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Abstract The analysis of brain network topological
features has served to better understand these networks
and reveal particular characteristics of their functional
behavior. The distribution of brain network motifs is
particularly useful for detecting and describing differences
between brain networks and random and computationally
optimized artificial net-works. In this paper we use a
multi-objective evolutionary optimization approach to
generate optimized artificial net-works that have a number
of topological features resembling brain networks. The
Pareto set approximation of the optimized networks is used
to extract network descriptors that are compared to
brain and random network descriptors. To analyze the
networks, the clustering coefficient, the average path
length, the modularity and the betweenness centrality are
computed. We argue that the topological complexity of a brain
network can be estimated using the number of evaluations
needed by an optimization algorithm to output artificial
networks of similar complexity. For the analyzed network
examples, our results indicate that while original brain
networks have a reduced structural motif number and a high
functional motif number, they are not optimal with respect to
these two topological features. We also investigate the
correlation between the structural and functional motif
numbers, the average path length and the clustering coefficient
in random, optimized and brain networks.

Introduction

In complex brains, neurons form highly sophisticated
networks underlying flexible and specialized behavior.
The analysis of neural connectivity in nematodes (Cherniak
1994) and of sensory areas in the cerebral cortex of
different mammals (Cherniak 2004) has served to under-
stand the characteristic features of these network topolo-
gies. As is the case of other complex networks
(Dorogovtsev et al. 2008), brain networks may have a
small-world network structure (Watts and Strogatz 1998), i.
e. they may be characterized by high degree of clustering
with short path lengths linking the nodes, at the level of
anatomical as well as functional connectivity small-world
properties (Reijneveld et al. 2007).

In this paper we investigate the topological character-
istics of optimized artificial networks that resemble
brain networks. Network descriptors are used to com-
pare natural, random and artificial networks. We expect
this type of analysis to provide clues for identifying
organizational principles in brain networks. There are a
variety of topological measures that have been applied
to the study of brain cortical networks. They include
structural measures such as the node degree, clustering
coefficient and motifs (Costa and Sporns 2005; Costa et
al. 2007a, b, c; Rodrigues and Costa 2009) and dynamic
measures that depend on the particular characteristics of a
given dynamic process that is being executed in the
network (Costa et al. 2007a, b, c¢; Rodrigues and Fontoura
Costa 2009; Wang et al. 2008). Structural measures of



brain networks can provide a very rich landscape of
structural and functional brain organization. Local network
characteristics (e.g. node degree) serve to characterize and
differentiate between their particular roles of the regions in
the brain’s structural organization. Global network meas-
ures (e.g. modularity) provide a different perspective of
the cortical network organization, revealing, for example,
how different regions jointly interact.

The paper focuses on the process of generating artificial
networks by optimizing the number of network motifs they
contain. Motifs (Milo et al. 2002) are small network
building blocks that are defined by their size and
interconnection patterns. Some researchers (Sporns and
Kotter 2004) have stated that it could be possible to gain
insight into the rules governing the structure of complex
networks by investigating their composition from motifs.
The distribution of motifs has been investigated for
biological and artificial networks (Bullmore and Sporns
2009; Kashtan and Alon 2005; Milo et al. 2002; Sporns and
Kotter 2004). Although the work presented in this paper
focuses on the use of motifs for the optimization process,
we also analyze other global topological network measures:
the clustering coefficient, the average path length, the
modularity and the betweenness centrality.

In Sporns and Kétter (2004), motifs are used to study
information processing in brain networks. In these net-
works, structural motifs are identified as a set of brain
areas and pathways that can potentially engage in different
patterns of interactions. Authors introduce functional
motifs to refer to specific combinations of nodes and
connections (contained in the structural motifs) that may
be recruited or activated in the course of neural informa-
tion processing. By rewiring random networks and
imposing a cost function that maximizes the functional
motif number, network topologies are generated that
resemble real brain networks across different attributes
such as node degree.

Structural optimization problems in artificial brain net-
works can be defined as problems that imply the identifi-
cation of a network topology that satisfies a number of
constraints (generally determined by characteristics of the
original brain network) and is optimal (or non-dominated)
with respect to a measure (or set of measures) defined in the
space of networks.

Our work is built from the results achieved in Sporns
and Kotter (2004). We intend to determine how brain
networks are related to artificial networks that share some
of the original brain network attributes. A novelty of our
approach is that we address the creation of the artificial
network as a multi-objective optimization problem in which
different objectives are simultaneously optimized. As a
result, we obtain a set of non-dominated solutions that
expands the scope of the analysis of the relationships

between natural and artificial brain networks. In particular,
it is possible to locate natural networks within an
“optimality map” defined by two or more objectives. This
optimality map is estimated by an approximation to the
Pareto front of non-dominated solutions. By applying
different dissimilarity measures in this map, we can get a
fuller perspective of the brain network specificity with
respect to similar optimized artificial brain networks
(Kashtan and Alon 2005; Milo et al. 2002; Sporns and
Kotter 2004).

The optimization algorithm itself is also used as a
framework for studying the brain network topology. We
address questions such as how likely is to obtain an
artificial network with a similar or higher degree of
optimality than the original brain network? How much
computational effort, measured as the number of
evaluations needed by the algorithm, will take to
achieve these results? What type of problem information
can be used to diminish the computational cost of the
algorithm? We argue that optimization methods can be
employed to compare different brain networks by
contrasting the complexity of the respective optimization
processes conducted to output networks similar to each
original brain network. This is an interesting result
since, although it is possible to estimate how a graph
topology departs from randomness, it is more difficult to
find measures to compare the global topological com-
plexities of two given graphs.

The paper is organized as follows. In Section Brain
Networks and Motifs brain networks and graphical motifs
are introduced and the main problem addressed in the paper
is defined. Section Multi-objective Optimization covers the
use of evolutionary algorithms for multi-objective optimi-
zation. Our proposal on the use of evolution of artificial
brain networks is explained in Section Evolutionary Algo-
rithms for Multi-objective Optimization of Brain Networks.
Related work is discussed in Section Related Work. The
experimental framework and the numerical results of the
experiments are presented in Section Experiments. Finally,
the conclusions of our paper and trends for future research
are set out in Section Conclusions.

