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The brain implements a myriad of global brain functions to
support adaptive behaviors. Despite their seeming innumer-
ability, these emerge from combinations of lower level
functions implemented by a relatively small set of brain
tissues. Evidence from brain imaging studies shows that
spatiotemporal patterns of activations across different brain
tissues correlate with brain function (and hence with an
organism’s behavior). To support a diversity of global
functions, gross connections between brain tissues, while
structurally static, must undergo modulation. The strength
of this modulation can define functional boundaries and
interfaces between brain tissues: wherever functional
relationships between brain regions are highly modulated,
tissue boundaries occur.

Tissue-level functions, while also diverse, are more
stereotyped than global brain functions. Similar to spatio-
temporal modulation and recombination of tissue activa-
tion, variation and recombination of familiar structural
elements of the brain (neurons and their connections,
synapses) generate tissue-level functions. Unlike other
organs’ gross morphological specializations of single
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tissues (e.g., muscle, bone) brain specialization yields
distinct tissues derived from stationary statistical combina-
tions of a variety of neuron and synapse types in space,
which we define as microcircuitry. Measurable, consistent
patterning of microcircuitry across a tissue and in different
organisms (i.e., stereotypy) further defines a tissue’s
boundaries: wherever patterning changes abruptly, one
tissue ends and another begins.

Shepherd defined microcircuits abstractly and indepen-
dent of neural tissues, based on simple computations they
might implement.' Defining stereotyped microcircuitry as a
stationary combination of neuron and synapse types within
a specific tissue restricts strong synaptic plasticity to its
boundaries. Where plasticity is strongest, stationary circuit
components are recombined to serve underlying tissue-level
functions, for example learning and memory.> Observations
that strong departures from stereotypy in developing
vertebrate tissue arise where neural competition dominates
supports this view.> We therefore define microcircuitry
circumscribed by strong plasticity as a microcircuit, which
is then iterated to create a tissue.

For example, cerebellar tissue derives from a microcir-
cuit iterated millions of times.* Boundaries between
components occur at highly plastic parallel fiber synapses
onto Purkinje cells. Similarly, neocortex derives from a
microcircuit with stereotypical properties along its radial

! Shepherd, G. M. (2004) Introduction to synaptic circuits. In Synaptic
Organization of the Brain. Shepherd G. M. (Ed.) New York:Oxford
University Press. 1-38.

2 Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity:
from synapses to maps. Annual Review of Neuroscience, 21, 149—186.
3 Lu, J., Tapia, J. C., White, O. L., & Lichtman, J. W. (2009). The
interscutularis muscle connectome. PLoS Biol, 7(2), e1000032.
*Voogd, J., & Glickstein, M. (1998). The anatomy of the cerebellum.
Trends in Cognitive Sciences, 2(9), 307-313.
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axis, iterated many millions of times within the cortical
plane.’ Highly plastic lateral connections between micro-
circuitry delineate the columnar cortical microcircuit,
smaller and distinct from functional cortical columns that
are characterized by intrinsic variability in receptive fields
and connections.”

How do we attack the problem of analyzing the
functions of neural tissues and synthesize a theory of global
brain function? One option is to first map microcircuits in
these tissues then use maps to constrain functional
simulations aimed at modeling and explaining function.
Long underway,® mapping approaches change as new
techniques are developed to attack the problem.,”*’

Typically, approaches study functional connectivity
between neurons using physiological recording techni-
ques,'® or reconstruct and analyze tissue structure at the
level of neurons and their connections by determining
three-dimensional locations of tissue components and their
relationships. '' The purpose of this commentary is to
consider how and the degree to which high throughput
reconstruction might transform mapping microcircuits in
the brain both in technical execution and in its application
to elucidating global brain function.

Solution Requirements: Inputs, High Throughput
Reconstruction, and Outputs

High throughput neural tissue reconstruction depends first
on treating a tissue to reveal its histological structure.'? The
usability of structural data is determined first by the
resolution of the light microscope. Small caliber fibers
(for example, axons) found in all microcircuits typically lie
near diffraction limits of resolution, such that only
experimental fluorescent microscopic techniques promise

> Silberberg, G., Gupta, A., & Markram, H. (2002). Stereotypy in
neocortical microcircuits. Trends in Neurosciences, 25(5), 227-230.
6Douglas, R. J., Martin, K. A. C., & Whitteridge, D. (1989). A
canonical microcircuit for neocortex. Neural Computation, 1(4), 480—
488.

7 Nikolenko, V., Poskanzer, K. E., & Yuste, R. (2007). Two-photon
photostimulation and imaging of neural circuits. Nature Methods, 4,
943-950.

8 Callaway, E. M. (2008). Transneuronal circuit tracing with neuro-
tropic viruses. Current Opinion in Neurobiology, 18(6), 617-623.

° Micheva, K. D., Busse, B., Weiler, N. C., O’Rourke, N., & Smith, S.
J. (2010). Single-synapse analysis of a diverse synapse population:
proteomic imaging methods and markers. Neuron, 68(4), 639-653.

10 Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles
for a diversity of GABAergic interneurons and synapses in the
neocortex. Science, 287(5451), 273-278.

! Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). A

quantitative map of the circuit of cat primary visual cortex. Journal of

Neuroscience, 24(39), 8441-8453.
12 Senft S. L. (2011). A brief history of neuronal reconstruction.
Neuroinformatics. doi: 10.1007/s12021-011-9107-0.
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to achieve sensitivity necessary to resolve sparsely stained
tissues."® Second, data usability depends on resolution of
relationships between fibers in densely stained tissue. This
requirement, which we term relationship determination,
depends on, but is not equivalent to, fiber resolution.

To illustrate relationship determination, consider two
fibers that originate and terminate at separate resolvable
points. The proximity of their component sections may
change, making them impossible to resolve at some
intermediate point. When this degradation occurs, relation-
ships between the unresolved fiber components and their
relationships to all subsequent components become uncer-
tain. Thus relationship determination remains degraded
even when component resolution recovers.

Since neural tissue is dense, the distance between
unrelated, stained components frequently falls below the
resolution limits of the imaging device. In fact, the number
of components spuriously contacted in fully stained tissue
would be much greater than the number to which a
component is actually related. Even in sparsely stained
tissue, uncertainty during tracing will arise and propagate
along fibers, compounding as local uncertainties invade
larger branches, whole neurons, and ultimately whole
tissues and circuits, such that no reconstruction escapes at
least some uncertainty about the relationships of each of its
components to the remainder of the reconstruction. How
then are acceptable reconstructions achieved?

Various techniques exploit tissue imaging dimensions
such as staining density and color to achieve better
relationship determination. From bright field sparse stain-
ing,'* to genetically varied fluorescence, in which only
components of the same neuron fluoresce with the same
color,'® these techniques allow relationships to persist even
when resolution fails. Still, because of the difficulty in
resolving critical components and the risk of propagating
and compounding errors in relationship determination,
expert anatomists typically perform reconstructions manu-
ally. For high throughput reconstruction, user input must be
streamlined to require decisions only at points where
resolution and relationship determination are poor. Ulti-
mately, this demands experts be replaced by fiber tracing
algorithms capable of drawing upon contextual cues used
by the expert. These cues typically derive from two models
of neural tissue.

13 Ji, N., Milkie, D. E., & Betzig, E. (2010). Adaptive optics via pupil
segmentation for high-resolution imaging in biological tissue. Nature
Methods, 7, 141-147.

14 Rockland, K. S. (2004). Connectional neuroanatomy: the changing
scene. Brain Research. 1000(1-2), 60—63.

15 Lichtman, J. W., Livet, J., & Sanes, J. R. (2008). A technicolour
approach to the connectome. Nature Reviews Neuroscience, 9, 417—
422.
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First, branched structures to which each fiber component
belongs inform relationship determination. Larger struc-
tures (typically neurons) provide rich context that makes
determining relationships at a single point of overlap easier,
and in cases where entire accurate reconstructions from
either side of the ambiguity are available, trivial. Ideally,
this decision involves only matching neuron subsections
based on type, orientation, and branching pattern. Typically
however, full reconstructions of subsections are not
available, so anatomists engage in a larger search for
contextual cues then proofread problem areas.

Second, anatomists draw upon a model of local rules of
neuronal growth and development. This model allows
certain behaviors to extend neural fibers and create certain
structures but not others. The decisions that impose these
constraints on tissue emerge from a set of molecular
sensing and motility components packed into the special-
ized tip of a growing fiber, known as the growth cone.'® By
applying this understanding of the dynamics and constraints
imposed by growth cone behavior (for example, constraints
on extension rate, turning radius, branching frequency, etc.)
to decisions about likely fiber trajectories and component
relationships, anatomists rule out unlikely reconstructions.

Faced with ambiguity, automated reconstruction algo-
rithms may either proceed with a decision, note the need for
future computer-aided proofreading, then guide the user
back to the problem location, or avoid a decision altogether
and instead allow connections of partial reconstructions at a
later time. Guiding users back to locations of uncertainty
should reduce overall user intervention, especially if
models increase in quality as a reconstruction advances.
Even with a sophisticated computer-aided reconstruction
interface, it is unlikely that either approach could accelerate
reconstructions sufficiently to reach high-throughput levels,
given the need for user input.

Model creation may be necessary for fully automated
systems, creating greater contextual information for local
reconstruction decisions and potentially eliminating user
input altogether. For example, solutions presented in the
current issue extract local fiber sections by analyzing larger
image contexts,'’ construct generic tree structures from
local optimization techniques operating over these extracted
sections,'® and employ global optimization techniques to
choose from multiple alternative neuronal reconstruc-

16 Hong, K., & Nishiyama, M. (2010). From guidance signals to
movement: signaling molecules governing growth cone turning. The
Neuroscientist, 16(1), 65-78.

'7 Bas, E., & Erdogmus, D. (2011). Principal curves as skeletons of
tubular objects: locally characterizing the structures of axons. Neuro-
informatics. doi: 10.1007/s12021-011-9105-2.

