spline fit is iterated until the average 
change of pixel values between two consecutively estimated backgrounds is small enough, e.g. 
less than the original quantization step of the image, which is set as 1 for our testing. The ROI 
can then be obtained by thresholding the background compensated image, which is calculated 
by subtracting the estimated background from the original image. The “compensated image” is 
calculated by subtracting the iteratively estimated background from the original image. Since the 
background is initially set as zero, the compensated image is initialized as the original image 
itself. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 2: (a) original image; (b) background compensated image scaled to have pixel values between 0 and 255 (c) 
ROI obtained after segmenting the background compensated image and denoising (d) ROI (regions inside the high-
lighted curves) in the original image 
 

    At all stages during this process, the masking procedure is accomplished using a simple 
threshold. Suppose the standard deviation of the pixel values in the background compensated 

image is c . With mean normalized to 0, the foreground R  is defined by:    

})(| pixel all{ cc kiIiR                                                 (2) 

where )(iI c  is the pixel value at i  in the background compensated image; k is a factor which is 

set as 10 during our validation.    
 
    Fig. 2 provides an example of this process. For the purpose of better visualization only, Fig. 2 
(b) is the final background compensation image scaled so that the pixel values are in the range 
of 0 to 255.  Fig. 2 (c) shows the ROI obtained after thresholding, with small objects removed by 
applying opening operation (erosion followed by dilation). As we can observe from Fig. 2 (d), all 
protrusions along the dendrite boundary, which are potential spines, are contained in the 
obtained ROI. The ROI is a much reduced region compared to the original image which can be 
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obtained in seconds: for the 512512 image shown in Fig. 2 and codes implemented in Matlab 
without optimization, the ROI can be obtained in less than 3 seconds by a PC with a 2.5GHz 
CPU; the number of pixels in the ROI is 49679, which is about 81% reduction of the total pixels 
in the original image. To further test the effectiveness of the ROI, the processing time with and 
without using ROI is compared: for ten images being tested, the average processing time for the 
proposed segmentation algorithm with using ROI is about 2’4.8’’, which is about 46% reduction 
compared with the average 3’52.2’’ processing time without using ROI.  
 
 
3.2 Oriented Markov Random Field 
 
3.2.1 General Model 
 
    MRF models are widely applied in various fields of image processing due to their ability to 
mathematically capture the intrinsic spatial structure of images. Usually for MRF-based 
methods, segmentation is achieved through an optimization process. The optimization function 
is derived from probabilistic models of the data and the prior information concerning the spatial 
structure of the segments which is encoded in the MRF. Indeed, one of the most appealing 
aspects of the MRF formulation is its flexibility in representing structural prior information across 
a wide variety of applications. For the problem of interest here, the primary source of prior 
information concerning spines is related to the structure of the dendrite. Indeed knowing the 
location and orientation of the dendrite places important geometric and morphological 
constraints on the associated spines.  In this paper we introduce a new MRF model which 
considers the inherent orientation information in the neuron cells, viz. OMRF model.  
 
    We model the observed grey scale image as a random field y , with the intensity of a pixel at 

location i  denoted by a random variable iy . The distribution of different regions is denoted by a 

random field x , where the variable  Kxi ,...,2,1 means that the pixel i  belongs to one of the 

M region types. For the neuron images, K =3, representing three classes of interest in this 
application: the dendrite, spine and background.  
 
    Given the observed data y , the problem of segmentation amounts to the determination of x , 

that is, the labels associated with each pixel.  We pose this problem in a statistical framework as 
a maximum a posteriori estimation problem where x  is chosen to maximize the posterior 
distribution of the label based on y [23].  Formally, by using Bayes theorem this distribution is 

described as: 
)()|()|( xxyyx ppp                                                                (3) 

where )(xp is the a priori probability density of the image; )|( xyp is the conditional probability 

density of the observed image given the distribution of regions. After removal of the shot noise 
by median filter, the likelihood for each pixel )|( xyp  can be described by independent 

Gaussian [22]. The assumption that the intensity of each pixel is statistically independent can 
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greatly simplify the processing. Under the independent and Gaussian assumption, the possibly 
observed image with x  known can be represented as:  













