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Abstract
Clustering streamline fibers derived from diffusion tensor imaging (DTI) data into functionally
meaningful bundles with group-wise correspondences across individuals and populations has been
a fundamental step for tract-based analysis of white matter integrity and brain connectivity
modeling. Many approaches of fiber clustering reported in the literature so far used geometric and/
or anatomic information derived from structural MRI and/or DTI data only. In this paper, we take
a novel, alternative multimodal approach of combining resting state fMRI (rsfMRI) and DTI data,
and propose to use functional coherence as the criterion to guide the clustering of fibers derived
from DTI tractography. Specifically, the functional coherence between two streamline fibers is
defined as their rsfMRI time series' correlations, and the affinity propagation (AP) algorithm is
used to cluster DTI-derived streamline fibers into bundles. Currently, we use the corpus callosum
(CC) fibers, which are the largest fiber bundle in the brain, as a test-bed for methodology
development and validation. Our experimental results have shown that the proposed rsfMRI-
guided fiber clustering method can achieve functionally homogeneous bundles that are reasonably
consistent across individuals and populations, suggesting the close relationship between structural
connectivity and brain function. The clustered fiber bundles were evaluated and validated via the
benchmark data provided by task-based fMRI, via reproducibility studies, and via comparison
with other methods. Finally, we have applied the proposed framework on a multimodal rsfMRI/
DTI dataset of schizophrenia (SZ) and reproducible results were obtained.
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1. Introduction
Diffusion tensor imaging (DTI), as a powerful tool to image the axonal fibers in vivo
(Basser and Pierpaoli, 1996; Mori et al., 1999; Basser et al., 2000; Westin et al., 2002; Mori
2006), provides rich structural connectivity information that has been demonstrated to be
closely related to brain function (e.g., Behrens et al., 2003; Behrens et al., 2004; Skudlarski
et al., 2008; Honey et al., 2009; Zhang et al., 2011;). In order to infer meaningful and
comparable information from DTI data of different brains, the large number of fiber
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trajectories produced by streamline DTI tractography (Mori et al., 1999; Westin et al., 2002)
need to be grouped into appropriate fiber bundles for tract-based analysis (e.g., Brun et al.,
2004; Gerig et al., 2004; Maddah et al., 2006; O'Donnell et al., 2006; Li et al., 2010b).
Typically, there are two important steps involved in automated white matter fiber clustering.
The first step is to define an appropriate similarity measure between fibers, and the second
step is to apply clustering methods to generate groups of fibers, such as via spectral
clustering (Brun et al., 2004), hierarchical clustering (Gerig et al., 2004; Corouge et al.,
2004), expectation-maximization (Maddah et al., 2006), and normalized cut (Brun et al.,
2004; O'Donnell et al., 2006). Many previous studies have chosen shapes and/or end point
positions (e.g., Maddah et al., 2006; Brun et al., 2004; Corouge et al., 2004; Zhang et al.,
2010; Li et al., 2010b) of fibers as the features by which to measure fiber similarity. For
example, Maddah et al., (2006) represented fibers as 3D quintic B-splines, Brun et al.,
(2004) tried to capture the above-mentioned three features using a 9-D descriptor, and
Corouge et al., (2004) and Gerig et al., (2004) proposed a variant of Hausdorff distance that
contains position and shape information. An alternative method for fiber clustering is the
atlas-based approach. For example, Ge et al., (2010) represented fiber by a sequence of atlas
labels and clustered fibers using the symbolic sequence analysis method in bioinformatics.
Xia et al., (2005) grouped fibers as part of the same bundle if the end points of individual
fibers fell within a common region of a gray matter atlas. This idea was further explored in
Li et al., 2010b via a hybrid procedure of an atlas-based whole-brain parcellation and shape
based fiber clustering. Maddah et al., (2005) constructed an atlas by averaging statistical
fiber bundle models, and clustered the fiber tracts based on the atlas. Wakana et al., (2007)
used a prior knowledge about fiber bundles and defined one or more region of interest
(ROIs) to identify special fiber bundles. These methods have their own advantages and have
been successfully used in different applications.