8 Chothani, P, Mehta, V., & Stepanyants, A. (2011). Automated
tracing of neurites from light microscopy stacks of images. Neuro-
informatics. doi: 10.1007/s12021-011-9121-2.

tions.'” Additionally, an abstract model based approach
considers neuron morphology and imaging techniques in
order to disambiguate alternative reconstructions.”® Finally,
growth cone modeling techniques might complement
existing tracing and fiber extension techniques such as
gradient vector flow, employed in another solution to model
axon direction with a deforming and stretching force.?’

Automated tissue reconstruction proceeds from image
segmentation and tracing to the generation of large volumes
of fiber component coordinates and relationship informa-
tion as outputs. We propose that standard outputs should
also include measures of confidence. These measures
would quantify confidence for each component relationship
determination, as well as include alternate determinations
and their associated (lower) confidence levels.

Recording these measures of confidence together with each
point would have three advantages. First, it would allow
subsequent quantitative analysis to explore alternative models
of the tissue. Retrospective analysis represents one way in
which automated reconstruction could surpass manual recon-
struction in usefulness to the field (since uncertainty is not
recorded in manual reconstructions). Second, estimates of
confidence could allow for computational optimization in
which tracing proceeds until an unacceptable level persists, at
which point more costly models that supplement local context
could be applied. Finally, models of context might be based on
different uncertainty criteria and used to differentially inform
reconstruction decisions and iterative revision of the recon-
struction. For example, the determination of which of two
models is most likely could be deferred as each is constructed
in parallel until enough context has been uncovered.

Data Produced: Size, Time, and Applications

To estimate data requirements for a complete mapping of
fiber components in the brain, assume that a component
specifies on average 10 71 um?® of tissue, derived from an
average fiber section length of 10 pum, measured in rat
Purkinje cells®* and an average fiber diameter of 1 um

19 Tiiretken, E., Gonzalez, G., Blum, C., & Fua, P. (2011). Automated
reconstruction of dendritic and axonal trees by global optimization
with geometric priors. Neuroinformatics. doi: 10.1007/s12021-011-
9122-1.

20 Zhao, T., Xie, J., Amat, F., Clack, N., Ahammad, P., Peng, H.,
Long, F., & Myers, E. (2011). Automated reconstruction of neuronal
morphology based on local geometrical and global structural models.
Neuroinformatics. doi: 10.1007/s12021-011-9120-3.

21 Wang, Y., Narayanaswamy, A., Tsai, C., & Roysam, B. (2011). A
Broadly Applicable 3-D Neuron Tracing Method Based on Open-
Curve Snake. Neuroinformatics. doi: 10.1007/s12021-011-9110-5.

22 Berry, M., & Flinn, R. (1984). Vertex analysis of Purkinje cell
dendritic trees in the cerebellum of the rat. Proceedings of the Royal
Society. B, 221(1224), 321-348.
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(ignoring the reconstruction of spines). This yields ~32
trillion three-dimensional component coordinates plus radii
(X, ¥, z, and 1) for a human-sized (1 liter) brain, and ~32
billion for a rodent-sized (1 milliliter) brain. In addition,
recording relationships between components requires at
minimum a topology identifier for each component and its
parent. While some tissues will require a higher density of
components,” these averages provide a starting point for
further analyses.

Our total data estimate assumes 8 bytes for each floating
point coordinate and radius, and 4 bytes for each integer
topological identifier, yielding ~1 TB for 1 milliliter of
tissue and ~1 PB for 1 liter. Recording confidence estimates
for each component would likely double requirements for
representing component relationships, depending on the
complexity of the metric, but should increase the estimate
by less than an order of magnitude. Therefore, data
requirements for a single specimen would remain manage-
able, and could fit within the memory of a medium- to
large-sized memory server or cluster.

The serial generation of ~10'°-10"* components and
their relationships would be prohibitive by all estimates.
The current processing time of ~1-3 h for data sizes on the
order of 10* components indicates a serial processing time
of approximately one component per second. This trans-
lates to processing times of ~10-10,000 centuries for the
tissue volumes considered. Clearly a parallel reconstruction
algorithm will be required. Fortunately, parallelization of
neural tissue reconstruction has already begun for certain
image preprocessing steps.”* Massive parallelization of full
algorithms could speed up calculations by a factor of ~10%,
resulting in compute times of ~1 month to 1 century for the
volumes considered, depending on the data decomposition
and the parallelization approach used, and assuming the
entire algorithm can be optimally accelerated on today’s
largest machines (i.e., petaflop). Therefore, while rodent-
sized brains could likely be reconstructed using today’s
supercomputers, human-sized brains would require exas-
cale (i.e., exaflop) supercomputers (expected this decade),
which would deliver a speed up factor of ~10.

Data collection times would also be prohibitive if
performed serially. Assuming one second of image acqui-
sition (depending on imaging modality) per micron optical
section through a 100 pm field of view (i.e., 10,000 pum?,
imaged under a 60x, NA 1.4 oil immersion objective,
optically zoomed to sample at the Nyquist limit) imaging

23 Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K. M.,
& Chklovskii, D. B. (2010). Ultrastructural analysis of hippocampal
neuropil from the connectomics perspective. Neuron, 67(6), 1009—
1020.

