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Abstract
The identifying or sensitive anatomical features in MR and CT images used in research raise
patient privacy concerns when such data are shared. In order to protect human subject privacy, we
developed a method of anatomical surface modification and investigated the effects of such
modification on image statistics and common neuroimaging processing tools. Common
approaches to obscuring facial features typically remove large portions of the voxels. The
approach described here focuses on blurring the anatomical surface instead, to avoid impinging on
areas of interest and hard edges that can confuse processing tools. The algorithm proceeds by
extracting a thin boundary layer containing surface anatomy from a region of interest. This layer is
then “stretched” and “flattened” to fit into a thin “box” volume. After smoothing along a plane
roughly parallel to anatomy surface, this volume is transformed back onto the boundary layer of
the original data. The above method, named normalized anterior filtering, was coded in MATLAB
and applied on a number of high resolution MR and CT scans. To test its effect on automated
tools, we compared the output of selected common skull stripping and MR gain field correction
methods used on unmodified and obscured data. With this paper, we hope to improve the
understanding of the effect of surface deformation approaches on the quality of de-identified data
and to provide a useful de-identification tool for MR and CT acquisitions.
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Introduction
Imaging methods, such as MRI and CT, are now commonly used in biomedical research.
MR and CT images of the head may be used to create high resolution representations of the
face, potentially allowing to identify the human subjects involved in such research. Several
studies (Prior et al. 2009; Chen et al. 2007; Budin et al. 2008) examined the ability of human
observers to identify a facial anatomy rendering with an image as presented in a photograph
set. Budin et al. (2008) indicated that the chance of correctly connecting a 3D face rendering
with a photographic portrait is higher than random guess, and Prior et al. (2009) also
reported statistical significance of such probability. On the other hand, named studies report
high difficulty of recognition experienced by raters, which may indicate that, while
maintaining a potential privacy risk, facial anatomy renderings are still very poor substitutes
for a photograph.
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Although recognition by human observer may be difficult, progress in automatic face
recognition software may also increase the risk of identification. Mazura et al. (2011)
explored the ability of automatic face recognition software to identify 3D face renderings of
CT scans, reporting the success in identification of 27.5 % of 3D renderings with
photographs. Ability to automatically analyze face renderings on high volumes of 3D data
may increase the probability of occasional identification.

With the increasingly common practice of sharing imaging data within the research
community, including via open access resources (Marcus et al. 2007a), the need for methods
to protect the privacy of the human subjects is of great importance. Within the United States,
the requirements for patient and research subject privacy are described in the HIPAA1; in
particular, identifying information that should be removed includes photographs and
equivalent images. Several techniques have been developed to remove potentially
identifiable features from images, especially to prevent face recognition.

Many prior de-identification methods have employed pre-existing techniques that were
developed for other purposes, such as MR skull stripping, a common preprocessing step in
many neuroimaging studies. Skull stripping algorithms such as (Smith 2002) classify voxels
into brain and non-brain, and leave only brain voxels in the dataset. This approach has the
drawback that it removes anatomical features that are necessary to calculate important
values such as intracranial volume and cerebrospinal fluid volume. A variation on this
approach used to de-identify the open access dataset (Marcus et al. 2007a) involved creating
brain mask using skull stripping and then enlarging this mask slightly. This approach has the
advantage that it preserves the cranial vault. In our experience, however, skull stripping
requires careful supervision and may be affected by variation in diagnoses, age groups, MR
field inhomogeneity, etc. (Fennema-Notestine et al. 2006).

Since skull stripping methods remove too much data, some investigators employed voxel
masking methods that remove only part of surface voxels pertaining to face only. For
example, an approach implemented by Bischoff-Grethe et al. (2007) suggests removing only
corresponding skull structures. Their method uses an atlas registration framework together
with Bayesian classifier for generating facial anatomy probability map. The algorithm
further removes voxels that have high probability of belonging to orbits, nasal cavity, or
lower/upper jaws. The authors ran several different brain extraction algorithms on de-
identified data; their evidence suggests that their face stripping preprocessing step has little
effect on the outcome of skull stripping.

De-identification methods based on segmentation of tissues or external organs require a
voxel classifier, which usually works best when tuned to specific data characteristics such as
specific body part, contrast mechanism and other acquisition parameters, or demographic
and pathology characteristics of a training sample. Using a classifier out of its original
context can lead to unexpected results that are hard to predict in bulk processing
environments with highly heterogeneous data. In our experience, de-identification by
removing internal facial features in Marcus et al. (2007a) frequently led to failure of
automated pre-processing pipelines.