Brain Networks and Motifs

It was observed some time ago (Edelman and Mountcastle
1978) that there are possibly regularities in the local wiring
patterns of most of neurons and that neurons appear to be
clustered in terms of connections with distant brain regions.
These observations led to simplifications that enabled an
approximation of the large-scale organization of the primate
cerebral cortex based on the examination of the gross
connections between cortical areas (Young 1993). In



general, brain activity can be modeled as a dynamic process
acting on a network; each vertex of the structure represents
an elementary component, such as brain areas, groups of
neurons or individual cells (De Lucia et al. 2005) and edges
or arcs between vertices represent some sort of interaction
between the elementary components. We call to such a
representation of a brain structure or function a brain
network.

The brain network topology is a key element for under-
standing the behavior of the represented process. Therefore,
several works have addressed the analysis of the topological
characteristics of these networks. Additionally, artificial brain
networks that resemble brain networks (in terms of prede-
fined topological features) have also been employed to
investigate the specific brain network characteristics.

Structural and Functional Motifs

A (structural) motif (Milo et al. 2002; Sporns and Kotter
2004) is a connected graph or network consisting of M
vertices and a set of edges (for directed graphs, maximally
M?-M; with connectedness ensured, minimally M-1)
forming a subgraph of a larger network. For each M, there
is a limited set of distinct motif classes.

A functional motif of a given structural motif consists of
the original M vertices of the structural motif, but contains
only a subset of its edges. A connected motif is a structural
motif that forms a strongly connected graph. In a connected
motif, all the constituent vertices can be reached from all
other constituent vertices.

A motif frequency spectrum records the number of
distinct motifs in each structural motif lass. The motif number
is the total number of distinct occurrences of any motif of
size M. The motif diversity is the number of classes that are
represented within the network by at least one example.

The motif fingerprint of a vertex is the number of distinct
structural motifs of size M in which the vertex participates.
Motif participation number is the number of instances of a
given motif class in which a particular vertex participates.

Figure 1 shows all structural motifs for motif class M=3.
Motifs a, b, and c¢ are functional motifs of the structural
motif e. Motif g is a connected motif. Figure 2 shows an
example of a directed network. The motif frequency
spectrum of this network is (1,5,1,0,1,0,0,0,0,0,0,0,0),
where motifs are ordered as in Fig. 1. The network motif
number is 8 and the motif diversity is 4 (only motifs of type
a, b, ¢ and e are represented in the graph). The motif
fingerprint of vertex 1 is 3 since it participates in motifs
(3,2,1), (5,6,1) and (2,1,6). The motif participation number
of vertex 6 in motif b is also 3 since it participates in motifs
(5,6,1), (4,5,6) and (5,6,2), which are all of type b.

To investigate the networks, we employ four network
measures widely used in the literature. The clustering
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Fig. 1 All structural motifs for motif class M=3

coefficient of a node is defined as the fraction of the
existing number of links over the total possible number of
neighbor-neighbor links (Watts and Strogatz 1998). The
clustering coefficient of a network (denoted c) is computed
as the average of the clustering coefficient for all network
nodes.

Let a path be a sequence of linked nodes that never visit
a single node more than once. The path length between two
vertices is the number of vertices in the shortest path
between them (Watts and Strogatz 1998). The average path
length (L) is the average of the path lengths between the
connected nodes of a network.

Given an organization of a network in modules, its
modularity is the fraction of arcs within modules minus the
expected fraction of such arcs. To compute an optimal
decomposition of the network in modules we use the
Newman’s spectral optimization method, generalized to
directed networks (Leicht and Newman 2008). The be-
tweenness centrality (Costa et al. 2007a, b, c) of vertex u is
computed as B, = 3.2 where o(iuj) is the number of

ij o))
shortest paths between vertices i and j that pass through

Fig. 2 Directed network




vertex u and o(ij) is the total number of shortest paths
between 7 and ;.

Brain Network Motifs

Sporns and Kétter (2004) study brain networks information
processing by analyzing their motif distribution. Character-
istic functional and structural motifs are detected in
neuroanatomical data sets. Some functional motifs are
identified as very frequent in significantly increased
numbers (Sporns and Koétter 2004). The authors hypothe-
size that “brain networks maximize both the number and
diversity of functional motifs, while the repertoire of
structural motifs remains small”.

To further investigate this hypothesis, artificial brain
networks were created. The procedure was carried out by
rewiring random networks and imposing a cost function
that maximizes the functional motif number. This single-
objective optimization process is done using an evolution-
ary algorithm that evolves artificial network topologies.
Sporns and Kotter reported that by maximizing the
functional motif number a significant decline in the number
of structural motifs is achieved. They also tried to maximize
the structural motif number, but the obtained networks were
very different to real brain networks in terms of different
structural attributes.

Here, we study the hypothesis advanced by Sporns and
Koetter replacing single- by multi-objective optimization.
The idea is to simultaneously maximize the functional
motif number and minimize the structural motif number.
These are the two objectives of the optimization problem.

The so-called Pareto set of solutions (see next section for
formal definitions on Pareto-optimality) is employed to
analyze the structural relationship of the original brain
networks with the optimized artificial networks. This set is
also useful for giving measures of the relationship between
the two objectives involved in the optimization process and
other topological network descriptors.

Multi-objective Optimization
Pareto Dominance

We consider a maximization problem with & objective
functions fi(x) — R,i€ {l,...,k}, where the vector
function f'maps each solution x € X C R" to an objective
vector f(x) = (fi(x),....fi(x)) € RF. It is also assumed
that the underlying dominance structure is given
by the Pareto dominance relation “y dominates x” that is
defined as Vx,y € X,x<,y < fi(x) < fi(y)Vi, where
F ={fi,....fr}. The Pareto (optimal) set is given as
[xeX|By e X\ {x}:x<sy}

Conflicting and Harmonious Objectives

A key issue in multi-objective optimization problems is to
determine how objectives are related. This information is
useful for gaining a better understanding of the problem.
There have been several attempts (Brockhoff and Zitzler
2006; Deb 2001; Purshouse and Fleming 2003) to define
the types of relationships that exist between different sets of
objectives in a multi-objective problem.

Considering relationships between pairs of criteria
(Purshouse and Fleming 2003) in a conflicting relationship,
performance in one criterion improves as performance in
the other is seen to deteriorate. If the relationship is
harmonious, improvement in one criterion is rewarded with
simultaneous improvement in the other. The criteria may be
independent of each other, where a change to one criterion
does not affect the other.