24 Narayanaswamy, A., Wang, Y., & Roysam, B. (2011). 3-D Image
Pre-processing Algorithms for Improved Automated Tracing of
Neuronal Arbors. Neuroinformatics. doi: 10.1007/s12021-011-9116-z.
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times could range from ~3 years to 30 centuries, thus
requiring parallelization of image data collection. Unlike
parallelization of reconstruction algorithms, which requires
communication between parallel tasks, the task of parallel-
izing data collection requires only the resources to replicate
the imaging apparatus approximately 1,000 times and to
receive and image the tissue slices from a single specimen.
In addition, specializations of imaging devices and collec-
tion methods for high-throughput solutions may reduce the
scale of parallelization required.?

Obviously, the challenges and costs of high-throughput
reconstruction are great. Meeting them is worthwhile only
if the data can be used for valuable scientific and applied
pursuits. Here we describe several potential uses for the
data and comment on their value. First, physiological
recordings from connected neurons have provided a rich
source of information on how microcircuit components
function and propagate signals,'® especially when accom-
panied by anatomical reconstructions. Analyses show
vertebrate circuits correlate function and structure and are
at times clearly stereotyped. If large-scale reconstructions
of brain tissues become available, functional recordings
correlated to key structural observation could serve as
annotations to the reconstructions, resulting in an opportu-
nity to accelerate microcircuit tracing through higher-order
structure-function correlation.

For example, higher-order structure-function correlation
informed the role of Martinotti cell inhibition in the
neocortical microcircuit. An initial study correlated func-
tional synaptic connections from layer 5 pyramidal neurons
onto layer 5 Martinotti cells with stereotyped spatial
patterns of neurons and synapses,”® and a higher-order
correlation suggested the existence of disynaptic loops
joining the same neurons. Specifically, structural knowl-
edge of the Martinotti cell’s axonal ramifications in layer 1
overlapping with the layer 5 pyramidal cell’s apical tuft
suggested a region for synapses to complete a loop, which
was subsequently confirmed through paired physiological
recordings.”’ Similarly, physiological recording guided by
suspicious higher-order correlations in a larger structural
database and aimed at testing functional connectivity could
make microcircuit analysis proceed more efficiently.

25 Dodt, H.-U., Leischner, U., Schierloh, A., Jéhrling, N., Mauch, C.
P., Deininger, K., Deussing, J. M., Eder, M., Zieglgénsberger, W., &
Becker, K. (2007). Ultramicroscopy: three-dimensional visualization
of neuronal networks in the whole mouse brain. Nature Methods, 4,
331-336.

26 Kozloski, J., Hamzei-Sichani, F., & Yuste, R. (2001). Stereotyped
position of local synaptic targets in neocortex. Science, 293(5531),
868-872

27 Silberberg, G., & Markram, H. (2007). Disynaptic inhibition
between neocortical pyramidal cells mediated by Martinotti cells.
Neuron, 53(5), 735-746.
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Global brain morphologies and connectivity between
homologous neural tissues are considered topological equiv-
alents across different vertebrate species.”® Animal models
therefore aid understanding of both human brain structure
and fundamental brain processes. To what extent homolo-
gous neural tissues themselves and their microcircuitry are
topological equivalents is a more difficult question, and
requires comparing microcircuits of different vertebrate
species quantitatively. Since meaningful comparisons require
both a large quantity and consistent quality and format of
digitized structural data, automated high-throughput neural
tissue reconstruction is needed. Comparative analysis could
help identify fundamental circuit components and functions
of tissues, and ultimately provide deeper understanding of
global brain function and its emergence from a conserved
vertebrate brain plan and microcircuitry.

Despite its importance, a definitive set of synaptic
connections will not emerge from the techniques described,
since structures indicating the existence of a synapse are too
small to resolve using any light or fluorescence microscope.
Therefore, the goal of tracing microcircuitry in neural tissue
with these methods must proceed by statistical means, and
specifically by identifying where stereotyped synapses are
likely. A connectome at the level of microcircuitry that
identifies all synaptic connections in a tissue® is less likely
to emerge than a juxta-conmnectome, which identifies all
potential synapses in a tissue based on the apposition of
neural fibers in the structural model.

Arguing against this perspective, a recent study exam-
ined potential and actual synapses from electron micro-
scopic reconstructions of small regions of tissue from an
individual animal,>* and its results call into question Peter’s
rule,®® which states that the number of synapses along a
fiber should be proportional to overlap between axonal and
dendritic arbors. Variants of the rule explored in the study
did however maintain some predictive power. We anticipate
that analyses of juxta-connectomes constructed from larger
tissues in multiple individuals could yield additional
variants on Peter’s rule that exploit other statistical
regularities to predict where synapses are most likely in
the tissue. These analyses, for example, could look for
statistically significant correlations of neuron type apposi-
tions across different individuals, a prerequisite of stereo-
typed microcircuitry.

28 Nieuwenhuys, R. (1998) Comparative neuroanatomy: place, prin-
ciples and programme. In The Central Nervous System of Vertebrates.
Nieuwenhuys, R., Donkelaar H. J., & Nicholson C. (Eds.) Berlin:
Springer Verlag. 273-326.

29 Eisenstein, M. (2009). Neural circuits: Putting neurons on the map.
Nature, 461, 1149-1152.

30 peters, A., & Feldman, M. L. (1976). The projection of the lateral
geniculate nucleus to area 17 of the rat cerebral cortex. I. General
description. Journal of Neurocytology, 5(1), 63—84.