 
Si

xii
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,2

,

)(
2

1
exp)|( 


xy                                        (4) 

Here S is the collection of all pixels; 
ixi,  and 

ixi, are the variance and mean value of the 

intensity of pixel i , which is represented by a random variable iy . The variance and mean 

value are class depended, i.e. they are functions of ix , which means that the intensity 

distribution for pixels of different types (e.g. spine, dendrite and background) are different. In 
addition, from a practical perspective the mean values and variances also vary over the image: 
their values are also related to the pixel location i . This is based on the observation that even in 
the same image the intensities vary largely for spines or dendrite pieces at different locations. 

Thus, the mean and variance should be estimated adaptively.  Calculation of 
ixi, and 

ixi, will 

be discussed in detail in Section 3.3.1 
 
    The a priori density )(xp  is described by the OMRF model. According to the Hammersley-

Clifford theorem, any Markov random field can be described by a probability distribution of the 
Gibbs form [25]:  

P(x)  Z 1eU (x)                                                                            (5) 

where )(xP denotes the probability of configurations of the random field x and )(xU is the 

energy function and Z a constant needed to ensure that P integrates to one. We notice that the 
neuron dendrites are oriented structures: the growing direction of each spine is normal to the 
orientation of local dendrite pieces. This natural orientation information can be combined into 
the energy function:  


 


Si

i
T

ijj
Nj

i vuxxDU
i

|)]|1(1)[,()(
x                            (6) 

where iv


is the orientation of the dendrite in the vicinity of pixel i  and will be described in detail 

in the following section; iju


is the direction of the line connecting two neighboring pixels of i  and 

j ;   is the weight factor of the orientation information;   is a parameter which controls how 

strong the spatial regularization is; S is the collection of all pixels; iN is the 8-neighbor of pixel 

i ; ix  is the segment associated with pixel i ; jx is the segment of neighboring pixels of i ; 

and ),( ji xxD  is the similarity function. If ji xx  , i.e. pixel i and j are of the same type, the 

value of ),( ji xxD  is set as 0, otherwise the value is set as 1. Thus, pixel i  is intended to be in 

the same region as most of its neighboring pixels, which will reduce the energy )(xU .  From 

Eq. (3) - (6), we have: 
 
                       )()|()|( xxyyx pPP   
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3.2.2 Orientation map 
 
    The use of orientation is motivated by the intuition that the probability of being segmented as 

a spine pixel should be related to the directions of both iv


 and iju


. Suppose the backbone of 

the dendrite has already been obtained by thinning and trimming algorithms [9]. Assume kc is a 

backbone pixel, we denote by },,,,{ 2112  kkkkkc cccccR
k

 the set of local backbone pixels 

from which we shall determine the orientation at kc . In greater detail, linear least squares is 

used to fit a line through these five pixels.  Letting 
kc be the slope of that line, iv


is defined as:   

}  topixel backbonenearest   theis | slopewith vectorunit{ ic  v kci k



                    (8) 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 3: (a) original image; (b) initial segment result of the neuron without spine detection; the white curves are the 

extracted backbone pieces; v


and g


are the estimated local dendrite orientation and the growing direction of the 

spine respectively; (c) sampled orientation map 

 
    Fig. 3 demonstrates how the orientation map is obtained. The orientation of a pixel is defined 
as that of the neighboring backbone pixel with the least Euclidian distance, which is estimated in 
a local window as shown in Fig. 3 (b). Fig. 3 (c) shows the sampled orientation map. The 
orientation of pixels outside the ROI is set to zero, because we limit our attention to the ROI 
surrounding the dendrites for segmentation. In Fig. 3 (c) we notice that along the same dendritic 
trunk, the vectors may abruptly change direction. This is because there are possibly two angles 
which can describe the orientation of the backbone,  and  + . Since only the absolute 
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values of the scalar product between the vectors are needed in Eq. (7), this ambiguity is 
irrelevant to the results. In this paper, we assume that the angles are between 0 and  . 
 