However, there are challenges associated with existing fiber clustering methods. First, in
some fiber bundles such as the corpus callosum (CC) (Paul et al., 2007), fiber shapes could
be very similar in certain regions and it could be difficult to determine where the boundaries
are during fiber clustering based only on fiber shape patterns. Fig. 1(a) illustrates an
example of this difficulty. For the fiber end point based clustering method, the whole
process is dependent on the annotation of fiber ends, which heavily relies on cortical
parcellation and recognition results (Li et al., 2010b). Since cortical parcellation and
recognition is still an open problem in the field (Liu et al., 2011), fiber clustering based on
fiber end points could be challenging, as illustrated in Fig. 1(b). Second, since many existing
methods were based on anatomic and/or geometric information, the functional interpretation
of the fiber clustering results is not immediately clear. For instance, boundaries generated in
the shape-based fiber clustering procedure are not necessarily corresponding to functionally
homogeneous bundles (Ge et al., 2011). The above two challenges motivated us to explore
novel, alternative function-guided methodologies to perform fiber clustering.

Recently, resting state fMRI (rsfMRI) has been demonstrated to be an effective
neuroimaging modality by which to explore the functional networks in the human brain,
because similar low-frequency oscillations in rsfMRI time series between spatially distinct
brain regions are indicative of correlated functional activity patterns in the brain (e.g., Fox
and Raichle, 2007; Cohen et al., 2008; Heuvel et al., 2008; Li et al., 2010). In addition, a
variety of recent studies demonstrated that structural connectivity derived from DTI data is
closely correlated with the functional connectivity derived from rsfMRI data (e.g., Honey et
al., 2009; Skudlarski et al., 2008; Li et al., 2010; Zhang et al., 2011). Inspired by these
studies, we are motivated to apply the criterion of functional coherence to cluster white
matter fibers based on the premise that the clustered fibers within a bundle should have
functional homogeneity. As far as we know, this work is among the earliest attempts to
combine DTI-based fiber clustering with resting state fMRI data. Our general hypothesis is
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that under the guidance of rsfMRI data, the clustered fiber bundles will possess both
structural and functional similarities across different brains. To test this hypothesis, we
represent a white matter fiber by two rsfMRI time series extracted from the two gray matter
(GM) voxels that the fiber's two end points connect, and the functional coherence between
white matter fibers is measured by the correlation between their rsfMRI time series (Li et al.,
2010). Then, the data-driven affinity propagation (AP) algorithm (Frey and Dueck, 2007) is
applied to cluster fibers into bundle tracts. Instead of working on the whole-brain fibers, we
currently use the corpus callosum (CC) fibers, which are the largest fiber bundle in the brain
(Paul et al., 2007), as a test-bed for algorithm development and validation. Our experimental
results using multimodal rsfMRI and DTI datasets show that the proposed rsfMRI-guided
fiber clustering method can achieve meaningful fiber bundles. Notably, an early short
version of this methodology was presented in the MICCAI 2011 conference (Ge et al.,
2011).

2. Materials and Methods
2.1. Overview

As summarized in Fig.2, the algorithmic pipeline includes the following steps. First, we pre-
processed the raw DTI data, and then performed brain tissue segmentation (Liu et al., 2006;
Liu et al., 2007) and fiber tracking (via MEDINRIA) based on DTI data. At current stage,
the well-established streamline tractography approach (Mori et al., 1999; Westin et al.,
2002) was used in this paper to develop and validate the rsfMRI-guided fiber clustering
methodology. Then, the tracked fiber trajectories were projected to the cortical surface via a
similar method in Li et al., 2010 to facilitate the extraction of rsfMRI signals on the gray
matter volume, which will be detailed in section 2.3.1. Based on the brain tissue
segmentation map, we reconstructed white matter surface via validated in-house toolkits
(Liu et al., 2004; Liu et al., 2008; Nie et al., 2011). Also, we registered the rsfMRI images to
the DTI space using FSL FLIRT. Afterwards, we clustered fibers into bundles based on the
fibers' function coherences via the affinity propagation algorithm (Frey and Dueck, 2007).
We displayed clustered fiber bundles on reconstructed cortical surfaces and semi-
automatically identified 16 consistent fiber bundles from a group of subjects for evaluation
and validation. The reproducibility of the proposed method was evaluated by repeated scans
of rsfMRI datasets, and its performance was compared with other shape based methods in
section 3.3. In particular, part of the clustered bundles was validated via the benchmark data
provided by task-based fMRI (Faraco, et al., 2011). Finally, we compare the DTI-derived
measurements of fractional anisotropy (FA) and mean diffusivity (MD) for the clustered
fiber bundles between schizophrenia (SZ) patients (Zhang et al., 2011b) and matched normal
controls. Experimental results demonstrate that SZ patients have decreased MD and
increased FA values in some clustered bundles in the CC.

