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Abstract

Current understanding of the synaptic organization of the brain depends to a large extent on

knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal

cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named

dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and

therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a

new method that facilitates the analysis of the 3D structure of spine insertions in dendrites,

providing insight on spine distribution patterns. This method is based both on the implementation

of straightening and unrolling transformations to move the analysis process to a planar, unfolded

arrangement, and on the design of DISPINE, an interactive environment that supports the visual

analysis of 3D patterns.
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Introduction

The acquisition of high resolution reconstructions of neurons in 3D is becoming more and

more frequent in neuroscience, for purposes such as analyzing detailed aspects of the

structure of the neurons’ dendritic arbors (DeFelipe 2010; Meijering 2010; Donohue and

Ascoli 2011). However, studying the 3D distribution of relevant entities of dendritic

processes is not a simple task. It should be noted that inferring 3D structure from 2D

projections obtained with the current acquisition techniques (Semwogerere and Weeks

2005) gets difficult when the geometry is complex and the user has to recognize patterns just

visually (Eick and Karr 2002). The video accompanying Fig. 1 illustrates the rotation of a

dendrite’s segment, showing clearly some of the problems found by domain experts when

analyzing such a structure directly in 3D. Typical difficulties come from the irregular

distribution of 3D samples, the dendrite’s curvature, the presence of occlusions, and the

absence of spatial references. The existence of a large number of relevant morphological

parameters increases the influence of these problems, hampering further analysis of this kind

of data.

So far, direct visual observation of these feature distributions was the only exploration

technique available to neuroscientists. In consequence, even drawing preliminary

conclusions was a hard task; this situation has resulted in the existence up to now of very

few studies dealing with the 3D arrangement of many relevant dendritic structures. But on

the other hand, understanding the synaptic organization of the brain depends largely on

knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of

pyramidal cells (the most common neuron in the cerebral cortex Defelipe and Fariñas 1992)

are covered by thin protrusions named dendritic spines, which represent the targets of most

excitatory synapses in the cerebral cortex and therefore, are critical in learning, memory and

cognition (Spruston 2008; Kasai et al. 2010; Yuste 2010).

This paper presents a new method that facilitates analyzing 3D structure in dendrites,

together with its application for studying the distribution patterns of dendritic spines. It has

to be noticed that dendritic spines are dynamic structures which might show motility and

changes in length and size, although their insertion points in the dendritic shafts are rather

stable (e.g., Portera-Cailliau et al. 2003). In consequence, the spines’ insertion points have

been chosen as primary references, albeit users can select other references such as the spine

heads’ centroid or its distal tip.

The insertion of spines in dendrites can be represented as a cloud of points distributed over

the dendrite surface, presenting accordingly a tubular arrangement. Nevertheless, the

analysis of spine distribution patterns over the dendrite’s surface by classical interactive

procedures such as zooming, panning or rotating the point of view is difficult. The main

reason for this difficulty is that the dendrites’ geometry perturbs the 3D locations of the
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spines’ insertion points, destroying the shape from motion cues that facilitate 3D user

perception while rotating and interacting with the 3D dendrite representations. Furthermore,

sharp bends in the dendrite’s axis or even radial displacements in the position of the spines’

insertion points, such as those found in Figs. 1c and 6, make things harder.

The method proposed here uses a new approach for simplifying the visual analysis of

dendritic spine distributions, by straightening and unrolling the placement of the point-based

primitives used to characterize the insertion of spines over the dendritic surface. Essentially,

this method is based on applying a transformation that reduces the data dimensionality from

3D to 2D, while preserving the most relevant spatial properties from the original

distribution. Moving from the original 3D domain to a transformed 2D domain might seem

odd at first, but the fact is that this transformation eliminates a third, irrelevant dimension,

where noise is prevalent. Analyzing dendrite data in this transformed domain is much

simpler because this noise is eliminated. At any rate, the user can combine both domains

(the original 3D and the transformed 2D), selecting which one to use at every single

moment.

The straightening and unrolling transforms have been implemented in DISPINE, a new

software tool that supports the interactive visual analysis of 3D patterns. This is especially

relevant because, as mentioned by Fuchs and Hauser (Fuchs and Hauser 2009), “Interaction

is probably the most important tool for understanding complex data”. The interaction

process lets users change dynamically the visualization parameters, allowing the

representation of data in such a way that the presence of relevant information is maximized.

This approach facilitates and accelerates strongly the analysis process, providing

neuroscientists with a more powerful method to examine the insertion points, since the joint

visualization of data both in the transformed and the original space allows a better visual

analysis of surface patterns and trends.