Conflicting, harmonious and independent objectives
can be detected by analyzing the correlations between
the objectives in a given set of solutions (Deb and
Saxena 2005; Lopez et al. 2008). This measure can
support a priori unknown knowledge about the problem,
particularly in situations involving many objectives where
it is difficult to empirically determine how they are related.
This type of information can be used to simplify the
problem.

Notice that the relationship between the objectives may
change in particular areas of the search space. We could, for
instance, set a threshold on the different objectives and then
investigate the correlations between the objectives from
samples of this constrained subspace. In our case, we will
use the correlations to quantify the relationships between
different objectives in randomly sampled solutions and in
solutions from a Pareto set approximation.

Evolutionary Algorithms for Multi-objective
Optimization of Brain Networks

In this section we introduce the evolutionary optimization
approach used in this paper to evolve networks. First, the
problem representation and the objectives of the optimiza-
tion problem are presented. Then, two variants of the
evolutionary algorithm are introduced.

Problem Representation and Problem Objectives

Given a brain network represented using a directed
network, we will consider artificial brain networks with
the same number of vertices and arcs. This topological
constraint, used in previous approaches (Sporns and Kétter
2004), guarantees a minimum topological similarity be-
tween the real and artificial networks. In addition, this step



preserves the local node statistics, while removing the
effects of global topology.

Each directed network G = (¥, E) will be represented by a
matrix where each entry e; ;=1 means that there is an arc from
vertex V; to V;and V = {V1,..,V;} is the set of vertices. Self
connections are not allowed and therefore the maximum
number of arcs in the network is n = k*> — k. We associate
each possible arc with a variable and represent a solution as a
binary vector x = (xi,...,x,) where x,=1 means that the
corresponding arc is included in the network and 0 otherwise.

We will focus on the optimization of two objectives: 1)
maximization of the sum of functional motifs participation
f1(x) and 2) minimization of the sum of the structural motifs
participation £, (x). For practical reasons the second objective
is transformed into the opposite function f>(x) = —f; (x).
Notice, that this choice of the objectives indirectly addresses
the maximization of the functional motif number and the
minimization of the structural motif number.

Evolutionary Algorithm

Evolutionary algorithms (EAs) (Goldberg 1989; Holland
1975) are population-based global optimization methods
that can deal with non-differentiable, discontinuous and
multimodal functions. These algorithms have been success-
fully applied to different problems in neuroscience (Defoin-
Platel et al. 2009; Gerken et al. 2006; Pettinen et al. 2006).
EAs have proved to be particularly suitable to address
multi-objective optimization functions when the variation
operators they employ are appropriately modified to
account for the existence of more than one objective.

In this paper we present two variants of an EA to evolve
optimal artificial brain networks for the case of the bi-

objective problem described in the previous section. The
first variant is an adaptation of the EA introduced in Sporns
and Kotter (2004) to evolve brain networks by optimizing a
single-objective problem. The rationale behind this choice
is twofold. On the one hand, the rewiring operator used by
the EA presented in Sporns and Kotter (2004) guarantees
that the generated solutions will satisfy the constraints
related to the indegree and outdegree of the vertices. On the
other hand, the algorithm can be easily adapted to deal with
the bi-objective case by modifying the selection step.

Pareto-ranking selection is the selection method of
choice. It orders individuals according to the Pareto front
to which they belong. Individuals in the first front (non-
dominated solutions) come first, followed by individuals
that are only dominated by those in the first front and so on.
Within each front, solutions are ordered according to the
average rank of their objective or fitness functions. After
the entire population has been ordered, a percentage 7 of
the population is selected by truncation selection.

Algorithm 1 shows the EA pseudocode. Since the
topological constraints are enforced in step 1, the algorithm
starts with a set of feasible solutions. Rewiring is applied by
replacing two randomly selected arcs e;; and e;; by arcs e;
; and ey ;. In this way, the indegree and outdegree of the
vertices involved are not modified.

Notice that the algorithm does not use any information
about objective functions in the application of the variation
operator (the rewiring). Since rewiring is blind to the effect
that it will have on the objective values of the modified
solutions, we can expect its application to produce both
better and worse solutions. For the same reason however, it
guarantees that no bias related to the objectives that are
being optimized is introduced to generate new solutions.

Algorithm 1: Evolutionary algorithm

~

Generate an initial population Dy of M networks that satisfy the topological con-

straints

2 t—1

3 do {

4 Evaluate all the objectives for solutions in D;_1

5 D?¢, « Select N individuals from D;_; using Pareto-ranking selection
6 Randomly sample M — N individuals from D,_; (the selected parents)

7 Rewire the sampled networks by exchanging 2 arcs between 4 vertices

8 Form population D; by joining the M — N generated solutions and D¢
9 t—t+1
10 } until Stop criterion is met

Algorithm 1 is appropriate for comparing how difficult
is to evolve a brain network for an optimization
algorithm guided only by selection. However it can be
too inefficient in terms of the number of evaluations

needed to output optimal solutions of more complex
problems. Therefore, we propose a variant of Algorithm
1 in which a local search optimization procedure is
inserted before step 4.



The local optimization method, which is described in
Algorithm 2, works by selecting sub-networks of a
candidate network and applying a guided variation
operator. Instead of randomly rewiring any two arcs,
selected arcs are only exchanged if the objective values
for the selected subnetwork improves after rewiring. The
idea is that local improvements in the objective values
may lead to an improvement in the objective values
computed for the whole network. On the other hand, by
constraining the computation of functions to the subnet-
works, the cost of the evaluation step is reduced.
Algorithm 2 uses the size of the subnetwork r and the

maximal number of trials (maxtrials) as input parameters
for obtaining a subnetwork that improves the candidate
subnetwork.

Since the operators applied by both algorithms do
not modify the indegree and outdegree, all generated
networks have the same topological characteristics of
the original brain network throughout the evolution.
Therefore, the Pareto set is searched in the space of
feasible solutions. The stop criterion used is a maxi-
mum number of generations. The choice for the
parameters used by the algorithm is explained in
Section Experiments.