2.2. Multimodal data and pre-processing
Seven volunteers were scanned using a 3T GE Signa MRI system at the Bioimaging
Research Center (BIRC) of The University of Georgia. We acquired the rsfMRI data with
dimensionality 128*128*60*100, space resolution 2mm*2mm*2mm, TR=5s, TE=25 ms,
and flip angle 90 degrees (Li et al., 2010). DTI data was acquired using the same spatial
resolution as the rsfMRI data; parameters were TR=15.5 s and TE=89.5 ms, with 30 DWI
gradient directions and 3 B0 volumes acquired. For three out of the seven subjects, the
working memory OSPAN tasks (Faraco et al., 2011) was used for fMRI data acquisition
with the parameters of 64×64 matrix, 4 mm slice thickness, 220mm2 FOV, 30 slices,
TR=1.5 s, TE=25 ms, ASSET=2. Pre-processing of the rsfMRI data included brain skull
removal, motion correction, spatial smoothing, temporal pre-whitening, slice time
correction, global drift removal, and band pass filtering (0.01Hz∼0.1Hz) (Li et al., 2010).

Ge et al. Page 3

Neuroinformatics. Author manuscript; available in PMC 2014 January 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For the DTI data, pre-processing included brain skull removal, motion correction, and eddy
current correction (Liu et al., 2006; Liu et al., 2007). After the pre-processing, the whole
brain's fiber tracking was performed using MEDINRIA (FA threshold: 0.2; minimum fiber
length: 20), and the corpus callosum fibers were selected by manually defined ROIs. Based
on pre-processed DTI data, brain tissue segmentation was performed using the multi-
channel fusion method akin to that in Liu et al., 2007, and then the cortical surface was
reconstructed via the approach in Liu et al., 2008. DTI space was used as the standard space
from which to generate the tissue segmentation and from which to exhibit the functional
coherent fiber bundles on the cortical surface. Also, DTI and fMRI images were registered
via FSL FLIRT. Since both rsfMRI and DTI images use both EPI (echo planar imaging)
sequences, their distortions tend to be similar (Li et al., 2010). Importantly, our prior studies
have demonstrated that the misalignment between DTI and fMRI images is much less than
that between T1-weighted MRI and fMRI images (Li et al., 2010).

2.3. Fiber clustering based on functional coherence
In general, we compute the functional correlation of the GM voxels' rsfMRI signals located
on the fiber ends as the similarity between any pair of fibers, and then apply the affinity
propagation algorithm (Frey and Dueck, 2007) to cluster fibers into bundles.

2.3.1. Extraction of rsfMRI signals from a fiber's two ends
It should be noted that the blood supply to the white matter is significantly lower than that of
the cerebral cortex (less than one fourth) (Mezer, et al., 2009), and the blood-oxygen-level
dependence (BOLD) contribution of the white matter is relatively low. Hence, the
investigation of gray matter (GM) rsfMRI signals is more reasonable. Therefore, before
extracting rsfMRI signals from GM voxels for a fiber's two ends, we project some fibers into
the gray matter cortex since the DTI-derived fiber trajectories are not necessarily located on
the cortex due to two reasons. 1) DTI fiber tractography using the streamline approach has
difficulty in tracking inside GM since the FA (fractional anisotropy) values around the
boundaries of gray matter and white matter are relatively low. As a result, there are some
fibers that cannot reach the GM. 2) There is discrepancy in brain tissue segmentation based
on DTI data and the DTI tractography (Liu et al., 2006; Liu et al., 2007). In this case, the
fiber could be either outside the cortex if the GM is over-segmented, or inside the cortex if
the GM is under-segmented.

In order to make use of the fiber connection information on the cortex, we projected the
fibers onto the cortical surface guided by the tissue segmentation map. There are four types
of fiber projections here. 1) If the end point of a fiber already lies on a GM voxel in the brain
tissue map, no search is conducted, e.g., fiber #1 shown in Fig. 3(a); 2) If the end point of a
fiber lies inside the cortex, e.g., the fiber #2 shown in Fig. 3(a), we search forward along the
tangent direction until reaching the gray matter. 3) Otherwise, e.g., the fiber #3 shown in
Fig. 3(a), we search backward along the tangent direction until reaching the gray matter. The
search process stops either when the fiber arrives at a GM voxel or it exceeds a search
threshold. 4) In very rare cases when a fiber cannot reach the surface, e.g., the fiber #4
shown in Fig. 3(a), we treat this fiber as an outlier and remove it from the data. Fig. 3(b)
shows the positions that the fibers arrive at after the projection. The search was conducted
iteratively until at least one GM voxel can be found in the 1-ring surface vertex
neighborhood of the current seed point, or the number of iteration exceeds a given threshold.
Notably, we experimentally chose the threshold value for the iteration number. In general,
the iteration number for those #2 or #3 fibers that can be projected to the GM voxels is
stable within a reasonably range of the threshold value (e.g., from 3 to 9 in this work).
Furthermore, the projection step can guarantee that almost all #3 and #2 fibers can arrive at
GM voxels after this range of iterations. When multiple GM voxels exist, the closest one is
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used as the projected point. Finally, for each projected fiber, we extract the rsfMRI signals
for its two ends. Fig. 3(c) shows the histogram of the four types of fiber, from which we can
see that type 1 accounts for about 40% of fibers (these fibers were preserved), type 2 and
type 3 account for about 50% (these were extended or pruned), and the remaining 10% of
fibers were eliminated.

