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Abstract Neurophysiological data from a range of typo-
logically diverse languages provide evidence for a cross-
linguistically valid, actor-based strategy of understanding
sentence-level meaning. This strategy seeks to identify the
participant primarily responsible for the state of affairs
(the actor) as quickly and unambiguously as possible, thus
resulting in competition for the actor role when there
are multiple candidates. Due to its applicability across
languages with vastly different characteristics, we have
proposed that the actor strategy may derive from more
basic cognitive or neurobiological organizational princi-
ples, though it is also shaped by distributional properties of
the linguistic input (e.g. the morphosyntactic coding strate-
gies for actors in a given language). Here, we describe
an initial computational model of the actor strategy and
how it interacts with language-specific properties. Specif-
ically, we contrast two distance metrics derived from the
output of the computational model (one weighted and one
unweighted) as potential measures of the degree of com-
petition for actorhood by testing how well they predict
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modulations of electrophysiological activity engendered by
language processing. To this end, we present an EEG study
on word order processing in German and use linear mixed-
effects models to assess the effect of the various distance
metrics. Our results show that a weighted metric, which
takes into account the weighting of an actor-identifying
feature in the language under consideration outperforms
an unweighted distance measure. We conclude that actor
competition effects cannot be reduced to feature overlap
between multiple sentence participants and thereby to the
notion of similarity-based interference, which is prominent
in current memory-based models of language processing.
Finally, we argue that, in addition to illuminating the under-
lying neurocognitive mechanisms of actor competition, the
present model can form the basis for a more comprehen-
sive, neurobiologically plausible computational model of
constructing sentence-level meaning.

Keywords Computational model - Language processing -
Emergence - Ambiguity resolution - Actor identification

Introduction

The roughly 6000 languages of the world present a diverse
set of grammars and input forms for the single processing
mechanism of the human brain. Fundamental differences in
word order, different means of encoding different parts of
morphosyntax and broad variation in dropped / elided ele-
ments are just some of the variation with which the brain
must cope; the complexity of a language is matched and
exceeded by the complexity of language diversity. In light
of the extreme variance between the languages of the world
and their respective grammars, less syntax-bound language
processing strategies have been proposed.

@ Springer


mailto:phillip.alday@staff.uni-marburg.de
mailto:schlesew@uni-mainz.de

144

Neuroinform (2014) 12:143-179

Neurophysiological data from a range of typologically
diverse languages provides evidence for a comprehension
and processing heuristic based on the notion of “actor”,
the participant primarily responsible for the state of affairs
(Bornkessel-Schlesewsky and Schlesewsky 2009). The role
of actor, while correlating strongly with certain parts of mor-
phosyntax in some languages, is a language independent
construct and is orthogonal to traditional notions of gram-
mar (Bornkessel-Schlesewsky and Schlesewsky 2013a).
Here, we present a computational implementation of the
heuristic as well as a quantitative comparison with EEG data
from an experiment primarily manipulating word order and
its related ambiguities. We show that the actor heuristic is
not just an interesting, qualitative theoretical construct, but
rather a quantifiable and testable model. Indeed, we show
that the quantification of the actor heuristic is a reliable,
effective predictor of ERP data.

Neurophysiological Model and Language Processing
Strategy

Before turning to the computational model that is the focus
of the present paper, we will briefly describe the empirical
neurocognitive model on which it is based. This discus-
sion will serve primarily to introduce the critical notion of
competition for the actor role, which will be central to the
computational model to be introduced later. Having intro-
duced actor competition, we will briefly summarize the
empirical evidence in support of it.

The Extended Argument Dependency Model (eADM)
and Actor-Centered Comprehension

The extended Argument Dependency Model ((e)ADM;
Bornkessel 2002; Schlesewsky and Bornkessel 2004;
Bornkessel ~and  Schlesewsky 2006;  Bornkessel-
Schlesewsky and Schlesewsky 2008, 2009, 2013b) is a
neurobiologically motivated, neurocognitive model of
language comprehension with an explicit focus on cross-
linguistic diversity. In other words, the model aims to
account for language processing in typologically diverse
languages and to explain which aspects of the processing
architecture are universal and which are language-specific.

The eADM posits that language processing is orga-
nized in a cascaded, hierarchical fashion and proceeds
along two major functional-neuroanatomical streams in the
brain. One of these, the postero-dorsal stream, engages in
time-dependent computations, while the other, the antero-
ventral stream, engages in time-independent computations
(Bornkessel-Schlesewsky and Schlesewsky 2013b). Time-
dependent computation refers to the notion that, in the
combination of two elements, A and B, the order in which
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they are encountered is crucial for the way in which they
are combined. For example, in German, the order in which
two noun phrases are encountered in an NP-NP-V sequence
changes the likelihood for one being interpreted as the
actor argument as opposed to the other. In time-independent
computation, by contrast, the order of encountering two ele-
ments A and B will not influence the way in which they
are combined. For example, a plausibility-based heuristic
which computes the most plausible combination of argu-
ments and the verb (e.g. given “apple” and ‘“eat”, the
reading that the apple is the undergoer of the eating event
rather than the actor) is independent of which element is
encountered first. These time-independent computations are
implemented in terms of schema unification (see below for
a brief description of schemata and the ventral stream).
Thus, time-dependent versus time-independent computa-
tions could also be described as “sequence-dependent”
versus “sequence-independent” operations.

Processing in both streams is organized in a hierarchi-
cal manner in accordance with the neurobiological principle
of hierarchical processing (Felleman and Van Essen 1991;
Rauschecker 1998; Rauschecker and Scott 2009; DeWitt
and Rauschecker 2012) and classic assumptions regard-
ing the structure of complex cognitive models (Simon
1962; Newell 1990). This means that, as information flows
along the streams, the representations that are processed are
assumed to become increasingly complex.! In the follow-
ing, we will refer to the successive points of information
processing within the hierarchy as “processing steps” for
convenience, though this is clearly a cognitive term that
does not directly reflect the underlying neurobiological
organization.

In a first step (ignoring preceding aspects of phonological
processing and segmentation), the processing system iden-
tifies word categories and uses these to build a constituent
structure (“syntactic structuring” within the postero-dorsal
stream). Crucially, and in contrast to the assumptions of oth-
er comprehension models (Friederici 2002; Hagoort 2005;
Vosse and Kempen 2000), this structure does not determine
sentence interpretation: this is accomplished via a separate
mechanism, as we shall see shortly. A second function of
category processing in this step is to classify the current
input element in terms of its function, e.g. whether it is
referential (“nouny”) or predicating (“verby”).

Note that, though the model is hierarchically organized, it is not mod-
ular in the traditional Fodorian sense (Fodor 1983). Firstly, due to the
cascaded nature of processing, a particular processing step need not be
fully complete before the next step is initiated. Secondly, from a neuro-
biological perspective, connections within each pathway are inherently
bidirectional such that top-down modulations of information process-
ing are always possible. Nevertheless, we assume that there is an
asymmetry in the directionality of information flow based on the tenet
of hierarchical organization.
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In a second step, sentence-level interpretive mechanisms
set in. In the postero-dorsal stream, the system determines
sentence meaning from an action-based perspective by
assessing who or what is primarily responsible for the state
of affairs being described, i.e. here, the actor heuristic men-
tioned above comes into play. The antero-ventral stream,
by contrast, constructs a schema-based representation of
sentence-level meaning via the unification of “actor-event
schemata”. For reasons of brevity, we will not go into details
with respect to the properties of these schemata or their uni-
fication, and focus instead on the “actor computation” step
posited as part of the postero-dorsal stream. For a detailed
discussion of actor-event schemata, the interested reader
is referred to Bornkessel-Schlesewsky and Schlesewsky
(2013Db).

The notion of “actor computation” within the postero-
dorsal stream is based on the assumption that a linguistic
actor is a ‘“stable, language-independent category, possi-
bly rooted in the human ability to understand goal-directed
action” (p. 250) (Bornkessel-Schlesewsky and Schlesewsky
2013a). The fact that humans are generally attuned to this
category as opposed to others could be due to basic evo-
lutionary demands. In the words of Leslie (1995): “Agents
are a class of objects possessing sets of causal properties
that distinguish them from other physical objects” and “as
a result of evolution, we have become adapted to track
these sets of properties and to efficiently learn to interpret
the behaviour of these objects in specific ways” (p. 122).
By tracking (potential) actors, i.e. those entities that appear
suited to bringing about changes in the environment (e.g.
warranting a fight-or-flight response), we can interpret the
world around us and make predictions about upcoming
events (see also Frith and Frith 2010). In accordance with
this assumption, it has been demonstrated that the human
attention system appears to have developed a special sen-
sitivity towards humans and non-human animals (i.e. good
potential actors) as opposed to other categories (New et al.
2007). In this way, the actor-centered comprehension strat-
egy posited by the eADM essentially views a sentence as an
instruction to conceptualize a particular scenario in which
an actor is engaged in a certain event or state of affairs.

How are actor participants identified during language
comprehension? In this regard, we have proposed that
the prototypical actor may be modeled on the first per-
son (i.e. the self as an acting agent, see Tomasello 2003,
Haggard 2008). According to Dahl, this “self-as-actor” per-
spective is tied to humans perceiving conspecifics as being
“like myself, individuals who can perceive the world and
act upon it” (Dahl 2008, p. 149). Thus, in order to under-
stand the environment around us, we use the self as a model
for other animate entities (and particularly other humans),
which in turn serve as a model for inanimate entities. In
view of these considerations, the language comprehension

system uses the features +self and +animate as cues to
the identification of actor participants (see below for a
summary list of actor features). Furthermore, in line with
the notion that the self-as-actor perspective involves seeing
others as individuals (i.e. other “selves”), an optimal actor
is individuated (i.e. definite and specific). Finally, actor-
hood correlates with particular morphosyntactic features,
which are partly cross-linguistically applicable (in partic-
ular: occurring as the first argument in a sentence) and
partly language-specific (e.g. nominative case marking).
Thus, the different features vary in applicability across lan-
guages; they also vary in their language-specific weighting,
i.e. their importance to identifying actor participants in a
particular language (cf. also MacWhinney and Bates 1989;
Bates et al. 2001). We have posited that language-particular
cues to actorhood (e.g. the importance of morphological
case marking in a language such as German) are acquired
via their high degree of co-occurrence with the universal
actor features based on the first person model (Bornkessel-
Schlesewsky and Schlesewsky 2013a). Thus, prototypical
actor features derived from the self-as-actor perspective are
used to bootstrap other, language-specific (morphosyntac-
tic) features of actor participants—a view that is similar
to that adopted by emergentist models of other linguistic
categories such as parts of speech (Croft 2001).

