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Summary

The hippocampus has become the focus of research in several neurodegenerative disorders. 

Automatic segmentation of this structure from magnetic resonance (MR) imaging scans of the 

brain facilitates this work. Segmentation techniques must be evaluated using a dataset of MR 

images with accurate hippocampal outlines generated manually. Manual segmentation is not a 

trivial task. Lack of a unique segmentation protocol and poor image quality are only two factors 

that have confounded the consistency required for comparative study. We have developed a 

publicly available dataset of T1-weighted (T1W) MR images of epileptic and nonepileptic 

subjects along with their hippocampal outlines to provide a means of evaluation of segmentation 

techniques. This dataset contains 50 T1W MR images, 40 epileptic and 10 nonepileptic. All 

images were manually segmented by a widely used protocol. Twenty five images were selected 

for training and were provided with hippocampal labels. Twenty five other images were provided 

without labels for testing algorithms. The users are allowed to evaluate their generated labels for 

the test images using 11 segmentation similarity metrics. Using this dataset, we evaluated two 

segmentation algorithms, Brain Parser and Classifier Fusion and Labeling (CFL), trained by the 

training set. For Brain Parser, an average Dice coefficient of 0.64 was obtained with the testing 

set. For CFL, this value was 0.75. Such findings indicate a need for further improvement of 

segmentation algorithms in order to enhance reliability.
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Introduction

Both the natural process of aging and several neurodegenerative and lesional conditions 

affect the brain. The study of the shape and tissue characteristics of brain structures provides 

us with the means to monitor changes over time and to shed light on the nature of clinical 

progression. Magnetic resonance (MR) imaging is widely used as the medium of choice 

because of its resolution and the ability to assess the intrinsic nature of defined components. 

Select areas may be outlined on sequential images and studied by 3D segmentation. Manual 

segmentation, however, is both tedious and time-consuming; hence, automatic segmentation 

algorithms are preferred.

Numerous automated segmentation techniques have been proposed. Comparison is difficult 

as each proposed technique uses its own unique algorithm upon a different set of images. On 

the other hand, the creation of individual sets of training and testing samples would burden 

the development of automatic techniques as it would require the outline of select structures 

and, moreover, consideration of the appearance of the site as it might be defined by contrast, 

signal-to-noise ratio (SNR) and head position. Commonly, analyses are performed on 

relatively few subjects and may be biased towards those upon whom it may be more suited.

A publicly available online dataset of MR images with a sequential outline of a select 

structure such as the hippocampus would provide a validation tool for all segmentation 

algorithms for comparison. In this work, we have provided such a dataset of images and 

have used it to compare two published algorithms, Brain Parser (Tu et al., 2008) and 

Classifier Fusion and Labeling (CFL) (Aljabar et al., 2007).

Variations in the volume and architecture of the hippocampus have been observed in a 

variety of neurological disorders including schizophrenia (Lawrie and Abukmeil, 1998), 

epilepsy (Cendes et al., 1993) and Alzheimer’s disease (Jack et al., 1992). Manual outline of 

the hippocampus in standard T1-weighted (T1W) MR images is difficult and varies among 

publications (Geuze et al., 2005). Two major factors are responsible for this variation:

Manual segmentation protocol

The hippocampal border is not comprehensively defined in human brain atlases. The manual 

protocol for drawing the outline on MR images varies as a consequence. Reviews of current 

protocols provide an excellent overview of methodologies (Geuze et al., 2005; Konrad et al., 

2009). Based upon such a comprehensive review (Geuze et al., 2005), a protocol for 

segmentation of the whole hippocampus was adopted for this study that provided clear 

guidelines for outlining the structure.

Image quality

Lack of sufficient quality of the MR image will impede accurate definition of the 

hippocampal border and introduce subjectivity into the process once the protocol is fixed. 