Because of the high magnification applied during the digitization stage, dendrites are

divided during the acquisition process into segments of fixed length to be manageable; Fig.

1b shows an example of a dendritic segment captured with confocal microscopy. Once

spines are represented as volumetric images, the 3D positions of the spines’ insertion points

can be manually marked (Fig. 1c) with the help of commercial tools like Imaris (Bitplane

2011). Other possible references that could be marked instead are the spines’ center of mass,

or the apex of the spine’s head. Additionally, other relevant morphological features of

spines, like length or volume (Arellano et al. 2007), can also be manually estimated with

Imaris.

Figure 2 shows a global view of the results of the marking process applied to a dendritic

segment, drawing red dots in the positions of the detected insertion points. Replacing each

spine by its insertion point is a first simplification which can facilitate the visual analysis of

spine distributions. But as Figs. 1 and 2 show, this process is not enough, in particular for

tasks such as detecting 3D hidden surface distribution patterns.

Additionally, the zoomed-in window in Fig. 2 shows clearly some discontinuities in the

digitized spines, those arising because the injection technique does not guarantee a complete
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stain of the neuron structures. This effect makes automatic analysis very hard, which is one

of the reasons why interactive visualization procedures are such an important support tool

for exploring the anatomy of brain tissues.

The following section describes a spatial transformation that improves the level of

interpretability of the cloud of points. For a better explanation of the method, the spatial

transform is decomposed in two stages, straightening and unrolling. From now on, the word

“point” will be a synonymous of the term “spine marker”, or simply “spine”. This way,

each spine will be represented by its insertion point pi, and the set of spines, by P (the set of

spines’ insertion points).

Spatial Transformations

Dendrites can be well approximated by tubular geometries, which can be parameterized

along three directions (Fig. 3):

1. Axial direction: position along the medial axis1 of the dendrite measured from the

proximal end of the dendritic segment.

2. Angular direction: angular orientation around the dendrite’s medial axis.

3. Radial direction: radial distance to the dendrite’s medial axis.

From the three parameters that specify the position of a spine’s insertion point on the

dendrite’s surface, the radial distance is the least relevant. There are two reasons for this:

first, small variations on the distance to the medial axis may be due to changes in the

dendrite’s radius or to inaccuracies introduced during the manual marking process. Second,

they are very small in comparison to the total spine length. Based on such consideration, this

paper provides an alternative and simplified 2D representation for the insertion points,

which preserves their relative positions but discards the radial component of their

coordinates, therefore simplifying the visual analysis of point distributions. This alternative

representation domain requires two transforms, straightening and unrolling, which ensure

consistency with the original data sequences.

In order to illustrate the advantages provided by the method proposed here, two artificial

distribution patterns of spines have also been considered, following helicoidal and purely

random distribution patterns. On the one hand, helical arrangements of spines have been

described in fish and mammalian Purkinje cells (O’Brien and Unwin 2006). On the other

hand, dendrites of cortical pyramidal neurons have been studied using the tools presented in

this paper, searching for helicoidal patterns. However, the results obtained show that the

arrangement of spines is closer to a random distribution, discarding the hypothesis of a more

structured format.

The following sections describe the straightening and unrolling geometrical transforms that

allow the representation of spine data in a simplified domain.

1The dendrite’s sheath medial axis is a simplified representation that is manually created; it is actually a polyline whose vertices are
markers which store the tangent unit vector. 394 Neuroinform (2012) 10:391–407
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Straightening Transform

The first operation to be performed on the dendrite segment is to straighten it, in order to

eliminate the possible irregularities that could appear on its surface along the axial and radial

directions. The straightening process must keep relevant points along the dendrite’s medial

axis, such as the spines’ insertion points, in the same relative order as in their original

positions.

Starting at one end of the dendrite, it is possible to follow the medial axis that users have

previously marked using one of the tools mentioned in Section “Introduction” (the medial

axis could also be computed automatically by means of some skeleton or medial axis

transforms (Borgefors et al. 1999; Lakshmi and Punithavalli 2009) and a final pruning step,

if required).

Figure 4 shows a sketch of the operations involved in each step of the algorithm. These steps

are described below:

1. Step (a) computes the length value l of the medial axis MA (the blue axis shown in

Fig. 6). The parameters vi(x, y, z), i = 1, … n are the spatial positions of the set V of

n vertices introduced by neuroscientists to define the MA polyline. The MA length

is defined as:

(1)

where di(vi, vi+1) is the Euclidean distance between vertices vi and vi+1.