2.3.2. Measurement of functional coherence among fibers
As illustrated in Figs. 4(a)-Figs. 4(c), given any pair of fibers with four end points located in
the gray matter, the functional coherence between these two fibers is defined as follows:

(1)

where

Here, vi indexes fMRI signal of the end points of two fibers, the function PsCor is the
Pearson correlation coefficient of the fiber's two end points' rsfMRI signals. If the two fibers
are close in space, the correlations C13 and C24 are typically high, but correlations C23 and
C14 could be low. In fact we do not know which is the fiber's start point or end point, so the
Equation (1) will evolve into the following four cases:

Thus, for the first situation, the two fibers will be clustered into the same bundle. For the 2nd

and 3rd situations, the two fibers will be probably clustered into the same bundle. For the 4th

situation, the two fibers will not be clustered into the same bundle. Our premise here is that
the fibers belonging to the same tract should have higher functional coherence, and those
belonging to different tracts should have lower coherence. The similarity matrix is ordered
in the fiber ID sequence which is color-coded in Fig. 4(d). Then, the functional similarity
matrix can be computed, as shown in Fig. 4(e). The color bar for the similarity is on the
right-most side. We can visually inspect some potential clusters from the visualization in
Fig. 4(e). Afterwards, the affinity propagation algorithm (Frey and Dueck, 2007) is applied
on this matrix to automatically cluster the fibers into functionally coherent bundles.

It should be noted that the criterion of functional coherence derived from rsfMRI data offers
a unique capability to cluster functionally coherent fibers into the same bundle and
differentiate non-coherent fibers into different bundles. As an example, Fig. 5(a) shows three
fibers that are functionally coherent, and thus they should be clustered into one bundle.
However, if we use geometric or shape criteria (Maddah et al., 2006; Gerig et al., 2004;
Zhang et al., 2010), e.g., the Euclidean distances between neighboring fibers, the blue fiber
in Fig. 5(a) (highlighted by a red arrow) is likely to be separated from the bundle composed
of the red and green ones. Another example is shown in Fig. 5(b), in which the blue fiber
(highlighted by a red arrow) has low functional coherence with the green and red ones and
thus the blue one can be differentiated from other two fibers via rsfMRI data. However,
geometry and/or shape based fiber clustering methods are likely to have difficulties in
differentiating the blue fiber from other two functionally different fibers. Hence, from these
two examples, we can see that the criterion of functional coherence is a powerful approach
for fiber clustering. It should also be noted that this paper focuses on the CC fibers (Paul et
al., 2007), which typically share similar shape patterns within a neighborhood, and thus only
functional coherence derived from rsfMRI data was used for the definition of fiber
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similarity. In the future, if other fibers with more complex and variable shape and
connectivity patterns such as cortico-cortical and cortical-subcortical pathways are
considered, additional geometric or anatomic constraints (Li, et al., 2010b) should be
considered in the definition of fiber similarities.

2.3.3. Fiber clustering via the affinity propagation algorithm
The affinity propagation (AP) (Frey and Dueck, 2007) algorithm is an effective algorithm
that takes as input measures of similarity between pairs of data points and simultaneously
considers all data points as potential exemplars and passes soft information around until a
high-quality set of exemplars and corresponding clusters gradually emerges. In the affinity
propagation algorithm, each cluster is represented by a data point called a cluster center, or
an exemplar, and the method searches for cluster so as to maximize a goal function called
net similarity. The inputs are the pair-wise similarities and data point preferences. In this
paper, the inputs are the pair-wise fibers' functional coherences. Specifically, the similarity
s(i,k) indicates how well the data point k is suited to be the exemplar for data point i. The
preference s(i,i) is the a priori suitability of point i to serve as an exemplar. Preferences can
be set to a global (shared) value, or customized for particular data points. High values of the
preferences will cause affinity propagation to find many exemplars (clusters), while low
values will lead to a small number of exemplars (clusters). The number of identified
exemplars is affected by both the values of the input preference and the messaging-passing
procedure. In this paper, we applied the AP clustering method on the functional similarity
matrix of all fibers in the corpus callosum, and achieved the clustered fiber bundles. In
particular, each fiber cluster is represented by the fiber exemplar discovered during the AP
clustering procedure.