Image quality depends on resolution (i.e., pixel size and slice thickness), contrast, SNR and 

is subject to motion artifact. When definition is not sufficiently clear, external landmarks are 

used although these may vary in location depending upon the angle between the 

hippocampal main axis and the imaging plane (Konrad et al., 2009). A partial volume effect 
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(PVE) adds further to the difficulty in low resolution images. This problem is pronounced in 

the hippocampal tail where the hippocampus curves medially with respect to the coronal 

plane and, in the hippocampal head where the hippocampus is convoluted and blends with 

the amygdala. Representative coronal slices of the hippocampal head with different 

resolutions and acquisition by two MR imaging scanners with field strengths of 1.5 T and 

3.0 T illustrate the difficulties encountered in this location because of PVE (Fig. 1). A 

similar problem can be illustrated in the same fashion with the hippocampal tail (Fig. 2). The 

border between the hippocampal tail and pulvinar becomes indistinguishable rendering its 

definition highly subjective. The fimbria, the output tract of the hippocampus, is not very 

clear in low resolution images either. The temporal horn of the lateral ventricle and the gray 

matter may occasionally have similar intensities due to the PVE also.

To train an automated segmentation algorithm, a set of MR images with valid hippocampal 

outlines is required. Such a dataset must be publicly available and two brain MR image 

datasets with hippocampal outlines are currently provided: (i) the Internet Brain 

Segmentation Repository (IBSR, http://www.cma.mgh.harvard.edu/ibsr/) and (ii) the LONI 

Probabilistic Brain Atlas (LPBA40, http://www.loni.ucla.edu/Atlases/LPBA40/) (Shattuck 

et al., 2008). The IBSR contains T1W MR images of 18 neurologically intact nonepileptic 

subjects with expert segmentation of 43 bilaterally defined structures including the 

hippocampi. The voxel size of these images is 0.84×0.84×1.5 mm3. The LPBA40 contains 

T1W MR images of 40 neurologically intact nonepileptic subjects with expert segmentation 

of 56 structures including the hippocampi. The voxel size of these images is 0.86×0.86×1.5 

mm3. The Alzheimer's Disease Neuroimaging Initiative (ADNI, http://www.adni-info.org/) 

is another source of hippocampal outlines, but the outlines have been generated semi-

automatically using a software tool called SNT (Medtronic Surgical Navigation 

Technologies, Louisville, CO) and edited manually.

Both of the above datasets contain images of unaffected subjects. In practice, hippocampal 

segmentation may be problematic due to the shape changes caused by neurological 

disorders. For instance, in mesial temporal lobe epilepsy (mTLE), atrophy is often observed 

in the epileptogenic hippocampus. Automatic segmentation of an atrophic structure is a 

challenging task as its dimensions and shape will differ from those in the training images of 

nonepileptic subjects. Comparable images in a segmentation algorithm would provide useful 

indicators of the extent of change encountered both in regards to shape in different planes 

and overall volume. Other practical problems such as motion artifact and low SNR are 

issues that might be dealt with by more rigorous application of the actual imaging protocol. 

The IBSR dataset does include a few samples with motion artifact.

The average hippocampal volume calculated from the IBSR label maps is significantly 

higher (left side 3637 mm3, right side 3616 mm3) in comparison with our previously 

reported values for a set of 25 healthy subjects (left side 2507 mm3, right side 2510 mm3) 

(Jafari-Khouzani et al., 2010). This appears attributable largely to the inclusion of white 

matter (i.e., alveus and fimbria) and neighboring nonhippocampal tissues in the IBSR 

segmentations. The alveus is a white matter tract containing axons from hippocampal and 

subicular neurons that enter the fimbria (Duvernoy, 2005). Fig. 3A–B shows the coronal 

section of the hippocampal head in slice Number 65 of IBSR_07_ana.img in the IBSR 
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dataset with the manual hippocampal segmentation provided by the IBSR. The alveus and 

part of the amygdala are included in the hippocampal segmentation. Fig. 3C shows the 

outline that is used in the present scheme drawn with a thickness smaller than the pixel size 

to better identify the real boundary. The sectional anatomy of the hippocampal head in a 

similar slice provided by another source (Duvernoy, 2005) is presented in Fig. 4 and 

illustrates a distinctive border between the hippocampus and amygdala. Unfortunately, 

because of a PVE, this distinction is not usually observed in standard T1W MR images.