As classifier-based approaches are in general hard to implement efficiently for a broad range
of data, less context-specific (i.e. requiring no preliminary training to run) algorithms were
also used for de-identification. Budin et al. (2008) suggested an approach that uses local
morphological operators to modify a given surface. Obtained facial surfaces were used in
the forced choice user performance study to evaluate the recognition rates by observers; the

1U. S. Health Insurance Portability and Accountability Act

Milchenko and Marcus Page 2

Neuroinformatics. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



results suggest that the recognition rate decreases when a certain minimum neighborhood
size (8–12 mm) for deformation is chosen.

The work by Budin et al. (2008) provides evidence that local surface deformation by their
method reduces face recognition rate under certain conditions, as it removes high frequency
details from a surface. An earlier study (Jarudi and Sinha 2003) also points out that decrease
in image resolution reduces recognition rate. However, the impact of surface deformation on
the integrity of data is not completely clear. In this paper, we describe a framework that
isolates a layer of voxels around a surface and allows the signal to be degraded directly
within the “flattened” representation of this layer. Using the developed methodology, we
compare the effects of several surface degradation methods on the integrity of the images.

Methods
Generation of the Boundary Layer

In the case of tomographic scans, general proportions and surface structures (internal facial
features in face recognition literature) are relevant for identification. These features are
primary targets for removal by de-identification algorithms. However, altering internal
features inevitably introduces disturbance that can influence the outcome of further
processing and potentially make data unusable. For instance, some brain extraction methods
(such as Smith 2002) assume the head to be roughly ellipsoid, which would no longer hold if
large portions of the facial area were removed. Even if deep internal organs such as the brain
are not affected by data stripping, the input of any algorithm that uses histogram analysis is
likely to be disrupted.

Since our ability to recognize and identify a face based on internal features decreases with
spatial resolution (Budin et al. 2008; Jarudi and Sinha 2003), removal of significant parts of
the anterior head can be avoided. The proposed method masks out surface features on the
scale of several mm in depth, but much larger in surface tangent directions, effectively
“flattening” the anatomical surface. The key first step is to isolate a thin layer that contains
the anatomical surface for subsequent blurring. At this stage, we create a binary mask of the
original object and generate a triangular tessellation of the surface, as shown on Fig. 1. This
triangulation is generated using Cartesian parameterization of the foundation plane, as
detailed in Appendix.

To confine all data alteration to a small fraction of voxels near the anatomical surface, we
define a volumetric layer with the following properties: a) it should include the anatomical
surface; b) it should be of roughly constant pre-set depth and c) it should include pre-defined
fraction of air above skin and tissue under the skin (Fig. 2). Then, through averaging voxel
intensities within this layer only, the resolution of the anatomical surface can be reduced so
that the new surface will appear blurred.

To define the boundary layer, we enclose the triangulated anatomical surface (Fig. 1) in
“interior” (deep) and “exterior” (superficial) tessellations (Fig. 2). These triangulated
surfaces are obtained by translating each vertex of anatomical surface triangulation up or
down the normal. The resulting boundary layer contains voxels roughly up to h mm deep
under the skin, and shares the same parameterization (a function defining how coordinates
on a surface depend on plane coordinates) with anatomical surface. (See Appendix for the
mathematical derivation of anatomical surface parameterization).

Corresponding deep and superficial triangulation vertices are connected by verticals,
creating the partition of intermediate layer into oblique box-like blocks (quasi-blocks) with
eight vertices and 12 triangular faces each, as illustrated on Fig. 3(a) and (c). Adjacent
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quasi-blocks share two triangular faces and four vertices. Each quasi-block can be
consistently partitioned into six tetrahedrons (Fig. 3(e)), allowing geometric query whether
any given voxel belongs to the boundary layer or not. To establish that, it is sufficient to
determine whether the voxel belongs to any tetrahedron that constitute the boundary layer.
(For detailed mathematical description of quasi-block partition, refer to Appendix).

Masking of the Boundary Layer
The boundary layer isolated in the previous step (Fig. 3a) contains all voxels to be modified
in the original scan. The simplest choice to mask the enclosed surface would be to set all
voxels within this layer to a fixed constant, such as average value. This technique, termed
fill coating, effectively replaces the anatomical surface with the exterior or the interior
tessellation (Figs. 4b and 5b). This approach removes all information from the boundary
layer and introduces a single peak at pre-set intensity in the masked volume (Fig. 6). This
peak can interfere with subsequent histogram analysis and may increase segmentation and
shape reconstruction analysis errors.