2. Step (b) introduces additional vertices along the dendrite’s MA in order to facilitate

the computation of the transformed coordinates of any point pj located on the

dendrite’s surface after applying the straightening transform. The purpose of this

step is to obtain a dense, evenly spaced collection of vertices vi that can be

associated with the spines’ insertion points pj, in order to displace them smoothly

while the dendrite is being straightened. In consequence, this stage can be seen as a

preprocessing step, necessary to minimize the geometric error introduced in the

position of relevant points after the application of the straightening transform.

Ideally, there would be no errors if the straightening transform were computed

using the actual analytical function that maps the medial axis onto a straight line.

This function could be used to compute the appropriate transform that would take

every point in the MA into its final position (and together with every associated

point point from the dendrite’s surface corresponding to that slice of the medial

axis, obtaining thus a straightened dendrite). But this process is unfeasible from the

point of view of computational cost, and it has been approximated by the

transformation of a discrete set of points placed along the MA. Clearly, a denser set

of points will approximate the continuous, analytical transform better. Therefore,

rather than applying the transform to the vertices vi which are placed along the

medial axis polyline, and then, applying it to the set of points pj associated with

each of the vertices vi, the transform’s accuracy can be incremented by increasing

Morales et al. Page 5

Neuroinformatics. Author manuscript; available in PMC 2014 August 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the density of vertices on the medial axis by using an oversampling factor w.

Nevertheless, the number of new vertices has to remain bounded in order to keep

accuracy and computational cost well balanced.

Figure 5 and Table 1 show the dependence of the average straightening errors and

processing time on the total number of vertices used for computing the

straightening transform. The original number of vertices was 45, and the errors are

computed by comparing the relevant points’ final positions obtained using the

stated number of vertices with those obtained using the densest (from a practical

point of view) population of oversampled MA vertices. In this data set, the

oversampling factors range between 0.55 and 11.11.

Experimental tests with a variety of marked dendrites have shown that introducing

an oversampling factor of w = 2.5 yields acceptable results, achieving a good

balance between accuracy and computational cost. In consequence, after the

oversampling process, the original n vertices vi will be replaced with a new set of m

oversampled vertices ovi, which are uniformly spaced along the MA. The total

number of vertices introduced, m, and the number of vertices introduced between

each original vertex pair, mi, are given by the following expressions:

(2)

(3)

From now on, all these vertices form the new set of oversampled vertices OV:

(4)

3. Step (c) performs the straightening process, substituting the original dendrite’s

hand-marked points vi of the MA by a set of straightened and uniformly

oversampled points svi. The result is the straight medial axis SMA, a straight line of

the same length l and with the same number m of oversampled vertices ovi that

were introduced in step (b), keeping their relative distances:

(5)

4. Step (d) translates the SMA for matching both its origin (sv1 ∈ SV) and the direction

of the first linear sector ( ) with the corresponding elements of the

original MA (ov1 ∈ OV, ):

(6)

Bold letters have been used for denoting vectors, being T the required translation.
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5. Step (e) establishes correspondences cij among the elements of the oversampled

original medial axis OV and the points at the dendrite’s surface, following the

criteria of minimizing the Euclidean distance.

(7)

6. Step (f) computes for each vertex ovj with at least one correspondence cij

established in step (e) the transform TRj = TjRj required for moving ovj to the

position of the straightened MA’s vertex svj associated with it. Being αj the angle

among the vectors  and  (those linking vertices ovj−1 and ovj, and svj−1 and

svj), and , the unitary vector perpendicular to the plane containing  and :

(8)

Rotating vector  can be performed in an elegant way using Rodrigues’ rotation

formula:

(9)

Then we apply the translation:

(10)

Finally, the same transformation TRj is applied to the set of points pi of the

dendrite’s surface that belong to the set of correspondences cij, that is, those that

are closer to the vertex ovj.

The transform is only applied to the relevant points extracted by the user because those

points are the only ones that will be analyzed later on. The result is a distribution of surface

points aligned along the dendrite’s central axis, ready for the unrolling transform.

Figure 6 illustrates the importance of this transform, showing several dendrites that are far

from the ideal, straight model. Problems such as sharp bends, strong local curvature and the

presence of irregularities are common, preventing users from getting an accurate idea of the

3D distribution of insertion points across the dendrite’s surface. Straightening the dendrite

facilitates the analysis task, allowing users to apply either the methods described in this

paper, or regular interaction techniques, or else just comparing visually different dendrite

sections (as they show a similar geometry). Any of them could be used as an example for

describing the unrolling transform and DISPINE’s functionality, which is done in the

following sections.
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Unrolling Transform

After the straightening transform, the relevant points are processed sequentially, arranged

according to their X coordinate, starting again at one end of the dendrite. Then, a cylindrical

transform to each of the points is applied:

(11)

where θ is the azimuth or steering angle of the point around the sheath axis, ρ is the radial

distance from the point to the central axis SMA, and ρ̄ is the mean radial distance of the

cloud of points (Fig. 7).