Algorithm 2: Local optimization method

1 l—1

2 do {
Select a random subset of r network nodes (subnetwork G;) from the given network
G

4 Select two arcs in () that can be swapped without altering the indegree and out-

degree of the involved nodes

Create a candidate subnetwork G} by swapping the selected arcs

5
6 Compute objective values for subnetworks G; and G
7 If G} is better than G, for the two objective values, replace G; by G} in G
8 } until Network G has been modified or | = maxztrials

To estimate the computational effort required by the
algorithms, we use the number of evaluations conducted
during the evolution. For the simple variant of the EA, the
number of evaluations is computed as e= M-+
(g—1)- (M —N), where g is the number of generations
and M the population size. For the EA using local
optimization method (EA-Local), we compute the number
of (local) evaluations required by the local optimization
method each time it is called. This is e = “47, where
etrials is the number of steps needed by the optimization
step. Ejoeq 18 the sum of all such evaluations, and the
number of evaluations needed by this EA variant is
estimated as e =M + (g — 1) - (M — N) + Ejpcar-

Related Work

In addition to the work presented in Sporns and Kotter
(2004), which has been already discussed in previous
sections, there are a number of papers related to our work.

Recently, the combination of more than one objective
has been proposed as a better alternative for neuronal model
parameter optimization (Druckmann et al. 2007a, b). The
idea is to use several error functions jointly in order to
compare the experimental voltage traces and the model

response on the basis of individual features of interest.
Although these papers highlight the importance of applying
multi-objective optimization in neuroscience, the applica-
tion domain as well as the goal of the multi-objective
approach are different to ours.

Another way to obtain optimized network structures (in
terms of modularity) is by optimizing dynamic functions.
Kashtan and Alon (2005) have produced evidence that
switching between related goals (represented by different
but related objective functions) as part of an evolutionary
optimization approach can result in the emergence of
modular network structures and network motifs. Changing
environments represented by dynamic objective functions
could be used to some extent to obtain robust solutions with
respect to different objectives. However, as the number of
objectives is increased, and particularly if they are
conflicting, it is not clear how these approaches could
support a good covering of the solution space, which is
inherent to good Pareto set approximations.

Experiments
The objectives of the experiments are threefold. First, in

Sections Relationships Between Objectives and Compari-
son Between the Original and Random Generated Net-



works, we investigate the relationship between the func-
tional motif number and the structural motif number
objectives associated with different network topological
characteristics for randomly generated artificial brain net-
works. We intend to determine whether the relationship
between the objectives is conflicting or harmonious and if
there are important differences between the original and the
randomly generated brain networks.

In a second step, in Section Behavior of the Evolutionary
Algorithm, we evaluate the capacity of the evolutionary
algorithm to find a set of artificial brain networks that
simultaneously optimize the two different objectives and
compute the computational effort required to optimize the
networks.

Finally, in Section Comparison Between the Original
and Optimized Networks, the Pareto set approximation is
used to investigate to what extent the original brain
networks maximize the number of functional motifs while
keeping the value of the structural motifs low, which is the
hypothesis advanced in Sporns and Kotter (2004). The
Pareto set approximation is also employed to find topolog-
ical differences between the optimized and the original
brain networks.

Experimental Framework

We use a set of four matrices representing brain networks
and previously employed in Sporns and Kétter (2004)."
Some of the original matrices were modified to remove
areas with few known connections or areas that are not part
of the cerebral cortex. See Sporns and Kotter (2004) for
details on how they were modified.

A connection matrix of the macaque visual cortex is
based on Felleman and Van Essen (1991). The modified
matrix (fve30) has n=30 and |E| = 311. Another version
(fve32) of the connection matrix of the macaque visual
cortex has n=32 and |E|=315. A large-scale cortico-
cortical connectivity matrix of the visual and sensorimotor
areas (macaque47) has n=47 and |E| = 505. It has been
previously applied in experiments conducted in Honey et
al. (2007). The connection matrix of the macaque cortex is
based on Young (1993). The modified matrix (macaque71)
has n=71 and |E| = 746.

Characteristics of the Implementation

The EAs were implemented using MATEDA-2.0 software
(Santana et al. 2010), a modular implementation of
estimation of distribution algorithms programmed in Mat-
lab that can be used to implement genetic and other classes

! The data sets in Matlab format can be retrieved from http:/www.
indiana.edu/~cortex/CCNL.html

of evolutionary algorithms. The computation of the number
of structural and functional motifs was implemented using
the brain connectivity toolbox (Sporns 2002).

The simple EA was used for problems fve30 and fve32.
The EA with additional local optimization step (EA-Local)
was applied to problems macaque47 and macaque?71. This
decision was motivated by the fact that the simple EA was
unable to output solutions better than the macaque47 and
macaque?7l brain networks. The EAs use a population size
of 500 individuals, and the maximal number of generations
for each problem were 200 for fve30 and fve32, 500 for
macaque47, and 1000 for macaque71. The truncation
parameter was 7=0.5. There were 20 executions for each
problem. The characteristics of the selected networks are
described in Table 1.

Numerical Results

We use the artificial networks generated to investigate the
three issues stated at the beginning of Section Experiments.

Relationships Between Objectives

We start by forming a set of randomly generated networks.
This set comprises all the initial populations of artificial
brain networks generated by the EA. It includes 10,000
networks.

The randomly generated solutions are investigated by
computing the correlations between the two objectives
considered in the optimization process. The goal is to
determine whether the structural and functional motif
numbers are conflicting or harmonious objectives.
Totally harmonious objectives would mean that single-
objective optimization is enough to generate a good set
of solutions.

We also analyze correlations with and between the
clustering coefficient and the average path length since
they serve to define different classes of networks,
particularly small-world networks. The goal is to find
out whether the multi-objective optimization of structur-
al and functional motifs has an effect on other

Table 1 Some network measures of the brain networks used in the
experiments

Network n |E] mean (V) c L

fve30 30 311 10.3667 0.5510 1.7256
fre32 32 315 9.8438 0.5746 1.7698
macaqued7 47 505 10.7447 0.5805 2.0500
macaque?7l 71 746 10.5070 0.4710 2.3252

n Number of vertices. |E| Number of edges. mean(V;) Average degree.
¢ Clustering coefficient. L Average path length



topological characteristics of the optimized networks.
Thus, as a first step, we compute the correlations in
randomly generated brain networks.