3.3 Optimization Algorithm 
 
    In neuron images to be processed, there are three different region types, i.e. spine, dendrite 
and background. For our approach, the segmentation of neuron images is designed as a 
maximum a posteriori estimation (MAP) problem. Suppose y is the observed data, the optimal 

segmentation results x̂  is found by solving the following MAP estimation problem:  

)|(maxargˆ yxx
x

P                                                                        (9) 

To acquire the optimal solution, an extended iterated conditional modes (ICM) algorithm, viz. 
KICM algorithm is proposed in this paper. The interleaved ICM and local parameters updating 
scheme is applied [28], i.e., estimation of the optimal segmentation x̂  and parameter updating 
are alternatively performed. 
 
3.3.1 Parameter estimation 
 

    Here we denote by 1θ̂ and 2θ̂  the optimal parameter estimates for the prior model and the 

likelihood model respectively. In this paper, ),(1 θ , where  and  are defined in Eq. (6); 

) ...  ( 212 Nθ , with N being the number of total pixels in the image and ),( 2
,, ii xixii   , 

],...,2,1[ Ni . As mentioned in Eq. (4), 
ixi,  and 

ixi, stand for the mean value and variance of 

the intensity distribution of pixel i respectively, whose values also depend on the segmentation 

result ix . For the purpose of simplifying the computation complexity, here 1θ is set by the user 

prior to execution of the algorithm. For all images being tested, we have 5.0  and 3.0 . 

Since the two parameters are not independent to each other, it is hard to manually find the 
optimal values. Generally, the detection results are good if α [0.3,0.7] and β [0.2,0.4]. As for 

2θ , ideally it should be estimated within a MAP-type framework, i.e. we maximize 

),|( 2 ii xyp θ which is calculated based on the distribution of the prior probability function )( 2θp  

and the conditional probability function )|,( 2θii xyp  according to the Bayes theorem.  However, 

such a process would be quite computationally intensive. Thus, in this paper we pursue an ad-
hoc approach that appears to work rather well in terms of the ultimate objective of improving our 

ability to characterize spine number and shape.  Specifically, 2θ  is estimated on the assumption 

that the intensities of the same type pixels in a local window are independent and identically-
distributed (i.i.d.) Gaussians [22]. Since the estimation of segmentation results x  is updated 

iteratively, 2θ̂  is also iteratively estimated. The parameter of pixel i can be iteratively estimated 

by the following equation: 
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where )(ˆ k
i  is the estimated parameter of pixel i at step k ; )1( kx  is the segmentation results at 

step 1k , with )0(x  being the initial segmentation result obtained by existing algorithms [6]-[11]; 

y is the observed data; )( )1( k
ixS is the set of pixels in a local window around pixel i , with the 

same class as pixel i , i.e. all pixels belong to class 
)1( k

ix . The size of the local window is image 

pixel size dependent and based on the normal size of the dendritic spines. For example, the 
1515 window is chosen for the images being tested with pixel size of 0.125 m /pixel, in which 

the spine areas are generally below 100 pixels. Suppose M is the total number of pixels in the 

set )( )1( k
ixS , a necessary condition for maximizing ),|( )1()( yx kk

ip  , or equivalently maximizing 

),|(ln )1()( yx kk
ip  , is 0

ln
)(

, )1(






k

xi k
i

p


 and 0

ln
)(

, )1(






k

xi k
i

p


. Solving this, we can find the adaptive ML 
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where ],1[ Mj are all the pixels in a 1515 window around pixel i with the same class, i.e. all 

pixels belong to class 
)1( k

ix . 

 
 
3.3.2 Estimation with KICM 
 

    The optimal segmentation result x̂  is further estimated after the parameters 1θ̂ and 2θ̂ are 

obtained. Here an extended iterated conditional modes (ICM) algorithm, viz. KICM algorithm, is 
applied to acquire the optimal solution. ICM [26] is based on two assumptions: 1) The 

observation components myy ,...1 are conditionally independent given x , and each iy has the 

same known conditional density function )|( ii xyp which depends only on its label ix , i.e., 





Si

ii xypp )|()|( xy ; 2) The labeling results satisfy the Markovianity: x depends on the 

labels in the local neighborhood.  
 

