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Abstract
A number of recent studies have combined multiple experimental paradigms and modalities to
find relevant biological markers for schizophrenia. In this study, we extracted fMRI features maps
from the analysis of three experimental paradigms (auditory oddball, Sternberg item recognition,
sensorimotor) for a large number (n=154) of patients with schizophrenia and matched healthy
controls. We used the general linear model (GLM) and independent component analysis (ICA) to
extract feature maps (i.e. ICA component maps and GLM contrast maps), which were then

© Springer Science+Business Media, LLC 2010

Correspondence to: Dae Il Kim, dkim@mrn.org; Vince D. Calhoun, vcalhoun@unm.edu.

Information Sharing Statement
The CCICA toolbox can be downloaded from (http://icatb.sourceforge.net/fusion/fusion_startup.php) along with a sample feature
dataset. To obtain information regarding access to the actual feature maps and fMRI datasets used in this study, please contact the
corresponding authors.

NIH Public Access
Author Manuscript
Neuroinformatics. Author manuscript; available in PMC 2013 June 24.

Published in final edited form as:
Neuroinformatics. 2010 December ; 8(4): 213–229. doi:10.1007/s12021-010-9077-7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://icatb.sourceforge.net/fusion/fusion_startup.php


subjected to a coefficient-constrained independent component analysis (CCICA) to identify
potential neurobiological markers. A total of 29 different feature maps were extracted for each
subject. Our results show a number of optimal feature combinations that reflect a set of brain
regions that significantly discriminate between patients and controls in the spatial heterogeneity
and amplitude of their feature signals. Spatial heterogeneity was seen in regions such as the
superior/middle temporal and frontal gyri, bilateral parietal lobules, and regions of the thalamus.
Most strikingly, an ICA feature representing a bilateral frontal pole network was consistently seen
the ten highest feature results when ranked on differences found in the amplitude of their feature
signals. The implication of this frontal pole network and the spatial variability which spans regions
comprising of bilateral frontal/temporal lobes and parietal lobules suggests that these regions
might play a significant role in the pathophysiology of schizophrenia.

Keywords
Schizophrenia; Coefficient constrained independent component analysis; Independent component
analysis; fMRI; Biomarkers; CCICA; Working memory; Auditory oddball; Sensorimotor

Introduction
One of the major goals in schizophrenia research involves finding a meaningful biological
marker that can aid in its diagnosis and further clarify its pathophysiology. We define a
biological marker as a consistent quantitative neuroimaging marker that can accurately
characterize schizophrenia. In this regard, functional magnetic resonance imaging (fMRI)
has been widely used to probe the underlying brain activity that might distinguish
schizophrenia patients from a matched control group. Various paradigms have been
implemented to specifically test particular sensory and cognitive processes in the brain.
These include, but are not limited to the processing of infrequent auditory stimuli (Kiehl et
al. 2005b), working memory (Goldman-Rakic 1994), sensorimotor procceses (Schroder et
al. 1999), and resting state paradigms (Broyd et al. 2008). These studies have produced a
rich collection of potential biomarkers, but few studies have delved into the potential “cross-
information” between them. In other words, commonalities which exist across these
biological markers might provide a more stable cognitive marker for schizophrenia that
might not be easily realized by analyzing results from a single task. Our study attempts the
exploitation of this joint-information by utilizing a recently developed method known as
coefficient-constrained independent component analysis (CCICA) (Sui et al. 2009a) on a
large number of features generated from two popular analysis approaches: the general linear
model (GLM) (Friston 1994) and independent component analysis (ICA) (Calhoun et al.
2001)

The GLM relies on the convolution of a canonical hemodynamic response with the
experimental paradigm to generate a predicted brain response. This predicted response is
then regressed against the preprocessed fMRI dataset at every voxel within the brain,
resulting in a statistical map that depicts a set of brain regions which are highly correlated
with the experimental task. These statistical maps are often referred to as contrast images
and the comparison of these maps in schizophrenia patients and matched controls have been
the basis for a large number of fMRI studies in schizophrenia (Glahn et al. 2005; Hill et al.
2004; Kindermann et al. 1997). ICA has a significantly different approach and instead
makes the assumption that the raw fMRI timecourse is a linear mixture of spatially
independent components. The spatial component maps that are created are often interpreted
as functional connectivity maps and have also been labeled in this context as temporally
coherent brain networks (Calhoun 2007a, b). These networks have been shown to be
affected in schizophrenia (Garrity et al. 2007; Kim et al. 2009a), suggesting that functional
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connectivity between brain regions can represent another characteristic source for its
pathology. Our analysis takes both the contrast maps from SPM and the component maps
from ICA as a set of potential neuroimaging biomarkers. Our goal with CCICA then is to
find and exploit the joint information in these features that best separates schizophrenia
patients from our matched healthy controls.

Many neuroimaging studies have used a common set of tasks to probe potential disease-
related biomarkers in patients with schizophrenia and our analysis took advantage of this
consistency. In light of this trend, the National Institute of Mental Health’s strategic plan for
psychopathology has promoted the use of basic tasks in their attempt to diagnose mental
illness (http://www.nimh.nih.gov/research-funding/rdoc.shtml). One commonly used task
has been the auditory oddball discrimination (AOD) task. For schizophrenia patients, a
noticeable and consistent reduction in the P300 event-related brain potential relative to
matched controls during the detection of a distinct auditory stimuli have suggested the
importance of this task in potentially elucidating a meaningful biomarker (Ford 1999).
Furthermore, this task is often used as a robust measure of brain activity (Kiehl et al. 2005a)
and significant differences in schizophrenia have been found using both a GLM and ICA
approach (Kiehl et al. 2005b; Kim et al. 2009b). Another common task found in studies
related to schizophrenia is the maintenance and manipulation of working memory (WM)
processes. The consistency of WM deficits appearing in patients with schizophrenia (Lee
and Park 2005) including their first-degree relatives (Meda et al. 2008), has led to the use of
the Sternberg item recognition paradigm (SIRP) (Sternberg 1966) to probe these cognitive
deficits (Manoach 2003). A large multi-site analysis of this task for patients with
schizophrenia has shown deficits in multiple networks that included regions of the default-
mode network along with areas associated with WM such as the dorsolateral prefrontal
cortex (DLFPC) (Kim et al. 2009a). Finally, many previous studies have focused on
sensorimotor gating in schizophrenia to study disease-related cognitive deficits during the
execution of simple hand movements along with an auditory stimulus. The sensorimotor
task designed for this purpose is a simple block design task has been known to robustly
engage the motor and auditory regions of the brain (Machado et al. 2007). This task was also
successful in finding relevant biomarkers that aided in the classification of patients with
schizophrenia (Sui et al. 2009a). Our study extracted features from all three tasks using ICA
and GLM from a large number of patients with schizophrenia and matched controls (n=154)
as part of the Mind clinical imaging consortium (MCIC).