The unrolling transform maps points between two different 3D domains, but the variability

of the radius ρ, the third coordinate in the transformed domain, is very small. Therefore, the

unrolled points can be mapped easily to a 2D domain by using the X and θ · ρ̄ coordinates.

Please note that using the average radius in the unrolling transform instead of its value at

each relevant point is equivalent to applying a scale factor to the angular coordinate; using

local values for the radius would just distort the unrolled representation.

Figure 8 shows an example of applying the unrolling transform to the spines’ insertion

points of the straightened dendrite displayed in Fig. 6d. Figure 8a to d show the unrolled

insertion points from the straightened dendrite in green, and their 3D spatial positions before

unrolling in red (together with the straightened medial axis, which is plotted in light blue).

Figure 8b displays slanted and axial perspective views of the straightened insertion points, in

their original and unrolled representations. The unrolled points show a relatively small

amount of radius variability that can be appreciated best in the axial view (right part of Fig.

8b). The original points in red obviously show additionally a larger scattering in angular

direction, since they are placed around the light blue medial axis. Finally, Fig. 8c and d

present the unroll-transformed and original insertion positions for synthetic helicoidal and

random point distributions.

DISPINE’s Tool

This section presents DISPINE, a prototype developed in close collaboration with the

neuroscientists who are actually using it. The prototype functionality and technologies used

are described below.

System Functionality

In addition to implementing the straightening and unrolling transforms, DISPINE also

allows performing the following tasks that fulfill all the demands posed so far by

neuroscientists for analyzing spine distributions.

3D Navigation for Point Distribution Exploration—3D Navigation for point

distribution exploration is the basic functionality of the tool and the motivation behind this

work, because direct exploration in 3D around raw microscopy data is not enough for

extracting reliable conclusions about the distribution of spines in dendrites, as presented in

Figs. 2–8.
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In order to improve the analysis process, users can mix raw data together with the

information produced during previous analysis stages. For example, the user may display

markers such as the spines’ insertion points, the spines’ apex location, the dendrites’ axis, a

3D cubic spline interpolating the spines’ insertion points, etc. Moreover, users can display

the results of applying the straightening and unrolling transforms to the raw data on a

separate window.

When both views are simultaneously selected, only the insertion points are presented in the

3D Cartesian view. This simplifies the whole scene, facilitating the exploration of the

original data by offering interactive panning and zooming over any of the available views.

Synthesis of Three-Dimensional Point Distribution According to User-Def ined
Patterns—Synthesis of three-dimensional point distribution according to user-defined

patterns can be defined both in the 3D Cartesian domain and in the transformed domain. In

our case, we have implemented two typical patterns that can be found in tubular structures: a

random pattern and a helicoidal pattern (Fig. 8c and d). For the random pattern case, the

algorithm implemented follows the standard uniform distribution, introducing a pseudo-

random distortion over the 3D marker coordinates. For the spiral case, the user can select the

number of cycles, the angular offset of the first loop, the radius, the axis length, and the

number of samples regularly distributed along the whole spiral.

Visual Mapping of Relevant Features Associated with Markers—For spines,

typical features under consideration are the spine size, length or orientation. We have chosen

3D shapes based on deformed spheres for representing these three variables as glyphs,

assigning spine size to the shape volume, spine length to the ratio among the major and

minor axis of the resulting deformed sphere, and spine orientation to the directional

orientation of the 3D shape. The average values for spine size (measured as spine volume)

and length have been computed for each dataset. Individual spines have been compared with

this average value in order to know whether they are bigger or longer than the average (Fig.

9). As for size, those spines that are above or below the mean value are represented by a

larger or smaller sphere, proportional to the deviation from the mean (Fig. 9a). For length,

spheres representing spines are deformed to obtain an ellipsoid, elongated if the spine value

is longer than average, or flattened otherwise (Fig. 9b).

Spine orientation is defined as the difference between the radial direction obtained when

joining the insertion point with the closest point of the medial axis, denoted as , and the

orientation of the spine’s medial axis extracted from the spines manually segmented,

denoted as  (Fig. 10 illustrates this concept). If no deviation is found, the deformed shape

is vertical in the unrolled plane (almost normal to the dendrite’s surface).