Linguistic prominence features related to actor
identification.
1. +self
2. +animate/+human
3. +definite/+specific
4. +1st position (correlates with actorhood cross-lingui-

stically; (Tomlin 1986))
5. +nominative (correlates with actorhood in nominative-
accusative languages with morphological case)

The degree to which arguments are good competitors for
the actor role is defined by two points: (a) their own pro-
totypicality in terms of the defining actor features and the
correlating prominence features (see above), and (b) the
existence and prototypicality of further competitors. Thus,
an initial argument is preferentially analyzed as an actor
even if it is not highly prototypical (e.g. if it is inanimate).?

2In this regard, the assumptions of the eADM differ from those of the
Competition Model (e.g. Bates et al. 1982, 2001, MacWhinney and
Bates 1989), which assumes that a strong cue for the undergoer role
(e.g. accusative case in a language such as German or Hungarian) can,
to all intents and purposes, exclude an argument from being considered
a potential actor. The eADM, by contrast, posits that a sole argument
is always considered for the actor role no matter how bad a candidate
it is—unless there is a second, more optimal candidate (for discussion,
see Bornkessel-Schlesewsky and Schlesewsky to appear).
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Once a second argument—a competitor—is encountered,
however, the relative actor prototypicality of the arguments
is crucial in determining whether the actor preference for
the first argument can be maintained or whether it needs to
be revised.

In accordance with the model architecture in Fig. 1,
increased competition for the actor role (including the
need to revise a previous actor choice) correlates with
increased activation in the posterior superior temporal sul-
cus and the temporo-parietal junction as part of the postero-
dorsal stream (Bornkessel et al. 2005; Grewe et al. 2006;
Bornkessel-Schlesewsky and Schlesewsky 2009) and the
anterior temporal lobe as part of the antero-ventral stream
(Magnusdottir et al. 2012; for discussion, see Bornkessel-
Schlesewsky and Schlesewsky 2013b). In neurophysiologi-
cal terms, it is reflected in increased amplitude of the N400
event-related brain potential (Bornkessel-Schlesewsky and
Schlesewsky 2009, 2013a). We assume that the N400—

Fig. 1 Model architecture for
the latest version of the extended A.
Argument Dependency Model,
eADM (adapted from
(Bornkessel-Schlesewsky and
Schlesewsky 2013b)). Panel A
provides a basic overview of the
model’s neuroanatomical
assumptions: the ventral (solid
line) and dorsal (dashed line)
streams are assumed to emanate
from primary auditory cortex
(PAC) and to perform
information processing in a
hierarchically organized manner.
Thus, in spite of the fact that the
streams are inherently
bidirectional, there is an
asymmetry in the directionality
of information flow on account
of the hierarchical organization.
Panel B shows the assumed
structure of hierarchical
processing within the two

and negative ERP deflections in general—result from a
mismatch between top-down and bottom-up information
sources within the two processing streams (for proposals
that the N400 depends on an integration of top-down expec-
tations and bottom-up input, see (Federmeier 2007; Lotze
et al. 2011)). Crucially, as scalp ERPs are macroscopic
responses which typically result from the mixing of mul-
tiple underlying sources, the claim is not that an N400
effect elicited by actor competition results from activation
changes in only a single locus within a stream. Rather, it
is likely due to the summed reaction of top-down/bottom-
up integration within multiple processing steps within both
streams (e.g. “actor computation” within the postero-dorsal
stream and “actor-event schema unification” within the
antero-ventral stream). In addition, since we posit that the
notion of top-down/bottom-up integration can be general-
ized to other language-related negativities (e.g. left-anterior
negativity (LAN) effects, which result, for example, from

streams B.
time
DORSAL POST. TEMPORAL /
PARIETAL
prosodic syntactic compute
: ) prominence :
segmentation structuring :
(actor) { integrate /
N N Y VT2 1 =)
[control]
phoneme AE-schema AE-schema
identification activation unification
ANT. : FRONTAL
VENTRAL TEMPORAL
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subject-verb agreement errors in which the expectation for
a particular agreement morpheme is not met), latency and
topography of the negativity response are assumed to vary
depending on the loci within the streams giving rise to the
mismatch and the timing of their activation (Sassenhagen
et al. 2013).

When actor competition is behaviorally relevant (e.g.
when participants perform an acceptability judgment task
and actor competition affects how acceptable a sentence
is deemed to be), it additionally engenders a late positive
ERP response. In this view, late positivities in language
processing (“P600” effects) are viewed as members of the
domain-general P300 family (Coulson et al. 1998; Roehm
et al. 2007; Kretzschmar 2010). Recently, Sassenhagen
et al. (2013) linked this idea to a neurobiological model of
the P300, the Locus Coeruleus-Norepinephrine (LC/NE-P3)
model (Nieuwenhuis et al. 2005). According to this model,
the P300 results from activation of the Locus Coeruleus (i.e.
the brain stem source for noradrenergic projections to the
cortex) following the detection of subjectively significant
events. This results in a release of norepinephrine, thereby
increasing neural responsivity to a particular stimulus and
influencing the behavioral response to it. From this per-
spective, late positivities in language processing reflect a
systemic neuromodulator release facilitating the application
of decision processes rather than linguistic processing per
se. In support of this view, Sassenhagen et al. (2013) found
that an N400 — late positivity scalp ERP pattern engen-
dered by semantically anomalous versus plausible words in
a highly constrained sentence context could be decomposed
using independent component analysis (ICA) and single-
trial analyses. Results revealed that, while N400 effects
were timelocked to critical stimulus onset, positivity effects
were response-locked.

In summary, actor competition is reflected in N400-late
positivity patterns in electrophysiological studies, though,
as described above, the two components of this biphasic
response are functionally distinct and, in principle, indepen-
dent of one another. In addition, the presence or absence of
the late positivity effect is conditioned by the experimental
environment and task.

Evidence for the Actor Heuristic and for Competition
for the Actor Role

The eADM’s notion of competition for the actor role is
supported by a range of cross-linguistic studies on sen-
tence comprehension, which have provided evidence for the
following generalization regarding online-processing:

Cross-linguistic generalization regarding actor iden-
tification in online language processing (Bornkessel-
Schlesewsky and Schlesewsky 2009):

The processing system attempts to identify the actor
role as quickly and unambiguously as possible.

Corollaries:
The processing system prefers actor-initial orders
The processing system prefers prototypical actors.

Evidence for this generalization stems from electrophys-
iological studies in a number of typologically varied lan-
guages, including Turkish (Demiral et al. 2008), Chinese
(Wang et al. 2009) and Hindi (Choudhary et al. 2010),
thus corroborating previous findings of a “subject-first
preference” in European languages (e.g. Dutch: Frazier
(1987), German: Schriefers et al. (1995), Schlesewsky
et al. (2000), Bornkessel et al. (2004b), amongst oth-
ers; Italian: de Vincenzi (1991), Penolazzi et al. (2005)).
Importantly, the empirical findings from non-Indo-Europe-
an languages (Chinese and Turkish) support the assump-
tion of an actor-first rather than a subject-first preference,
since they rule out explanations based solely on formal
subject features such as agreement. They further suggest
that the actor-first preference cannot be reduced to struc-
tural simplicity or frequency (see Wang et al. (2009) for
a summary). The finding of an actor-first preference even
in an ergative language (Hindi) further demonstrates the
need to assume an actor-first as opposed to a subject-first
preference.’

The preference for prototypical actors shows up in a
similarly ubiquitous way: When an argument that is unam-
biguously the actor in a transitive (two participant) relation
is non-prototypical because it is inanimate, different lan-
guages consistently show an N400 effect (for a comprehen-
sive review, see (Bornkessel-Schlesewsky and Schlesewsky
2009)). For an illustration, consider the following example
from Frisch and Schlesewsky (2001):

(1) a. Paul fragt sich,  welchen Forster
Paul asks himself, [which forester|acc
der Zweig
[the tWig]NOM c.

b. Paul fragt sich, welchen Angler
Paul asks himself, [which angler|acc
der Jager .

[the hunter|xowm - -

3In an ergative language such as Hindi, the actor argument in a tran-
sitive (two-participant) event is not morphosyntactically “privileged”
in the sense that it does not agree with the verb, for example. Thus,
it does not qualify for grammatical subjecthood in the same way as a
transitive actor in a non-ergative language such as German, Dutch or
Italian. The results from Hindi thus provide strong converging support
for the assumption that the actor preference is interpretive rather than
grammatical in nature.
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In example (1), the initial accusative—as a very poor
actor candidate—Ileads the processing system to expect
to encounter a better actor candidate as a second argu-
ment. When this expectation is contradicted by the features
of an inanimate second argument (la), which is also an
atypical actor, an N400 effect arises in comparison to a
control condition with an animate second argument (1b).
Thus, as described in the preceding section, the N400
effects arises from a mismatch between top-down infor-
mation (the expectation) and bottom-up information (the
features of the second argument). In addition to German
(Frisch and Schlesewsky 2001; Roehm et al. 2004) and
English (Weckerly and Kutas 1999), this effect has been
shown in Mandarin Chinese (Philipp et al. 2008) and Tamil
(Muralikrishnan et al. 2008).

Why a Computational Model of Actor Competition?

As is apparent from the preceding section, the actor-based
comprehension strategy is well described in qualitative
terms. In formalizing this strategy with an implemented
model, we pursue a twofold aim. Firstly, from the computa-
tional implementation of the actor strategy, we aim to gain
quantitative predictions that can be tested against empirical
data. This will allow for the predictions of the eADM to be
tested in a more stringent manner and for cross-linguistic
similarities and differences to be expressed in more explicit
terms.

Secondly, these quantitative predictions can be used to
illuminate the basic processing mechanisms underlying the
actor strategy. In particular, we aimed to compare two alter-
native conceptualizations of actor competition: unweighted
similarity-based interference and weighted competition.
Similarity-based interference is a notion that features promi-
nently in contemporary approaches to working memory
(WM), which emphasize the status of WM as the activated
portion of long-term memory rather than as a separate buffer
(for overviews, see McElree (2006), Jonides et al. (2008);
for approaches to language-processing based on this notion,
see Lewis et al. (2006), Lewis and Vasishth (2005)). Accord-
ingly, memory retrieval is conceptualized not as the result of
a (serial) search, but of a content-addressable pointer mech-
anism based on so-called retrieval cues. These cues (for
example, case, number or other features) provide the rel-
evant information required to access the item in question.
Retrieval becomes more effortful when cues overlap (i.e.
apply to several items in memory), a phenomenon termed
“similarity-based interference”.