    The algorithm sequentially updates the segment result of every point in the image )(k
ix into 

)1( k
ix  by maximizing the conditional probability ),|( )(

}{
)1( k

iS
k

ixP 
 xy , which is performed in a raster 

scan. The iteration stops when the number of pixels that change during a cycle is less than a 
threshold. 
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),|(maxarg )(
}{

)1( k
iSi

Lx

k
i xPx

i




  xy                                                       (13) 

Here }3,2,1{L represents the three different region types in neuron images. The initial 

estimate )0(x can be obtained by any spine detection algorithms [6]-[11].  
 
    For real world applications such as dendritic spine detection, a pure statistically optimized 
solution is not always the best choice for the purpose of image analysis. For example, for 
neuron images, an intensity distribution based model is likely to segment a dendrite pixel as a 
spine pixel because of the similar intensity values. To deal with this issue, more constraints with 
explicit biological meanings must be incorporated into the processing. In our case, these new 
constraints are not used to modify the energy function. Instead, they are employed to develop a 
new strategy of searching for ideal solutions. Unlike the ICM algorithm, the proposed KICM 
algorithm will stop at some point before reaching the statistically optimal solution because of the 
biological constraints incorporated in the transition matrix. The solution, however, is intended to 
possess more biological meaning. For instance, spines are protrusions along the boundary of a 
dendrite. Thus, all pixels inside the dendrite should not be segmented as spine pixels.  
 
    To better describe the KICM algorithm, we first rewrite the normal ICM algorithm in a matrix 
form with the transition matrix A  being defined. For each pixel i , suppose that 

T)(
3

)(
2

)(
1

)( ]  [ kkkk ssss is the segment result of the k -th step. Here   ,0] 0 1[ T)( ks  ,0] 1 [0 T  or 

T1] 0 [0  means the pixel is segment as the spine, dendrite or background respectively. Then we 

have 

)()()1(

)3()3()3(

)2()2()2(

)1()1()1(

A kkk

aaa

aaa

aaa

sss 















                                     (14) 

Here A is the transition matrix,  









},,min{ if  ,0

},,min{ if  ,1
)(

321

321

eeee

eeee
ma

m

m                                                  (15) 

and 1e , 2e , 3e represent the energy if the pixel is segmented as spine, dendrite or background 

respectively. The energy can be calculated by Eq. (6) and (7): 

)|(log1 spinexypEe iis  + )( spinexU i                            (16) 

)|(log2 dendritexypEe iid  + )( dendritexU i                  (17) 

)|(log3 backgroundxypEe iib  + )( backgroundxU i      (18) 

 With some modification of the transition matrix A , the KICM algorithm is described as 

T)(

)(

)(

32

21

12
)(

)1( 0] 0 0[A if  ,

otherwise                               , 

)3()3(

)2()2(

)1()1(

A



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
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

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










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s
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Here the last column of the transition matrix is unchanged, which means if at the k -th step a 
pixel is segmented as background, at the next step it will be segmented only based on the 
lowest energy criterion. However, it is not the case if a pixel is formerly segmented as dendrite 
or spine.  
 

    The value of 12a , 21a , and 32a are calculated based on the prior knowledge (assumption) of 

the neuron image and the initial segmentation results:  
1. In practice incorrectly segmented background pixels are some ‘detached’ noise blobs, which 

have relatively high intensity values and thus are likely to be segmented as spine pixels. 
Thus we assume in the initial segmentation results that no background pixels are 

segmented as dendrite. Based on this assumption we have 032 a , which means that 

initially segmented dendrite pixels cannot be segmented as the background later. 
2. The spines are the protrusions along the dendrite boundary. If we can estimate the width of 

dendrite, then spine pixels can only be those pixels whose distance to the center of the 
dendrite (the backbone) is greater than half of the local dendrite width. The detailed 
algorithm to estimate the width of local dendrite piece is discussed in [9]. Based on this 

assumption, the value of 12a and 21a  can be defined: 

 





 

                               otherwise  ,0

 
2

 and },min{ if  ,1 211
12

i
i

t
deeea                                               (20) 





 

                               otherwise  ,0

 
2

 and },min{ if  ,1 212
21

i
i

t
deeea                                               (21) 