Spine orientation is the most difficult feature from the point of view of data representation,

because of its high dimensionality. First, spine insertion points are represented in the

original domain by their 3D coordinates, and in the unrolled domain, by two parameters

(distance along the MA and ρ-scaled azimuth). Representing spine orientation from the

insertion point outwards requires three additional parameters in the original domain, and two

in the unrolled domain.
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When visualizing spines in the original domain, the presence of spine and dendrite

morphological data gives the user enough cues to get a clear idea about spine orientation,

even though the user might not properly grasp the magnitude of other parameters which are

obscured by dendrite and spine clutter. In consequence, a simple solution for maximizing

visualization efficiency would be just to superpose the glyphs described in the previous

paragraphs and displayed in Fig. 9a to c on top of the spine representations. The left and

central images of Fig. 9d show this solution. As it can be appreciated, placing the glyphs on

the spines’ heads results in improved data interpretability. Regarding user navigation,

DISPINE permits users to explore only raw data, only glyph data, or both, as shown in Fig.

9d.

Visualizing spine orientation in the unrolled domain is hard, because the user does not have

the morphological cues mentioned above. Since eccentricity cannot always be used to

represent spine direction because there might be spherical glyphs (remember that

eccentricity is also used for representing spine length), spine direction is represented by the

presence of a non-saturated color region, oriented in the same spatial direction as the spine

(Fig. 9c and d).

Point Filtering—As it can be seen in Fig. 11, the user can select the data to be displayed

by setting up different values. In this manner, the data which does not meet the selected

parameter ranges may be filtered out. For example, users may enable or disable the

visualization of spines according to their size, length, angular position in which they grow,

etc. Only the selected set of spines that fall inside the interval specified by the upper and

lower thresholds will be drawn. Local spatial exploration can also be performed if the user

selects a region of interest defined from the straightened medial axis.

Any combination of parameter values is user-selectable for filtering out the undesired data.

In consequence, the filter options provide additional help for simplifying the amount of data

and the complexity of the representation, allowing the user to focus his/her attention on a

specific set of samples (Fig. 11). In this particular example, regarding the spatial position,

the user has selected a central region of the dendrite segment, and for the azimuth, only the

samples included in the [180°, 360°] interval.

Data Clustering for Periodic Data—DISPINE offers tools for searching for repetitive

patterns in the position of spine insertion points. Given the human ability for detecting

patters visually, this is done by offering users the possibility of superposing data from

different dendrite areas. The tool offers two options:

1. Fixing a particular origin and period with respect to X (medial axis position), and

comparing spine insertion points from several different dendrite fragments at that

specific period. This has been labeled multi-period clustering.

2. Fixing a region origin, selecting different period lengths, and comparing points

from two adjacent periods. This has been denoted by intergroup folding.

Figure 12 shows an example of this functionality. The user has selected four cycles in the

reference pattern, delimited by yellow bars, and the corresponding data samples on the

Morales et al. Page 10

Neuroinformatics. Author manuscript; available in PMC 2014 August 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



unrolled domain are grouped into one cluster. Figure 12a shows several samples coming

from the four different cycles taken as the period of reference. Notice the four colors

assigned to the points identifying their original cycles. Inter-group folding, shown in Fig.

12b, allows to group two cycles inside the initial interval of interest. In this case, only two

colors are required for representing the original pair of cycles.

For multi-period clustering, clusters can be defined by varying the frequency f of the current

helicoidal pattern reference (with f = 1/lc, being lc the helix pitch) or by varying the number

of cycles n that belong to each cluster. Defining UP as the set of unrolled points, cluster i is

formed by displacing the selected set of samples to the current cycle defined as the

reference:

(12)

being k the ordinal cycle inside cluster i and lc · n the total length of the dendrite fragment

under consideration.

The tool also performs inter-group folding as a help for period determination, if users want

to analyze different clustering periods. Just like before,

(13)

(14)

being mod the module function, t the ordinal of the cycle that contains pj, and i the target

cluster.

Users can visualize at the same time the target helix as a reference pattern and the clustering

result. They are able as well to specify an offset for the cycle starting point in the samples’

analysis as a percentage value of the basic cycle length along the medial axis. Additionally,

they can select a uniform color for the grouped samples, or different color codes depending

on their original positions. Transparency can also be used for simultaneously visualizing

some overlapping samples, because the sample density increases when different dendrite

regions are grouped.

Visual Animation of the Raw Data and the Transforms Applied—Occasionally,

3D spatial interpretation is a difficult task for certain users. Animating the transforms offers

thus a very helpful support for this set of experts, because it illustrates easily all the steps of

the visual analysis method proposed in this work.