Similarity-based interference appears well suited as a
potential mechanism underlying actor competition effects
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(Bornkessel-Schlesewsky and Schlesewsky 2013a), which,
as described in detail above, arise when multiple candidates
within a clause bear actor features. Since interference in its
typical form (i.e. as conceptualized within the WM litera-
ture) is based exclusively on feature overlap, it predicts that
the degree of competition for the actor role should be a func-
tion of the number of actor features shared by the arguments,
while the specific weighting of a feature within a language
should be irrelevant. More directly: feature overlap is an all-
or-nothing measure for individual features because either
two entities overlap in a given feature or not. By contrast,
a second potential conceptualization of the degree of actor
competition is that it goes beyond similarity-based interfer-
ence in the classical sense and rather also takes into account
the importance of a particular feature for actor recognition
in the language under consideration. From this perspective,
the degree of actor competition should be proportional to
the difference in prominence (i.e. goodness of fit to the actor
role) between arguments with individual features weighted
according to their language-specific importance.

By means of the computational implementation intro-
duced in the next section, we will calculate explicit metrics
for the two alternative conceptions of actor competition
outlined above and will test these against data from a
neurophysiological experiment on sentence processing.

In this way, we endeavor to use the computational imple-
mentation of the actor strategy not only as a means of
deriving more precise (quantifiable) predictions, but also to
shed further light on the how the strategy is neurocognitively
implemented.

Computational Implementation

The present implementation focuses on the core cal-
culation of actor competition for referential elements,
called Compute Prominence in previous versions of the
eADM (Bornkessel-Schlesewsky and Schlesewsky 2009;
Bornkessel and Schlesewsky 2006). For convenience, we
similarly use the existing terminology “Stage 17 to refer
to the initial chunking and analysis step and “Stage 2” to
refer to the sentence-level interpretative mechanisms of the
second step. A brief summary of the current software imple-
mentation can be found in the Technical Notes at the end of
this article (p. 29).

The computational implementation does impose one
restriction that the neurocognitive model upon which it is
based does not: Stage 1 completes in full before Stage 2
begins. This is however not as detrimental to the approxi-
mation as it may initially seem because Stage 2 processes
each constituent incrementally in the original sequential
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order. Furthermore, both incremental and final full pro-
cessing results for Compute Prominence are computed and
optionally displayed.*

The completion of Stage 1 in its entirety before Stage 2
is unfortunately not capable of modeling cases where addi-
tional, disambiguating information becomes available. In
German, this primarily happens in noun phrases via gen-
der (indefinite NPs) and number (definite NPs) information
available on the first non-article adjective or head noun.
(Disambiguation via verb agreement is also possible, but
this is an interaction with the computation for predicat-
ing elements—Compute Linking in previous versions of the
eADM—and is not currently modeled for non verb-final
word orders.) However, none of these forms of disam-
biguiation occur in the present experimental manipulation.
Nonetheless, processing of ambiguities remains a major
focus of present and future research.

Stage 1

The initial chunking and morphological analysis in Stage 1
is performed here only in a restricted fashion. The full com-
plexity of German phrase structure would be a non-trivial
undertaking and lies outside the scope of this paper and
its focus on the actor heuristic (Stage 2) and an appro-
priate computational implementation. However, a sufficient
implementation of Stage 1 to parse the stimuli from an
EEG/ERP experiment with their relatively rigid structure is
possible.

In the present experiment (see section “EEG Experi-
ment”), it suffices to process inflection carried via pronouns
and articles. In German, the article carries the majority of
the morphological burden in noun phrases. The head noun
inflects for number and can carry an additional marker for
dative in the plural; however, this information was redun-
dant in the present experiment, where neither dative nor
plurals were used.’> In the pronominal system, there exist
a few ambiguities, especially between the nominative and
accusative 3rd person for neutra and feminina as well as in
the plural. This ambiguity could potentially be resolved by
agreement with the verb; however, it also presents a general
test case for the heuristic implemented by Compute Promi-
nence. The ambiguity is thus marked as such and otherwise

4This restriction exists primarily to simplify the implementation in
a single Python program (see Technical Notes); to better model the
waterfall data flow, coroutines could be used or Stage 1 and Stage 2
could be split into two programs connected by Unix pipes.
SFurthermore, the article also carries number information, albeit with
a small ambiguity that is resolved through further adjectives or the
marking on the head noun.

not further processed by Stage 1. The further ambiguity in
the pronominal system between the 3rd person feminine
dative and the second person plural nominative is always
resolved by verbal agreement, but as there are no datives
in this experiment, this special case is not processed fur-
ther and is implemented by pass (a syntactic placeholder
in Python similar to void) in the branch construct.

Stage 2

Implementation of Stage 2 was restricted to the function
Compute Prominence, which provides in non-headmarking
languages the most important parts of the actor heuris-
tic in single-sentence processing.® Furthermore, Compute
Prominence remains largely unchanged in recent and further
planned updates to the eADM.

In implementing Compute Prominence, we view the
hierarchies as dimensions in (a subspace of) Euclidean
n-space, where n is the number of hierarchies. The promi-
nence of an individual argument is thus a vector, with each
component being a scalar representing the prominence with
respect to a particular hierarchy. The hierarchies with the
corresponding values for various linguistic features in the
current implementation are given in Table 1. The “addi-
tional” feature NUMBER derives from another prototypical
feature of the self-as-actor view: singular correlates with
stronger individuation. Negative values are used to actively
penalize a particular prominence component in the next
calculation. That is, negative values indicate a feature that
strongly correlates with a poor actor candidate (designated
in the computational model by the feature +dep).’

For now, we make the a priori assumption that case
is a singular feature with multiple levels cf. (Kempe and
MacWhinney 1999). However, it is possible that “case” is
merely a convenient moniker for a set of strongly corre-
lating binary features such as £nom and +acc. Ambigu-
ity would then be encoded by setting all individual case
features to the same value, e.g. +-acc, +nom for an ambigu-
ity between nominative and accusative. This latter approach
is the typical one found in NLP and has the interesting
feature that individual cases can carry different, individ-
ual weights (see below). For example, +acc may be a
much stronger indicator of a particular role assignment than
+nom.

%0f course, contextual effects also play a role in normal language use.

7For the purposes of the present paper,+dep may simply be considered
a convenient label for a poor actor candidate. For an in-depth discus-
sion of +dep and a motivation in terms of a previous version of the
eADM, see (Bornkessel and Schlesewsky 2006)
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Table 1 Prominence hierarchies and the corresponding scalar val-
ues for the various features as used in the current implementation of
Compute Prominence

Feature Hierarchy

Person: First =1 > Other = 0

Case: Nominative = 1 > Dative = 0 > Accusative = —1
Animacy: Animate = 1 > Inanimate = 0

Position: Early =1 > Late =0

Number: Singular = 1 > Plural = 0

Definiteness: Definite = 1 > Indefinite = 0

Similarly, other features with multiple levels are encoded
binarily according to their most prominent tendency.

+PERSON is actually £1ST. PERSON and not a multi-
tiered variable. Extending this to accommodate the second
person would only require the addition of a further field in
the prominence vector. As all functions in the implemen-
tation are written to handle vectors of arbitrary length, this
would require no changes to the core code. However, the
question remains open for the model development, whether
representation as multiple fields or as a variable with more
degrees of freedom is the sensible choice. Multiple variables
allow for learning the weights (and hence the impact) of dis-
tinct levels separately; however, this potentially allows for
unlikely combinations of multiple levels.® A final consid-
eration in the weight encoding is the use of fuzzy logic for
the boolean values. For example, an ambiguous noun phrase
could be assigned values between zero and one to indicate
some form of probability for a given analysis. A plant could
be assigned an animacy value of (.25 (alive and able to
die but largely not capable of independent action), an ani-
mal could be assigned a value of 0.8 (alive and capable of
independent action, but not sentient) and a human a value
of 1.0 (alive, willful and sentient). Furthermore, this corre-
sponds with animacy hierarchies seen in the languages of
the world, with similar ordering, but language-specific cut-
off points between levels (Silverstein 1976). Such gradience
adds a flexibility to the use of binary features at the cost of
making the prominence encoding somewhat less sparse.

The language-specific relative weights are also stored
in a vector in the same space. The scalar (dot) product
of the weight vector with the prominence vector yields a
scalar value for the total prominence. This value is then
compared with a threshold value to determine if 4dep is
assigned immediately. Compute Prominence is applied to

8This is perhaps an advantage—in languages where inclusive and
exclusive first person are morphologically distinct, this could be repre-
sented by the interaction of +1st. Person and +2nd. Person. This added
complexity nonetheless introduces its own cost and brings language
specific features deeper into the model.
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both arguments and the values are compared, with the more
prominent argument being assigned —dep (i.e. designated as
the actor argument) and the less prominent argument +dep.”
In the special case of an Object-Experiencer verb, promin-
ence values for the case hierarchy are inverted: the entire
hierarchy is multiplied by -1, thus reversing the orientation
such that the accusative and dative outrank the nominative.

A sample sentence set for the EEG experiment used here
as well as an analysis for a single condition of that set are
given in Tables 2 and 3.

Distinctness/Actor Competition

The use of vectors to represent prominence data also allows
for several other calculations to be made. The magnitude
of the projection of an argument’s prominence vector on
the prominence vector for an idealized actor or undergoer
is an index for the prototypicality of a particular argument.
Similarly, the scalar product of the two argument vectors
corresponds inversely with distinctness.