To make the transition between modified and non-modified anatomical surface less drastic,
we also tried another approach termed localized blur. With this method, an averaging filter
is applied to a copy of the original scan, and then only voxels within the boundary layer are
replaced by those from the blurred volume (Figs. 4c and 5c).

Since in the case of localized blur the entire volume is averaged, outside voxels still
contribute to actual values inside the boundary layer. A typical lowpass filter increases local
continuity in voxel intensities by replacing each voxel with a weighted sum of its neighbors.
Therefore, we can expect jumps in intensity along the edges of the boundary layer. This is
indeed noticeable on Fig. 4c, where bright fat signal is averaged with dark bone and
background signal from voxels outside the boundary layer, giving distinct greyish/white
edge to the deep surface of the boundary layer. We also found that histograms of volumes
processed with localized blur often show a noticeable shift in peak signal intensities, as
illustrated on Fig. 6.

To mitigate the shortcomings of localized blur filtering, we formulated the following
requirements to the ideal boundary layer degradation filter: a) continuity: signal jump at the
interface between the boundary layer across deep surface and internal tissue should be
minimal; b) tangentiality: voxels near the anatomical surface should be the result of
averaging with other voxels near the surface, and the contribution of other types of voxels
(much deeper or much higher above the surface) should be minimal. The latter condition
simply requires that surface degradation is performed mainly along directions tangent rather
than normal to the surface, so that more information pertaining to the surface is removed and
less information pertaining to deeper tissues is altered or used for calculation of boundary
layer voxels (see Fig. 7 for the illustration of the summation direction for a two-dimensional
image).

Tangentiality is equivalent to including more voxels near the surface and less “external” or
“deep” voxels in calculating the final voxel value. To model that, we used the filter kernel
shape resembling a shallow box, with width and height much higher than depth. At the same
time, the orientation of this box depends on the surface normal, whereas averaging
directions for localized blur are co-aligned with volume’s natural coordinate system. A
direct approach to ensure tangentiality would be to implement a filter with oblique
neighborhood summation directions dependent on voxel position. If done directly, this
would require multiple interpolations along these directions at each voxel, requiring
impractical implementation complexity and computation time. Another approach would be
to “flatten” the boundary layer to the coordinates where the normal at each vertex of
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triangulation does not change. Doing this for every voxel may be impractical, but if we
assume the surface normal to be constant within every quasi-block, the problem reduces to
transforming quasi-block into right-angled (proper) block, as detailed in the next section.

Boundary Layer Projection
In order to enable tangential smoothing, quasi-blocks produced in the tessellation steps
above can be transformed to a regular flat rectangular box (a proper block) (Fig. 3a and b).
A convolution filter is applied to this transformed mesh in directions tangent to the average
anatomical surface or perpendicular to it, satisfying both the continuity and tangentiality
conditions. This transformation of the irregular tessellated boundary layer is called here
normalization, to indicate “normal” conditions for applying a degrading filter to the
boundary layer.

Normalization transforms a layer of voxels onto another layer of voxels. As internal and
external surface meshes of the boundary layer are parameterized by rectangular coordinates
(Fig. 1), the same coordinates can be used to parameterize “external” and “internal” surfaces
for the target flat box (Fig. 3b). Thus, there is one-to-one correspondence between each
quasi-block and proper block in the target (Fig. 3c and d). Therefore, all we need is to find a
transform between (c) and (d) on Fig. 3, and then combine for all blocks to perform
normalization.

Since each quasi-block has 8 distinct vertices, both oblique and regular boxes can be
partitioned into six tetrahedrons (Fig. 3e and f). For the actual transform, we pre-compute
six affine transforms for each tetrahedral pair. Then, for each voxel in the target box, we find
the tetrahedron it belongs to, and obtain the source voxel by applying a precomputed inverse
affine transform for this tetrahedron to the voxel coordinates. By repeating this for all boxes
in the target, the entire boundary layer is transformed (normalized). Figure 8b and c
illustrates an isolated 3D surface rendering of a boundary layer and its projection onto the
flat box.

Normalized Filtering
If an averaging filter much wider in X and Y (right-left and top-bottom in the case of a face)
directions than in Z (shallow-deep) direction is applied to the normalized boundary layer,
more voxels from the nearby anatomical surface will contribute to the resulting voxel value
than from voxels high above or deep below the surface, satisfying the tangentiality condition
from “Masking of the boundary layer”. To satisfy the continuity condition, we used an
averaging filter with variable kernel width. The kernel size was set to vary smoothly with
depth below the surface, which resulted in smaller blur at the interface between the detected
boundary layer and unmodified voxels.