Standalone animations free users from taking care of interaction controls, allowing them to

focus their attention on the data being examined. This visual effect is synchronized in both

representation domains if the dual viewing mode is selected.
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Detection of Periodic Patterns Using Sound Feedback as an Optional Aid—
Sound can also be used for giving users additional cues about the data being analyzed. On

account of human sensitivity to audible frequencies and rhythms (temporal repetition

patterns of audible frequencies), this feedback proves particularly useful when users are

trying to detect the presence of periodic patterns hidden within the analyzed data (Mansur et

al. 1985). In this framework, we have selected the distance among points along the

dendrite’s medial axis as well as their angular position as the key parameters for translating

spatial information into sound:

• Each of the chromatic scale notes has been associated with a range of values of the

azimuth parameter θ by dividing its range (360°) among the twelve semitones of

this scale

• The time when a particular note is being played depends on the spines’ position

along the medial axis.

The activation instant of the notes is determined by the spatial position of spines along the

medial axis length, translating therefore axial spatial information to the time domain and

fixing t = 0 for the axis origin. In DISPINE, the user may select both sound parameters

(tones and time instants) for exploring dendrites along the medial axis, or just tone, in order

to analyze the sequential distribution of the spines’ insertion point angle along the spines’

medial axis. Other more complex mappings for assigning audio stimuli to circular pitch are

also possible (Deutsch 2010), but are beyond the goals of this work.

Technologies Used—The development method followed is very similar to Scrum

because it is very well adapted to our environment and to the user-centered design

philosophy followed in this application (Rising and Janoff 2000). This methodology enables

software to be developed rapidly on the basis of small sprints, the result of each representing

a further improvement in the prototype.

Another issue taken into consideration was to ensure the portability of DISPINE across a

wide range of systems. We chose a set of stable and widely tested free distribution tools that

made this objective easier. Thus, we chose Python vs. 2.6 as the programming language, Qt

for user interface development, VTK vs. 5.4 as the visualization library, and NumPy vs 1.5.1

for linear algebra. Accordingly, DISPINE has already been successfully installed on a

variety of systems with Linux and Windows.

With regard to the GUI architecture, it was conditioned both by the selected toolkits and by

the required prototype functionality. The design pattern that best fitted our purposes was the

observer-pattern, because we needed to synchronize multiple views of the same model

taking into account the changes introduced in the model by user interaction (Gamma et al.

1995). Moreover, Qt and VTK made available a large set of widgets which enabled the

establishment of view-hierarchies in order to define new specific component and container

hierarchies, or else, to reuse generic ones. View-hierarchies were also applied to the

management of the input, output and DISPINE layout.
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Case Study: Preliminary Analysis of Cortical Dendritic Spine Distributions

The system presented here has been used for the analysis of cortical dendritic spine

distributions. The use of the straightening and unrolling transforms for analyzing data has

been decisive for guiding the neuroscientists’ work, as well as for reaching new conclusions

about the spatial patterns found in these distributions.

In the present work we intracellularly injected cells in cytoarchitectonically identified layer

III of the human cingulate cortex, but the proposed method can be applied to any other type

of neuron in the human brain or in any other species. The fluorescent marker Lucifer Yellow

(LY) was applied to each injected cell by continuous current until the distal tips of each cell

fluoresced brightly (Fig. 1a), indicating that the dendrites were completely filled and

ensuring that the fluorescence did not diminish at a distance from the soma (for a detailed

description of the cell injection methodology, see Elston and Rosa 1997; Elston et al. 2001;

Ballesteros-Yáñez et al. 2010).

Following the intracellular injection of pyramidal neurons, the sections were stained using

rabbit antisera against LY. The antibody was visualized with biotinylated goat anti-rabbit

IgG and streptavidin-conjugated Alexa fluor 488. The sections were then studied with the

aid of a Leica TCS 4D argon/krypton mixed-gas confocal scanning laser attached to a Leitz

DMIRB fluorescence microscope. Fluorescent labeling profiles were imaged using an

excitation peak of 491 nm to visualize Alexa fluor 488.

Stacks of images were acquired at high magnification (63× with an oil-immersed objective)

to build volumetric reconstruction of a dendrite (Semwogerere and Weeks 2005).

The reader may find a video at http://www.datsi.fi.upm.es/~arodri/cbb/ninf11/

dispine_video.wmv showing a typical working session where the user runs the following

sequence of actions after loading the data file:

1. Interactively explore the dendrite, looking for relevant features in the image stack.

2. Animate the visualization, adding rotational motion to the elements of the 3D

scenario.

3. Add insertion points and additional visual references (medial axis of the dendrite

and interpolation curve) in the 3D view of the stack.

4. Obtain the straightening transform.

5. Compute the unrolling transform.

6. Define a new distribution pattern for synthetic data.

7. Interactively examine and filter out points on both domains, 3D Cartesian and

transformed, either with static views or with animated visualizations, according to

different criteria: spine size, length, angular position or spatial position along the

medial axis.