Distinctness is more broadly the distance between two
arguments in actor-space. It thus provides a measure for
the degree of competition for the actor role: when dis-
tinctness is low, multiple arguments bear actor features and
competition for the actor role is high; when distinctness is
high, actor features accumulate on only a single argument
and competition for the actor role is low. Various metrics
are provided (selectable as command line options in the
implementation here) for the distance measurement. The
Manhattan metric'® reflects the summed distance between
individual features. This is the default in the model and
reflects an intuitive notion of distinctness. Furthermore, the
Manhattan metric provides a general measurement of fea-
ture overlap and thus correlates inversely with traditional
notions of interference—the fewer features that overlap/
interfere, the larger the Manhattan distance. The Euclidean
metric!! is also provided and reflects a more continuous
notion of distinctness. Finally, the difference in Euclidean
magnitude of the two vectors is provided as a metric
reflecting the difference in “absolute” (unweighted scalar)
prominence. This magnitude difference also reflects the
directionality of the prominence shift—the prominence of
NP1 is subtracted from the prominence of NP2. Thus, NP2
is more prominent if and only if the magnitude difference is

°In the case of a single argument, e.g. intransitivity, the distinction
measure is not performed and the model depends solely on the thresh-
old comparison. The present experiment included only monotransitive
sentences.

d(x,y) = 2 |yi = xil

1

Hd(x,y) = /Z(yi —xi)?
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positive. The selected metric is outputted (in batch mode;
see Technical Notes) as the field dist. For the data here,
this is the Manhattan metric, and so dist is equal to
> i INP2; — NPI1;|.

Distinctness as distance in actor space is calculated on
the raw prominence vectors without the weight distortion.
This has the simultaneous advantage and disadvantage that
the distance is language independent.'> Weighted distance
is given by the field sdif £ (in the batch mode output) and
is calculated as the difference of the weighted, scalar promi-
nences: W - NP2 —w - NP1 = Yo iwi - NP2 — 3w -
NP1;, where w is the language specific weight vector. Since
the weighted scalar prominences are calculated by the dot
product of the weight and feature vectors, this is equiva-
lent to the weighted, signed Manhattan distance.! Baseline
weights were based on previous work done in German in
the framework of the Competition Model cf.(Kempe and
MacWhinney 1999; MacWhinney et al. 1984). The quali-
tative ordinal scales were converted to quantitative interval
scales via a simple order of magnitude mapping: for a
feature f; ranked more strongly than another feature f>,
f1 = 10f, (see Stevens (1951) for the classification of
scales). If a feature is considered a much stronger cue than
another, then two orders of magnitude of separation was
assumed: f; = 100f;. Thus, we have the following order-
ing: case = 1000 > position, person = 100 > animacy,
number = 10 > definiteness = 1.'* The exact numerical
values have no empirical meaning in their own right. Rather

1211 as far as all features are treated equally—some languages may not
take advantage of certain features, e.g. English largely does not use
case.

13 This follows very straightforwardly from the definition and standard
properties of the dot product:

- NP2—-NPl =Y w;-NP2; — Y w; -NPI;
i i
= Y w; - (NP2 —NPI;)

1

W-(NP2— NP1)

14 As noted by an anonymous reviewer, the EEG experiment presented
below does not include any number or animacy contrasts. This how-
ever does not present any great problem for the data at hand: due to
properties of the metrics at hand, the non contrasting features sim-
ply cancel out and do not even introduce additional parametric levels
into the respective prominence metrics. These features remain in the
models present because their presence does not detract from the com-
parisons in question and avoids an experiment-specific model. One
subtle disadvantage does come into play here though: the fit of the
weights for these two features is not tested. Especially our ranking of
position relative to animacy may prove problematic and, as such, more
explicit testing, manipulation and determination of model weights is
planned for future research.

their relationship to one another is central.'> Changing the

precise values will of course change the coefficients in the
fitted mixed linear model, but will not change the properties
of the model as a whole.!®

In terms of the research questions introduced above, the
main aim of the present paper is to compare the distinct-
ness measures dist and sdiff as predictors of empirical
neurophysiological data. While dist provides a good mea-
sure of similarity-based interference, sdiff implements
the alternative, weighted notion of distinctness.

EEG Experiment

We tested the effectiveness of the model parameters as pre-
dictors of neurophysiological activity using data from an
EEG experiment on word order processing in German.

The experiment manipulated actor competition by vary-
ing actor-undergoer order and case-marking ambiguity in
transitive sentences with a noun phrase (NP1) — verb — noun
phrase (NP2) structure. In particular, it examined sentences
which—due to locally ambiguous case information—were
initially compatible with an actor-first reading but sub-
sequently required a reinterpretation as undergoer-initial.
These are cases where actor competition is particularly high.
They were compared with locally ambiguous sentences in
which the actor-first preference was borne out and competi-
tion for the actor role was thus considerably less pronounced
as well as with unambiguously case-marked sentences. Cru-
cially for present purposes, the relative prominence of the
two arguments—and hence their relative degree of actor
prototypicality—was also manipulated in order to induce
more subtle variations of actor competition. To this end,
NP1 was either realized as a non-pronominal NP or as a
3rd person pronoun and NP2 was either realized as a non-
pronominal NP or a 1st person pronoun. Recall from section
“The Extended Argument Dependency Model (eADM) and
Actor-Centered Comprehension” that optimal actorhood
is assumed to be modeled on the first person within

15This follows from the notion of an actor space—we can expand or
contract the space by a constant multiple without changing the inherent
properties of it. Specifically, ¢v - cw = ¢(v - ).

16Subject to the constraints of the effects this has on precision and
representation on the computing machine in question. Theoretically,
we could divide all of these values by 1000 (the maximum weight
given here), giving us coefficients on [0, 1], which would reflect their
impact in the notation of probability theory. This is a very interest-
ing approach, as the deterministic impact of case would receive a
(probability) coefficient of one—certainty. However, this all too eas-
ily leads to the assumption that there is necessarily a single feature
which, when unambiguous, is singularly deterministic in its influ-
ence. Or, in the particular case of German, that the impact of case is
always deterministic—clearly, this is not the case as all too often, the
morphological marking is ambiguous: 0 x 1000 is still 0.
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Table 2 Stimulus design in the EEG experiment. Every condition appeared for each lexical item

Initial Ambiguous NPI1-Type NP2-Type Sentence(Example)

Actor Yes Noun Noun Die Bettlerin bedringte den Kommissar auf der Strafle.
Undergoer Yes Noun Noun Die Bettlerin bedringte der Kommissar auf der Straf3e.
Actor No Noun Noun Der Bettler bedriingte den Kommissar auf der Straf3e.
Undergoer No Noun Noun Den Bettler bedringte der Kommissar auf der Straf3e.
Actor Yes Noun Pronoun (1sg) Die Bettlerin bedringte mich auf der Stral3e.
Undergoer Yes Noun Pronoun (1sg) Die Bettlerin bedringte ich auf der Straf3e.

Actor No Noun Pronoun (1sg) Der Bettler bedriingte mich auf der Strafe.

Undergoer No Noun Pronoun (1sg) Den Bettler bedringte ich auf der Strafie.

Actor Yes Pronoun (3sg) Noun Sie bedringte den Kommissar auf der Straf3e.
Undergoer Yes Pronoun (3sg) Noun Sie bedringte der Kommissar auf der Strafie.

Actor No Pronoun (3sg) Noun Er bedriangte den Kommissar auf der Strafe.
Undergoer No Pronoun (3sg) Noun Thn bedringte der Kommissar auf der Straf3e.

Actor Yes Pronoun (3sg) Pronoun (1sg) Sie bedringte mich auf der Strafe.

Undergoer Yes Pronoun (3sg) Pronoun (1sg) Sie bedringte ich auf der Strafie.

Actor No Pronoun (3sg) Pronoun (1sg) Er bedriangte mich auf der Strafle.

Undergoer No Pronoun (3sg) Pronoun (1sg) Ihn bedringte ich auf der Strafie.

The base sentence (first example) translates to “The beggar hassled the commissioner in the street.” The gender of NP was varied for the ambiguity

condition; the person of NP2 was varied for the NP2-type condition. Abbreviations: 3sg = third person singular, 1sg = first person singular

the eADM. Accordingly, 1st person pronouns are optimal
actors, 3rd person pronouns (which are not 1st person, but
nevertheless highly individuated) are somewhat less opti-
mal actors and non-pronominal noun phrases are somewhat
less optimal again. By manipulating person rather than more
commonly examined actor features such as animacy, the
present study therefore allowed us to test the effectiveness
of our computational implementation of actor computa-
tion (Compute Prominence) as well as the self-as-actor
perspective.

Participants

Thirty-seven monolingually raised native speakers of Ger-
man (20 women; mean age: 25.9 years, range: 2040
years) participated in the EEG study after giving writ-
ten informed consent. Participants were right-handed as
assessed by a German version of the Edinburgh handedness
inventory (Oldfield 1971). The majority of the participants
were students at the Free University Berlin at the time of
the experiment. Two additional participants were excluded
due to technical problems or a failure to complete both
experimental sessions.

Materials
The critical sentence types used in this study are shown

in Table 2. Sixty sets of the conditions shown in Table 2
were constructed, thus resulting in a total of 960 critical
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sentences. These were subdivided into two lists of 480
sentences each (30 from each condition and 8 from each
lexical set). The critical sentences for each list were pseudo-
randomly interspersed with 240 filler sentences. Fillers

Table 3 Summarized analysis for the sentence Die Bettlerin
bedringte den Kommissar auf der Straffe “The beggar hassled the
commissioner in the street”

Feature NP1 NP2 Weight
Case 0 —1 1000
Animacy 1 1 10
Person 0 0 100
Number 1 1 10
Definiteness 1 1 1
Position 1 0 100
Prominence

Simple 5 2

Weighted 121.0 —-979.0

Metrics

dist 2

signdist +2

sdiff —1100.0

Please note that the order of operation in computing the metrics mat-
ters: sum the pairwise differences (with absolute values, no weighting,
or weighting, for dist, signdist and sdiff, respectively)
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were also declarative main clauses of German but did not
contain case or word order ambiguities. Eighty of the filler
sentences were ungrammatical due to a case or agreement
violation and 60 were semantically implausible, thus ensur-
ing that participants needed to take into account both the
grammaticality of the sentences and their plausibility when
performing the acceptability judgement task (see below).
The filler sentences were the same across the two lists. List
presentation was counterbalanced across participants, with
each participant reading the sentences from one list once.