The averaged layer is projected back to the original volume using the same “normalization”
process of transforming a tetrahedral partition of a “flat” layer onto an equivalent tetrahedral
partition of the original boundary layer (see Appendix). The algorithm that performs
boundary layer projection, anisotropic filtering, and back-projection to the original volume
is termed here normalized filtering. The result of each step of the normalized filtering
applied to a T1 head acquisition is shown on Fig. 8.

Evaluation and Results
Face Masking Pipeline and Testing Datasets

We have implemented fill coating, localized blur and normalized filtering of the surface
layer as MATLAB functions2. At the initial step, the object binary mask is generated using
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automatic object/background thresholding (Ridler and Calvard 1978). The resulting mask is
morphologically closed with 2 mm spherical kernel to simplify surface topology and reduce
random noise, after which control is passed to the boundary layer generation routine.

These generic MATLAB functions can be applied to any external anatomical surface region.
They require the coordinates of the box-like ROI and the coordinate axis perpendicular to
the anatomical surface. In order to automatically obscure a face on MR head scan, we
developed an automatic pipeline based on Linux shell scripts that first registers the volume
to an atlas space using an in-house global 12-parameter affine transform optimization
(Rowland et al. 2005).3 We used normal adult post-gadolinium contrast atlas as a target for
selecting face ROI and pre-calculated a generous ROI containing face region in atlas space.
The boundaries of this ROI are transformed to the original image space to automatically
determine the input coordinates. As a result, the defacing pipeline does not require any input
parameters.

MR Data—To validate the code, each of the three surface masking techniques was
automatically applied to over 300 T1 and T2 weighted MR head volumes obtained using
various sequences with approximately 1×1×1 mm or smaller voxel size and 3T magnetic
field strength. Further comparison and numerical analysis described below was done on 16
randomly selected subjects, with age ranging from 10 to 88 and randomized disease state.
Surface obscuring results are illustrated on Figs. 4 and 5. According to automatic parameter
selection within the defacing pipeline, typical proper block size was 15×15 mm (left to right
and top to bottom) and layer thickness (block depth) was 9 mm. For all methods, we used
averaging filter. For the localized volume blur, filter neighborhood size was auto-selected to
be 20×20×20 mm; and for the normalized anterior filtering, the size typically ranged from
10×10×3 mm at the deepest point to 30×30×10 mm at anatomical surface and above. The
average running time per volume on a 2.8 GHz 64 bit processing node for localized blur and
anterior coating was about 60 s, and 100 s for normalized filtering. Two reviewers visually
inspected each of the 300 processed volumes to understand 1) alteration to the facial surface
by comparing surface renderings of the original and processed volumes; 2) “invasiveness”
into brain tissues; 3) how much of the perceived anatomical surface was captured inside the
generated boundary layer. Both reviewers agreed that surface degradation was significant
and uniform across most cases, with a few outliers that showed significant deviation in
morphology from the rest and could possibly be identified by non-facial features such as
general head shape. A number of cases also showed invasion of altered voxels into the
nervous tissue, particularly in subjects with unusually thin frontal bone and meninges. To
compensate for this misbehavior in the later versions of the automatic processing, we
prohibited brain voxel alterations using pre-calculated brain mask (Smith 2002). Finally,
boundary layer extraction captured facial surface properly in all cases except for acquisitions
with high bias of MR signal, where both actual threshold and signal-to-noise ratio in the
inferior facial region could drop by as much as 300 % compared to the superior. In these
volumes, the boundary layer could “slip” under the actual anatomy. Our current experiments
show that using multiple region-specific thresholds for anatomical surface generation helps
to improve the accuracy of captured boundary layer.

We also compared the impact of boundary layer degradation techniques on certain image
statistics and MR analysis tools, as discussed in the next section. The pre- and post-modified
data for sample cases can be accessed at https://central.xnat.org/data/projects/
surfmask_smpl.

2The MATLAB source code is available at https://bitbucket.org/mmilch01/surfacemask under the BSD open source license.
3In the most recent version of the pipeline, this has been replaced by open source FSL’s FLIRT registration (Jenkinson and Smith,
2001), with similar resulting face ROIs.
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CT Data—We applied normalized filtering to facial areas of 25 full body CT scans with
voxel resolution 1×1×1 mm. The effect of normalized filtering on a CT acquisition is shown
on Fig. 9.