The goal of this study was to implement and extend a recently developed algorithm
(CCICA) by applying it to a larger and feature rich MCIC fMRI dataset to determine group-
discriminative brain regions associated with schizophrenia. As mentioned briefly before,
what makes CCICA uniquely suited to finding potential biomarkers is due to its
incorporation of group information as a prior, making it sensitive to potential group
differences that might exist across these features. Thus, the normal ICA estimation process
of maximizing independence also attempts to maximize a group difference criterion, which
in our case is a modified t-statistic. More generally, CCICA is attempting to find areas in the
brain that tend to covary uniquely, but discriminately between patients and controls. The
discriminative patterns that it finds are referred to as independent components and depict a
set of brain regions that reflect a group-discriminative biological marker. Based off of
previous fMRI studies that utilized CCICA (Sui et al. 2009a) as well as other studies that
have attempted to classify schizophrenia patients from controls (Calhoun et al. 2007a, b),
our hypothesis was that CCICA will locate and isolate regions within the prefrontal cortex,
thalamus, and bilateral temporal lobes as major group-discriminative regions. Furthermore,
we believed that there would be a strong consistency in the type of features that are highly
ranked in their group-discriminative scores for both J-divergence and p-value metrics.

Kim et al. Page 3

Neuroinformatics. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nimh.nih.gov/research-funding/rdoc.shtml


Methods
Participants

Schizophrenia patients along with their matched healthy controls provided written informed
consent for the Mind Clinical Imaging Consortium. Healthy controls were free from any
Axis 1 disorder, as assessed with the Structured Clinical Interview for DSM-IV-TR (SCID)
screening device. Patients met criteria for schizophrenia in the DSM-IV based on the SCID
and a review of the case file by experienced raters located within each site. All patients were
stabilized on medication prior to the fMRI scan session. Participants were recruited from
four sites and these were the University of New Mexico (26 Patients/29 Controls, Ratio
(patients/controls): 0.9), University of Minnesota (25 patients/21 Controls, Ratio: 1.19),
University of Iowa (8 Patients/24 Controls, Ratio: .33), and Massachusetts General Hospital
(9 Patients/12 Controls, Ratio: .75). The mean duration of illness for patients was found to
be 9.125 years, with a standard deviation of 9.91 years.

Patients and controls had significant differences in the participant level of education, but no
significant differences in the level of parental or maternal education. WRAT scores showed
significant IQ differences between the two groups. Patients and controls had no differences
in age or handedness. Symptom scores were determined using the schedule for the
assessment of positive symptoms (SAPS) (Andreasen 1984) and negative symptoms
(SANS) (Andreasen 1983). This information including handedness and gender can be found
in (Table 1).

Auditory Oddball Discrimination Task
The AOD task has been used to determine significant differences in the sensory processing
of infrequent auditory stimuli for patients with schizophrenia. The participant is presented
with a continuous sequence of three distinct stimuli (‘targets’, ‘novels’, and ‘standards’) and
asked only to press a button with their right index finger whenever they hear a ‘target’
stimuli. Target and novel stimuli are infrequent and occur with a probability of p=0.09 each.
Standard stimuli occur more frequently with a probability of p=0.82. Target stimuli are
represented as 1.2 kHz tones, standard stimuli as 1 kHz tones, and novel stimuli as complex
computer generated sounds. Each stimulus is presented with a pseudorandom order and lasts
for 200 ms, with an inter-stimulus interval that randomly varies between 550–2,050 ms
(mean=1,200 ms). A total of four runs were acquired per session and each run comprised of
90 stimuli. The sequences for target and novel stimuli were exchanged between runs to
balance their presentation across all four runs.

Sternberg Item Recognition Paradigm (SIRP)
The SIRP is a block design task that assesses the maintenance and scanning components of
working memory. Each block consists of four phases and begins with an instructional cue,
which displays the word ‘learn’ for 1 s. This is followed by an encode phase, which begins
the presentation of a memory set composed of one, three, or five digits, constituting three
levels of WM load (low 1 L, medium 3 L, high 5 L). The probe phase follows afterwards,
where a single digit is presented, and for each digit probe, the participant is asked to
respond. The participant is asked to respond with a right trigger press if the digit is a
member of the memorized set or a left trigger press if it is not. Finally a fixation phase
appears where the subject is instructed to relax to prepare for the next trial. The duration of
this fixation phase is random, changing between 4–20 s. Six blocks (two blocks of each of
the three WM conditions) constitute a run and each run lasts approximately 6 min.
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Sensorimotor (SM)
The SM task is used to find robust differences in the sensory processing of auditory and
motor coordination for patients with schizophrenia. The task is an on/off block design with a
16 s duration for each block. The ‘on’ block consists of 200 ms tones presented with a 500
ms stimulus onset asynchrony. A total of eight tones were played during the ‘on’ block in
ascending and descending cycles with the ‘off’ block following the completion of these
eight tones. The participant was required to press a button with their right thumb after each
tone and this task was repeated twice in the scanner with each session lasting approximately
4 min in duration.