Procedure

Participants were seated in a dimly lit, sound-attenuated
booth, approximately 1 meter in front of a 17 inch computer
screen. Sentences were presented visually in a phrase-by-
phrase manner (i.e. noun phrases were presented together
as chunks). Each trial began with the presentation of a
fixation asterisk (presentation time: 300 ms, followed by
an inter-stimulus-interval, ISI, of 200 ms). Single words
were presented for 400 ms and phrases for 500 ms, with
an ISI of 100 ms in each case. Following the presenta-
tion of the sentence-final word or phrase, there were 500
ms of blank screen, after which a question mark signalled
to participants that they should judge the acceptability of
the preceding sentence using two hand-held push-buttons.
They were instructed that their judgement should be based
both on form and content (i.e. also take into account the
plausibility of the sentence). Assignments of the left and
right buttons to “yes” and “no” responses were counterbal-
anced across participants. Following the judgement or after
the maximal reaction time of 2000 ms had expired, there
was an inter-trial interval (blank screen) of 1000 ms before
presentation of the next sentence began. The experiment
was conducted in two sessions, separated by approximately
a week. In each session, a participant read 8 blocks of
45 sentences each, with blocks separated by short breaks.
Sessions lasted approximately 3 hours including electrode
preparation.

EEG Recording and Preprocessing

The EEG was recorded from 25 Ag/AgCl electrodes fixed
at the scalp by means of an elastic cap (Easy Cap GmbH,
Herrsching, Germany). AFZ served as ground. Electrodes
were positioned according to the international 10-10 system.
The electrooculogram was monitored by means of elec-
trodes placed at the outer canthi of both eyes (horizontal
EOG) and above and below the participant’s right eye (verti-
cal EOG). EEG and EOG channels were amplified by means
of a Refa amplifier (Twente Medical Systems, Enschede,
The Netherlands) and digitized with a sampling rate of
250 Hz. Channels were referenced to the left mastoid but

rereferenced to linked mastoids offline. In order to elim-
inate slow signal drifts, a 0.3-20 Hz band-pass filter was
applied to the raw EEG data. Trials containing EEG or EOG
artifacts were excluded from the final data analysis (the
EOG rejection criterion was 40 V). For display purposes
only, the grand average ERPs were smoothed with an 8Hz
low-pass filter.

EEG Data Analysis

In an initial step, we performed a standard data analy-
sis for language-related event-related brain potential (ERP)
studies. Thus, average ERPs were calculated per condi-
tion, electrode and participant from the onset of the crit-
ical second noun phrase to 1000 ms post onset, before
grand averages were computed over all participants. We
then computed a repeated-measures ANOVA with the
factors word order (actor-initial versus undergoer-initial),
ambiguity (NP1 ambiguous between actor and undergoer
versus unambiguously marked), NP1-Type (definite noun
phrase versus 3rd person pronoun), NP2-Type (definite
noun phrase versus 1st person pronoun) and region of inter-
est (ROI). Lateral regions of interest were defined as fol-
lows: left-anterior (F3, F7, FC1, FCS); left-posterior (CP1,