3. Results
3.1. Identification of functionally coherent fiber bundles

Based on the dataset in Section 2.2, the fibers of corpus callosum (CC) were clustered into
around 30 bundles for 7 subjects separately, as shown in the 7 rows in Fig. 6(a). For the sake
of visual differentiation, each fiber bundle was represented by the fiber exemplar obtained
during the affinity propagation clustering procedure, as shown in Fig. 6(b). In order to
identify the corresponding fiber bundles in different subjects, first, we registered all the
other subjects' B0 images to subject #1 (selected as a template) via the FSL FLIRT.
Accordingly, a deformation matrix was generated by which all fiber exemplars were also
warped. Then, we computed the Hausdorff distances (Li et al., 2010b) between the
representative exemplars across subjects and selected those exemplars that are closest to the
representative exemplars in other subjects. Thus, out of 30 clustered exemplars, we visually
confirmed 16 most consistent representative exemplar fibers across different subjects, as
shown in Fig. 6(c). Each corresponding fiber exemplar in Fig. 6(c) has the same color in
different brains. It is evident that the distributions of these 16 fiber exemplars are reasonably
consistent. Quantitatively, we provided a Hausdorff distance table (Table 1) of the 16 fiber
exemplars, which shows the Hausdorff distances between pairs of corresponding fiber
exemplars in the subject #1 and those in other subjects. It is evident that the Hausdorff
distances are quite low, suggesting the good correspondences of clustered fiber bundles
across seven different brains. As another example, Fig. 7 visualizes 16 corresponding
bundles from 3 randomly selected subjects. Four fiber bundles are shown in each figure so
that we can more easily check the correspondences between fiber bundles in different brains.
Each row in Fig. 7 shows that the clustered bundles are reasonably consistent. Therefore, the
results in this section have demonstrated that the rsfMRI-guided fiber clustering procedure
can achieve consistent CC fiber bundles with functional coherences, suggesting the close
relationship between consistent structural connectivity and coherent brain function (Zhang,
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et al., 2011). This principle also lays down the neuroscience basis of the proposed rsfMRI-
guided fiber clustering methodology.

3.2. Reproducibility
To test the reproducibility of the proposed method, we performed the same clustering
process on two repeated scans of rsfMRI data for the same group of subjects, and the
clustering results for 3 subjects with repeated rsfMRI scans are shown in Fig. 8. Fig. 8(a)
shows all the exemplars, and Fig. 8(b) shows the identified 16 exemplars. For the sake of
comparison, the 16 exemplars from the previous clustering result are also shown in Fig. 8(c),
which correspond to the #1, #3, #5 rows of Fig. 6(c). By visual examination, we can clearly
see that the two clustering results are very similar. Furthermore, the Hausdorff distances
between the corresponding fiber exemplars in Fig. 8(b) and Fig. 8(c) are given in Table 2.
Some “0” values mean that the two clustering procedures identified exactly the same
exemplars. Other corresponding fiber exemplars are also at close positions based on the
Hausdorff distances. Therefore, the results in Fig. 8 and Table 2 demonstrate that the
proposed rsfMRI-guided fiber clustering procedure is reasonably reproducible across
repeated rsfMRI scans and across subjects, suggesting the robustness of the proposed
method. This result also confirms that rsfMRI-derived functional connectivity is a reliable
and reproducible measurement of the functional brain architecture, which has been reported
in a variety of publications (e.g., Fox and Raichle, 2007; Cohen et al., 2008; Heuvel et al.,
2008; Li et al., 2010).