Impact of Surface Degradation on Image Statistics and Processing Tools
In this section, we consider several imaging metrics and how they change after application
of face masking. For all statistical comparisons, we used Kolmogorov-Smirnov test for
normality of distribution with unknown parameters (Lilliefors 1967). For normally
distributed samples, paired t-test was used for comparison between different methods. When
sample data did not pass normality test, we used Wilcoxon signed rank test.

The first test was to compare similarity between original and face surface masked (or simply
masked) volumes. We used 16 pairs of unmodified and masked MR images for quantitative
evaluation. MR data was chosen because of good contrast of soft tissues and availability of
MR processing tools. For similarity measures, we used normalized mutual information
(NMI) and average pixel distance (APD). NMI is widely used in image registration
problems as a measure of how well two images are aligned (Collignon et al. 1995; Wells III
et al. 1996). In our case, normalized mutual information indicates how much orientation
information is preserved after applying the volume masking. A higher NMI with the original
volume implies that atlas registration methods based on mutual information calculation, for
example, would perform better.

Average NMI between original and surface-degraded versions for the 16 MR head volumes
is shown in Table 1, first row. We tested the null hypothesis that NMI for normalized
filtering is not statistically different from NMI for coating and blur. The p value for both
cases was below 0.001, indicating that normalized filtering maintained the highest NMI with
statistically significant difference.

The Average Pixel Distance APD between images A and B is described by the quantity

(1)

This integrative measure is useful to show the degree of localized intensity difference
between two grayscale images. Since in all our tests the original and masked images were
perfectly aligned, the pixel difference for unaffected voxels did not contribute to the sum.
The APD between the original and masked images therefore provides a measure of volume
change confined to the boundary layer. Again we hypothesized that this difference for
images processed with normalized filtering is not different from those processed by
localized blur and coating. The probability (p value) to see this in the observed data was
below 0.001, suggesting that normalized filtering on average maintains higher intensity
similarity with the original images (Table 1, second row).

To study the effect of surface degradation on typical MR processing tools, we applied
commonly used skull stripping (Smith 2002) and MR gain field correction (Zhang et al.
2001) algorithms to original and masked images. For the resulting brain binary masks, we
computed the volume overlap

(2)
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also known as Jaccard similarity index (Table 1, third row). This reflects the ratio of voxels
that are different to the total number of voxels in the brain mask. If surface degradation did
not affect the performance of skull stripping, volume overlap of skull-stripped images based
on original and masked versions should be close to 100 %. In practice, this overlap was
above 99 % for all masking methods, with normalized filtering maintaining highest average
overlap (99.4 %). In statistical comparison, we tested the assumption that overlap of BET-
processed images based on localized blur and coating was not different from the overlap
based on normalized filtering. P values for this assumption were 1e-5 and 1e-3, accordingly,
suggesting that normalized filtering maintained the highest overlap. In other words, brain
masks generated from images processed with normalized filtering were closest to brain
masks generated from unmodified images.

Finally, to compare the results of gain field correction, we estimated APD between original
and corrected volumes (Table 1, bottom row). Using the same statistical test on the results
showed that selection of one or the other masking algorithm produced a less significant
effect on the result of gain field correction algorithm, which can be explained by the fact that
this algorithm makes most use of white and gray matter voxels unaffected by the de-
identification preprocessing.

Discussion
Previous research (Prior et al. 2009; Chen et al. 2007; Budin et al. 2008) on our ability to
recognize MR or CT datasets as belonging to a specific individual based on head surface
renderings indicates that such renderings are poor substitutes for photographs, although
chances for such recognition are higher than random. It is hard to model conditions for
potential person identification under which MR or CT images are shared for analysis; forced
choice recognition evaluation used in studies represents somewhat simpler recognition
problem, whereas in real situation one may have to compare a surface rendering with images
from memory. The extent of human ability to recognize a head surface rendering still
remains unclear; but in the context of research data sharing, addressing subject privacy by
modifying the original data can potentially interfere with accurate data analysis. Local
surface deformation is less invasive compared to other de-identification methods that
entirely delete the face and is therefore less likely to interfere with image analysis. Yet it still
reduces the recognition rate, which is confirmed by results obtained by Budin et al. (2008).
Our approach to boundary surface deformation based on filtering of the “flattened”
boundary surface layer provides a framework for studying the effects of different kinds of
surface modification on visual appearance of modified surface renderings, image statistics
and processing tools.