Legend:
OUNN (n=37)  ~*Tw
~~~~~~~~~~~~~~ OUPN (n=37)
— SUNN (n=37) | s
s SUPN (n=37) 0.5 1.0
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Fig. 2 Grand average ERPs triggered at the onset of NP2 for the
unambiguous condition and NP2 a noun with definite article. The con-
dition codes reflect the 2 x 2 x 2 x 2 design: S = subject (actor) initial
word order, O = object (undergoer) initial; U = unambiguous, A =
ambiguous; N = Noun, P = pronoun, for NP1 & NP2 respectively
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CP5, P3, P7); right-anterior (F4, F8, FC2, FC6); right-
posterior (CP2, CP6, P4, P8). A single ROI was used for
the midline sites (FZ, FCZ, CZ, CPZ, PZ). For analyses
involving more than one degree of freedom in the numera-
tor, significance values were corrected when sphericity was
violated (Huynh and Feldt 1970). This analysis was used to
identify regions in which the effects were most pronounced
for the subsequent analysis using linear mixed effects mod-
els, in which we tested the effectivity of the distinctness
metrics as predictors of language-related electrophysisolog-
ical activity.

Linear mixed effects models provide a tool capable of
handling the random variation introduced by intersubject
differences and lexical effects (Baayen et al. 2008), which
are not modeled in the current implementation. Further-
more, they allow continuous predictors such as the actor
metrics here, while ANOVA-based analyses do not. Using
the R package 1me4 (Bates et al. 2013), we calculated
models using subject and item as random factors, and the
various distinctness measures as fixed factors. For the ran-
dom factors, we used the maximal random-effect structure
common to all models, i.e. random slopes grouped per dis-
tinctness measure, as models without random slopes are
anti-conversative (Barr et al. 2013).17-18 As an exact estima-
tion of p-values in mixed effects models is not straightfor-
wardly possible due to difficulties in estimating the degrees
of freedom, we follow Baayen et al. (2008) in consider-
ing an absolute #-value exceeding 2 as an indication of
significance at the 5 %- level.

Intermodel comparisons are also not completely straight-
forward, especially in the case of non-nested models. Most
importantly, log-likelihood tests and the associated y 2-sta-
tistic (i.e. the parallel to traditional ANOVA, even called
via the function anova () in R) are only valid for nested
models.!® To compare non-nested models, we turn to infor-
mation-theoretic criteria (cf. Burnham and Anderson 2002,
p- 88). In particular, Akaike Information Criterion (AIC,

17The models resolved for ambiguity in the P600 time window have
only random intercepts, as models with random slopes failed to
converge.

18Higher order interactions were excluded for three reasons. First,
comparing models which differ in random-effect structure is less
straightforward than those which differ in only fixed-effect struc-
ture. (Even for the fixed effects, the comparison between non nested
models requires information-theoretic criteria, see main text.) Second,
models with higher order interactions in the random-effects structure
did not always converge and due to the aforementioned complexi-
ties of comparing random-effects structures, it is not clear which of
several higher-order models to choose from. Finally, computational
complexity increases extremely quickly with random effect complex-
ity. Limiting the random-effects structure to the maximal common one
provides an acceptable balance between estimation accuracy, ease of
comparison, and computer time.

19 Models in which the parameters for one model form a proper subset
for the parameters of the other.
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(Akaike 1974)) and Bayesian Information Criterion (BIC,
(Schwarz 1978)) provide further tools for comparing mod-
els, based on log-likelihood (fit) penalized by the number of
parameters (overfitting). The absolute value of these scores
is not meaningful in itself, but the general rule when com-
paring two models is “smaller is better”. In the following,
AIC and BIC are shown in the model summaries, while
only AIC with log-likelihood and degrees of freedom for the
fixed factor is shown in the model comparisons, since the
comparison of non-nested models always involved models
with the same number of parameters. For nested mod-
els, x2-statistics (based on likelihood ratio tests) are also
shown.

Model Performance and Prediction: Results

Behavioral Data

The results of the rating task showed that participants
judged all conditions to be highly acceptable (lowest
mean acceptability ratings were 86 % for the ambiguous,
undergoer-initial condition with two non-pronominal noun

CP5 T CPz T CPé
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Fig. 3 Grand average ERPs triggered at the onset of NP2 for the
ambiguous condition and NP2 a noun with definite article. The condi-
tion codes reflect the 2 x 2 x 2 x 2 design: S = subject (actor) initial
word order, O = object (undergoer) initial; U = unambiguous, A =
ambiguous; N = Noun, P = pronoun, for NP1 & NP2 respectively
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phrases and 89 % for the ambiguous, undergoer-initial con-
dition with NP1 a pronoun and NP2 a non-pronominal noun
phrase; all other conditions showed an acceptability of 93 %
or higher). We refrain from analyzing the ratings statisti-
cally in order to avoid interpreting ceiling effects. Most
importantly for present purposes, they demonstrate that par-
ticipants found the sentences acceptable and that they were
able to correctly reanalyze the ambiguous undergoer-initial
sentences (which should otherwise have been judged as
unacceptable).

The analysis of the reaction times (restricted to sen-
tences correctly judged as “acceptable”) revealed an inter-
action of AMBIGUITY, WORD-ORDER and NP2-TYPE
(F(1,36) = 4.95,p < 0.03) and an interaction of
AMBIGUITY and NP1-TYPE (F(1,36) = 845,p <
0.006). Resolving both interactions by ambiguity showed
an WORD-ORDER x NP2 - TYPE interaction only for locally
ambiguous (F(1,36) = 11.58, p < 0.002) but not for
unambiguous sentences (p > 0.15). For the ambiguous sen-
tences, the interaction was due to longer reaction times for
undergoer-initial as opposed to actor-initial sentences when
the second noun phrase was non-pronominal / third person
(mean RTs of 473 ms for undergoer-initial and 439 ms for
actor-initial sentences; F(1,36) = 16,77, p < 0.0003),
while there was no effect of actor-undergoer order when the

FC5 T FCz T FC6

44

Fig. 4 Grand average ERPs triggered at the onset of NP2 for the
unambiguous condition and NP2 a first person pronoun. The condi-
tion codes reflect the 2 x 2 x 2 x 2 design: S = subject (actor) initial
word order, O = object (undergoer) initial; U = unambiguous, A =
ambiguous; N = Noun, P = pronoun, for NP1 & NP2 respectively

second noun phrase was a first person pronoun (p > 0.22).
The interaction of AMBIGUITY and NP1-TYPE was due
to longer RTs for unambiguous sentences in which NP1
was realized as a non-pronominal NP as opposed to a first
person pronoun (mean RTs of 443 ms and 431 ms, respec-
tively; F(1,36) = 8.53, p < 0.006).

In summary, reaction times were longer when sentences
required a reanalysis towards an undergoer-initial order—as
expected from the perspective of an actor-first preference—
but this effect was only observable when the disambiguating
second noun phrase was a non-pronominal third person, not
when it was a first person pronoun. This finding provides
converging support for the assumption that first person is
a strong cue for actorhood, which can attenuate the behav-
ioral reanalysis effect (for previous findings showing that
strong cues for the target reading can attenuate reanalysis
effects in behavioral data, though they are still observable
electrophysiologically, see Bornkessel et al. 2004b).

Measures

The output from the implementation includes the selected
distinctness metric as well as the scalar (weighted) dif-
ference in prominence for each item and condition

(i.e. for each experimental stimulus). Additionally, the

FC5 T FCz T FCé

Fig. 5 Grand average ERPs triggered at the onset of NP2 for the
ambiguous condition and NP2 a first person pronoun. The condition
codes reflect the 2 x 2 x 2 x 2 design: S = subject (actor) initial
word order, O = object (undergoer) initial; U = unambiguous, A =
ambiguous; N = Noun, P = pronoun, for NP1 & NP2 respectively

@ Springer



156

Neuroinform (2014) 12:143-179

implementation also outputs prominence scores calculated
for NP1 and NP2. We duplicate this data for all subjects and
enter it into the dataframe for EEG data. Based on visual
inspection and significance testing via repeated measures
analyses of variance (ANOVAs), we restricted the analysis
to a subset of the data.

First, the time window for the N400 was found to be
about 300-500ms post stimulus onset for the pronouns, and
about 100ms later (400-600ms post onset) for the nouns
(cf. Fig. 2 & 3 vs. Fig. 4 & 5). A similar effect was found
for the late positivity (P600) time window: 600-800ms post
onset for the pronouns and 700-900ms post onset for the
nouns. As such, the time windows were parameterized in
the model: “N400” vs “P600”, with the exact time win-
dow reflecting whether the target stimulus was a noun or a
pronoun. This difference in latency is not unexpected: both
frequency and length are known to influence the latency
of exogenous ERP components. Pronouns being highly
frequent and short (a classic example of Zipf’s Law; (Zipf
1935, 1949; Manning and Schiitze 2000)) thus elicit a
somewhat earlier effect. This is predicted by the cascaded
architecture of the eADM: for shorter words, the informa-
tion that is necessary for processing to proceed to the next
step accrues more quickly.

Our choice of relatively traditional windows for the N400
and late positivity should thus not be taken as reflections
of an a priori assumption about the ontological latency of
these components. As previously mentioned, the decisive
attribute of a component is its polarity; latency is to some
extent an indication of the amount of processing necessary
to reach the computational step reflected by a particular
component. Amplitude is meaningful as a vague correlate of
processing power needed at a particular step; however, due
to well-known issues with equivalent dipoles, cancellation,
etc., amplitude of scalp EEG is not a monotonic function of
processing effort.

Furthermore, the ANOVA performed across five regions
of interest (four quadrants and midline) revealed the strong-
est effects and interactions in the left posterior ROI, and for
simplicity and computability, we restrict our model fitting
to this ROI. The relevant ANOVA results are summarized in
the Appendix (Tables 32 and 33).2°

20More rigorous methods are available for dynamically determining
the time window and topographical distribution of components. Maris
(2004) and Maris and Oostenveld (2007) propose the necessary meth-
ods for non parametric method testing and determination of the effects
in time and space (topography). Issues of computational tractability as
well as data set size (different (sub)sets of data have to be used for
determining the spatiotemporal distribution and testing it) reaffirmed
our decision against introducing too many non-traditional methods for
this initial computational model.
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N400

We begin with the parametric time window “N400”. Here,
we first generated the most basic models using only the dis-
tinctness measures as fixed effects. However, we note that
neither sdiff nor dist explicitly encode the experimen-
tal parameter ambiguity, i.e. the degree of evidence for an
actor or non-actor analysis of the first argument based on
morphological case marking, the strongest cue to actorhood
in German. In German, there are two possible ways of deter-
ministically resolving locally ambiguous case marking: (a)
the elimination of possibilities by another unambiguously
marked argument and (b) agreement with the verb. It is,
however, generally accepted in the psycholinguistic and
neurolinguistic literature that sentence processing proceeds
incrementally, i.e. the processing system uses strategies
to resolve local ambiguities even in the absence of clear
evidence for one or the other reading in the input (Marslen-
Wilson 1973; Crocker 1994). In this experiment, ambiguity
resolution was provided via (a) on the second argument,
which means that the initial ambiguity affects both which
predictions the language system is able to make initially and
how much new information becomes available at NP2. It
thus makes sense to see how the parameter ambiguity inter-
acts with our distinctness measures. For sdiff (Table 4),
a likelihood ratio test reveals a significant improvement
(Table 5). Similarly, we find an improvement for dist
(Table 6), albeit a smaller one (Table 7). The comparison
between the models with ambiguity, which are shown in

Table4 Summary of model fit for sdif f (weighted distinctness) and
ambiguity in the N400 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
395191 395291 —197584 395169
Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.18 0.42

c.(sdiff) 2.3e—08 0.00015
subj (Intercept) 1.2 1.1

c.(sdiff) 2.6e—08 0.00016
Residual 17 4.1
Fixed effects:

Estimate Std. Error  t value
(Intercept) 1.2 0.19 6
ambiguityunambig 0.5 0.031 16
c.(sdiff) —0.00039  4e—05 -9.8
ambiguityunambig:c.(sdiff)  0.00038 2.5e—05 15
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Table 5 Statistics for models in the N400 time window based on the sdiff metric, showing the effect of ambiguity with interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)
sdiff: mean ~ c.(sdiff) + ... 9 395675 —197828.97
sdiff.ambiguity: mean ~ ambiguity * c.(sdiff) +. .. 11 395190 —197584.42 489.11 2 <2.2e—16 ***

(Random effect structure elided. See page 12)

Tables 4 and 6 for sdiff and dist, respectively, show
that sdif £ provides a better fit to the data.

Examining the models more closely, we see that the inter-
action between ambiguity and dist was not significant. In
light of this missing interaction with dist, we can also con-
sider using ambiguity as a simple model parameter that does
not interact with our distinctness measures. In this case,
we find a significant improvement for dist (Table 8) over
the model without any ambiguity, and, moreover, the model
with interaction does not differ significantly from the one
without (Tables 9 and 10).

It thus appears that the interaction with ambiguity was
particular to sdiff.

At this point, it is important to note that sdiff differs
from dist not only in its weighting, but also in its use
of “directionality” by being a signed value. We can also
calculate a signed version of dist, termed signdist,