3.3. Comparison with shape based fiber clustering method
As further evaluations, we compared our method with shape based fiber clustering method.
We selected the mean closest distance as the feature, which is a modification of the
Hausdorff distance and contains both position and shape information (Corouge et al., 2004;
Gerig et al., 2004). The clustering is based on the affinity propagation algorithm. An
example is shown in Fig. 9. Fig. 9(a) is the same as the first row in Fig. 6(c), and we selected
four fiber exemplars to display their corresponding fiber bundles, as shown in Fig. 9(b).
Figs. 9(c) and Figs. 9(d) show the clustered fibers by adopting the mean closest distance as
the clustering feature, and there are 7 clustered bundles altogether as shown in Fig. 9(c). For
the purpose of comparison, in Fig. 9(d), we visualized those fibers in Fig. 9(b) which
overlap with the two clusters of the 7 fiber bundles in Fig. 9(c). Those fibers circled by
yellow dotted curves were clustered into 3 fibers bundles by our rsfMRI-guided fiber
clustering method, but cannot be differentiated by the shape based method although they are
different in terms of functional coherence. This result demonstrated the potential benefit of
applying rsfMRI data to guide the clustering of functionally inhomogeneous fibers but with
similar geometric shapes or close anatomical trajectories.

3.4. Validation by task-based fMRI data
In addition to the qualitative and quantitate evaluations of the clustered CC fiber bundles in
Section 3.1-3.3, we used a working memory task-based fMRI dataset (Faraco et al., 2011) as
a benchmark to examine the functional correspondences of the clustered fiber bundles.
Specifically, the working memory task-based fMRI data provided 16 consistently activated
brain regions, as shown by the white boxes in Fig. 10. These task-based fMRI-derived
regions of interests (ROIs) provide the benchmark data for comparison of functional
correspondences of fiber bundles. It is interesting that one fiber bundle (green one in Fig.
10(a)) coincidently falls into the neighborhoods of two corresponding working memory
ROIs of left and right paracingulate gyri (highlighted by red arrows) consistently in the
testing subjects. The Euclidean distances between the ROI's centers and fiber exemplars are
3 mm, 0.1 mm, 3.9 mm, and 2.8 mm respectively, as shown in Fig. 10(a). These close
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vicinities indicate that the paracingulate gyri are consistently connected by the green fiber
bundle across individuals, suggesting that the proposed rsfMRI-guided fiber clustering
method indeed grouped this example of functionally coherent fibers (represented by the
exemplars) into the same bundle. For further visualization examination, Fig. 10(b) shows
two views of the fiber bundles corresponding to the two exemplars in green in Fig. 10(a).
This result further confirmed the close relationship between structural connectivity and brain
function (Behrens et al., 2003; Behrens et al., 2004; Skudlarski et al., 2008; Honey et al.,
2009; Zhang et al., 2011; Zhu et al., 2011), which is the underlying neuroscience principle
of the proposed rsfMRI-guided fiber clustering approach.

3.5. Application on schizophrenia dataset
We applied the proposed method to perform tract-based fiber analysis on a multimodal DTI/
rsfMRI dataset of schizophrenia (SZ) (Zhang et al., 2011b). 8 SZ patients and 7 healthy
control subjects were downloaded from (http://hdl.handle.net/1926/1687) and used for this
study. Briefly, DTI scans were acquired on a 3 Tesla GE system using an 8 Channel coil and
Array Spatial Sensitivity Encoding Techniques (51 directions with b=900s/mm2, 8 baseline
scans with b=0, TR=17000 ms, TE=78 ms, FOV=24 cm, 144×144 matrix, 1.7 mm slice
thickness to cover the whole brain, voxel size 1.67×1.67×1.7 mm3). Resting state fMRI
sequences were acquired with an additional EPI BOLD sequence using 8 Channel coil. It
was 10 minutes long, and contains 200 repetitions of a high resolution EPI scan (96×96 in
plane, 3mm thickness, TR=3000 ms, TE=30 ms, 39 axial slices, ASSETT). Subjects closed
their eyes and rested during rsfMRI scans. More details of preprocessing are referred to
Zhang et al., 2011b.

As the largest commissural fiber of the human brain, the corpus callosum (CC) plays a
central role in the misconnection models of SZ (e.g., Downhill et al., 2000; Innocenti et al.,
2003). A variety of brain imaging studies of SZ (e.g., Kanaan et al., 2005; Kubicki et al.,
2007; Kyriakopoulos et al., 2008) focused on the exploration of differences in volume,
shape and fiber integrity, but results reported in the literature are inconsistent (Rotarska-
Jagiela et al., 2008). By using the proposed method, we clustered the CC fibers into about 30
functionally coherent fiber bundles and the 16 most consistent fiber bundles and exemplars
were also selected, as shown in Fig. 11. Each corresponding fiber bundle has the same color
in different brains, as shown in SZ ( Fig. 11(a)) and control ( Fig. 11(b)) groups. It is
interesting that these 16 most consistent fiber bundles and exemplars in both SZ and controls
are the same as those in our results in Figs. 6-8. This result suggests that our rsfMRI-guided
fiber clustering approach can reliably and consistently identify 16 corresponding CC fiber
bundles across individuals and populations via different multimodal DTI and rsfMRI
datasets.