      Here id is the distance between pixel i and backbone, it is the estimation of the width of 

local dendrite 
 

    Let ix be the segment result for pixel i , iSx \ be the current segment result elsewhere, ix is 

the segment result for the 8-neighbor i of pixel i . For MRF models, we have 

)|(),|()|(),|()|( \\\ yxPxyxPyxPxyxPP isiiisisi yx                   (22) 

We notice that ),|( ii xyxP  never decreases: ix  is either updated when lower energy is found, 

or is unchanged when either (a) lower energy can not be found or (b) when T)( 0] 0 0[A  ks as 

described in Eq. (19). Besides, )|( \ yxP is  is kept constant no matter what value ix  is. Thus just 

like the traditional ICM algorithm, the KICM algorithm performs in a hill-climbing manner and 
eventual convergence is assured. 
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(a) 

 
(b) 

 
(c) 

 
Figure 4: comparison between MRF-ICM and OMRF-KICM, (a) original image; (b) segment result with normal MRF-
ICM algorithm; (c) segment result with OMRF-KICM algorithm  

     
    The KICM algorithm is a good complement to MRF-based algorithms, which are based on 
spatial constraints within local neighborhoods.  Normally, performance improves as the size of 
the neighborhood increases. However, larger neighborhoods make the model more complex 
and greatly increase the computation complexity. That is the reason why 4- or 8- neighborhood 
models are normally used for MRFs. The KICM algorithm provides a novel perspective on how 
to combine more local information in a much bigger neighborhood without largely increasing the 
computation complexity. Together with the orientation information included in the prior models of 
the neuron images, the segmentation results can be noticeably improved. Fig. 4 shows the 
comparison of segmentation results between normal MRF-ICM algorithm and the proposed 
OMRF-KICM algorithm. We can observe from the results that the shapes of the dendritic spines 
are much better represented with the “weak” components (spine neck) being enhanced and the 
base of the spines accurately found. 
 
    In summary, the main frame of the proposed OMRF-KICM algorithm is described below:  
 
1. Obtain region of interest by background compensation algorithm described in Section 3.3 
2. Obtain the orientation map described in Section 3.2 

3. Set the value of 1θ  

4. Compute the likelihood probability )|( ii xyp at position i  

5. Initialize the algorithm with the segment result )0(x , 0k  
6. Repeat 

7.       Estimate 2θ̂ with equation (11) and (12) 

8.  Repeat with )(kx known 
9.   For each pixel i in the image 

10.                           calculate energy 1e , 2e , 3e  using Eq. (16)-(18) 

11.                           update )(ma using Eq. (15) 

12.           )()1( A kk ss   using Eq. (19) 
13.   End  
14.   1 kk  

15.  Until the difference between )(kx  and )1( kx is below a threshold 
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16. Until N  times of iteration 

17. Return )(kx as the optimal segmentation results  
 
IV Results and validation 
 
4.1 Validation with existing algorithms 
 
   The proposed algorithm is first applied to the initial detection results obtained by existing 
detection algorithms based on both global thresholding [6] and adaptive thresholding [9]. We 
can observe from Fig. 5 and 6, the OMRF-KICM method can efficiently improve the spine 
detection results for neuron images with different pixel sizes.  

 
(a) original MIP images 

 
(b) results using global thresholding 

 
(c) results using adaptive thresholding 

 

 
(d) after applying OMRF-KICM on (b) 

 
(e) after applying OMRF-KICM on (c) 

 
Figure 5: Detection results for images on with pixel size of 0.08 micron/pixel. (a) MIP images; (b), (d) initial 
segmentation results using global thresholding based algorithms and results after applying the proposed algorithm 
model respectively; (c), (e) initial segmentation results using adaptive thresholding based algorithms and results after 
applying the proposed algorithm 

 
    Fig. 5 shows the detection results for neuron images acquired with the pixel size of 0.08 

m /pixel. From Fig. 5 (b) and (d), we can observe that the initial detection results obtained by 

global thresholding based algorithm are much improved: there are fewer missing spines 
(especially for the right-upper parts.) Also, the false positives are reduced by combining the 
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broken spine components. The ‘weak’ regions such as the spine neck areas have been 
effectively enhanced and the broken spine components are reduced.  Compared with the global 
thresholding based methods, the detection results obtained using the adaptive thresholding-
based algorithm [9] show fewer missing spines. However, there are still some false positives 
caused by the local maximums. The OMRF-KICM method can nevertheless remove those 
positives as shown in Fig. 5 (c) and (e).  
 