by the sum of the pairwise differences: ) ;(NP2; —
NP1;). This is the same as the Manhattan metric without
absolute value signs or sdiff with all weights equal
to one (via associativity of addition and subtraction, see

Table 6 Summary of model fit for dist (feature overlap) and
ambiguity in the N400 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
395140 395240 —197559 395118
Random effects:
Groups Name Variance Std.Dev.
item (Intercept)  0.18 0.43

c.(dist) 0.057 0.24
subj (Intercept) 1.2 1.1

c.(dist) 0.12 0.35
Residual 17 4.1
Fixed effects:

Estimate Std. Error  t value
(Intercept) 1.3 0.19 6.6
ambiguityunambig 0.26 0.036 72
c.(dist) 0.24 0.07 35
ambiguityunambig:c.(dist) —0.012 0.036 —0.33

Footnote 13, p. 9). Intuitively, this measurement is the net
change in prominence features—a negative value indicates
fewer prominence features, while a positive value indicates
more positive features. As with the other distance measures,
the parameter ambiguity improves model fit significantly.
Tellingly, the minimally adequate model for signdist
with ambiguity (Table 11) does not differ from the mini-
mally adequate model for dist (Table 12); see Table 13
for a direct comparison between the minimally adequate
models for all 3 predictors.

Holding ambiguity constant to examine the interaction
in more depth, we can again compare sdiff and dist.
We find that they do not differ for unambiguous sentences;
however, sdiff performs substantially better than dist
and even signdist as a model predictor for ambigu-
ous sentences (Table 14). This is immediately apparent in
Figs. 6-10.

It is clear that dist behaves roughly the same, regard-
less of ambiguity, while signdist and sdiff interact
with ambiguity—directionality clearly plays a role in the
ambiguous condition. We even see that the slope in the
ambiguous condition for dist is actually in the opposite
direction of the other two predictors.

In Figs. 7 and 8, we can observe some difference
between signdist and sdiff, in particular that the con-
fidence interval is broader for signdist, which indicates
a poorer fit. When we visualize the data in three dimensions
as contour plots instead of as two subplots, the difference
becomes even clearer (Figs. 9 and 10). Color indicates
height, variation in color thus means variation in height,
i.e. slope. Level curves, like in a topography map, indicate
the overall shape of the landscape. The flat coloring in the
unambiguous conditions for signdist and sdiff is
indicative of the amount of variation being very small in
comparison to the variation by the ambiguous condition.
Moreover, sdiff shows a much more nuanced behav-
ior in the ambiguous condition than signdist—this is
clearly visible in the spacing between contour lines and
their respective heights (difference between neighboring
colors in the figures). The combination of weightedness
and direction is much more telling about the processing of
ambiguities than direction alone.

The sdiff model for the N40O time window reveals a
strong negative correlation between sdiff and mean ERP
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Table 7 Statistics for models in the N400 time window based on the dist metric, showing the effect of ambiguity with interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)
dist: mean ~ c.(dist) + ... 9 395188 —197585.02
dist.ambiguity: mean ~ ambiguity * c.(dist) 4. .. 11 395139 —197558.87 52.31 2 4.37e—12 ***

(Random effect structure elided. See page 12)

amplitude, especially in the ambiguous condition (cf. sign
of the #-statistic in Table 15, gradient direction in Fig. 8).

The decrease in the mean reflects the negativity in the
ERP response, while the increase in prominence reflects
an undergoer-first word order. For signdist, we see a
weaker, yet similar effect. For dist, we see a positive cor-
relation with ERP amplitude (dist is non negative per
definition, but the models used centered values): the more
features that don’t overlap, the greater the mean, and hence,
the smaller the negativity. In the unambiguous conditions,
the correlation between mean ERP amplitude and sdiff
is not significant (Table 16); however, we again see that the
sign remains negative.

Additionally, the interaction of signedness and weight-
edness in sdiff expresses itself twofold. Signedness
is a form of directionality and leads to a better gradient
structure, and this becomes especially important when the
correct directionality is not initially clear, namely in the
ambiguous condition. This provides for the similarity in
structure between sdiff and signdist that we see in
Figs. 7 and 8 in contrast to the level structure of dist
(Fig. 6). The weightedness of sdiff then contributes a

Table 8 Summary of model fit for dist (feature overlap) and
ambiguity in the N400 window (without interaction)

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
395138 395229 —197559 395118
Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.18 0.43

c.(dist) 0.057 0.24
subj (Intercept) 1.2 1.1

c.(dist) 0.12 0.35
Residual 17 4.1
Fixed effects:

Estimate Std. Error t value
(Intercept) 1.3 0.19 6.6
ambiguityunambig 0.26 0.036 7.2
c.(dist) 0.24 0.067 3.5
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further, necessary granularity to the model. Directionality
provides information about the direction of change, while
weightedness contributes additional information about the
amount of change.

From the models tested, the best is then the one using
sdiff interacting with ambiguity for its fixed effects
(Table 13).

Finally, in an additional post-hoc test, we can compare
sdiff to a traditional, unweighted syntactic measure—i.e.
a subject as opposed to an actor strategy—using new met-
rics, syndist and synsigndist, which are restricted to
the features PERSON, NUMBER and CASE. The unweighted-
ness follows from the all-or-nothing principles of agreement
and case marking—either a verb and a noun agree or they
don’t / a noun is either nominative or it isn’t. As is evident
in Table 17, even under these experimental circumstances,
without global ambiguity, where the deterministic case
marking of German provides for a clear syntactic analysis,
the prominence-based model fares better. Nevertheless,
since cues to actorhood and subjecthood show considerable
overlap in the present experimental design, this result can
only be taken as a tentative initial indication that an actor-
based strategy outperforms a subject-based strategy when
the two are tested against each other via computational
modelling.

Late Positivity (P600)

Visual inspection of the ERP data (Figs. 2-5) suggests a
secondary effect in the form of a late positivity, which is
line with previous findings on undergoer-initial ambiguous
sentences in German (Haupt et al. 2008). As in the N400
time window, the models including ambiguity as an addi-
tional fixed factor perform far better than those without
ambiguity. Similarly, dist shows no interaction with ambi-
guity (Tables 18 and 19), while sdiff and signdist do
(Tables 20, 21, 22 and 23).

In accordance with the reverse in polarity over a
biphasic reaction, we also see a reverse in effect direc-
tion: whereas a more highly positive sdiff correlated
with a decreased mean (negativity) in the N400 time
window, it correlates with an increased mean (positivity) in
the P600 time window. Similarly, dist now correlates with
a decreased mean (negativity, or here, lack of a positivity).
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Table 9 Statistics for models in the N400 time window based on dist metric, showing the effect of ambiguity without interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)
dist: mean ~ c.(dist) +. .. 9 395188 —197585.02
dist.ambiguity.no_int: mean ~ ambiguity + c.(dist) +. .. 10 395137 —197558.92 52.20 1 5.00e—13 #**

(Random effect structure elided. See page 12)

This is reflected in the respective #-statistics (Tables 18, 20
and 22): their signs have reversed.

A direct comparison of the minimally adequate models
for each predictor can be found in Table 24.

Following the smaller effect size of the late positivity,
the models do not differ by much. (The apparent trivial
advantage for dist in AIC stems from it having fewer
degrees of freedom, i.e. a smaller overfitting penalty.) How-
ever, upon resolving the interaction, we again see a greater
differentiation in the ambiguous but not in the unambigu-
ous condition?! (Tables 25-28). In the ambiguous condi-
tions, sdiff outperforms dist—as in the N400 time
window.

This is also clearly reflected in Figs. 11, 12 and 13 where
the gradience reflected in the unambiguous condition differs
from the unambiguous condition for sdiff but not dist
(see also Figs. 14 and 15 for a comparison of signdist
and sdiff split by ambiguity). Interestingly, the difference
in variance in the mean is overall less in both condi-
tions: this is reflected by the narrower confidence intervals
(Figs. 11-13) and in the visibility of the color gradient for
the unambiguous condition for sdiff (Fig. 15). The latter
is indicative of the variance in the ambiguous condition
being comparable enough to the unambiguous condition
that the same scale provides the necessary resolution for
both conditions. The reversal in effect direction is also
apparent in the reversal of the color schemes for the contour
plots.

While the effect in the P600 time window is smaller than
in the N400, the general trend is nonetheless clear: increased
prominence of the second argument compared to the first
leads to an increase in the mean amplitude in the later time
window. More succinctly, we see a positivity in the P600
time window for an object-initial word order. Taken together
with the N400 for the object-initial word order, we have a
biphasic pattern for object-initial sentences.

As discussed in section “The Extended Argument
Dependency Model (eADM) and Actor-Centered
Comprehension”, the eADM posits a functional distinction

2IThe slightly better performance of dist in this comparison of the
unambiguous conditions is twofold: (1) it has fewer degrees of freedom
and hence a smaller overfitting penalty in the AIC measure, and (2)
the positive-only nature of dist lines up with the directionality of the
positivity (but not the negativity).

between the two components comprising the biphasic pat-
tern observed here. While the N400 is assumed to reflect
actor competition per se (including its resolution), the late
positivity is assumed to index the behavioral reorientation
induced by subjectively significant (task-relevant) events.
In the present study, sentences requiring a reanalysis of the
actor-first preference entailed such a reorientation since the
degree of actor competition was relevant for participants’
completion of the judgement task. As this explanation pre-
supposes that (in contrast to the N400 effect) the positivity
effect is reaction-locked rather than stimulus-locked, we
computed an additional analysis in which we included loga-
rithmically transformed mean reaction times per participant
and condition into the mixed effects models as continuous
predictors. While both models are greatly improved by
including average reaction time by subject for each con-
dition (i.e. single-subject averages) as a factor (Tables 29
and 30), the improvement is much greater (many orders
of magnitude) for the late positivity window, as would be
expected for an effect of task.

Discussion

We have presented a computational model that implements
the actor strategy in language comprehension. The predic-
tions of the model were tested against the results of an
empirical study using event-related brain potentials (ERPs).
Specifically, we examined the predictive capacity of two
metrics for computing argument distinctness (i.e. degree
of competition for the actor role): the unweighted distance
measure dist (the Manhattan metric) and the weighted
scalar difference measure sdiff. While both measures
proved to be statistically significant predictors of N40O0 - late
positivity amplitude, sdif f provided better model fits than
dist. This was apparent particularly in ambiguous sen-
tences, which, in some cases, called for a reanalysis towards
an undergoer-initial order. Moreover, though this was not
the primary focus of the present study, the current results
provide an initial indication that the sdif £ metric of actor
computation provides a better fit to the electrophysiolog-
ical data than a metric based purely on cues to syntactic
subjecthood. They further show that the N400 and late
positivity responses can be dissociated in that the latter is
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Table 10 Statistics for models in the N400 time window based on dist metric, comparing the modelling of ambiguity with and without

interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)
dist.ambiguity.no_int: mean ~ ambiguity + c.(dist) +. .. 10 395137 —197558.92
dist.ambiguity: mean ~ ambiguity * c.(dist) +. .. 11 395139 —197558.87 0.11 1 7.41e—01

(Random effect structure elided. See page 12)

tied more closely to participants’ behavioral reactions than
the former. In the following, we will first discuss the evi-
dence supporting a weighted as opposed to an unweighted
distance metric and the architectural consequences arising
from this result, before turning to implications for the
functional interpretation of the N400 and late positivity in
language processing tasks. We will then describe how this
initial computational model of the actor strategy might serve
to advance the development of a neurobiologically plausible
model of actorhood computation. Finally, we will describe
some future directions resulting from this work.

Evidence for and Consequences of a Weighted Distance
Metric

As mentioned in section “Distinctness/Actor Competition”,
dist (the Manhattan metric) roughly corresponds with
“feature overlap” or traditional notions of similarity-based
interference, such as those in memory-based models of

Table 11 Summary of model fit for signdist (directed, net change
in prominence features) and ambiguity in the N400 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
395396 395496 —197687 395374
Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.17 0.42

c.(signdist) 0.015 0.12
subj (Intercept) 1.2 1.1

c.(signdist) 0.015 0.12
Residual 17 4.1
Fixed effects:

Estimate Std. Error t value
(Intercept) 1.2 0.19 6.1
ambiguityunambig 0.5 0.031 16
c.(signdist) —-0.2 0.03 —6.8
ambiguityunambig: 0.2 0.019 11

c.(signdist)
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language processing (e.g. Lewis et al. 2006; Lewis 2000;
Lewis and Vasishth 2005; McElree et al. 2003). By contrast,
sdiff takes into account the language-specific weighting
of the actor-related features. For German, this weighting
places particular emphasis on the function of unambiguous
case marking, which is the dominant cue to actor assign-