4. Discussion and Conclusion
To achieve the goal of clustering functionally-coherent fiber bundles, this paper presents a
novel, alternative methodology of using rsfMRI data to guide fiber clustering. The
underlying neuroscience basis is that axonal fibers within a bundle should have functional
coherence, and our results have shown that functional coherence is a meaningful criterion
for fiber clustering by evaluating its reproducibility and comparing with other methods. The
reproducible and consistent fiber clustering results in repeated rsfMRI scans and in two
separate multimodal DTI/rsfMRI datasets demonstrated the robustness and effectiveness of
the methodology. In particular, part of the clustered bundles was validated via task-based
fMRI benchmark data, and our results showed that rsfMRI-guided fiber clustering generated
bundles that connect corresponding functional areas in different brains. Furthermore, we
applied the method for CC tract-based analysis of schizophrenia, and the experimental result
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demonstrated the increase of FA and the decrease of MD in CC fiber bundles of
schizophrenic subjects, in comparison with healthy controls.

The results reported in this paper further demonstrated that integration of multimodal DTI
and fMRI data could potentially significantly enhance human brain mapping (Zhu et al.,
2011; Liu et al., 2011), since the complementary DTI and fMRI data can offer rich structural
and functional information about the brain. For instance, functional coherence can be used to
constrain the structural connectivity consistency as shown in this paper, or structural
connectivity coherence can be used to regulate the localization of functional regions (Zhu et
al., 2011; Zhang et al., 2011). However, it should be noted that functionally connected
regions do not necessarily always exhibit direct fiber connections. At the current stage, our
method is applied on those existing fiber connections, which are grouped into clusters based
on functional coherence. In the future, we plan to investigate the intrinsic relationships
between structural and functional connections so that they can be better utilized as
meaningful constraints in either fiber clustering or functional network inference
applications.

The computational pipeline presented in Section 2 can be improved or enhanced in several
directions. First, due to the limitation of the DTI's resolution and the tensor model, we need
the step of fiber projection before extracting the GM voxel's signal on the fiber's endpoint. In
the future, advancements of neuroimaging techniques such as the High Angular Resolution
Diffusion Imaging (HARDI) (Tuch et al., 2002) and ultra-high field MRI (Kerchner, 2011),
which has higher quality and can effectively deal with crossing white matter fibers, can
further enhance the rsfMRI-guided fiber clustering procedure. Second, currently, only CC
fibers were used for algorithm development and evaluation purposes in this paper. In the
future, we plan to apply the proposed methodology to other major fiber bundles with more
complex shape and connectivity patterns such as cortico-cortical and cortical-subcortical
pathways so that large-scale rsfMRI-guided fiber clustering can be performed. Third, in
current rsfMRI-guided fiber clustering procedure, only resting state functional coherence
was used as the similarity measurement. This worked well for fibers bundles like CC, but it
is not always applicable to the whole brain because two functionally similar fibers may have
a large distance. In the future, we will investigate other information such as structural
connectivity information and anatomical information to possibly constrain the clustering of
those more complex and variable fibers. Fourth, the consistent fiber bundles across subjects
were difficult to identify. Thus, at the current stage, we achieved this by a Hausdorff
distance based semi-automatic technique. In the future, we will examine if it is possible to
learn predictive models of fiber bundles from existing clustered and validated clustering
results, e.g., via the approach in our recent work in Zhang et al., 2011. If successful, these
learned prior models of consistent fiber bundles could be used as additional constraints
during the fiber clustering of new subjects with DTI/rsfMRI data.