Imaging Parameters
Scanning was performed across four sites: the University of New Mexico (UNM),
University of Iowa (IOWA), University of Minnesota (MINN), and Massachusetts General
Hospital (MGH). All sites, except for UNM, utilized a Siemens 3 Tesla Trio Scanner, while
UNM utilized a Siemens 1.5 Tesla Sonata. The scanners were equipped with a 40 mT/m
gradient and a standard quadrature head coil. The fMRI pulse sequence parameters were
identical for all three tasks (AOD, SIRP, SM) and were the following: single-shot echo
planar imaging (EPI); scan plane=oblique axial (AC-PC); time to repeat (TR)=2 s; echo time
(TE)=30 ms(3 T)/40 ms(1.5 T); field of view (FOV)=22 cm, matrix=64 × 64; flip angle=90
degrees; voxel size=3.4 × 3.4 × 4 mm3; slice thickness=4 mm; slice-gap= 1 mm; number of
slices=27; slice acquisition=ascending.

Data Analysis: Pre-processing
Datasets were preprocessed using SPM5. Realignment of fMRI images were performed
using INRIalign, a motion correction algorithm unbiased by local signal changes (Freire et
al. 2002). Datasets were then spatially normalized into the standard Montreal Neurological
Institute (MNI) space using an echo planar imaging template found in SPM5 and slightly
subsampled to 3 × 3 × 3 mm3, resulting in 53 × 63 × 46 voxels. Finally, spatial smoothing
was performed with a 9 × 9 × 9 mm3 full width half maximum Gaussian kernel.

Feature Extraction: General Linear Model
For each individual task, a GLM approach was used to create maps which reflected the
degree to which each voxel exhibited task-associated variation which were then used as
features within our CCICA analysis. Specifically, a separate GLM analysis was performed
for each task (AOD, SIRP, SM) and consisted of a univariate regression of the timecourse at
each voxel with an experimental design matrix, generated by the convolution of the task
onset times with a hemodynamic response function. This resulted in a set of beta-weight
maps associated with each parametric regressor for each task. The subtraction of one beta-
weight map with another is often referred to as a contrast map, which represents the effect of
a task in relation to an experimental baseline.

For our purposes, we were interested in the relative effect of target or novel stimuli versus
standard stimuli in the AOD task, the average probe effect or the average encode effect for
the SIRP task, and the sensorimotor response for the SM task. More specifically, the target
versus standard contrast in the AOD task attempts to capture the BOLD response associated
with responding to the 1.2 kHz target noise which engages the cognitive processes
associated with attention orientation followed by a motor response in the form of a button
press. The novel versus standard contrasts attempts to capture the BOLD response
associated with irrelevant stimuli and fMRI studies have shown the benefit of using these
particular contrasts in elucidating the pathophysiology of schizophrenia (Laurens et al.
2005). The average probe contrast in the SIRP task is associated with the combined effect
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(low, medium, and high WM load) of recalling correctly the WM items that were presented
recently during the task. The average encode contrast represents a similar design, except it
attempts to model the blocks associated with the incorporation of the SIRP digits into WM
for all three conditions. Finally, the sensorimotor task is a simple block contrast that
measures the relative effect of a continuous motor tapping response to a simple repetitive
tone to the experimental phase where no motor-tapping or sound stimuli were presented.

Feature Extraction: Independent Component Analysis
A group spatial ICA was performed using infomax algorithm (Bell and Sejnowski 1995)
within the GIFT toolbox v1.3d (http://icatb.sourcefourge.net). We estimated the optimal
number of components for ICA by using a modified minimum description length algorithm
(Li et al. 2007), which was found to be 19 for the AOD task, 23 for the SIRP task, and 22 for
the SM task. Since ICA with infomax is a stochastic estimation process, the end results are
not always identical. To remedy this, we applied ICASSO (Himberg et al. 2004) to our
initial ICA analysis which allowed us to reiterate our ICA analysis for 20 iterations and to
utilize the centroid of the resulting spatial maps. The spatial maps and their respective
timecourses were calibrated to z-scores. The features selected for our CCICA analysis were
comprised of eight components that were highly similar across our three tasks (Fig. 1),
containing activation patterns seen from previous ICA studies of fMRI. The overlay of the
ICA components in Fig. 1 are all maps generated from a one-sample t-test of their respective
component maps for all subjects and further thresholded at p<1 × 10−12 (False Discovery
Rate corrected). The SPM contrasts maps are also the results of a one-sample t-test
thresholded at various p-values beyond p<1 × 10−4 (False Discovery Rate corrected) for
display purposes. A full listing of the features selected for both ICA and GLM, along with
their respective descriptions can be found in (Table 2).

Coefficient Constrained Independent Component Analysis (CCICA)
For a full technical description of CCICA and its analytical assumptions, we refer the reader
to these references (Sui et al. 2009a, b). CCICA is a modification of a traditional ICA
algorithm using infomax. The traditional group ICA algorithm has been widely applied to a
number of fMRI studies (Beckmann et al. 2005; Calhoun et al. 2008) and is used here to
extract our initial features for CCICA. ICA attempts to extract a set of maximally
independent signals from a set of recorded signals that are assumed to represent their linear
mixture. In regards to fMRI, these recorded signals are the preprocessed fMRI datasets, and
the independent components it extracts results in a set of spatially distinct set of brain
regions along with an associated ICA timecourse. CCICA however is significantly different
in that the traditional ICA cost function of maximizing independence now incorporates a
group discriminative cost, represented as a squared t-statistic. In other words, by providing
prior information to the algorithm as to which datasets are controls versus patients, the
extraction of components by independence can now be modified to also favor group
differences.

It is important to note that CCICA is currently implemented on second-level features, after
extraction of those features via ICA and GLM, rather than the original fMRI datasets. Thus,
it attempts to delineate meaningful group-discriminative patterns that might be seen across
features generated from a variety of analysis techniques (i.e, GLM, ICA) and across various
tasks (AOD, SIRP, SM). The approach that CCICA takes is similar to the first-level analysis
using ICA, but with a few caveats. The data-reduction step that is normally utilized via PCA
is modified in CCICA to better preserve the group-discriminative information that would
normally be lost otherwise. This modified algorithm is termed principal component analysis
with reference (PCA-R). An overview of the analysis steps used in this study can be seen in
graphical form in (Fig. 2).
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The steps of our analysis can be delineated as follows. Five GLM and twenty four ICA
features were extracted from our first-level GLM and ICA analysis. Following feature
extraction, we reshaped these features from both groups with a general modification of the
classic ICA model X = AS, extended as:

Where the observed data X consists of stacked features (single or pairwise) along subjects
with dimensions N × L (subjects by voxels) while subscripts h and p refer to healthy
controls and patients respectively. A is the mixing coefficient matrix with subscripts
identical to X. S is an M × L matrix, where M is the number of independent sources
specified for our study to be 12. The number of independent sources was chosen based off of
a previous CCICA study by (Sui et al. 2009a)

Following our specified number of components, we utilized PCA-R, for our data reduction
step. The canonical PCA, which is often used in the first-level analysis of fMRI data using
ICA, transforms data into an orthogonal coordinate system so that the components are sorted
by their variance. Since the components which contain the largest variance are not
necessarily sensitive to group differences, PCA-R is a modification of PCA that incorporates
the mean group difference as a categorical variable for sorting. Its specific details can be
found in these studies (Caprihan et al. 2008; Sui et al. 2009a). CCICA is followed by data-
reduction via PCA-R. The goal of ICA is to find the unmixing matrix W=A−1 (ignoring the
permutation and scaling ambiguity) so that the source estimation of U = WX is as close as
possible to the true source S. Furthermore, the cost function associated with classical ICA is
the maximization of independence across the sources often denoted as the objective function
H. CCICA modifies this cost function by including the sum of the squared T statistic of the
constrained component(s):

where λ is a constraint weight associated with the t-statistic T and i is the index of the
constrained component. Maximization of the cost function C is based off the gradient ascent
algorithm, widely used in searching for the local optima of a function. Like the extraction of
the first level ICA features, CCICA utilizes Infomax for its ICA algorithm and this has been
shown to be optimal if the nonlinearity used to find independence is closely matched to its
source density via maximum likelihood.

Automatic Artifact Removal
Once CCICA is completed, an automated artifact removal algorithm was utilized to filter
results that showed a significant correlation with cerebrospinal fluid and physiological noise.
The algorithm we used was identical to the approach used in (Sui et al. 2009a) which
utilized an approach that automatically labeled the components of interest according to two
criteria. The first criterion determined a spatial correlation with the CCICA derived
component with a grey matter and a ventricular cerebrospinal fluid template. If the
correlation with the grey matter template was significantly less than the correlation with the
ventricular cerebrospinal fluid, the component was considered to be artifactual and
discarded. The second criterion calculated a metric called the focusing degree, which is
defined by the ratio between the spatial entropy and clustering degree of the resulting
component. If the spatial entropy is high and the clustering degree is low, the component is
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considered artifactual. For more information regarding the specific details related to this
algorithm, we reference the reader to Sui et al 2009a.

Optimal Component Selection
CCICA was performed on a single and pairwise combination of the 29 unique features
selected from our first-level analysis. This resulted in a total of 406 possible pair-wise
comparisons along with the individual analysis of the 29 features for a total of 435 single/
combinatorial results. The substantial number of results requires an appropriate metric to
determine which feature/component pairing represents a relevant biomarker. For our study,
we calculated two metrics that were also used in the first study that implemented CCICA.
The first was a p-value generated from a two-sample t-test between the resulting mixing
matrix coefficients of patients and controls. This metric allows us to quantify the probability
that both groups showed a significant difference in the modulation of their feature signal.
The second was a J-divergence score which intuitively represents the degree to which the
spatial distribution of a feature(s) differed between two groups. The J-divergence is formally
defined as the symmetric form of the Kullblack-Leibler (KL) divergence, where the KL
divergence measures the amount of extra information needed to encode a true distribution P
given an approximate distribution Q.

In the field of information theory, this extra “information” can be thought of as the number
of extra “bits” required in order to represent our true distribution using Q and thus when P
and Q are equivalent, the KL-divergence will become zero. The symmetric form of this
measure that we use, known as the J-divergence, can be seen below:

Here M represents the average distribution between P and Q. The motivation for using the J-
divergence metric is to avoid the assumption of labeling the control or patient group as
representing the “true” distribution. A higher J-divergence reflects a larger difference
between controls and patients on the joint histogram distribution of Uh and Up as mentioned
above. A graphical representation of this difference can be seen from our results in Fig. 5
The previous study by Sui et al. 2009a, b, utilized a J-divergence threshold of 1.5, and due to
the significantly larger number of subjects in our sample, we focused only on results with a
minimum threshold for the p-value as p=1.0 × 10−4 and a J-divergence score of 2.5, which
allowed us to report only the most discriminating components. For our results, we only
focus on the top 2 components, which reflect a J-divergence greater than 3.5.
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Results
Behavioral Findings

The AOD task showed no significant differences between patients and controls in the
percent accuracy of target responses, reaction time to targets, and number of misses. A
small, but significant difference was seen for the number of incorrect hits, where patients
were greater than controls. For the SIRP task, significant differences were seen across all
WM loads in the percent accuracy of target responses, but both groups averaged greater than
95% across all loads. There were no significant differences for the overall reaction time
(Table 3). Due to the simplicity of the SM task, no behavioral information is reported for
this study.

CCICA Results
The top ten components ranked on their p-values and J-divergence scores can be seen along
with their associated t-statistics (Table 4). However, due to the substantial number of these
results, we report and discuss the top two feature components that showed the lowest p-
values and the two highest J-divergence components. Figures 3 and 4 depict the regions that
are implicated in these components with a threshold of z>2.5 for the lowest p-values and
highest J-divergences respectively. We show in Tables 5 and 6 the most significant brain
regions associated with these top feature components, list the size of their respective
activation areas, and the maximum z-scores within their particular brain region.

The J-divergence score represents the degree to which the spatial distribution of the CCICA
activation differs between patients and controls for that component. In other words, the
divergence measure provides us with some information regarding the spatial variability
associated with a particular CCICA component and the degree to which they differ between
patients and controls. Figure 5 shows a graphical representation of what this difference in
the spatial distribution might look like for the top J-divergence component (ICA SM DMN2
& SPM AOD Targets). The p-value reflects a between-group difference with regards to the
mixing matrix coefficients, which can be interpreted as a difference in the amplitude of their
feature signals. The sign of the t-statistic, found in Table 4 refers to a two-sample t-test
where controls are assumed to be greater than patients. Thus, a negative t-score represents a
direction in which the sample mean is greater for patients than controls in regards to their
mixing matrix coefficients and the regions that are implicated can be seen in Figs. 3 and 4.