Any description of statistical regularities among fiber
identities and appositions in neural tissue will also provide a
basis for inferring proximal developmental trajectories of
structures within the tissue. Changing statistical relationships
among fibers in the juxta-connectome derive from the actions
of growth cones, which sensed and responded to the surround-
ing phenotype of fibers and neurons (and the genes they
expressed) during development. These growth cone artifacts
permitted further developmental and experience-dependent
changes, such as spine extension and retraction®' and synapse
elimination, to ultimately determine connectivity.

To infer developmental trajectories from structure, a model
must first approximate the role that fibers and neurons play in
secreting molecules and generating field potentials and
concentration gradients within tissue. These fields and gra-
dients deform the trajectory of the growth cone in predictable
and stereotyped ways.'® Modeling the interplay between
cellular and fiber identity and the effective forces acting upon
growth cones to create neuronal and circuit morphology*>
could exploit constraints from complete structural data
collected from tissue at various stages of development.
Neuron growth simulation could then help uncover the
mapping by neuronal growth and development from a
compact set of genetic markers to stereotyped microcircuits.

Structural data collected from high-throughput tissue
reconstruction may ultimately constrain functional simula-
tions of tissue. We term this coupling between structural
models and physiological simulation at the level of
branched fibers (using the equations of Hodgkin and
Huxley and the numerical methods of compartmental
modeling) neural tissue simulation. Structure and function
simulated in a three-dimensional coordinate system
corresponding to real brain tissue®* together with functional
synapse model placement derived from structural data
analysis®® are prerequisites of neural tissue simulation.
Structural constraints derived from whole tissue reconstruc-
tions and a juxta-connectome would allow parameterization
of simulations to better fit functional observations, since the

3! Holtmaat, A., & Svoboda, K. (2009). Experience-dependent
structural synaptic plasticity in the mammalian brain. Nature Reviews
Neuroscience, 10, 647-658.

32 Lichtman, J. W., & Colman, H. (2000). Synapse elimination and
indelible memory. Neuron, 25(2), 269-278.

3 Koene, R. A., Tijms, B., van Hees, P., Postma, F., de Ridder, A.,
Ramakers, G. J., van Pelt, J., & van Ooyen, A. (2009). NETMORPH:
a framework for the stochastic generation of large scale neuronal
networks with realistic neuron morphologies. Neuroinformatics. 7(3),
195-210.

34 Markram, H. (2006). The Blue Brain Project. Nature Reviews
Neuroscience, 7, 153—160.

33 Kozloski, J., Sfyrakis, K., Hill, S., Schiirmann, F., Peck, C., &
Markram, H. (2008). Identifying, tabulating, and analyzing contacts
between branched neuron morphologies. IBM Journal of Research
and Development, 52(1.2), 43-55.
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effects of neuron structure and synapse placement on
physiological models are well known and significant.>® 3’

On DIADEM and Next Steps: Problems and Ways
Forward

The DIADEM Challenge recently culminated in a final
competition and workshop at the Howard Hughes Medical
Institute’s Janelia Farm Research Campus. This challenge
aimed to identify new approaches to the problem of automated
neural tissue reconstruction by inviting teams of researchers in
disciplines ranging from neuroscience to computer science to
compete for cash prizes developing automated reconstruction
algorithms. The approaches and outcomes are reviewed
elsewhere in this issue.'”'®!%2*212% Here we summarize
what was learned, and briefly outline a path to high-
throughput reconstruction and large-scale neural tissue
simulation.

In retrospect, the challenge of DIADEM was outliers. As
noted in the final evaluation of solutions, clear advances in
dealing with the bulk of problems in automated reconstruc-
tion created “shock and disbelief” among the organizers.
Errors due to rare conditions were not unexpected, given
the range of difficult tasks present in resolving structure
from raw microscopic images and disambiguating tissue
components in dense, cluttered fields of stained fibers.
Because errors compound in neural tissue reconstruction,
and because finding them using the solutions described in
this issue was not always streamlined, accuracy of the
reconstructions suffered. In addition, human intervention
was not only required, but at times much of the speed up
derived from using the algorithm was lost.

The challenge now for competing teams is analyzing,
categorizing, and ultimately deploying solutions to errors
that escaped their preliminary reconstruction algorithms and
rendered each too costly in terms of the need for human
intervention and proofreading. Outlier error categories are
likely separate problems (for example, axon-axon crossover
is likely a separate problem from axon-dendrite crossover,
etc.), and each must therefore be addressed within its own
context, and with its own solution.

The ability to detect each problem category’s context and
automatically deploy a tailored solution is therefore yet
another area for future research. Certain problems will
require improved local image processing, while others a

36 Krichmar, J. L., Nasuto, S. J., Scorcioni, R., Washington, S. D., &
Ascoli, G. A. (2002). Effects of dendritic morphology on CA3
pyramidal cell electrophysiology: a simulation study. Brain Research,
941(1-2), 11-28.