In addition, the proposed rsfMRI-guided fiber clustering approach will be further evaluated
and validated via larger scale datasets. For instance, more task-based fMRI datasets of other
functional networks will be used to validate other clustered fiber bundles, in addition to the
working memory network used in this paper. The 16 consistent CC fiber bundles obtained in
Section 3 will be further replicated in larger scale multimodal DTI/rsfMRI datasets. Once
these fiber bundles are confirmed to exhibit both consistent structural and functional
properties, they can be used as a common and effective representation of the human brain
architecture. Finally, we plan to apply the proposed methods for tract-based analysis of DTI/
rsfMRI datasets of other brain diseases such as Alzheimer's disease and Autism. We
envision that the proposed rsfMRI-guided fiber clustering approach could be a general
methodology for tract-based fiber analysis in many brain conditions in the future.
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Fig.1.
Illustration of difficulties in fiber shape and end point based clustering methods. (a)
Ambiguities in generating boundaries in shape based fiber clustering. (b) Uncertainty in
fiber end point based clustering due to the reliance on cortical parcellation and recognition.
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Fig.2.
The flowchart of our computational framework. It is noted that the DTI image space is used
as the data analysis space.
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Fig.3.
Illustration of fiber projection. Gray matter and white matter voxels are represented by gray
and white color boxes respectively. Fibers are represented by yellow curves. (a) The four
situations before fiber projection; (b) The results of fiber projections for three situations. (c)
The histogram of the four types of fibers in one randomly selected brain.
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Fig.4.
The calculation of fibers' functional coherence. (a) Two fibers overlaid on the reconstructed
cortical surface (gray mesh); (b) The zoomed-in view of the yellow rectangle in (a); (c) The
rsfMRI signals of the four end points. Their correlations are measured by Eq. (1). (d) The
color-coded fiber ID sequence; (e) The functional similarity matrix with a color bar of the
similarity values on the right.
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Fig.5.
(a) An example showing that functional coherence can cluster fibers of different shapes or
geometries into the same bundle. (b) An example showing functional difference can
differentiate neighboring fibers of similar shapes into different bundles.
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Fig.6.
The clustered fiber bundles for 7 subjects in 7 rows. (a) The fiber clusters with randomly set
colors overlaid on the cortical surface; (b) The fiber exemplars of all clusters overlaid on the
cortical surface. (c) The 16 most consistent fiber exemplars overlaid on the cortical surface.
Each corresponding fiber exemplar has the same color in 7 different brains.
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Fig.7.
Visualization of 16 corresponding fiber bundles from 3 randomly chosen subjects (three
columns). They are labeled by the same colors as those in Fig. 6(c). Only 4 fiber bundles are
shown in each figure for visual examination convenience. (a) 16 clustered fiber bundles of
subject 1. (b) 16 clustered fiber bundles of Subject 2. (c) 16 clustered fiber bundles of
Subject 3.
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Fig.8.
The fiber clustering result from the repeated scans of rsfMRI data. (a) All exemplars. (b) 16
consistent exemplars. (c). The 16 consistent exemplars clustered in Fig. 6(c). The three rows
correspond to #1, #3, and #5 rows of Fig. 6(c).
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Fig.9.
The clustered fiber bundles by the two methods. (a) The 16 fiber exemplars overlaid on the
cortical surface by our rsfMRI-guided fiber clustering method. (b) The 4 fiber bundles
corresponding to the 4 selected exemplars in (a). (c) The 7 clustered fiber bundles overlaid
on the cortical surface by shape based method. (d) The 2 clustered fiber bundles (that are
exactly the fibers in (b)) by shape based method.

Ge et al. Page 21

Neuroinformatics. Author manuscript; available in PMC 2014 January 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig.10.
(a) Joint visualization of 16 activated working memory ROIs (represented by green boxes)
and clustered fiber bundles (represented by exemplars) for two subjects. The left and right
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paracingulate gyri are connected by the corresponding blue fiber bundles. Each column
shows two views of one subject. Two subjects are shown in two columns here. (b) The
visualizations of fiber bundles corresponding to the two exemplars in green in (a).
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Fig.11.
The clustered fiber bundles and exemplars for randomly selected subjects including 3 SZ
subjects and 3 controls. a) The 16 most consistent fiber bundles and exemplars of 3 SZ
brains. (b) The 16 most consistent fiber bundles and exemplars of 3 controls overlaid on the
reconstructed surfaces.
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Table 2

Hausdorff distances (mm) between exemplars obtained in two repeated scans. 1: left-most fiber exemplar in
Fig. 8(b); 16: right-most fiber exemplar in Fig. 8(b).

Sbj1 Sbj3 Sbj5

1 0 0 7.4431

2 8.3516 0 6.9372

3 0 0.8739 0

4 0 0 10.9646

5 0 0 4.7673

6 1.9707 4.5989 0

7 0 8.3514 0

8 4.7973 1.8128 5.2194

9 2.3984 0 4.1409

10 4.5953 2.2751 0

11 5.6965 5.9833 3.6435

12 0 0 2.9992

13 7.7092 7.1107 3.0717

14 0 3.3693 4.2029

15 4.2637 3.9734 0

16 1.4934 4.7648 2.5956
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