Face masking cannot be reversed with deconvolution methods. In normalized filtering, we
are using averaging filter, which, similar to motion blur filter, largely eliminates high
frequencies from image. The algorithm uses filter sizes between 20 and 50 for 256×256
slices, which will amplify any random noise to suppress signal beyond possibility of
restoration. (This is illustrated in Jahne 1997 for frequency domain). Additionally, any
attempt of deconvolution using unaltered voxels on the boundary with altered mask will
meet two obstacles. First, normalized filtering doesn’t use unaltered voxels in computation
of altered ones, so knowledge of boundary intensities would be irrelevant. Second,
variability in MR signal from superficial to deep areas in the head is too high to predict
based on low-frequency data. In areas near brain, for instance, two or more of epidermis,
cranium, CSF and meninges, is crossed when we sample MRI intensities in depth from skin
surface. The intensity vs. traveled distance curve will have several spikes that are not
possible to predict based on closest internal unaltered voxels, and during deconvolution any
small error in prediction will be multiplied many times, suppressing useful signal.
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The presented algorithm requires face region of interest coordinates input. To automatically
generate this ROI, we perform pre-registration to a normal MR T1 post-gadolinium adult
brain atlas. Since the initial atlas-based face ROI is quite generous (it includes about 1/3 of
the frontal head), registration error up to a few millimeters is acceptable for the input ROI.
We found this atlas suitable for both normal adults and tumor patient data that we used. A
different target atlas may be preferable for age-specific or disease-specific population.

The results of testing of three different boundary layer modification approaches suggest that
post-processing tools, such as skull stripping, can be sensitive to even slight changes in
voxel intensity distribution. Closeness measures of original and modified volumes correlate
with accuracy of skull stripping with high significance. Anisotropic filtering of the
“flattened” surface layer resulted in higher volume similarity and accuracy of post-
processing tools compared to two other techniques.

It has been demonstrated that the boundary surface deformation can be used to protect
privacy of research patients (Budin et al. 2008). This work describes a new method for
localized surface filtering that works with MR and CT volumes, and can incorporate
different boundary filtering techniques. Our hope is that this work will provide a helpful tool
for de-identification and illustrate the use of some quantitative performance measures for
volume de-identification tools.

Information Sharing Statement
The MATLAB source code of the algorithm, distributed under the BSD open source license,
can be downloaded from https://bitbucket.org/mmilch01/surfacemask. Instructions on
setting up the environment to use surface masking combined with automatic registration
with FSL software should be sought under the “Face masking” section at http://
nrg.wustl.edu/software/. Examples of MR data processed with the face masking algorithm
can be accessed at https://central.xnat.org/data/projects/surfmask_smpl. The face masking
pipeline that can be integrated with the open source imaging research database toolkit
XNAT (eXtensible Neuroimaging Tool-kit, Marcus et al. 2007b) can be acquired from
https://marketplace.xnat.org/plugins/.

References
Bischoff-Grethe A, Ozyurt IB, Busa E, Quinn BT, Fennema-Notestine C, Clark CP, et al. A technique

for the deidentification of structural brain MR images. Human Brain Mapping. 2007; 28(9):892–
903.10.1002/hbm.20312 [PubMed: 17295313]

Budin F, Zeng D, Ghosh A, Bullitt E. Preventing facial recognition when rendering MR images of the
head in three dimensions. Medical Image Analysis. 2008; 12(3):229–239.10.1016/j.media.
2007.10.008 [PubMed: 18069044]

Chen J, Siddiqui K, Moffitt R, Juluru K, Kim W, Safdar N, Siegel E. Observer success rates for
identification of 3D surface reconstructed facial images and implications for patient privacy and
security. Proceedings of SPIE International Society for Optical Engineering. 2007:65161B-1–
65161B-8.

Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G. Automated multi-modality
image registration based on information theory. Information Processing in Medical Imaging.
1995:263–274.

Fennema-Notestine C, Ozyurt IB, Clark CP, Morris S, Bischoff-Grethe A, Bondi MW, et al.
Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy
images: effects of diagnosis, bias correction, and slice location. Human Brain Mapping. 2006;
27(2):99–113.10.1002/hbm.20161 [PubMed: 15986433]

Jähne, B. Digital Image Processing. Springer; 1997. p. 622Retrieved from http://www.amazon.com/
Digital-Image-Processing-Bernd-J%C3%A4hne/dp/3540240357

Milchenko and Marcus Page 9

Neuroinformatics. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

https://bitbucket.org/mmilch01/surfacemask
http://nrg.wustl.edu/software/
http://nrg.wustl.edu/software/
https://central.xnat.org/data/projects/surfmask_smpl
https://marketplace.xnat.org/plugins/
http://www.amazon.com/Digital-Image-Processing-Bernd-J%C3%A4hne/dp/3540240357
http://www.amazon.com/Digital-Image-Processing-Bernd-J%C3%A4hne/dp/3540240357


Jarudi, IN.; Sinha, P. Relative Contributions of Internal and External Features to Face Recognition.
2003. Retrieved from http://dspace.mit.edu/handle/1721.1/7274

Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images.
Medical image analysis. 2001; 5(2):143–156. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/
11516708. [PubMed: 11516708]

Kaufman, A.; Shimony, E. 3D scan-conversion algorithms for voxel-based graphics. Proceedings of
the 1986 workshop on Interactive 3D graphics - SI3D ’86; New York, New York, USA: ACM
Press; 1987. p. 45-75.