 
(a) original MIP images 

 
(b) results using global thresholding 

 
(c) results using adaptive thresholding 

 

 
(d) after applying OMRF-KICM on (b) 

 
(e) after applying OMRF-KICM on (c) 

 
Figure 6: Detection results for images with pixel size of 0.125 micron/pixel. (a) original MIP images; (b), (d) initial 
segmentation results using global thresholding based algorithms and results after applying OMRF-KICM method 
respectively; (c), (e) initial segmentation results using adaptive thresholding based algorithms and results after 
applying OMRF-KICM method 

 
    As shown in Fig. 6, for some neuron images acquired with larger pixel size, both global and 
adaptive thresholding based algorithms cannot efficiently detect low intensity, ‘weak’ spines. 
One easy approach is to include an additional preprocessing step of interpolation so that the 
image can be processed with a smaller image pixel size. However, problems exist for this 
method: besides the reduced detection performance caused by the interpolation distortion, the 
processing time also increases with a bigger image size. For five tested images by using the 
method described in [9], the average processing time for the interpolated images (762762) is 
about 17’18’’, which is more than a seven fold increase compared with the average 2’32’’ 
processing time for images (512  512) without interpolation. The proposed algorithm can 
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nevertheless solve the missing problem well, with higher accuracy and much less processing 
time (average 2’5’’ processing time for 512512 images).  
 
4.2 Validation with manual results 
 
    Automatic dendritic spine detection results, with and without the processing of the proposed 
algorithm, are first compared with the manual results, which are treated as the gold standard. 
Initially each automatically detected spine blob is labeled as a spine. However, in some cases a 
spine seems to be “broken” into several components, which is due to the limited resolution in 
the z- direction and the small size of spine neck. The broken components of a single spine will 
cause errors in the quantification of spine structures including spine number and length. To 
address this problem, a merging algorithm is performed to combine those separated parts into 
single spines. The details of the algorithm can be found in [9]. Basically the combination is 
based are two criteria: the broken parts should be close enough and the orientation of the line 
connecting the centroids of the separated components should be in a certain range of angle, 

e.g. [ o30 , o30 ]. For automatic results, each detected spine component is initially assigned an 
index number, in an order of the distance to the left edge of the image. After merging, the 
broken spine head components are reassigned the same index number as the spine base.  
 
    Fig. 7 illustrates how the broken spine components are combined and how the automatic 
detection results are validated using the manual results. Fig. 7 (a) is the segmentation result of 
part of image 1 by applying method 2 as mentioned in Table 1. We can observe that the broken 
head parts are successfully combined with the relative spine bases, e.g., spine number 23 and 
27. During validation, the spines are manually marked in 3D. Fig. 7 (b) shows how the manually 
marked image looks in the 2D projected image. For better illustration, the false negatives and 
false positives are marked as yellow and red respectively. As we can observe in Fig 7, two 
manually marked spines can not be automatically detected; the automatically detected spine 32 
is actually a false result. 
 

 
(a) 

 
(b) 

Figure 7: Comparison of automatic and manual detection results in MIP image (a) labeled automatic results by 
applying method 2 as mentioned in Table 1, with falsely detected spine marked with red (b) manual results, with 
spine not detected by the automatic method marked with yellow. 
 
    The initial detection results are obtained using both global thresholding (method 1) and 
adaptive thresholding (method 2) based methods. Five neuron images with different pixel sizes 
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are compared. The manual results are included in the braces. The false positive (FP) and false 
negative (FN) values before and after applying the proposed method are listed in Table 1. As 
we can see from the results, the FP (wrong detections) and FN (undetected foreground) are 
decreased for both methods after the processing of the proposed method. The spine density 
measurement, however, does not show much improvement. To better illustrate the differences, 
the precision (P) and recall (R) rates are also provided. According to the paired t-test, the 
precision rates of methods with and without applying the proposed algorithm show significant 
difference with p-value 0.0025. The recall rates also show significant difference with p-value 
0.001. 
 