The LPBA40 hippocampal segmentation protocol is significantly different from other 

protocols in the literature. Fig. 5 shows the hippocampal outlines in representative slices of 

subject S01 from the LPBA40 dataset. The majority of the hippocampal tail is not included 

in the segmentation (Fig. 5A), whereas part of the amygdala is included (Fig. 5B). The 

average hippocampal volume calculated from the LPBA40 label maps are 4120 mm3 and 

3907 mm3 for the left and right sides, respectively.

Some researchers use their own segmented set of images to avoid these discrepancies but are 

unable to evaluate their algorithms against a separate set of images. Most are forced then to 

use different combinations of the available images as training and testing sets; hence, the 

reliability of their approach remains uncertain.

In this paper, we introduce a publicly available dataset of T1W MR images (http://

www.radiologyresearch.org/) with hippocampal outlines for the validation of automated 

hippocampal segmentation algorithms. Advantages of this dataset include the following:

1. Training and testing sets are separate. The researchers are encouraged to submit 

their segmentation results on the testing set to evaluate their algorithms.

2. Images are acquired using two different MR imaging systems with different field 

strengths and thus have different resolutions and contrasts. Twenty of the images 

have a higher resolution and are acquired with a 3.0 T MR imaging system.

3. Special care has been taken to minimize the PVE in the manual drawings. The 

sagittal view and neighboring coronal slices are used to reduce the segmentation 

inaccuracy due to the PVE.

4. Forty of the images belong to patients with medically intractable temporal lobe 

epilepsy. The hippocampal outline commonly differs in these circumstances 

making the segmentation challenging. This provision allows an evaluation of the 

proposed segmentation algorithm under practical considerations. Fig. 6 shows the 

slices of a few samples from this dataset under various practical adversities such as 

atrophy, motion artifact, poor SNR, the presence of a lesion and field 

inhomogeneity. The latter confounds automated skull-stripping and co-registration.

We have evaluated two segmentation algorithms, namely Brain Parser (Tu et al., 2008) and 

CFL (Aljabar et al., 2007), using the above dataset.
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Materials and Methods

Subjects

Fifty subjects comprising 40 patients (13 males, 27 females) with mesial (m)TLE, age range 

15–64, (39±12, mean±SD) and 10 nonepileptic subjects (5 males, 5 females), age range 19–

54 (34±13) were included. A number of patients had hippocampal atrophy. The nonepileptic 

subjects were drawn from an archive of control subjects in a sleep research project. The 50 

subjects were randomly selected and also reflect practical problems such as motion artifact, 

low SNR and head tilt.

MR imaging

Thirty of the subjects, including 20 epilepsy patients and 10 nonepileptic subjects, had their 

MR images acquired with a General Electric 1.5 T Signa system (GE Medical Systems, 

Milwaukee WI). These subjects underwent coronal T1W MR study using a spoiled gradient-

echo (SPGR) sequence with TR/TE/TI = 7.6/1.7/500 ms, flip angle = 20°, field of view 

(FOV) = 200×200 mm2, matrix size = 256×256, pixel size = 0.78×0.78 mm2, slice thickness 

= 2.00 mm (voxel size = 0.78×0.78×2.00 mm3), bandwidth = 25 KHz and scanning time of 

5 minutes and 45 seconds. The remaining twenty subjects, all epilepsy patients, had their 

MR images acquired with a General Electric 3.0 T system (GE Medical Systems, 

Milwaukee WI). These subjects underwent coronal T1W MR study using a SPGR sequence 

with TR/TE/TI = 10.4/4.5/300 ms, flip angle = 15°, FOV = 200×200 mm2, matrix size = 

512×512, pixel size = 0.39×0.39 mm2, slice thickness = 2.00 mm (voxel size = 

0.39×0.39×2.00 mm3) and scanning time of 6 minutes.

The images were converted to ANALYZE (Mayo Clinic Analyze 7.5) format. For privacy 

protection, all images were de-identified before conversion. Furthermore, the subject’s face 

was manually removed from each image.

Segmentation protocol

A single investigator (KJ) outlined all coronal hippocampal contours (usually 20 slices/case) 

using Eigentool, an in-house software (http://www.radiologyresearch.org/eigentool.htm). 