Top P-value Components
The two CCICA components that showed the most significant p-values consisted of a joint
feature combination (ICA SM Temporal & ICA SM Frontal Pole) and a single feature
component (ICA SM Frontal Pole). The ICA SM Temporal component engaged regions in
the bilateral temporal lobes, while the ICA SM frontal pole engaged primarily areas in the
superior and middle frontal gyrus. Following this joint component, the SM ICA frontal pole
feature was also found to be the second highest ranked component. Unsurprisingly, the
regions engaged in this feature component were highly similar to the SM frontal pole found
from the previous joint component, with differences isolated to the extent of their spatial
distribution. The top ten CCICA components were dominated by a few features and notably
the SM ICA frontal pole was found in all of the top ten components, followed by networks
associated with the primary visual area (V1) and temporal lobe networks. Except for the
joint feature component that consisted of the ICA AODV1 and ICA SM frontal pole
networks (J-Div=1.99), none of these components contained high J-divergence scores (J-
Div<1). Finally, the t-statistic associated with these top 2 components were negative,
suggesting that the activation amplitude associated with those areas were greater in patients
with schizophrenia than controls.
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Top J-divergence Components
In regards to the J-divergence between groups, the top component (J-div=4.19) featured a
joint combination between the ICA SM DMN2 and an SPM AOD target contrast map. The
SM DMN2 feature uniquely implicated regions in the middle and superior temporal gyrus
while the AOD target feature exclusively engaged regions in the superior and inferior
parietal lobule. Both features showed the medial frontal gyrus as playing a significant role,
but the AOD target feature implicated a significantly larger portion of this area. The next
highest J-divergence (J-div=3.99) was seen in a joint component between the ICA AOD
frontal pole network and an ICA SIRP primary visual network. Both feature components
contained regions associated with bilateral temporal lobes as well as the post central gyrus.
The SIRP V1 feature uniquely engaged frontal regions of the brain such as the middle and
superior frontal gyrus. On the other hand, the AOD frontal pole feature found regions in the
thalamus and insula. Unlike the components that showed highly significant p-values, more
heterogeneity was seen in the features combinations and their associated regions.

Discussion
In order to elucidate potential biomarkers for schizophrenia, our study analyzed a large
number of subjects and extracted a total of 29 fMRI features for each subject, which were
further analyzed using CCICA. The resulting CCICA components were filtered using an
automated artifact removal tool and then ranked based off of their p-values and j-
divergences. By taking a data-fusion approach, we hoped to exploit the potential “cross”
information that existed between various tasks to determine which biological markers would
best discriminate between schizophrenia patients and controls. From the results of our
analysis, our most striking finding was seen in the component features associated with the
most significant p-values. After filtering, the top ten CCICA components all contained a
frontal pole ICA component network from the SM task. The J-divergence results reflected a
significant, but different aspect of potential biomarkers in schizophrenia. The top 2
components in this regard implicated a varied, but well defined set of brain regions that have
often been linked to schizophrenia. This included areas such as the superior/middle temporal
gyrus, superior/inferior parietal lobules, and superior/middle frontal gyrus. We found that
our results were consistent with our hypothesis of prefrontal dysfunction, but also noticed a
significant heterogeneity in the spatial variability of patients with schizophrenia as assessed
using our J-divergence scores.

One of the major strengths of this analysis was the incorporation of a various number of
functional feature maps and their joint combinations to determine group-discriminative
biological markers. Thus, from a total of 29 possible features, it was encouraging to see a
single feature type dominate our p-value rankings, specifically the SM frontal pole ICA
network. The consistency of this frontal pole network suggests a number of implications for
schizophrenia. First, prefrontal dysfunction in schizophrenia has been well-delineated as a
consistent area of pathology for a number of years, supported by many fMRI and structural
MRI studies using a variety of approaches (Goldman-Rakic and Selemon 1997; Manoach
2003; Meisenzahl et al. 2008). Secondly, the p-value metric determines the extent to which
the amplitude of a feature component signal differs between patients and controls. This
contrasts with the j-divergence metric which assesses the degree to which the spatial
distribution of the feature component differs between the two groups. From this perspective,
our CCICA analysis suggests that prefrontal dysfunction in schizophrenia might represent a
strong potential biological marker which might be related more to the modulation of its
activity rather than any significant differences in its spatial specificity. The t-statistics
associated with these components were negative, suggesting greater activation in
schizophrenia patients than healthy controls. Evidence in fMRI data for hyper/hypo
frontality in schizophrenia has been mixed and the issue is currently unresolved
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(Minzenberg et al. 2009). However multiple studies have shown a hyperfrontal response in
schizophrenia, especially during working memory tasks. Experimental paradigms that test
WM processes inside the fMRI scanner have shown hyperfronatlity areas such as the
posterior parietal regions (Quintana et al. 2003), ventrolateral prefrontal cortex in first
episode patients (Schneider et al. 2007) and dorsal lateral prefrontal cortex (Manoach 2003),
Finally, an ICA component nearly identical to the frontal pole component featured in our
analysis was significantly different in schizophrenia patients during an auditory oddball task
(Kim et al. 2009b). In that study, a large-scale ICA analysis was performed and controls
showed a greater positive modulation of the component’s ICA timecourse relative to
patients. This particular component was considered to be the most statistically significant of
the eight components that passed the study’s p-value threshold.

The CCICA components that reflected the greatest J-divergence scores depict a set of well
known regions that have been previously implicated in schizophrenia. The ICA DMN2
component from the sensorimotor task and the AOD frontal pole feature component
engaged significant areas of the superior and middle temporal gyrus. These regions have
been closely linked to the successful processing of auditory stimuli and their dysfunction has
been related to the auditory hallucinations that often plague patients with schizophrenia
(Barta et al. 1990; Pearlson 1997). Our results are also consistent with a previous CCICA
study that used an identical analysis approach and found the highest ranked J-divergence
component to prominently contain bilateral temporal lobes (Sui et al. 2009a). Furthemore,
regions of the medial and superior frontal gyrus were shown to be significantly affected in
the top 2 components associated with our high J-divergence measures. The medial and
superior frontal gyrus play a prominent role in the characterization of this disorder; its
impairment often connected to a dysfunction in executive processes (Davidson and
Heinrichs 2003; Minzenberg et al. 2009). Looking more closely at the group specific spatial
maps for the top J-divergence component (Fig. 5), it can be seen that patients and controls
recruit a significantly different set of brain regions associated with their respective feature
maps, suggesting that spatial heterogeneity might be a significant aspect of schizophrenia.