Table 2 shows the correlations between the different
objectives for randomly generated artificial brain networks
for the fve30, fve32, macaque47 and macaque?7l networks.
mg and my respectively represent the structural and
functional motif number. c¢ is the clustering coefficient and
L the average path length.

A first conclusion from the table is that the number of
structural motifs has a strong negative correlation to the
number of functional motifs. The correlations between m
and my are similar for all the problems. Since a decrease in
the number of structural motifs determines a likely increase
in the number of functional motifs, our two objectives are
very harmonious. However, a lower number of structural
motifs does not always determine a higher number of
functional motifs, i.e. the objectives are not totally
harmonious, and we cannot optimize both of them by
optimizing only one. Care must be taken about extrapolat-
ing the results of the correlation between the objectives to
non-random population samples. For example, it may be
difficult to improve both objectives simultaneously in a
population of highly optimized solutions.

Regarding the other correlations, they are generally
weak. Particularly interesting is the correlation between ¢
and L, which is negative in all cases, though very low.

Comparison Between the Original and Random Generated
Networks

In this section, the original and random brain networks are
compared in terms of different local and global topological
descriptors. Local topological measures such as the number of
structural and functional motifs provide a perspective for the
understanding of the network properties. However, to better
characterize cortical networks, it is also important to study
them in terms of their global topological measures. This type
of study may reveal other larger scale properties important for
understanding brain structural and functional organization.

In the first step, structural and functional motifs are used
to compare the original brain network to the set of
randomly generated networks. Figure 3 shows the structural
motif number against the functional motif number for all
randomly sampled networks (dots) in the initial popula-
tions. The same measures are shown for each original brain
network (triangle) located in the upper left corner. It is clear
from Fig. 3 that each original brain network notably
outperforms its respective set of randomly generated
networks in terms of both objectives. This fact confirms
that brain networks significantly depart from random
networks in terms of the structural and functional motif
numbers. The brain networks shown in Fig. 3 have a lower

Table 2 Correlation of the different objectives for randomly generated artificial brain networks for brain networks fve30, fve32, macaque47 and macaque71

macaque7l

macaque47

fre32

fve30

mf

ms

mf

ms

mf

ms

mf

ms

0.06
—0.10
-0.20

0.12 1.00 —-0.95 —-0.23
0.27

—0.16
-0.26

-0.20
0.26

—-0.91
1.00

1.00

—0.88 -0.16 0.11
-0.14
-0.21

1.00

—0.88 —-0.08 0.10
-0.17
-0.14

1.00

ms

1.00

1.00

0.24
1.00

1.00

0.17
1.00

1.00

mf

1.00

1.00

1.00

1.00

1.00

my Structural motif number. m, Functional motif number. ¢ Clustering coefficient. L Average path length
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structural motif number and a higher functional motif
number than the random networks. This calls for a need
to optimize the random networks.

In the next step some global topological measures are
computed for the original and randomly sampled networks.
Figure 4 shows the average path length against the
clustering coefficient for randomly sampled networks (dots)
and for the original networks (triangle). This figure also
includes the measures computed for the optimized networks
(stars) but this information will be analyzed in
Section Comparison Between the Original and Optimized
Networks.

Although the shapes of the clouds of points represented
in Fig. 4 vary, we find that the original networks have
higher average path lengths in all cases. The clustering
coefficients are also higher than for the random networks.
These results reveal that although some topological char-
acteristics, e.g. indegree and outdegree values, are forced to
be the same, random and real networks remain topologi-
cally very different.

In addition to the average path length and the clustering
coefficient, we have computed the modularity and the
betweeness connectivity of the networks. Figure 5 shows
the modularity against the betweenness centrality for
randomly sampled networks (dots) and the original net-
works (triangle). This figure also includes the measures
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macaque71

computed for the optimized networks (stars) but this
information will be analyzed in Section Comparison Be-
tween the Original and Optimized Networks. Similarly to
the previously analyzed global measures, the modularity
and the betweenness centrality of the original network are
very different to these measures computed for the 10,000
random networks. The original network has higher modu-
larity and betweeness centrality values than random
networks.

The results presented in this section serve to illustrate
that cortical networks depart from similar random networks
both in terms of local and global network topological
characteristics. These results will also serve to highlight the
effect that multi-objective optimization has in the search for
artificial brain networks.

Behavior of the Evolutionary Algorithm

The evolutionary algorithm plays a fundamental role in
outputting the optimized networks. It has to guarantee that
the initial random solutions from which the algorithm starts
are progressively replaced by networks with better objec-
tive values. To evaluate the capacity of the EA to generate
good quality solutions, we compute the non-dominated set
of solutions from all the solutions sampled in every
execution. Then, a final set of all the absolute non-
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dominated solutions is computed from the sets of all the
executions.

Figure 6 shows the structural motif number against the
functional motif number for non-dominated solutions
learned in each run of the EA (blue dots), and absolute
non-dominated solutions (stars). For comparison purposes,
the objective values of the original networks are also
plotted in the graphs (triangle). Since some of the triangles
representing the original network measures are difficult to
locate, dashed lines highlight their coordinates.

Clearly the evolutionary search leads to a remarkable
improvement in the artificial networks. The objective
values for the original networks, which were much better
than for the random networks (see Fig. 3) are not as
different as the objective values corresponding to the Pareto
front approximations.

To determine the suitability of the EAs for finding
networks better than the original brain networks, we
scrutinize each run of the EAs, extracting statistics to
evaluate algorithm performance. We also estimate the
computational effort by computing the average number of
evaluations needed to reach objective values equal to or
better than those of the brain networks. The information is
shown in Table 3.

Looking at Table 3, we see that the difficulty the EAs
have in achieving both objectives is not the same. In all
cases, the EAs need fewer function evaluations to find

solutions that have a better number of functional motifs
than the corresponding brain network (columns e;, e,
e(12). This does not necessarily mean, though it does
suggest, that the brain networks analyzed are more
optimized in terms of the number of functional motifs than
in terms of structural motifs. Table 3 also provides
information about the difference the four brain problems
have in terms of complexity. Network fve32 is the easiest
for the EA to solve. For this network the algorithm achieves
a high success rate with a relatively small number of
function evaluations. Notably, the corresponding brain
network has more nodes and links than network fve30.
This means that fewer number of nodes does not necessar-
ily imply less complexity and an easier optimization
problem. Finally, by analyzing the average number of
generations and evaluations (other columns) needed to
optimize the two objectives individually and simultaneous-
ly, we find that, on average, it takes longer for the EAs to
find solutions that optimize the two objectives simulta-
neously. Optimizing one of the objectives separately, even
the hardest one, is no guarantee that both objectives will be
optimized in the solution achieved.