These were then verified by two other investigators (KE and SP). All images were 

segmented in the coronal plane although the other two planes were used to help find 

landmarks. All outlines were converted to label maps in ANALYZE format.

Manual hippocampal segmentation protocols vary notably among investigators (Geuze et 

al., 2005; Konrad et al., 2009). Some protocols exclude the hippocampal tail or head. In 

others, the extent of inclusion of the hippocampal tail and head vary. The 

amygdalohippocampal complex may be measured as a single entity. The anatomical 

boundaries of the hippocampus vary among protocols. An inability to adequately distinguish 

the gray matter of the hippocampus from the neighboring cerebrospinal fluid of the temporal 

horn compromises even the delineation of its lateral border. Konrad et al. (Konrad et al., 

2009) identify major areas causing differences among protocols as:

1. Inclusion/exclusion of hippocampal white matter (alveus and fimbria)
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2. Definition of the border between anterior hippocampus and amygdala

3. Definition of the posterior border and the extent to which the hippocampal tail is 

included

4. Definition of the inferomedial border of the hippocampus

5. Use of varying arbitrary lines whenever the border is not clear

In our protocol, the whole hippocampus, including head, body and tail, is outlined. White 

matter tracts, such as the alveus and fimbria, are not included. Examples of the hippocampal 

outlines are provided in Fig. 7. The alveus is used as a landmark separating the amygdala 

and hippocampus (Fig. 7D). The amygdala and temporal horn of the lateral ventricle are not 

included in the segmentation whereas the subiculum is included. The most anterior coronal 

slice is taken where, in high quality images, the alveus is still detectable as the head of the 

hippocampus tapers below the amygdala. Otherwise, any remaining anterior boundary is 

estimated based on experience and with the help of the sagittal view. The hippocampal tail is 

included to the point where it narrows and curves medially towards the crus. The gray-white 

matter interface is used as the inferior and lateral border. This interface may become smooth 

in some slices due to the PVE. The sagittal view and neighboring coronal slices are used to 

reduce the segmentation inaccuracy attributable to the PVE. We also limited the use of 

arbitrary lines and, instead, estimated the hippocampal border using intensity information as 

well as neighboring slices in cases where the border was not clear. As outlines were drawn 

in the coronal plane, care was taken to avoid jagged boundaries in other views (Fig. 8).

Data dissemination

Twenty-five sets of images consisting of 20 from epilepsy patients, 10 taken with the 1.5 T 

scanner and 10 with the 3 T scanner, and 5 from nonepileptic subjects were randomly 

selected as training samples and were provided with hippocampal label files. The remaining 

25 sets of images, similar in distribution as that of the training set, were provided as testing 

samples but without label files. The users may use the training samples to train their 

algorithms, submit the outcome of their segmentation algorithms on the testing images and 

receive the results based on a number of metrics listed below.

Segmentation metrics

Using a manually segmented image as our gold standard, an automatic segmentation may be 

evaluated by the calculation of segmentation similarity metrics. If X and Y represent the 

manual and automatic segmentation label sets, respectively, we define true positive as TP = 

X ∩ Y, true negative as TN = X̅ ∩ Y̅, false positive as FP = X̅ ∩ Y and false negative as FN = 

X ∩ Y̅. The following 11 metrics then are calculated to evaluate the automatic segmentation 

outcome (Dice, 1945; Munkres, 2000):

1.

2.
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3.

4.

5.

6.

Relative Absolute Value Difference 

7. Hausdorff distance dH (X, Y) = max {D1, D2} where 

, d(x, y) is the Euclidian distance, and 

∂ is the boundary operator.

8. Hausdorff 95 distance dH95 (X, Y) is similar to dH (X, Y) with the difference that 5% 

of the outliers are removed before calculation.

9.
Mean distance 

10. Average Symmetric Surface Distance: 

11.
Root Mean Square Distance: 

where |X| is the size of set X,  and . Metrics 1–5 are 

between zero and unity and increase with increasing quality of segmentation. For a perfect 

segmentation, metrics 1–5 equate to unity and metrics 6–11 equate to zero. Although there is 

redundancy among these outcome measures, the intent here is to provide a comprehensive 

listing of metrics from which authors may select those they feel to be most suitable for 

publication.