The J-divergence results suggest a correlation with the reported grey matter volumetric
differences found in structural MRI studies of schizophrenia. Affected regions such as the
superior/middle temporal gyrus, the superior/inferior parietal lobule, and the frontal gyrus
from our top 2 components represent a widespread, but consistent set of regions which have
shown grey matter volume abnormalities in schizophrenia. Considering that the J-divergence
score is associated with the spatial distribution of these feature maps, there might be
considerable overlap between these regions and morphometric brain volume studies in
schizophrenia. Specifically, the superior and middle temporal gyri along with the thalamus
have been one of the most common regions for grey matter differences in meta-analyses of
structural MRI studies for schizophrenia. Structurally based studies that have used
alternative methods of analysis such as ICA have also found significant reductions in the
thalamus and inferior parietal lobes for patients with schizophrenia (Xu et al. 2009). This
finding of a more variable localization of correlated activation within the patient group could
reflect greater variability in the gross morphology (Park et al. 2004) and/or functional
organization of the involved regions on the basis of neurodevelopmental abnormalities. It
might also reflect the use of more variable strategies to accomplish the tasks. This finding is
consistent with prior work that has shown greater heterogeneity in the location of peak fMRI
activation (Manoach et al. 2000) and more variable patterns of functional connectivity
during working memory tasks in schizophrenia patients compared to controls (Meyer-
Lindenberg et al. 2001). Though it is possible that grey matter volume reductions might not
necessarily affect the functional brain activity associated with those regions, a number of
studies (Antonova et al. 2005; Calhoun et al. 2006) have reported that a significant link
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might exist and further studies that fuse MRI and fMRI data together might help better
elucidate this relationship.

Our results also seem to not only favor specific brain regions, but also a particular
experimental paradigm. The SM task was represented in all of our top ten feature
combinations when ranked by p-values and fifty percent when ranked on J-divergence
scores. The reasons for the SM task to be the most effective paradigm for extracting these
group-discriminative components is not entirely clear, but might have something to do with
the robust power of this experimental design. Being a simple block-design task, the contrast
maps generated in SPM often produce significant effect sizes and this increased power
might help better discriminate between schizophrenia patients and controls. Also, the
predominance of ICA features in our results show the benefit of including ICA component
maps in data-fusion studies. Though there is some bias in the proportion of SPM features
versus ICA features, functional connectivity maps generated by ICA represent an
intrinsically different type of a biological marker. More specifically, the mathematical
constraints of the GLM model prevent its feature maps to make any inferences regarding
functional connectivity. Furthermore, a number of fMRI studies seem to suggest that
schizophrenia might be better characterized by the aberrant connectivity of its brain regions
rather than any localized deficit in one area of the brain (Friston 1999). This is not to say
that the GLM is ineffective in elucidating the pathophysiology of schizophrenia, but that a
complimentary approach using ICA might aid in the search for a meaningful biological
marker. There are some limitations to our study that we would like to address. Our first
limitation concerns task performance differences, especially in the SIRP task where patients
statistically performed worse than controls. Even though this task was relatively simple in
comparison to other N-back WM tasks, the well known difficulty in finding schizophrenia
patients to perform this task at the same level as controls required us to make some
sacrifices in order to increase our sample size. However, it is important to note that the mean
average accuracy for both groups was greater than 95% and though there were statistical
differences, both groups performed the task, on average, successfully. IQ was also not
matched between groups, though patients with schizophrenia show significant differences in
IQ versus matched controls. Some studies have attempted to account for this difference in
IQ by using it as a covariate in their analyses, but reduced IQ has been known to represent
an early manifestation of schizophrenia (Groom et al. 2008) and including this as a covariate
might remove some of the interesting variability associated with the disease (Schwarz 1971).
Furthermore, site differences were not taken into account when applying our particular
analyses and scanner variability has been an issue concerning multi-site studies (Friedman
and Glover 2006; Friedman et al. 2007), though these studies were performed with often
small sample sizes (N=5). We hoped that the inclusion of multiple runs per experimental
paradigm and our large sample size would mediate some of the variability issues seen in
those previous multi-site studies. Finally, the medication history of patients with
schizophrenia was not fully accounted for during this study. Patients were evaluated with
schizophrenia and stabilized with medication by a licensed physician, but a full detailed
history would allow us to account for some possible confounds associated with these
medications.