Comparison Between the Original and Optimized Networks

Figure 6 reveals that although considerably better than
random solutions, original brain networks by no means
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Table 3 Different measures of algorithm performance

Network

Alg. S A\ S{I.Z} 81 82 81,2} €] € €41,2}
fre30 EA 13 20 12 186.61 148.05 187.92 93308 74025 93958
fre32 EA 20 20 19 182.20 147.20 182.37 91100 73600 91184
macaque47 EA-Local 20 20 20 191.95 161.45 193.55 123860 96002 125390
macaque?7l EA-Local 15 18 14 876.13 748.50 871.79 7167500 5780900 7114300

S (respectively S5) is the number of executions at which at least one solution has been found whose first objective value, the structural motif
number, (respectively the second objective value, the functional motif number) is better than the first objective value (respectively the second) of
the original brain network. Sy, »; is the number of executions at which at least one solution has been found that is better than the original brain
network for the two objective values simultaneously. g, g and gy »; are respectively the average number of generations needed to reach the
solutions computed from successful runs used to calculate S, S, and Sy, 2,. €|, e, and ey, »; show similar information but for the number of

evaluations made by the algorithms

minimize structural or maximize functional complexity at
the same time. Also taking the multi-objective perspective,
we can determine which of the two objectives the original
networks are closer to optimize. Figure 6 shows that while
the structural motif number of the original network is lower
than for most of the non-dominated solutions, the function-
al motif number is also lower, i.e. optimized artificial
networks have a higher functional motif number with the
same or even a smaller structural motif number.

We further investigate this issue by computing the
average motif frequency spectrum for evolved artificial
brain networks and compare it to the original network motif

frequency spectrum. Figures 7, 8, 9 and 10 show the
structural and functional motif spectra computed for the
four problems. The motif spectra shown for the optimized
brain networks have been computed as the average motif
spectrum of all the networks in the Pareto set approxima-
tion of each EA run.

Clearly the motif spectra for the original and optimized
networks are very similar in all the charts for all problems.
In some cases the differences between the motif spectra are
almost indistinguishable. Also, the motif spectrum of the
original network is similar to the average of the optimized
network. The differences between the motif spectrum of the
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Fig. 8 Motif spectra for net- 500
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original network with respect to the motif spectrum of
individual optimized solutions are more remarkable (data not
shown). Additionally, notice that the increased occurrence of
structural motif 9 for motifs of size M=3 agrees with previous
analysis of natural and single-objective optimized artificial
brain networks (Sporns and Katter 2004).

To have a wider perspective of the difference between
the original and evolved networks, the same global
topological measures presented in Section Comparison
Between the Original and Random Generated Networks
were computed for the evolved networks. Results for the
average path length and the clustering coefficients are
shown in Fig. 4. Results for the modularity and the
betweenness centrality are shown in Fig. 5.

There are two main relevant observations that can be
made from the analysis of these figures. The first is that for
some global measures, evolved networks never reach the
values of the original networks. This is the case, for
example, for the average path length and the modularity.
Evolved networks have always lower average path length
and modularity than the original networks. This fact is not
very surprising since, the optimization algorithm is not
conceived to optimize these measures.

The second relevant fact is that, for all the global
topological measures considered, the optimized networks

3500

1 2 3 4 5 6 7 8 9 10 11 12 13
Artificial networks. Functional motifs (M=3)

d)

are closer to the original networks than the random
networks. This fact seems to indicate that by optimizing
the number of structural and functional motifs, other global
topological measures are also optimized. In fact, in some
cases it can be appreciated that the original networks are not
optimal in terms of the global topological measure
considered. For example it can be seen in Fig. 5, that
betweenness centrality values of some optimized networks
are above those of the original fve network.

As in the analysis conducted for the randomly
generated solutions, we computed, from the set contain-
ing the Pareto approximations of all the runs, the
correlations between the two objectives considered in
the optimization process. Their correlation with the
clustering coefficient and the average path length of the
networks was also computed. We also analyze correla-
tions with and between the clustering coefficient and the
average path length for these solutions.

Table 4 shows the correlations between the different
objectives for the optimized artificial brain networks for all
the networks. Correlations are quite unlike from the data
shown in Table 2. The sign of the correlation between
structural and functional motif number has changed for
networks fve30 and fve32, and the correlation for the other
two networks is closer to 0 (see also Fig. 6).
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It is difficult to find a common pattern for all the problems
and correlation appears to depend on the particular class of
problem and the Pareto set approximation that has been found.
These results corroborate the fact that, in the space of
optimized solutions, both the topological characteristics of
the networks and number of related characteristics that serve
to describe the networks, e.g. ¢ and L, change.

Conclusions

We identify two main, closely related but different contribu-
tions in the paper. The first, which we consider to be a
methodological contribution, is the application of a multi-
objective optimization approach to evolve the networks. This
optimization algorithm is able to find highly optimized
artificial networks that are usually better than the original
brain networks. Although the choice of the network measures
to be optimized, i.e. the number of structural and functional
motifs, is important, it is not essential for the application of the
methodology that we propose to evolve the networks. The
rationale of using multi-objective optimization remains valid
if other measures are used. By outputting a Pareto set
approximations, we can investigate the trade-off between the
different objectives involved, revealing the sometimes com-
plex relationships between them. Also the specific scheme
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used for evolutionary optimization is applicable if other
network measures are considered as objectives. The only
changes required if other measures are used instead of the
number of structural and functional motifs will be the local
search procedure. Note that, in general, attaining optimality
for one of the objectives does not necessarily mean that the
other objectives will be optimal. This is the case only if there
are redundant objectives.