37 Ascoli, G. A., Atkeson, J. C. (2005). Incorporating anatomically
realistic cellular-level connectivity in neural network models of the rat
hippocampus. Biosystems. 79:1-3, 173—181.
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more costly iterative approach that includes creation of
models of the larger context of neurons and the tissue in
which they are embedded. Ultimately, some problem
categories will not be solvable, given that even trained
anatomists cannot disambiguate definitively all structures.
For solutions that do not achieve some reasonable criterion
(such as DIADEM’s 20x speed up, which none did) there
still exists the possibility that each might possess a subset
of solutions to the host of problems presented by automated
tissue reconstruction. Drawing on all solutions to create a
single application that deploys solutions based on recogni-
tion of a problem context is another possible course. To
facilitate this, categorizing failure conditions, and evaluat-
ing solutions separately for each condition would be a
valuable collaborative undertaking.

In developing post-DIADEM solutions to the problem of
high-throughput tissue reconstruction, another consider-
ation is scaling up vs. scaling out. Scaling up is required
if more sophisticated, and therefore more computationally
costly, algorithms are developed that attempt to address
local problems in the reconstruction with serial computa-
tion. Run time remains constant if the local computing
power scales up to match the increased computing cost of
the solution. Scaling up also would allow existing algo-
rithms to run faster. Because the main cause of slowdown
in DIADEM solutions was errors and the need for human
intervention, scaling up would not likely have permitted
applications to achieve DIADEM’s criterion 20% speed up
at this stage. The computational cost of resolving these
errors automatically will likely demand scaling up for
future solutions.

Alternatively, scaling out would execute a local recon-
struction algorithm on a single node of a parallel system
then increase the throughput of the application by deploy-
ing more nodes running the same algorithm on similar
image volumes. As the amount of tissue reconstructed in
parallel grows, the time to reconstruct it remains constant,
provided the parallel algorithm balances computation with
communication on and between separate computational
nodes. Because of inter-process communication, scaling out
is not a reasonable approach to managing increasing
complexity in the local reconstruction itself, except for
those approaches that exploit stochastic search algorithms,
where the sampling step may be distributed across a parallel
architecture. Scaling out would not have helped a solution
to meet DIADEM’s 20x speed up criterion, since errors
predominated and image volumes were small. High-
throughput reconstructions on the scale of the tissue volumes
considered will certainly require scaling out to ensure image
data can be processed in reasonable compute times.

Data decomposition, or the placement of data on a parallel
architecture, is a central problem in parallel computing, and as
high-throughput tissue reconstruction scales out to exploit
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Fig. 1 Data decomposition of neural tissue simulation for ultra-
scalability. We exploited the volume-filling nature of neural tissue
(upper left) to formulate a simulation in which all communication is
local. Here a volume of simulated tissue (upper right) is represented as
consisting of fibers (back face) and fiber cross sections (left face).
Because fiber density, length, and diameter are usually well known
neuroanatomical parameters, they can be used to reasonably estimate
all computation and communication costs for a given volume size,

supercomputing-scale machines (thousands of nodes), the
appropriate decomposition for image data will need to be
determined. More important than balancing data across nodes
of a parallel machine, an appropriate decomposition must
ensure that computational loads are balanced, and that
communication between nodes is minimized. These require-
ments often lead to algorithms that do not employ obvious
data decompositions or the most popular or intuitive data
abstraction.

In the domain of neural tissue simulation, we have explored
an alternative to the standard neuron decomposition of
simulation data,*® and have instead placed data and the
calculation of compartments, channels, and synapses from
within bounded tissue volumes onto each of the nodes of a
Blue Gene/P supercomputer, creating the ultra-scalable
Neural Tissue Simulator (Fig. 1). An in depth treatment of

38 Migliore, M., Cannia, C., Lytton, W. W., Markram, H., & Hines, M.
L. (2006). Parallel network simulations with NEURON. Joural of
Computational Neuroscience, 21(2), 119-129.

across simulations of any scale. Note that whole neurons are not
necessarily contained in any volume, and long range connectivity of
any fiber (beyond nearest neighbor volumes) is not represented within
any volume. This decomposition is ideal for the IBM Blue Gene series
architecture (lower left), which is characterized (lower right) by a
torus network of connections joining all nodes of the machine to
which a tissue volume is assigned

the Neural Tissue Simulator will be taken up in a subsequent
publication. Briefly, because Blue Gene/P’s nodes are
connected in a torus network topology, our volume decom-
position’s nearest-neighbor communication is highly effi-
cient, resulting in constant simulation rates (1 processor-
second per simulated-neuron-millisecond) as a machine was
loaded with a constant average 250 neurons per node across
machine sizes ranging from 64 to 4,096 nodes.