Reliability of manual segmentation

To test the reliability of manual segmentation, 10 subjects were randomly selected from the 

entire group to undergo outlining of the hippocampus. Eight subjects were epileptic, four of 

whom were imaged with the 1.5 T scanner and four with the 3 T scanner. Two subjects who 

were not epileptic were imaged with the 1.5 T scanner. In order to avoid reproducibility 

through familiarity with the initial exercise, six months were allowed to elapse before 

repetition by the same investigator (KJ). This experiment resulted in the following outcome 

metrics: Jaccard Index=0.81±0.01, Dice coefficient=0.90±0.01, sensitivity=0.88±0.03, 

specificity=1.00±0.00, precision =0.91±0.03, RAVD=−0.03±0.05, Hausdorff 

distance=3.79±1.33, 95% Hausdorff distance=0.22±0.02, mean distance=1.04±0.09, 

ASSD=0.24±0.03, RMS=0.53±0.06. The majority of discrepancies between the two 

segmentations were observed in the hippocampal head and tail where the PVE resulted in 
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poor image contrast. The accuracy of automatic segmentation was, in turn, limited by the 

reliability of manual segmentation.

Testing two segmentation algorithms

We tested two segmentation algorithms, namely Brain Parser (Tu et al., 2008) and CFL 

(Aljabar et al., 2007) using the dataset. Both algorithms were trained by the training set and 

tested on the testing set.

Brain Parser

Brain Parser software (Tu et al., 2008) segments regions of interest based on a training set of 

data and generates label volumes. The software comes pretrained on a provided dataset but 

can be retrained to work with desired regions of interest. This software was trained using the 

training images put forward in the current work. One set of training images of good quality 

(HFH_021) was selected as a template to which all other training images were then 

coregistered using an affine transformation. Brain Extraction Tool (BET) (Smith, 2002) was 

used for skull-stripping and FLIRT (Jenkinson and Smith, 2001) for affine coregistration. 

For subjects with poor BET outcome, manual skull-stripping and correction was applied.

Classifier Fusion and Labeling (CFL)

In this method, multiple atlases were coregistered to the query image and their labels 

propagated to give a segmentation of the query image. The propagated labels were used as 

classifiers and combined to yield the label volume (Aljabar et al., 2007). In this approach, all 

training images (i.e., atlases) were skull-stripped using BET and coregistered to a reference 

image, the MNI single subject image (Cocosco et al., 1997) with an affine transformation 

using FLIRT. The query image was also coregistered to the reference image using an affine 

transformation. Similarity between the coregistered atlases and the query image was 

calculated using normalized mutual information (Studholme et al., 1999) over the 

hippocampal region. The atlas images were ranked based on their similarity with the query 

image. The top-ranked 15 images were selected as classifiers and coregistered nonrigidly to 

the query image using a free-form deformation model (Rueckert et al., 1999). The labels 

were then propagated from the selected classifiers to the query image and fused using the 

vote rule (Rohlfing et al., 2004).

Results

Table 1 shows the average evaluation metrics using both Brain Parser and CFL algorithms 

on the testing dataset. Using Brain Parser, the average Dice coefficient was 0.64 for the 

testing set while, for CFL, it increased to 0.75.

Relatively high sensitivity with either segmentation method indicates the likelihood that the 

automated versions enclose the manually segmented version. The actual hippocampal 

volumes determined by both automatic segmentation algorithms are indeed significantly 

higher compared to that obtained by manual segmentation (Table 2). High specificity is due 

to the small size of the hippocampus compared to that of the whole image.
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Visual comparisons of hippocampal outlines achieved by automated methods and those 

manually generated illustrate the distinctions between the two (Fig. 9). The coarse outline in 

both automated versions is due to reslicing of the images to a voxel size of 1 mm3 before 

segmentation and mapping the generated labels back to the original images. Whereas 

distinct white matter borders, such as the alveus, were used in the manually segmented 

images to demarcate the hippocampal border, this was not the case for either Brain Parser or 

CFL. Both include the alveus in their outlines (Fig. 9D). Neither of the automated 

segmentations appreciated the hippocampal folds which characteristically define its anterior 

appearance (Fig. 9C). An accurate automated segmentation of the hippocampus in such 

locations is somewhat challenging due to the PVE.