The second contribution is related to the questions
originally posed in Sporns and Kétter (2004). One of our
findings is the somewhat expected evidence that the
original networks are not optimal in terms of their number
of structural and functional motifs. Since the original
cortical networks we use represent only an approximation
of the true cortex connectivity, probably with missing
connections, they are unlikely to optimize the network
measures used as objectives. However, we have also shown
that this is not the only information that can be extracted
from the Pareto fronts of the optimized networks. They are
also informative in terms of the relationships between the
objectives. For instance, their analysis reveals that it is
generally easier for optimized networks to optimize the
number of functional motifs than the number of structural
motifs. We have presented evidence that the optimization
process itself, and not only the results of the multi-
evolutionary search, can be useful. In particular, we have
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shown that the computational effort measured in terms of the
number of evaluations can be used to compare the
complexity of different structural brain problems. Addition-
ally, the number of evaluations can be employed to compare
how difficult it is to achieve the different objectives.

By combining the use of local and global measures to
analyze brain connectivity, we have also extended previous
work presented in Sporns and Kotter (2004). The analysis
of the local topological measures does not capture all the
complexity of cortical networks. In particular, there is no
guarantee that large-scale topological properties will be
captured if we focus only on local topological network
measures. It is noteworthy that brain organization relies on
both local and global connectivity. On the other hand, our
results indicate that, by relying exclusively on the multi-
objective optimization of local network measures, it is
possible to obtain artificial networks that are closer to the
original networks in terms of the analyzed global topolog-
ical measures. They are, at least to some extent, optimized
with respect to these global network measures. Further-
more, our results show that, in some cases, the optimized
networks are also better than the original network in terms
of global network measures.

Finally, we have investigated the correlation between the
structural and functional motif numbers, the average path
length and the clustering coefficient in random, optimized
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and natural brain networks. We initially expected the
analysis of the correlations between network measures to
provide additional insight into the relationships between
them. This was the case for the measures used for the
optimization whose correlation values mapped to very
harmonious objectives. However, we have found that, at
least for the case of the computed networks, there is not a
strong correlation between the average path length, the
clustering coefficient and the other measures.

Future Work

In our analysis, no important differences were found between
the distribution of motifs for the original and optimized brain
networks. However, so far only motifs of size M=3 have been
considered. It is not clear if differences could exist for higher
values of M. Furthermore, we have not investigated how the
topology of optimal artificial networks could change with M.
Generally, the identification of topological descriptors that,
on one hand, serve to accurately describe the specificities of
the natural brain networks, and on the other hand, could be
used to obtain artificial brain networks following an
optimization approach, is an open question.

A straightforward extension of our work is to consider
more than two objectives to describe the network topology.
It has to be taken into account, though, that evolutionary



Table 4 Correlation of the different objectives for optimized artificial brain networks for fve30, fve32, macaque47, and macaque71 networks
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algorithm performance falls when there are too many
objectives, and more sophisticated strategies should be
used to deal with these cases (Deb and Saxena 2005).

One point that hinders the application of EAs is their
scalability. The use of adjacency matrices to represent
candidate solutions is very costly in memory terms; it grows
quadratically with the number of variables. This is particularly
evident when population-based optimization algorithms like
EAs are employed. Therefore, more research is required to
conceive alternative problem representations. The application
of other representations such as generative network models
(Leskovec et al. 2010) should be investigated.

Finally, another open research trend is the design of more
accurate EAs that are able to detect and model structural
regularities from the set of selected solutions. One alternative is
to use estimation of distribution algorithms (EDAs) (Larrafiaga
and Lozano 2002; Muhlenbein and Paa3 1996) for network
evolution. EDAs are a class of EAs that employs probabilistic
models instead of genetic operators to generate the new
solutions. EDAs can more efficiently deal with problems with
interacting variables than classical genetic algorithms and
other EAs. However, traditional EDAs experience difficulties
when representing variable interactions in constrained prob-
lems (Santana et al. 2009). In the evolution of artificial brain
networks it has to be guaranteed that the generated solutions
are feasible (i.e. the topological constraints are satisfied).
Conceiving probabilistic models able to respect topological
relationships between the graph nodes and amenable for use
in EDA sampling is another open research trend.

Information Sharing Statement

The brain networks data sets used in this paper are in Matlab
format and can be retrieved from http://www.indiana.edu/
~cortex/CCNL.html. MATEDA-2.0 is downloadable from
http://www.sc.ehu.es/ccwbayes/members/simrsantana/software/
matlab/MATEDA html. The brain connectivity toolbox
(Sporns 2002) is available at http://sites.google.com/a/brain-
connectivity-toolbox.net/bct/metrics.

Acknowledgments This work has been partially supported by the
Saiotek and Research Groups 2007-2012 (IT-242-07) programs (Basque
Government), TIN-2008-06815-C02-02, TIN2007-62626 and Consolider
Ingenio 2010 - CSD2007-00018 projects (Spanish Ministry of Science and
Innovation), the CajalBlueBrain project, and the COMBIOMED network
in computational biomedicine (Carlos III Health Institute).

References

Brockhoff, D., & Zitzler, E. (2006). Dimensionality reduction in multi-
objective optimization: The minimum objective subset problem. In
K.-H. Waldmann, & U. M. Stocker (Eds.), Operations Research,



Proceedings 2006. Selected Papers of the Annual International
Conference of the German Operations Research Society (GOR),
Jointly Organized with the Austrian Society of Operations Research
({"O}GOR) and the Swiss Society of Operations Research (SVOR)
(pp- 423-429). Karlsruhe, Germany, September 68, 2006.

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph
theoretical analysis of structural and functional systems. Nature
Reviews. Neuroscience, 10, 1-13.

Cherniak, C. (1994). Component placement optimization in the brain.
The Journal of Neuroscience, 14, 2418-2427.

Cherniak, C. (2004). Global optimization of cerebral cortex layout.
Proceedings of the National Academy of Sciences (PNAS), 101
(4), 1081-1086.

Costa, L. F., & Sporns, O. (2005). Hierarchical features of large-scale
cortical connectivity. The European Physical Journal B, 48(4),
567-573.

Costa, L. F., Sporns, O., Antiqueira, L., Nunes, M. G. V., Oliveira, M.,
& Oliveira Jr, O. N. (2007). Correlations between structure and
random walk dynamics in directed complex networks. Applied
Physics Letters, 91(054107). doi:10.1063/1.2766683.

Costa, L. F., Kaiser, M., & Hilgetag, C. C. (2007). Predicting the
connectivity of primate cortical networks from topological and
spatial node properties. BMC Systems Biology, 1(1), 16.