Table 1: Comparison of spine detection results. Method 1 and 2 are global and adaptive thresholding 
based algorithm respectively, after combining broken spine parts. Method 1+ and 2+ are the above two 
methods with applying the proposed algorithm. Images are acquired with two different pixel sizes, 0.125 
micron/ pixel (Image 1, 3, 4) and 0.08 micron/pixel (Image 2, 5). The numbers in the brackets are the total 
number of spines in the respective images. 

Image 1 (82) Image 2 (67) Image 3 (86) Image 4 (93) Image 5 (36)  

FP/P FN/R FP/P FN/R FP/P FN/R FP/P FN/R FP/P FN/R 

Method 1 8/90% 19/77% 1/99% 15/78% 12/86% 22/74% 4/96% 11/88% 2/94% 4/89% 
Method 1 + 3/96% 9/89% 0/100% 7/90% 5/94% 8/91% 3/97% 6/94% 0/100% 2/94% 

Method 2 3/96% 10/88% 2/97% 13/81% 6/93% 15/83% 5/95% 6/94% 0/100% 3/92% 
Method 2 + 2/98% 6/93% 0/100% 6/91% 3/97% 5/94% 2/98% 2/98% 0/100% 2/94% 

 
    Further validation is performed by comparing the spine length distribution of the proposed 
method with the manual results. The details of how we automatically measure the length of 
attached and detached spines can be found in [9]. Spines in different section of the same 
neuron cell under the same condition (shLUCI in hippocampal pyramidal neurons in rat 
organotypic slice cultures) are tested. There are altogether 235 spines in three different images. 
The CDFs of the two distributions are plotted in Fig. 7, from which we can see that the 
distributions of spine length measured manually and automatically are similar to each other. To 
quantify the difference, the distributions are tested by two-sample Kolmogorov-Smirnov test. 
The null hypothesis that the two distributions are the same is not rejected, which means that 
there is no obvious difference between the two distributions. The probability that the dendrite 
length distributions of manual and automated results are the same is 99.13%. The biggest 
difference between these two distributions is 0.075. 
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Figure 8: Comparison of spine length distribution of manual results and results obtained by the proposed method. 

 
 
    The proposed method is also validated using published manually segmented data. This 
recently published paper [21] examines the off-target effects of expressing short hairpin RNAs 
(shRNA) in neurons. The study shows that expression of shRNA against luciferase, whose 
coding region is not found in the rat genome, triggers dramatic loss of dendritic spines and 
simplification of dendritic arbors. Figure 8 shows the difference of average spine densities and 
average spine length for GUR and shLUCI neurons at 4DPT. By applying the proposed 
methods, a similar reduction of spine density and length by shLUCI as those identified by the 
manual analysis can be detected. These results, therefore, validate the proposed algorithm as a 
valuable tool for automatic analysis of neuronal morphology and the identification of biologically 
relevant changes in dendritic spine morphology and number. 
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Figure 9: shRNA expression induces retraction of dendrites. Method 1 and 2 are manual and results of porposed 
method respectively. a). Summary of data of average spine density at 4DPT for GUR and shLUCI neurons. b). 
Summary of data of average spine length at 4DPT for GUR and shLUCI neurons. 
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V Discussion and conclusion 
 
    In this paper we propose a new OMRF-KICM based method which can efficiently improve the 
automatic detection results of existing algorithms. With the intensity distribution information of 
background, dendrite and spine pixels, as well as the context and orientation information of the 
neurons, OMRF-KICM method can obviously improve the detection performance for image with 
different pixel sizes.  Specifically, according to the results in Table 1, we have demonstrated that 
the false positive and the false negative rates of spine detection can be decreased by more than 
50% after applying the proposed method. There are mainly two motivations to improve the 
detection performance for images with larger pixel sizes. First, larger field of view can be 
obtained for images with larger pixel sizes. Second, because the already existed large amounts 
of experimental data with larger image pixel sizes, it would be very time consuming and a waste 
of resources if all the images have to be acquired again with smaller image pixel sizes. 
 