To further study the capabilities of automated segmentation algorithms, several examples of 

hippocampal deformation were selected (Figs. 10, 11). The presence of an extrinsic lesion, 

in particular, may be shown to produce sufficient local hippocampal distortion to 

significantly affect outcome using an automated approach (Fig. 10A). This is made apparent 

in the case of both Brain Parser (Fig. 10C) and CFL (Fig. 10D) using such an example. 

Hippocampal deformation by an intrinsic anomaly seems equally likely to affect a poor 

outcome with either Brain Parser (Fig. 11C) or CFL (Fig. 11D).

Discussion

In addition to IBSR and LPBA40, there are other publicly available datasets for the 

validation of segmentation algorithms, notably for the caudate (Ginneken et al., 2007) and 

whole brain (Shattuck et al., 2009). The Caudate Segmentation Evaluation (Cause07) 

(Ginneken et al., 2007) contains separate training and testing sets from healthy controls and 

patients with schizotypal personality disorder. Labels are provided for the caudate and only 

for the training samples. No label is provided for the testing set. Advantages of Cause07 

include (i) separate training and testing samples, (ii) images acquired from two different 

centers and (iii) inclusion of pediatric samples. Segmentation Validation Engine (Shattuck et 

al., 2009) contains 40 T1W MR imaging sets of unaffected subjects used for validation of 

brain extraction algorithms. Whole brain masks have been generated manually. Furthermore, 

56 structures have been segmented semiautomatically. No label is provided; thus, all images 

are used for testing.

The set of images provided in this work could be improved in several ways. Recently 

published automated segmentation algorithms, such as HAMMER (Shen and Davatzikos, 

2002) and FreeSurfer (Fischl et al., 2002), provide labels for multiple brain structures and 

the same might be provided here. An algorithm’s performance may vary for different 

structures and the provision of corresponding manually segmented brain structures in the 

current dataset would be useful for the validation of automated segmentation algorithms of 

these structures. As the hippocampus has received the highest attention in the literature, we 

have provided a more comprehensive standard for this structure, in particular.

In the current dataset, the training and testing sets contain five nonepileptic subjects each. 

The subjects were scanned using a 1.5 T MRI scanner with 0.78×0.78×2.00 mm3 resolution. 

Populating the dataset with greater numbers of similar cases and with higher resolution 
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studies would provide for increasingly more accurate human brain imaging atlases. 

Improvements in field strength of scanners with resultant higher image resolution would 

promote such development over time also. The time spent in the manual segmentation of 

greater numbers of available images would be rewarded by the improved boundary 

definition of individual structures. Public availability of a sufficiently large dataset of high 

resolution MR images will be the substrate upon which automated algorithms may reliably 

function with the extraction of optimal metrics.

Automated segmentation algorithms are optimized for segmentation of a structure, such as 

the hippocampus, free of any local distortion by proximate or intrinsic lesions. Furthermore, 

the images have highly anisotropic voxels which makes segmentation even more 

challenging. The availability of a dataset that includes such structural anomalies and 

anisotropies provides a means for identifying such cases and establishing the extent to which 

any automated method is able to approximate the correct volume.

Although a separate test set provides a means of comparing the applicability of algorithms 

using a challenging format, repeated uploading of results may bias the algorithms toward the 

test set. In other words, the test set becomes a means of training. This problem may be 

alleviated by providing a second set of test images for algorithms that have already been 

evaluated using the original test images. The users need only to submit their results once.