8. Perform visual mappings of the morphological features extracted from spines.
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9. For periodic patterns, perform visual data analysis in the unrolled domain taking

into account spatial frequency sampling.

10. Animate the path of the spines along the medial axis receiving audio feedback

about the spatial distributions examined.

Once neuroscientists have completed the exploration of the dendritic spine distribution

under study, they can extract hypothesis about the morphological features of the structure

being analyzed. Considering the example presented in Fig. 2, we can visually compare the

two synthetic patterns defined as references with the data extracted from the segment shown.

Examining Figs. 8–11 in the way in which a domain expert would do, it seems at first sight

that this distribution is closer to a random distribution, discarding the hypothesis of a

structured pattern such as the helicoidal distribution. If we now focus our attention at the

clusterings presented in Fig. 12, we can easily observe again that the gathered samples do

not resemble the helicoidal pattern, but they look rather like the random distribution pattern.

However, if we look at the original 3D distribution shown in Figs. 2 and 6 (left column), a

neuroscientist has no evidence about the existence or not of any pattern, preventing him to

reach a firm conclusion with such data.

Discussion and Future Work

At times, it may be difficult to detect 3D features when the object geometry is masked by

non-rigid transformations such as those found in real dendrites. In these cases, moving to a

simpler transformed domain can be an effective way to simplify the analysis process.

This paper presents a methodology for assisting neuroscientists to study the 3D organization

of spine insertions in dendrites, a task that is important for studying dendritic spine

distribution patterns. This may prove critical not only for better understanding the brain’s

synaptic organization, but also for detecting differences among neuronal circuits under

different circumstances.2 Thus, we propose that the method described here can be of general

interest because it represents a substantial help for the analysis of the dendritic spine

organization.

The method at issue is based on two transforms, straightening and unrolling, which have

been applied to spine insertion points scattered along the dendrites’ surface. These two

transforms were used to map the 3D position of points into a two dimensional space.

The creation of an unfolded arrangement such as the one proposed enables a straightforward

visualization and analysis of these structures. As pointed out in the introduction, it manages

to avoid the difficulties of performing the analysis directly in 3D while definitely improving

the user’s insight. The result of both transforms allows users to enhance the interpretability

of data without losing any of the properties present in the original tubular data, such as its

spatial ordering, or the spatial relationships among neighbor points or point attributes.

Neuroscientists working with this type of data have argued that, from their experience,

exploring these properties directly in 3D is not possible because visual references are very

2For example, the morphology, number and density of dendritic spines are altered in many brain diseases and under several conditions
such as malnutrition, alcohol or toxin exposure (Fiala et al. 2002).
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difficult to establish using point-based representations. This can be noticed in the video

accompanying Fig. 1 or in the examples presented throughout the paper. In any case, as it

has been shown in the previous sections, the original data remains available, so the users

contrast their hypotheses within both representation domains at all times.

Central to the methodology presented here is also the design of DISPINE, an interactive

environment that permits exploring 3D data in various reference systems, filtering out

insertion points according to different spine features, both morphological and spatial.

Additionally, DISPINE supports the following options:

• Pattern synthesis (random and helicoidal distributions).

• Periodic spatial pattern analysis applied to spirals.

• Simple visual mapping creation (spine size, length and orientation).

• Audible feedback.

All these options increase the resources available to users for analyzing such complex 3D

data.

The tests performed with end users, together with the feedback provided by them, show that

this tool can effectively help analyzing complex tubular structures such as spines’ insertion

points in dendrites. It can also be applied to different brain regions, species, and

experimental conditions (healthy vs. abnormal, young vs. old, etc.), and it can additionally

be applied to other scientific fields, where this kind of tubular point distributions can be

found. Further experiments with other datasets, like the one presented in this paper, will

allow neuroscientists to easily and quickly explore new hypotheses about 3D neuron

morphology. In turn, this will provide support in deciding whether additional statistical

analysis will be required for demonstrating or refuting specific hypothesis (Morales et al.

2012). Furthermore, this tool will help improving productivity by incorporating new

interactive aids in Neuroscience; for example, the use of this tool has been fundamental for

guiding the statistical analysis performed in Morales et al. (2012).

DISPINE has been tested in several laboratories from different institutions, located in a

number of countries. The feedback provided by users has been very positive, supporting the

evidence that this tool has opened new possibilities for analyzing spine distributions in ways

that were not possible before because of a lack of tools for performing this kind of analysis.

In general, users have evaluated also very positively DISPINE’s functionality and ease of

interaction.