    The spine density measurement nevertheless showed a little improvement compared with the 
adaptive thresholding algorithm. This is because the total number of automatically detected 
spines is equal to the number of (actual spines + false positives – false negatives.) We can see 
from Table 1 that although the false negatives are reduced by 50%, the numbers of total 
detected spines do not change much because of the simultaneously reduced false positives. 
The measurement of the spine length however is much improved for images with large pixel 
size because of the more accurate detection of small spines and the removal of the long false 
spines. 
 
    Furthermore, the approach also holds promise in terms of providing better representation of 
the true shapes of the spines. The weak parts of the spines, especially the neck regions which 
are hard to detect, are better recognized. We notice that the dendritic trunks in the segmented 
images (Fig. 5, 6) being processed by the proposed method are generally thicker than those 
without the processing. This is partially because the proposed algorithm combines the local 
spatial information with the intensity distribution information for the segmentation. Generally, the 
neighboring pixels are prone to be segmented as the same class, although different weights are 
assigned for neighbors with different orientations. The (2~3 pixel) thicker dendritic trunks make 
it easier to detect the spine necks, however, to a limited extent: we notice that it is the central 
part of the spine neck, not the bottom part near to the dendritic trunks, has much lower intensity 
compared with other parts of the spines, which is the culprit of the broken spine necks. 
 
    We want to point out that the proposed automatic method is not designed for providing 
accurate absolute measurements about the spines such as the length. Our neurobiology 
collaborators are more interested in the comparison between the measurements under 
difference conditions. As long as the measurements can correctly reproduce the changes, 
accurate absolute measurements are less of a concern. 
 
    The proposed MAP-OMRF method can efficiently improve the automatic detection result. 
However, its performance can be further enhanced.  As we observe from Fig. 7 (a), two 
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segmented spine blobs are attached to each other. It is a challenging problem to automatically 
separate the linked spines. Marker based watershed transformation or the level set algorithm 
can be the two potential choices to solve this problem. Also, the efficiency of constraint 2 of the 
KICM algorithm depends on the accuracy of the estimated local dendrite width.  In cases where 
the size of one spine neck is abnormally large, the small nearby spines cannot be correctly 
detected. This problem needs to be addressed in the future work. 
 

Another interesting topic for the future work is the online calculation of 1θ̂  and 2θ̂ , which are 

the optimal estimation of 1θ  and 2θ respectively. Suppose y is the observed data and x  is 

the distribution of different regions, 2θ̂ can be estimated via the maximization of the posterior 

probability function ),|( 2 xyθp , which is calculated based on the prior probability function 

)( 2θp  and the conditional probability function )|,( 2θxyp  according to the Bayes theorem. How 

to obtain )( 2θp  is not straightforward, because of the random location of the dendrite and spine, 

as well as the inhomogeneous intensity in the images. MRF model based method is one of the 

possible approaches. Suppose x̂  is the optimal segmentation results, 1θ̂  can be obtained by 

solving the following MAP estimation problem:  

),ˆ|,(maxarg)ˆ,ˆ( 21
,

1
1
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P                                                   (22) 

Assume that 1θ is uniformly distributed, using the laws of conditional probabilities, equation (22) 

can be changed to  
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It can be further divided into two sub-problems which can be estimated iteratively. 
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Many algorithms have been proposed to solve this problem, such as maximum likelihood, 
coding, pseudo-likelihood, expectation-maximization, mean field approximations, and least 
squares fit etc [23]. However, how to find a computationally efficient algorithm, which can 
efficiently combine the prior knowledge of the neuron images, remains a question to be 
investigated.  
 
INFORMATION SHARING STATEMENT 
 
The image data used in this work are provided by Professor B.L. Sabatini's lab at Harvard 
Medical School. We are unable to release these data. The algorithm used in this work will be 
included in the next version of NeruonIQ (Neuron Image Quantitator). NeuronIQ is public 
available and can be downloaded freely from http://www.cbi-tmhs.org/Neuroniq/index.htm. 
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