Conclusion

We have provided a publicly available MR image dataset of nonepileptic subjects and 

epilepsy patients with hippocampal outlines for validation of segmentation algorithms. The 

dataset was divided into training and testing sets. Only the hippocampal outlines of the 

training set are provided. Investigators may use the training images and their outlines to train 

their algorithms and then apply their algorithms to the testing set. The segmentation 

outcomes for the testing set may be submitted for evaluation based on 11 metrics. We 

evaluated Brain Parser and CFL segmentation algorithms using the dataset. The experiments 

suggest that the segmentation algorithms require modification in order to better 

accommodate structural deformation of the hippocampus under a variety of circumstances 

that befall patients with different neurological disorders.
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Fig. 1. 
Coronal T1W MR image slices of the hippocampal head with two different resolutions. (A) 

Voxel size of 0.78×0.78×2 mm3 with 1.5 T MR image system. (B) Voxel size of 

0.39×0.39×2 mm3 with 3 T MR image system. As shown, there is no clear distinction 

between the hippocampus and amygdala.
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Fig. 2. 
Coronal T1W MR image slices of the hippocampal tail in two patients with a voxel size of 

0.39×0.39×2 mm3 in both images. A clear distinction between the hippocampal tail and 

pulvinar is often lacking and the structures appear confluent.
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Fig. 3. 
Coronal section of slice Number 65 of image IBSR_07_ana.img from the IBSR data set. (A) 

The original image; (B) Manual outlines of the hippocampi provided by the IBSR; (C) Our 

proposed manual outlines.
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Fig. 4. 
Coronal section of the hippocampal head from an MR image atlas of the human 

hippocampus (Duvernoy, 2005). Labels 1, 3 and 4 show the hippocampal head and the 

lateral and basal nuclei of the amygdala, respectively.
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Fig. 5. 
Hippocampal outlines in representative sagittal (A) and coronal (B) slices of subject S01 

from the LPBA40 database. As shown, the hippocampal tail is not included (A) whereas 

some parts of the amygdala are included (B).
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Fig. 6. 
Coronal (A – E) and axial (F) MR image sections of a few samples of the dataset 

demonstrating various practical problems: (A) Atrophy of the left hippocampus and adjacent 

parahippocampal gyrus. (B) Atrophy of the right hippocampus. (C) Motion artifact disturbs 

the definition of the gray-white matter interface. (D) Low SNR reduces contrast and 

enhances the PVE. (E) A lesion of the left parahippocampal and fusiform gyri may distort 

the local anatomy and cause difficulty with boundary definitions. (F) Field inhomogeneity 

will interfere with comparative study of bilateral structures and enhance PVE.
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Fig. 7. 
Manual segmentation of the hippocampi in representative coronal T1-weighted MR images 

of the hippocampal (A) tail, (B) and (C) body and (D) head.
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Fig. 8. 
Sagittal view of hippocampal outlines of three patients. As shown, jagged boundaries have 

been avoided. Grainy boundaries are attributed to a slice thickness that is larger than the 

pixel dimension.
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Fig. 9. 
Automated segmentation outcomes of the images in Fig. 7 using BrainParser (left) and CFL 

(right). Although both applications approximate the boundary of the hippocampus 

reasonably well, the coarseness of the outline, a manifestation of reformatting, reduces 

accuracy with the inclusion of surrounding borderzones. Absence of definition of 

borderzone white matter tracts such as the alveus (C, D), in particular, unnecessarily adds to 

the intended hippocampal volume. The lack of detail in the definition of the interdigitations 
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of the pes hippocampi anteriorly further confounds the ability to accurately measure this site 

which is often affected by a localization-related epileptogenicity.
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Fig. 10. 
A representative slice (A) showing hippocampal outlines using manual segmentation (B), 

Brain Parser (C) and CFL (D). The presence of an extrinsic lesion in the basal left temporal 

lobe has caused a poor automated segmentation outcome in both applications; even more, in 

the case of CFL.
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Fig. 11. 
A representative slice (A) showing hippocampal outlines using manual segmentation (B), 

Brain Parser (C) and CFL (D) in the case of an intrinsic lesion-induced deformation of the 

left hippocampus. The deformation has resulted in a poor automated segmentation outcome 

in both cases.
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Table 2

Average hippocampal volume (Mean±StD, mm3) based on manual, Brain Parser, and CFL segmentations for 

the test dataset.

Manual Brain Parser CFL

Testing set
Left 2469±841 4559±793 3169±880

Right 2575±645 4618±606 3400±587
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