Future work will be devoted to the improvement of the tool usability by introducing local

interactions for selected regions of interest, and to the development of additional tools for

characterizing spine distributions, such as the inclusion of stereoscopic rendering. It must be

noticed that we consider stereoscopic vision just an additional aid for improving depth

discrimination, although the complexity of examining the distribution patterns of dendritic

spines requires new methods to simplify this task, and not just new technologies for

visualizing data in 3D.
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Also, future work will consider the possibility of including user-defined azimuth references

in order to keep the orientation consistency between the straightened, unrolled projections,

and the 3D domain (its effect over the straightened dendrite will be equivalent to perform a

torsion along its medial axis in order to assign azimuth uniform values to spines directed

towards the same region in 3D space).

Information Sharing Statement

The software will follow a free distribution policy under the GPL licence. It can be

downloaded together with the dataset shown in the paper from http://

cajalbbp.cesvima.upm.es/dispine. All the videos referenced in this work will be also

available at the same url.
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Fig. 1.
a Confocal microscopy image of an intracellularly injected layer III pyramidal neuron of the

human cingulate cortex. b and c present low and high magnification images showing a basal

dendritic segment, including dendritic spines and their points of insertions (white dots) in the

dendritic shaft. This image represents a single plane from the stack of images used to locate

the insertion points in the 3D reconstruction (see text for further details). Thus, only the

insertion points present in that plane are shown (see a supplementary video at http://

www.datsi.fi.upm.es/~arodri/cbb/ninf11/Figure1_video.avi). Scale bar (in c): 26.25 μm in a;

4 μm in b; and 1.9 μm in c
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Fig. 2.
Example of a dendritic segment with spines represented by red markers indicating the

spines’ insertion points on the dendrite’s surface. The volumetric image displayed here has a

resolution of 1024 × 1024 × 45 voxels for the following dimensions: 76.88 μm × 76.88 μm ×

12.59 μm
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Fig. 3.
Parameterization of the spines’ markers positions (red points): axial direction (X), angular

direction (θ) and radial direction (ρ)
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Fig. 4.
Diagram summarizing all the steps involved in the straightening transform
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Fig. 5.
Typical curves obtained when normalizing the approximation error and the execution time

obtained with the straightening transform
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Fig. 6.
Left: dendrites with the original curvature; center, right: different views of the results

achieved after applying the straightening transform
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Fig. 7.
For each sample i, conversion of the angular coordinate to a tangential distance in the

unrolled domain is performed by multiplying θi by a scale factor ρi = ρ̄. Please note that

using an average radius has two advantages. First, it limits the effects of local variations in

ρ. And second, if a fixed value ρ̄ were not used for translating radial values to ordinates, the

unrolled representations of thick and thin dendrites sections would show wide scale

variations in the Y axis
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Fig. 8.
Three views of the unrolling transform applied to the data shown in Fig. 6, together with two

examples of a synthetic helicoidal and random patterns. The views show the unrolling-

transformed insertion points in green, alongside the corresponding data before straightening,

plotted as a cloud of red points. The medial axis is displayed in light blue

Morales et al. Page 25

Neuroinformatics. Author manuscript; available in PMC 2014 August 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 9.
Examples of glyphs used for visually mapping features such as spine size (a), length (b) and

orientation (c). A dual view is also available for this tool functionality (d)
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Fig. 10.
Different cases of spine orientation defined by the angle between the radial orientation

vector  and the orientation of the spine’s medial axis extracted from the spines,

represented by the vector . The value of the angle computed will be the orientation of the

glyph used for mapping visual features in the unrolled domain (Fig. 9d right). The azimuth

angle is not shown, since it can be easily perceived from the glyph in the unrolled

representation
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Fig. 11.
Filtering out insertion points according to spine size, length, angular position, and spatial

position. The whole unfiltered data set is shown in Fig. 2
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Fig. 12.
Data clustering for spiral analysis. Color codes in the gathered samples are assigned

depending on their original positions with respect to four different cycles (multi-period), or

two pairs of cycles (intergroup), grouped in the current spiral pattern taken as the reference
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Table 1

Tabular data of Fig. 5 considering absolute values for execution time (s) and average error (μm)

Number of resampled vertices Execution time (s) Average error (μm)

500 2.90 0.026

475 2.74 0.017

450 2.61 0.024

425 2.47 0.030

400 2.33 0.028

375 2.20 0.039

350 2.06 0.033

325 1.90 0.037

300 1.80 0.044

275 1.62 0.031

250 1.49 0.051

225 1.35 0.057

200 1.22 0.045

175 1.07 0.080

150 0.92 0.087

25 0.79 0.099

100 0.65 0.118

75 0.51 0.108

50 0.37 0.244

25 0.22 1.326

Neuroinformatics. Author manuscript; available in PMC 2014 August 22.