Lilliefors, HB. Journal of the American Statistical Association. Vol. 318. American Statistical
Association; 1967. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance
Unknown; p. 399-402.Retrieved from http://www.jstor.org/stable/2283970

Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open Access Series of
Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and
Demented Older Adults. Journal of Cognitive Neuroscience. 2007a; 19(9):9.

Marcus DS, Olsen TR, Ramaratnam M, Buckner RL. The Extensible Neuroimaging Archive Toolkit:
an informatics platform for managing, exploring, and sharing neuroimaging data.
Neuroinformatics. 2007b; 5(1):11–34. [PubMed: 17426351]

Mazura JC, Juluru K, Chen JJ, Morgan TA, John M, Siegel EL. Facial recognition software success
rates for the identification of 3D surface reconstructed facial images: implications for patient
privacy and security. Journal of Digital Imaging: the Official Journal of the Society for Computer
Applications in Radiology. 201110.1007/s10278-011-9429-3

Prior FW, Brunsden B, Hildebolt C, Nolan TS, Pringle M, Vaishnavi SN, et al. Facial recognition from
volume-rendered magnetic resonance imaging data. IEEE Transactions on Information
Technology in Biomedicine: a Publication of the IEEE Engineering in Medicine and Biology
Society. 2009; 13(1):5–9.10.1109/TITB.2008.2003335 [PubMed: 19129018]

Ridler TW, Calvard S. Picture Thresholding Using an Iterative Selection Method. IEEE Transactions
on Systems, Man, and Cybernetics. 1978; 8(8):630–632.10.1109/TSMC.1978.4310039

Rowland DJ, Garbow JR, Laforest R, Snyder AZ. Registration of [18F]FDG microPET and small-
animal MRI. Nuclear Medicine and Biology. 2005; 32(6):567–572.10.1016/j.nucmedbio.
2005.05.002 [PubMed: 16026703]

Smith SM. Fast robust automated brain extraction. Human Brain Mapping. 2002; 17(3):143–
155.10.1002/hbm.10062 [PubMed: 12391568]

Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by
maximization of mutual information. Medical Image Analysis. 1996; 1(1):35–51.10.1016/
S1361-8415(01)80004-9 [PubMed: 9873920]

Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random
field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging.
2001; 20(1):45–57.10.1109/42.906424 [PubMed: 11293691]

Appendix

Generating the “internal” and “external” Surfaces
Given the original volume V with dimensions {m, n, k}, we can represent an anatomical
surface S as a height field F0(x,y) over plane XY (Fig. 1). Using ray casting with discrete
step w along X and Y axes, values of F are obtained in points

(3)

Denoting for  a vertex with coordinates  belonging to an anatomical surface, a

“natural” triangulation T of S0 composed of triangles  and
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 can be selected (Fig. 10). Using T, it is now possible to describe
the thin layer L that encloses anatomical surface and has roughly constant thickness. For that
purpose, we construct triangulation meshes Tt and Tb of “external” St (“above” S) and

“deep” Sb (“below” S) surfaces. Noting that , an averaged unit normal n̄i, j at
this vertex is computed as

(4)

where , k = 1, …, 4 are outer unit normals of four triangular faces Θ1,…, Θ4 of T that
have a common vertex (Fig. 11).

If we travel a fixed distance h along n̄i, j in “outer” (“upward”) direction, we will arrive at a
vertex of the “external” triangulation Tt sharing the XY parameterization with T, and
similarly for “internal” surface triangulation Tb:

(5)

where

(6)

Thus, Tt and Tb are fully determined by (9–10). Since these surfaces have triangular faces
that are nearly parallel to the corresponding faces of S, the thickness of L is maintained
about 2h.