Costa, L. F., Rodrigues, F. A., Travieso, G., & Boas, P. R. V. (2007).
Characterization of complex networks: a survey of measure-
ments. Advances in Physics, 56(1), 167-242.

Deb, K. (2001). Multi-objective optimization using evolutionary
algorithms. Chichester: Wiley.

Deb, K., & Saxena, D. K. (2005). On finding Pareto-optimal solutions
through dimensionality reduction for certain large-dimensional
multi-objective optimization problems. KanGAL Report
2005011, Kanpur Genetic Algorithms Laboratory (KanGAL).
Indian Institute of Technology Kanpur.

Defoin-Platel, M., Schliebs, S., & Kasabov, N. (2009). Quantum-
inspired evolutionary algorithm: a multimodel EDA. [EEE
Transactions on Evolutionary Computation, 13(6), 1218—1232.

De Lucia, M., Bottaccio, M., Montuori, M., & Pietronero, L. (2005).
Topological approach to neural complexity. Physical Review E.
Statistical, Nonlinear, and Soft Matter Physics, 71, 016114.

Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. (2008). Critical
phenomena in complex networks. Reviews of Modern Physics, 80
(4), 1275-1335.

Druckmann, S., Banitt, Y., Gidon, A., Schuermann, F., Markram, H.,
& Segev, 1. (2007). A novel multiple objective optimization
framework for constraining conductance-based neuron models by
experimental data. Frontiers in Neuroinformatics, 1(1), 7-18.

Druckmann, S., Berger, T. K., Hill, S., Schuermann, F., Markram, H.,
& Segev, 1. (2007). Evaluating automated parameter constraining
procedures of neuron models by experimental and surrogate data.
Biological Cybernetics, 99, 371-379.

Edelman, G. M., & Mountcastle, V. B. (1978). The mindful brain.
Cambridge: MIT Press.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical
processing in the primate cerebral cortex. Cerebral Cortex, 1, 1-47.

Gerken, W. C., Purvis, L. K., & Butera, R. J. (2006). Genetic
algorithm for optimization and specification of a neuron model.
Neurocomputing, 69, 1039-1042.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization,
and machine learning. Reading: Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and
artificial intelligence. Ann Arbor: University of Michigan Press.

Honey, C. J., Kotter, R., Breakspear, M., & Sporns, O. (2007).
Network structure of cerebral cortex shapes functional connec-

tivity on multiple time scales. Proceedings of the National
Academy of Sciences (PNAS), 104, 10240-10245.

Kashtan, N., & Alon, U. (2005). Spontaneous evolution of modularity
and network motifs. Proceedings of the National Academy of
Sciences (PNAS), 102(39), 13773-13778.

Larrafaga, P., & Lozano, J. A. (Eds.). (2002). Estimation of
distribution algorithms. A new tool for evolutionary computation.
Boston/Dordrecht/London: Kluwer Academic Publishers.

Leicht, E. A., & Newman, M. E. J. (2008). Community structure in
directed networks. Physical Review Letters, 100, 118703.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., & Gharamani,
Z. (2010). Kronecker graphs: an approach to modeling networks.
The Journal of Machine Learning Research, 11, 985-1042.

Lopez, A., Coello, C. A., & Chakraborty, D. (2008). Objective reduction
using a feature selection technique. In M. Keijzer (Ed.), Proceedings
of the 10th Annual Conference on Genetic and Evolutionary
Computation GECCO-2008 (pp. 673—680). New York: ACM.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., &
Alon, U. (2002). Network motifs: simple building blocks of
complex networks. Science, 298, 824-827.

Muhlenbein, H., & Paal, G. (1996). From recombination of genes to the
estimation of distributions 1. Binary parameters. In H.-M. Voigt, W.
Ebeling, I. Rechenberg, & H.-P. Schwefel (Eds.), Parallel problem
solving from nature - PPSN 1V, vol. 1141 of lectures notes in
computer science (pp. 178-187). Berlin: Springer.

Pettinen, A., Yli-Harja, O., & Linne, M. L. (2006). Comparison of
automated parameter estimation methods for neuronal signaling
networks. Neurocomputing, 69, 1371-1374.

Purshouse, R. C., & Fleming, P. J. (2003). Conflict, harmony and
independence: Relationships in evolutionary multicriterion opti-
misation. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, & L.
Thiele (Eds.), Evolutionary multi-criterion optimization: Second
International Conference, EMO 2003, vol. 2632 of lecture notes
in computer science (pp. 16-30). Berlin-Heidelberg: Springer.

Reijneveld, J. C., Ponten, S. C., Berendse, H. W., & Stam, C. J. (2007).
The application of graph theoretical analysis to complex networks in
the brain. Clinical Neurophysiology, 118(11), 2317-2331.

Rodrigues, F. A., & Costa, L. F. (2009). A structure-dynamic approach
to cortical organization: number of paths and accessibility.
Journal of Neuroscience Methods, 183(1), 57-62.

Rodrigues, F. A., & Fontoura Costa, L. (2009). Signal propagation in
cortical networks: a digital signal processing approach. Frontiers
in Neuroinformatics, 3(24), 1-13.

Santana, R., Larrafiaga, P., & Lozano, J. A. (2009). Research topics on
discrete estimation of distribution algorithms. Memetic Comput-
ing, 1(1), 35-54.

Santana, R., Bielza, C., Larrafiaga, P., Lozano, J. A., Echegoyen, C.,
Mendiburu, A., et al. (2010). MATEDA: estimation of distribution
algorithms in MATLAB. Journal of Statistical Software, 35(7), 1-30.

Sporns, O. (2002). Neuroscience databases. A practical guide,
chapter graph theory methods for the analysis of neural
connectivity patterns (pp. 171-186). Boston/Dordrecht/London:
Kluwer Academic Publisher.

Sporns, O., & Kotter, R. (2004). Motifs in brain networks. PLoS
Biology, 2(11), €369.

Wang, S. P, Pei, W. J., & He, Z. Y. (2008). Random walks on the
neural network of c. elegans. In Proceedings of the 2008
International Conference on Neural Networks and Signal
Processing (pp. 142-145).

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-
world networks. Nature, 393(6684), 440—442.

Young, M. P. (1993). The organization of neural systems in the
primate cerebral cortex. Proceedings of Biological Science, 252
(1333), 13-18.