Conclusion
Using a recently developed novel algorithm for data fusion, we were able to conglomerate a
large number of fMRI features to determine potential biological markers in schizophrenia.
However, one of the benefits of CCICA is its ability to use other types of features (such as
fractional anisotropy maps or grey or white matter maps) which would allow for multimodal
studies of schizophrenia among other disorders. Furthermore, CCICA was able to take
advantage of the clinical diagnosis of each participant and use that to guide the extraction of
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independent components to maximize between-group differences in its resulting
components. The p-value metric we used allowed us to assess the degree to which the
feature amplitude signals differed between patients and controls while the J-divergence
metric allowed us to determine differences in the spatial distribution of that same signal. We
found a striking consistency in our top p-value components that stemmed from the ICA SM
frontal pole feature set. These components implicated the same bilateral frontal pole regions
found from the original feature map and points to these regions as significant markers for
pathology. The J-divergence results were more heterogeneous, but marked a set of regions
that have been well implicated in previous fMRI studies of schizophrenia. Finally, the
results are also consistent with a large number of structural MRI studies that show grey
matter volume differences in these regions for schizophrenia patients. The analysis suggests
that a significant biological marker for schizophrenia might be related to the functional
modulation of a bilateral frontal pole network along with regions in the bilateral temporal
lobes and parietal lobules.
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Fig. 1.
Overlay of 29 features from ICA and GLM approaches. The first three rows represent ICA
features from different tasks where the rows from top to bottom are AOD, SIRP, and SM
task respectively. The ICA features have all been thresholded at the same t-threshold (FDR,
p<1 × 10−12), while the SPM overlays (fourth row) have been thresholded at various p-
values beyond FDR, p<1 × 10−4 for display purposes
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Fig. 2.
An overview of the CCICA analysis starting from the preprocessed fMRI data and ending
with the ranked CCICA components by J-divergence and p-values. fMRI data is first
preprocessed to undergo analysis via ICA and GLM. This results in a set of features that are
no longer time-dependent and reshaped into a matrix of subjects by voxels. A further data
reduction step takes place via PCA-R which allows us to prepare our data for CCICA. The
CCICA then extracts its own set of independent components that might contain single or
joint feature components based off of the individual features themselves and all possible
pairwise comparisons of these features. Finally an automated artifact removal tool allows us
to find components related to areas of the brain only and we rank these components based
off of their j-divergence and p-value results
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Fig. 3.
Results from the top 2 components ranked by their p-value metrics. All maps have been
thresholded at z-score>2.5 and the highest ranked components are shown from top to
bottom. A high p-value ranking reflects a significant difference in the amplitude or
modulation of their fMRI signal within the context of their associated feature component
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Fig. 4.
Results from the top 2 components ranked by their J-divergence metrics. All maps have
been thresholded at z-score>2.5 and the highest ranked components are shown from top to
bottom. The J-divergence metric determines the degree of spatial heterogeneity between
patients and controls, where a high J-divergence score reflects significant differences in the
distribution of their feature component signals
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Fig. 5.
A closer look at the J-divergence metric for the highest scoring CCICA component. The
regions reflect z-scores greater than 2.5 for patients, controls, and both. The region in green
shows where both participant groups had z-scores greater than 2.5 and the degree of spatial
variability can be seen in the number of regions that are not shared between both groups
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Table 1

Demographics and patient SANS-SAPS including age, gender, handedness, education, paternal education,
maternal education, and WRAT intelligence measures. SANS and SAPS scores for patients with
schizophrenia are also included in this table

Feature Description Labels Feature Type Tasks

Left dorsal lateral prefrontal cortex LDLPFC ICA Component Map AOD,SIRP,SM

Right dorsal lateral prefrontal cortex RDLPFC ICA Component Map AOD,SIRP,SM

Primary Visual V1 ICA Component Map AOD,SIRP,SM

Bilateral Temporal Temporal ICA Component Map AOD,SIRP,SM

Default Mode Network Posterior DMN1 ICA Component Map AOD,SIRP,SM

Default Mode Network Anterior DMN2 ICA Component Map AOD,SIRP,SM

Bilateral Frontal Pole FPOLE ICA Component Map AOD,SIRP,SM

Pre/Post Central Gyrus Central ICA Component Map AOD,SIRP,SM

Targets vs. Standards Targets SPM Contrast Map AOD

Novels vs. Standards Novels SPM Contrast Map AOD

Encode Block Average Encode SPM Contrast Map SIRP

Probe Block Average Probe SPM Contrast Map SIRP

Motor Tapping Block Average Motor SPM Contrast Map SM
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Table 2

Feature labels and their associated descriptions while multiple paradigms under the tasks column imply the
particular feature existed for those tasks. Labels refer to the abbreviation for each feature used during the
results and discussion section. Feature type defines whether it originated from an ICA or GLM analysis. Note,
not all regions that are activated are defined in the feature description

Demographics

Age in Years (n=154) Gender (n=154) Handedness (n=152)

 Controls 30.70/11.30 (M/SD) M=54/F=32 Right=78/L=3/B=4

 Patients 31.85/11.35 M=55/F=13 Right=60/L=4/B=2

 2-Sample t-test t=.6289/p=.5304 Male/Female Right/Left/Both

Education & Intelligence

Education (n=152) Paternal Edu (n=142) Maternal Edu (n=147) WRAT (n=149)

 Controls 15.24/2.06 (M/SD) 14.87/3.36 13.98/2.60 51.19/3.73

 Patients 13.72/2.44 14.46/3.86 13.83/3.73 48.13/5.51

 2-Sample t-test t=4.1521/p<.0001 t=.6738/p=.5015 t=.2886/p=.7733 t=4.0397/p<.0001

Positive & Negative Syndrom Scales

SANS (n=67) SAPS (n=67)

 Affect 1.43/1.16 (M/SD) Hallucinations 2.31/1.66

 Alogia .82/1.08 Delusions 2.46/1.39

 Avolition 2.60/1.39 Bizarre Behavior .90/1.10

 Anhedonia 2.54/1.25 Thought Disorder .97/1.23

 Attention 1.63/1.30
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Table 4

Top 10 components by p-value (top) and J-divergence (bottom)

J-Divergence Component P-Value T-values

Top P-value Components

 ICA sm TEMPORAL & ICA sm FPOLE 0.772 1 1.03E-15 −8.970

 ICA sm FPOLE 0.508 1 2.77E-14 −8.410

 ICA sirp FPOLE & ICA sm FPOLE 0.505 1 1.17E-12 −7.758

 ICA aod V1 & ICA sm FPOLE 1.990 1 1.60E-12 −7.702

 ICA sirp V1 & ICA sm FPOLE 0.052 1 1.99E-12 −7.663

 ICA aod V1 & ICA sm FPOLE 0.580 2 1.60E-09 6.425

 ICA sirp V1 & ICA sm FPOLE 0.045 2 1.28E-07 5.543

 ICA aod TEMPORAL & ICA sm FPOLE 0.087 2 6.32E-06 4.679

 ICA sm FPOLE & SPM aod nov std 0.669 2 5.00E-05 −4.175

 ICA sirp TEMPORAL & ICA sm FPOLE 0.258 2 2.27E-04 3.777

Top J-divergence Components

 ICA sm DMN2 & SPM aod targ std 4.188 2 8.79E-04 −3.394

 ICA aod FPOLE & ICA sirp V1 3.988 12 9.00E-01 −0.126

 ICA sm V1 3.693 9 2.54E-01 −1.145

 ICA sirp DMN1 3.529 9 2.95E-01 −1.051

 ICA aod TEMPORAL & ICA aod DMN2 3.273 11 6.60E-01 −0.441

 ICA aod FPOLE & ICA aod DMN2 2.750 4 8.69E-03 −2.658

 ICA sm TEMPORAL 2.732 1 6.11E-06 −4.687

 ICA aod TEMPORAL & ICA sirp V1 2.720 1 2.15E-06 4.927

 ICA sm V1 2.646 1 1.12E-05 4.543

 ICA aod DMN2 & ICA sm LDLPFC 2.624 1 1.79E-04 −3.842
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Table 5

Talairach and Brodmann labels for the top p-value CCICA components. The top 5 regions are shown for each
component, ordered by their area of activation

Talairach Labels Brodmann Areas R/L (mm3) (R/L) Max Z-Scores (MNI Coord.)