Boundary Volume Projection
The purpose of this derivation is to describe projection of L onto “thin” rectangular volume
L̂ with dimensions m×n×h (Fig. 3b). Consider the quasi-block Ωi, j formed by two space
quadrilateral faces of St and Sb(Fig. 12). Each Ωi,j can be consistently partitioned into six
tetrahedra, as illustrated on Fig. 3e and f. Since cuboid box is an instance of octahedral
element, establishing one-to-one correspondence between quasi-block Ωi, j and a proper
block Ω̂i, j is equivalent to establishing correspondence between each pair of matching
tetrahedra.

Combining all transformed boxes together constitutes the new “flattened” rectangular
volume L̂ (Fig. 3). Thus, one-to-one correspondence between L and is established via
piecewise linear transform.

Consider the box volume L̂ with dimensions m×n×h (Fig. 3b). Consider the partition of L̂
into proper blocks Ω̂i,j, where indices i and j have the same meaning as in Figs. 10, 11 and
12. Our aim is to establish a transformation f between these partitions such that:

(7)
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Since each Ωi, j has eight vertices, it is possible to partition it into six tetrahedra 
(As illustrated on Fig. 3e), and because there is a one to one correspondence between ωi, j

and ω̂i, j, a matching tetrahedral partition  can be also selected for ω̂i, j (Fig. 3f)

and matching affine transformation  be computed. Since ωi, j provides a

partition of L, combining individual affine transformations  for each pair of  and ωi, j
(Fig. 3c and d) will define a continuous non-degenerate piecewise linear transformation f
between L and L ̂:

(8)

Denoting the 4×4 affine transformation matrix from  to  for  for an arbitrary
point  in ωi, j can be expressed as

(9)

Coefficients of  are calculated from the system of 12 linear equations with 12 unknowns

matching the vertices of Tk and . Once this transform is calculated, intensities in target

tetrahedron  are assigned by discrete 3D scanline filling (Kaufman and Shimony 1987) of

its bounding box, and applying  to each voxel that is determined to be inside of  to
find the matching voxel in Tk. Thus, for transformation from L to L̂, the following discrete
stepping procedure is applied:

a. For each Ωi, j, do steps b–d:

b. for each k, form a system of 12 equations expressing the affine transform for each
member tetrahedron of Ωi, j;

c.
Determine an affine transformation matrix  and its inverse ;

d.
For each voxel in Ω̂i, j, determine the matching tetrahedron  (k can be one of 1,

…,6) and find the corresponding voxel from  using , and set its intensity to
the intensity of its prototype.

The transform back from L̂ to L is performed by scanning Ωi,j instead of Ω̂i,j, and following
steps a–c, switching symbols with hat with symbols without hat.
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Fig. 1.
Triangulation of the anatomical surface over rectangular grid. Base plane with rectangular
coordinates in relation to a head volume (left), rectangular grid on this plane (middle) and
face surface triangulation mesh (right), with arrow showing coordinate mapping
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Fig. 2.
2D face ROI of an MR image with computed surface boundary for a “external” surface, b
anatomical surface and c “deep” surface
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Fig. 3.
a boundary layer partition L, b rectangular box partition L̂, c, d quasi-block Ω and
corresponding regular block Ω̂, e, f tetrahedral partitions of Ω and Ω̂
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Fig. 4.
Effect of various masking methods on an MR slice. a unmodified, b fill coating, c localized
blur, d normalized filtering
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Fig. 5.
Surface renderings of a unmodified MR head acquisition, b modified by fill coating, c
localized blur, d normalized filtering
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Fig. 6.
Histograms of a head T1 acquisition: unmodified original (solid line) and masked
(interrupted lines) with fill coating, localized blur, and normalized filtering
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Fig. 7.
Arrows show the lines along which voxel values are averaged in case of a original, b
“flattened” anatomical surface

Milchenko and Marcus Page 19

Neuroinformatics. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 8.
Intermediate steps of normalized filtering applied to a T1 head acquisition (face ROI is
shown). a volume of interest, b boundary layer (sagittal), c normalized boundary layer
(coronal), d filtered boundary layer (coronal), e inverse transform of the filtered layer to the
original volume (sagittal). Upper row: 3D surface rendering, lower row: a middle 2D slice
from the volume
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Fig. 9.
CT head acquisition modified by normalized filtering. a 2D axial slice with marked face
ROI, b 2D slice from the face ROI, c surface rendering of the volume masked with
normalized filtering, d filtered 2D slice from (b)
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Fig. 10.
Triangulation S of the anatomical surface S0
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Fig. 11.
The average normal in vertex Si,j (left) and construction of upper triangulation Θt (right)
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Fig. 12.
Quasi-block partition element Ωi, j of the anterior layer L
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