Because neurons have diffuse, long-range, and largely
unknown connection patterns in the brain, neuron decompo-
sition makes balancing load and predicting communication
patterns in a large neural tissue simulation difficult. In our
novel design, however, we can balance the computational load
across nodes without prior knowledge of connectivity or
neuron morphology by weighting each simulation coordinate
with the local computational costs associated with it (ie.,
compartment, channel, and synapse calculation costs) (Fig. 2),
then slicing the tissue into balanced volumes. Communication
is easily predictable due to the known density of fibers cut at
each volume interface.
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Table 1: 512,000 Neurons Simulated on 2,048 Nodes of BlueGene/P

Branches

171,739,103 83,856 + 7,447

Simulati Processor
Element Balance

103,975,903 50,769 + 4,082
541,644,800 264,475 + 7,563
Na Channels 164,602,748 80,372 + 7,456

AMPA Synapses 4,174,704,902 2,038,430 + 746,465

KDR Channels 164,602,748 80,372 + 7,456

GABAA Synapses 1,161,818,608 567,294 + 176,072

Column
8,000 Neurons
20%20 Minicolumns
500x500x500 pm

Minicolumn
20 Neurons
25x25x500 um

Fig. 2 Processor balancing and test simulation of large neural tissue
using cortical neurons. a. Using an adaptive slicing technique
(illustrated) which generates volumes of nearly equal computational
load (see text), we created a simulation of 512,000 neurons. Table 1,
inset: Simulation components and their effective distribution across
the machine’s nodes + standard deviation, following the use of this
technique on the entire tissue. (Simulations already performed of
larger scales will be illustrated in a subsequent publication.) b. The
simulation was based on neuron morphologies taken from the

Likewise, in the case of tissue reconstruction, data
decomposition may be based on image volumes, where each
processor operates over data from a set of contiguous sections
within a field of view (100% 100 wm). For the range of tissue
volumes considered, we estimate 100 million to 100 billion of
these image sections would be required. At ~1 MB per image,
between 100 TB and 100 PB of machine memory or storage
would be required. While the former is feasible for today’s
supercomputers (comprising ~10° nodes, gigabytes of mem-
ory per node), for the latter, storing images in main memory
would require larger machines (millions of nodes) or larger
per node memory sizes (~1 TB) than exist today.

Algorithms operating over image volumes could balance
load according to data provided computational cost is
proportional, and would incur communication costs when-
ever local reconstructions required contextual information
about a neighboring node’s reconstruction. Variable slicing

@ Springer

Tissue
512,000 Neurons
4x4x4 Columns
2x2x2 mm

Markram lab (downloaded from Neuromorpho.org), each assigned to
appropriate layers in a simulated minicolumn, and rotated randomly
around the cortical axis for each neuron in each minicolum.
Mincolumns were composed into columns, and the tissue then scaled
outward in all three dimensions (i.e., violating gross cortical
morphology). We added columns in this way to preserve a cubic
structure of the tissue and generate scaling data appropriate for large
tissue simulations that grow similarly, and encompass more than a
single brain structure

of image volumes could mitigate imbalance when recon-
struction costs are irregular (for example when fiber density
varies). Depending on the degree to which algorithms use
larger contextual models to improve reconstruction perfor-
mance, communication may occur only once following
local reconstruction (for cases using local context only), or
repeatedly, as iterative model-building proceeds. Though
not impossible, it is difficult to imagine a solution for which
the most obvious and intuitive image volume decomposi-
tion will not be optimal.

Scaling out solutions to machines of tens of thousands of
nodes in order to achieve high-throughput tissue recon-
struction would require on the order of ~100 PB of storage
or machine memory for the largest tissue considered. While
machine sizes will likely grow orders of magnitude larger
than today’s, per node memory requirements for a solution
within main memory will likely continue to exceed what is
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Rigid Body Tissue Layout

Fig. 3 Neuron growth simulation demonstrates parameterizable
deformation of axon growth trajectories. a. A single minicolumn from
the simulation described in Fig. 2 is represented, with axons in white.
b. Simulating neuron growth in a single column of 8,000 neurons on
1,024 nodes of Blue Gene/P, neurons grew for 24 h such that each

possible. Tissue image data could easily remain on disk, but
I/O bandwidths (at ~100 MB/s for today’s disks) and the
size of the data (filling ~1 billion 100 MB disks) would
limit compute times for solutions requiring frequent disk
accesses in largely random patterns as they traverse a local
image volume repeatedly.

An intermediate solution that could serve the needs of high-
throughput tissue reconstruction for fast computation and data
access at a reasonable cost/performance ratio is Blue Gene
Active Storage.”® Here, a large amount of storage class
memory (such as phase-change or flash memory) is placed
very close to each machine node, allowing high capacity (on
the order of 100 GB-1 TB per node in the coming years) of
local storage together with high I/O bandwidths (on the order
of 1 GB/s per node) at a more reasonable cost. It will be
interesting to see how new architectures such as Active
Storage may contribute to satisfying the requirements of
high-throughput tissue reconstruction.

In considering drivers for future research in high-
throughput tissue reconstruction, a specific target applica-
tion for the data generated could address several interrelated
needs. Beyond the obvious need to maintain a compelling
vision of a potential application for the huge amounts of
data generated, three other practical needs emerge. First, the
problem of checking and proofreading data will become

3 Fitch, B., Rayshubskiy, A., Ward, T. J. C., Pitman, M., Metzler, B.,
Schick, H. J., Krill, B., Morjan, P., & Germain, R. S. (2010). Blue
Gene Active Storage. Presentation to The National Science and
Technology Council’s High-End Computing File System and I/O
Workshop, Arlington, VA, http://tinyurl.com/BGAS-HECFSIO2010.