ICA SM Temporal & ICA SM Frontal Pole (SM Temporal)

 Precentral Gyrus 6, 4, 44, 3, 43 2.5/7.5 6.4(−59,−15,42)/10.9(33,−17,62)

 Transverse Temporal Gyrus 41, 42 0.6/0.0 10.1(−56,−20,12)/2.8(62,−14,12)

 Superior Temporal Gyrus 42, 41, 22, 21, 38, 13 3.0/6.2 10.0(−59,−20,12)/9.3(59,0,−3)

 Middle Temporal Gyrus 21 0.1/1.2 3.3(−59,3,−8)/8.9(59,−3,−5)

 Superior Frontal Gyrus 6, 11 0.5/0.9 4.3(−3,6,52)/8.3(27,−8,64)

ICA SM Temporal & ICA SM Frontal Pole (SM Frontal Pole)

 Caudate 3.1/2.8 17.3(−6,3,8)/16.1(6,3,8)

 Anterior Cingulate 25 0.4/0.3 11.1(−3,6,−3)/10.9(3,6,−3)

 Culmen 2.5/3.2 10.2(−3,−45,−20)/10.7(0,−39,−21)

 Superior Frontal Gyrus 10, 9, 6 5.0/3.2 10.0(−33,56,14)/8.6(33,53,17)

 Middle Frontal Gyrus 10, 46, 9, 6, 11, 8 14.5/6.2 9.3(−36,51,20)/8.7(33,51,20)

ICA SM Frontal Pole

 Caudate 2.8/2.4 15.1(−6,6,8)/15.0(6,3,8)

 Anterior Cingulate 25, 24 0.6/0.3 10.8(−3,6,−3)/10.0(3,6,−3)

 Superior Frontal Gyrus 10, 9 5.8/2.7 9.5(−33,56,17)/7.1(33,50,17)

 Middle Frontal Gyrus 10, 46, 9, 6, 8 14.5/4.8 8.4(−33,53,19)/6.6(33,51,20)

 Culmen 2.5/3.2 5.7(−15,−47,−5)/7.5(12,−53,−2)
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Table 6

Talairach and Brodmann labels for the top J-Divergence CCICA components. The top 5 regions are shown for
each component, ordered by their area of activation

Talairach Labels Brodmann Areas R/L (mm3) (R/L) Max Z-Scores (MNI Coord.)

ICA SM DMN2 & SPM AOD TARGETS (SM DMN2)

 Precuneus 7 2.6/2.3 11.1(−3,−65,42)/11.3(3,−68,42)

 Middle Temporal Gyrus 39, 19 2.1/0.0 10.6(−50,−63,22)/−999.0(0,0,0)

 Superior Temporal Gyrus 39, 22, 38 0.7/0.1 9.8(−56,−63,22)/8.8(36,13,−23)

 Inferior Frontal Gyrus 44, 45, 47 0.2/1.3 8.7(−39,17,−16)/9.5(56,15,19)

 Medial Frontal Gyrus 11, 10 0.3/0.2 8.8(−3,40,−17)/9.3(3,43,−15)

ICA SM DMN2 & SPM AOD TARGETS (AOD Targets)

 Postcentral Gyrus 2, 1, 3, 40, 5, 7, 43 21.7/18.8 12.1(−42,−35,60)/11.3(39,−35,60)

 Inferior Parietal Lobule 40, 2 10.0/12.1 11.4(−45,−32,57)/10.8(48,−32,54)

 Precentral Gyrus 4, 6, 43, 3, 44, 13, 9 25.6/22.2 11.2(−39,−23,62)/9.5(36,−20,62)

 Superior Parietal Lobule 7, 5 4.5/4.5 9.6(−33,−47,60)/8.8(33,−47,60)

 Medial Frontal Gyrus 6, 32, 10, 11 8.3/6.5 9.0(−3,−6,53)/8.0(3,−9,50)

ICA AOD Frontal Pole & ICA SIRP V1 (AOD Frontal Pole)

 Middle Temporal Gyrus 21, 22 6.1/4.6 10.7(−65,−38,2)/7.0(62,−38,2)

 Superior Temporal Gyrus 41, 42, 22, 38, 13, 21 13.7/6.0 9.3(−39,13,−23)/6.0(56,−40,21)

Thalamus 1.4/1.6 8.0(−3,−15,1)/7.0(3,−15,1)

 Postcentral Gyrus 40, 2, 43, 1, 3 1.6/0.4 6.2(−65,−25,18)/4.2(59,−20,15)

 Insula 13 0.1/0.7 3.8(−50,−20,15)/5.8(56,−37,18)

ICA AOD Frontal Pole & ICA SIRP V1 (SIRP V1)

 Superior Temporal Gyrus 38, 22, 13, 41, 21 3.0/9.1 8.6(−45,−1,−10)/11.3(42,8,−18)

 Middle Frontal Gyrus 6, 8, 10, 46, 9 2.0/4.5 9.3(−30,23,54)/10.5(30,15,57)

 Postcentral Gyrus 5, 7, 2, 3, 1, 40, 43 5.4/4.2 10.4(−3,−46,66)/8.7(6,−43,66)

 Superior Frontal Gyrus 10, 8, 9, 6 1.3/3.4 8.9(−33,26,51)/10.4(33,59,14)

 Culmen 6.0/2.6 10.4(−15,−33,−16)/10.1(3,−41,−6)
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