Neuronal Growth Simulator

e

axon tip encountered strong attractive forces from cell bodies and
basal dendrites of neighboring neurons (bottom, represented by an
attraction shell and a rotating tip). This resulted in denser, more
stratified axonal ramifications that contacted dendrites more frequently

(top)

unmanageable after data begins to exceed what can be
reasonably proofread by an expert anatomist.”> Second, the
need for alternative metrics of quality beyond comparisons
to manually reconstructed data will be required when no
such manual reconstructions exist. Finally, automatically
identifying problem areas in a reconstruction will benefit if
calculations use data from local regions of the reconstruc-
tion for a purpose that can be validated separately from the
structural model itself. With these needs in mind, we
propose large-scale neural tissue simulation as a reasonable
target application for high-throughput reconstruction, and
argue that tighter coupling between research activities in
both areas could be advantageous.

Neural tissue simulation is a compelling application of
high-throughput reconstruction data foremost because it is
data driven. Data driven refers to its incorporating all
available data from real tissue before additional user-
defined parameters are introduced. Because these data
derive first from structural constraints, which identify the
location of tissue elements (such as ion channel types,
kinetics, and densities) and second functional constraints,
which give rise to physiological dynamics, a direct pipeline
from high-throughput reconstructions to these models could
immediately be exploited by the field.

Parameterizing simulations after these constraints are
imposed then aims to fit simulation outputs to functional
observations from the tissue. Our own work with the Neural
Tissue Simulator and its tissue volume decomposition
produced simulations of a neocortex-derived tissue of up
to 1,024,000 neurons, comprising ~1,000 compartments
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each, with a total of ~10 billion conductance-based
synapses (AMPA and GABAA) and gap junctions, using
neuron morphologies from the Markram lab*® downloaded
from http:/NeuroMorpho.org*' (Fig. 2). Parameterization
of simulations like this remains a challenge for us and the
field in general. For example, specific structural relation-
ships between neurons are artificially generated when
neuron reconstructions from different tissues are embedded
into a single tissue model.>® Because of a lack of whole
tissue reconstructions, these artificial relationships may
create errors in the placement and identity of synapses in
the microcircuit. High-throughput tissue reconstruction
could provide the data needed to constrain neural tissue
simulations more accurately.

Neural tissue simulations ultimately generate data that
model the functional outputs of the tissue, and therefore any
validation of the simulation with data collected from real
tissue will likely be a validation of tissue physiology and
function. Identifying errors in the reconstruction through
this validation procedure may be possible, and would
provide one means for feeding information from large-
scale simulations back to the algorithm responsible for
reconstructing the tissue. In this scenario, a failure to
replicate microcircuit behavior in some local region of the
tissue may highlight the need for revision of the structural
model by an expert anatomist or further iteration of a
reconstruction algorithm over this location. Such coupling
would then provide a means for functional simulations to
shape the structural model.

Alternatively, simulations could generate structural data
based on constraints imposed by data collected from whole
tissue reconstructions. In this scenario, whole tissue recon-
structions may be error prone, but sufficient in identifying
regularities in tissue at each stages of development to provide
parameters for simulation of neuron growth. We have
implemented within the Neural Tissue Simulator a neuron
growth algorithm that abstracts growth cone interactions with
the tissue milieu as a set of short and long range forces applied

40 Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., &
Markram, H. (2002). Anatomical, physiological, molecular and circuit
properties of nest basket cells in the developing somatosensory cortex.
Cerebral Cortex, 12(4), 395-410.

4l Ascoli, G. A., Donohue, D. E., Halavi, M. (2007) NeuroMorpho.
Org: a central resource for neuronal morphologies. Journal of
Neuroscience., 27(35), 9247-9251.
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to growing fiber ends by the surrounding simulation elements
(Fig. 3). Tissues could result from such simulations that are
consistent with all data collected from reconstructions,
though identical to none. Such simulated tissues may also
be less subject to outlier errors and local noise in any one
reconstruction, given that growth constraints could be
imposed uniformly and without exceptions across the tissues
during simulated development. The validity of a simulated
structure could then be tested by functional simulations
constrained by the simulated structure.

In closing, the goals of high-throughput reconstruction
and large-scale neural tissue simulation should now be
recognized as overlapping and synergistic. Both aim to
create models of neural tissue that can be used for the
purpose of prediction. Predictive structural models derived
from high-throughput reconstructions would identify ste-
reotyped organizing principles and relationships in neural
tissues and microcircuits that allow the generalization of
structure across individuals, at different stages of develop-
ment, and across different vertebrate species, ultimately
including human. Neural tissue simulation aims to aggre-
gate both these structural and functional data from real
neural tissues then use them to constrain physiological and
developmental models of dynamics in the tissue. Ulti-
mately, predictive models of structure and function could
inform each other, and coupling the validation of structural
models generated from high-throughput reconstructions and
functional models generated from neural tissue simulation
would advance each, and our understanding of brain
function, more rapidly than either effort could in isolation.

Information Sharing Statement

All data presented in this paper were derived from the publicly
accessible database found at www.neuromorpho.org. The
Neural Tissue Simulator software described is experimental.
IBM would like to create an active user community. Please
contact the author if you are interested in using the tool.
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