ment when it is available (MacWhinney et al. 1984). In
addition, it allows for coalitions of features to form to over-
come “deficient” (ambiguous) case marking (Bates et al.
1982). The strong role of case as well as well the supple-
mentary role of coalitions of weaker cues is most obvious
in comparing the ambiguous and unambiguous conditions.
The predictive power of sdiff comes not only from
its weighting, but also from its directionality, which serves
to model the incremental demands of language process-
ing, including the development (and possible fulfillment)
of expectations. In relation to the current experiment, the
directionality of the sdiff measure (negative or positive)
essentially reflected the degree to which the parser’s expec-
tations about the prominence of the second argument were
met. When sdiff was positive, the second argument was
more prominent than the first, thus requiring a revision of
the initial actor analysis of the first argument. This was
reflected in a biphasic N400 - late positivity pattern, as
was already observed in previous studies on actor-reanalysis
in German (Haupt et al. 2008). As noted in section
“Evidence for the Actor Heuristic and for Competition for
the Actor Role” we interpret the negativity as an index
of actor competition (leading to reanalysis of the initial
actor-first preference in this case) and the late positivity as
reflecting a behaviorally significant categorization of the
sentences as less well-formed. This categorization reflects

Table 12 Statistics for the minimally adequate models for each
unweighted predictor in the N400 time window

Df AIC logLik
dist.ambiguity.no_int: 10 395137 —197558.92
mean ~ ambiguity + c.(dist) +. ..
signdist.ambiguity: 11 395395 —197686.89

mean ~ ambiguity * c.(signdist) +. . .

(Random effect structure elided. See page 12)
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Table 13 Statistics for the minimally adequate models for each pre-
dictor in the N400 time window: sdiff and signdist interact with
ambiguity, dist does not

Df AIC logLik
dist.ambiguity.no_int: 10 395137 —197558.92
mean ~ ambiguity 4 c.(dist) + ...
sdiff.ambiguity: 11 395190 —197584.42
mean ~ ambiguity * c.(sdiff) + ...
signdist.ambiguity: 11 395395 —197686.89

mean ~ ambiguity * c.(signdist) 4. . .

(Random effect structure elided. See page 12)

the unmotivated positioning of the undergoer argument in a
position that linearly precedes that of the actor.

Crucially, however, the advantage of sdiff over dist
as a predictor of language-processing related neurophysio-
logical activity cannot be reduced to the directionality of
the sdiff metric. This was shown by the comparison of
the two basic metrics with a directional (signed) version
of dist, signdist. For locally ambiguous sentences,
model fits involving sdiff were better than those involv-
ing both dist and signdist, thus attesting to the fact
that both directionality and feature weighting contribute to
the advantage for sdiff. Both N400 and late positivity
amplitude for a revision of the actor-first preference were
modulated by NP2 prominence (i.e. depending on whether
NP2 was a first person pronoun or a definite noun phrase)
and the magnitude of this modulation was predicted more
accurately by the more fine-grained, weighted sdiff met-
ric than by the unweighted dist and signdist metrics.

An additional divergence between the sdiff and dist
measures is apparent in the model fits for the late positivity
time window. Here, sdiff showed directionally oppo-
site effects for ambiguous and unambiguous sentences: in
the ambiguous cases, more positive sdiff correlated with
higher positivity amplitude (as described above), while, for
unambiguous sentences, more positive sdiff correlates
with decreased positivity amplitude. By contrast, dist
does not differentiate between ambiguous and unambiguous
sentences, as demonstrated by the fact that the interaction of

Table 14 Statistics for models in the N400 time window with NP1
ambiguous

Df AIC logLik
dist: mean ~ c.(dist) + ... 197520 —98751.07
sdiff: mean ~ c.(sdiff) +. .. 197353 —98667.50
signdist: mean ~ c.(signdist) +. . . 9 197477 —98729.61

(Random effect structure elided. See page 12)
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Fig. 6 Mean EEG in the N400 time window as a function of dist
(centered) and its interaction with ambiguity. Dashed lines indicate the
95 % confidence interval

dist and ambiguity can be removed from the model with-
out affecting model fit. Thus, in unambiguous sentences, the
data show a small, late positivity for actor- as opposed to
undergoer-initial sentences. We posit that this could again
be explained in terms of predictability in online process-
ing. Specifically, unambiguous initial accusative marking
(sentences with very strongly negative sdiff) allows for
comparatively more prediction: in contrast to an initial nom-
inative, it is apparent that the construction is transitive and
that a second argument is required (Bornkessel et al. 2004a;
Wolff et al. 2008). Accordingly, unambiguous nominative-
initial (actor-initial) engender a slightly increased late pos-
itivity at the less predictable NP2 in comparison to their
accusative-initial counterparts. Interestingly, we observed
no such effect in the earlier time window. This supports
the perspective that the N400 reflects competition for the

20 2
ambiguity : unambig

arﬁbiguit'y : amBig

mean

signdist

Fig. 7 Mean EEG in the N400 time window as a function of
signdist (centered) and its interaction with ambiguity. Dashed
lines indicate the 95% confidence interval
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Fig. 8 Mean EEG in the N400 time window as a function of sdiff
(centered) and its interaction with ambiguity. Dashed lines indicate the
95 % confidence interval

actor role more directly than the late positivity. In unam-
biguous sentences, competition is relatively low due to the
strong weighting of unambiguous case marking informa-
tion in German. Hence, no effects on N400O amplitude were
observed in these sentence types. The late positivity, by
contrast, reflects a behaviorally relevant well-formedness
categorization, which can, in part, be envisaged as depen-
dent on how predictable a particular element is within a
given sentence context. This result emphasizes the qualita-
tive difference between the N400 and late positivity effects,
in spite of their tight interrelationship within the overall
biphasic response. Such a difference is further supported by
the finding that the amplitude of the late positivity effect
showed a substantially stronger correlation with reaction

Mean

signdist

e —_—

T T
ambiguous unambiguous

ambiguity

Fig. 9 Mean EEG in the N400 time window as a function of
signdist (centered) and its interaction with ambiguity. The colors
indicate the “height”, i.e., a range of (predicted) values of the mean
EEG; the value is given by the contour curves. Colors that are closer
together (e.g. light vs. dark blue) indicate finer differences. More color
indicates more variation
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Fig. 10 Mean EEG in the N400 time window as a function of sdiff
(centered) and its interaction with ambiguity. The colors indicate the
“height”, i.e., a range of (predicted) values of the mean EEG; the value
is given by the contour curves. Colors that are closer together (e.g. light

vs. dark blue) indicate finer differences. More color indicates more
variation

times for the behavioral task than the amplitude of the
N400.

Overall, our findings suggest that the neural imple-
mentation of actor competition is best modeled by a
weighted— rather than an unweighted—measure of the dis-
tance between the arguments in terms of actor features. This
indicates that actor competition cannot be wholly reduced
to similarity-based interference—at least in the sense of
similarity-based interference as it is currently assumed in
existing memory-based models of sentence processing. Cru-
cially, similarity-based interference is a property of memory

Table 15 Summary of model fit for sdif £ (weighted distinctness) in
the N400 window, with NP1 ambiguous

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
197353 197429 —98668 197335
Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.21 0.46
c.(sdiff) 9.3e—08 0.0003
subj (Intercept) 1.1 1.1
c.(sdiff) 1.1e—07 0.00033
Residual 17 4.1
Fixed effects:
Estimate Std. Error t value
(Intercept) 1.2 0.19 6.2
c.(sdiff) —0.00039 7e—05 -5.6




Neuroinform (2014) 12:143-179

163

Table 16 Summary of model fit for sdif £ (weighted distinctness) in
the N400 window, with NP1 unambiguous

Table 18 Summary of model fit for dist (feature overlap) and
ambiguity in the P600 window

Linear mixed model fit by maximum likelihood

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
197470 197546 —98726 197452
Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.21 0.46
c.(sdiff) 2.5¢—08 0.00016
subj (Intercept) 1.5 1.2
c.(sdiff) 3.3e—08 0.00018
Residual 17 4.1
Fixed effects:
Estimate Std. Error t value
(Intercept) 1.7 0.21 7.9
c.(sdiff) —5.9e—06 3.8¢e—05 —0.16

models assuming a direct access to memory representa-
tions via a content-addressable pointer mechanism rather
than a memory search: “The defining property of a content-
addressable retrieval process is that information (cues) in the
retrieval context enables direct access to relevant memory
representations, without the need to search through extrane-
ous memory representations’” (McElree 2006, p. 163). Thus,
since different types of cues serve to specify the “parts”
making up the pointer address, they are not weighted—
just as in a street address the name of the street, say, is
not weighted differently to the house number or the post-
code. It is therefore the qualitative overlap between cues
that leads to similarity-based interference and weighting of
the cues has no obvious role in a memory retrieval mech-
anism of this type. While, to the best of our knowledge,
these characteristics apply to all existing models of language
processing drawing on the assumption of direct memory
access and similarity-based interference (McElree 2006;
Lewis et al. 2006; Lewis and Vasishth 2005; Martin and
McElree 2008), we cannot exclude that it may in principle

Table 17 Statistics comparing the predictors for a (unweighted) syn-
tactic subject and (weighted) actor-prominence features in the N400
time window

Df AIC logLik
synsigndist.ambiguity: 11 395292 —197635.41
mean ~ ambiguity * c.(synsigndist) + ...
sdiff.ambiguity: 11 395190 —197584.42

mean ~ ambiguity * c.(sdiff) + ...

(Random effect structure elided. See page 12)

AIC BIC logLik deviance
403101 403193 —201541 403081
Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.066 0.26

c.(dist) 0.068 0.26
subj (Intercept) 1.2 1.1

c.(dist) 0.15 0.39
Residual 19 4.4
Fixed effects:

Estimate Std. Error t value
(Intercept) 0.47 0.18 2.6
ambiguityunambig —0.093 0.038 —24
c.(dist) —0.51 0.075 —6.9

be possible to assume a weighting of retrieval cues. If this
were the case, the current findings could potentially also be
subsumed under models based on the notion of similarity-
based interference in memory retrieval. Nevertheless, we
would like to stress once again that this assumption of fea-
ture weighting is not incorporated in any current models
of this type.

Relation to Previous Work on Computer-Implemented
Models

Vosse and Kempen (2008) conducted a similar computer-
supported study using experimental stimuli from a previ-
ous experiment on scrambling (non canonical word order)
effects with different verb classes in German, e.g. sen-
tences where actorhood features do not as clearly align with
syntactic subjecthood (Bornkessel and Schlesewsky 2006).
The model presented is based primarily on morphosyntac-
tic features—sentence topology (especially important for
German data, but also used to model information struc-
tural alternations in word order), the related linear word
order, and lexical features (including word category) and
frames (related to valency in traditional linguistics). Input
is processed via “unification” (see also Kempen, this issue),
whereby trees are successively assembled and attached to
one-another to build a single, unified tree / representation
for the sentence. Processing difficulty is represented by
cycles required to attach items in the correct configuration,
e.g. a single nominative argument in agreement with the
verb is readily attached, whereas a non agreeing noun-verb
pair requires more effort to attach.
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Table 19 Statistics for models in the P600 time window based on dist metric, comparing the modelling of ambiguity with and without

interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)
dist.ambiguity.no_int: mean ~ ambiguity + c.(dist) + ... 10 403101 —201540.73
dist.ambiguity: mean ~ ambiguity * c.(dist) +. .. 11 403101 —201539.69 2.09 1 1.48e—01

(Random effect structure elided. See page 12)

In this way, Vosse and Kempen’s model is similar to the
model presented here: both allow for a particular type of
competition for attachment to a representation / role.>> The
models differ however in which features are modeled as well
as their ability to model the entire time-course. Crucially,
Vosse and Kempen’s model primarily models late positiv-
ities (although they acknowledge that “certain negativities
might find their origin in parser dynamics as well”’) and fails
to predict that subsequent studies have consistently shown
a biphasic N400 - late positivity pattern following a reanal-
ysis towards an undergoer-initial order in sentences with
accusative verbs rather than only a positivity (Haupt et al.
2008).

However, it is important to point out that the aim of the
present study was not to pit an actor-based interpretation
strategy against a subject-centered interpretation strategy.
Rather, based on the empirical motivation for an actor strat-
egy in our own previous research (see section “Evidence
for the Actor Heuristic and for Competition for the Actor
Role”), it sought to examine the predictive capacity of vari-
ous computational metrics designed to implement the actor
heuristic. Thus, while the current findings provide an ini-
tial indication that a computational model based on an
an actor-centered rather than subject-centered interpretation
strategy shows a superior fit to electrophysiological find-
ings on human sentence comprehension (see the improve-
ment of sdiff over synsigndiff in both time win-
dows (Tables 17, and 31), the present experimental design
included a considerable degree of overlap between the
features relevant to the two strategies. Thus, a direct compu-
tational test of an actor-first strategy against a subject-first
strategy in situations where the two diverge more strongly
remains to be carried out in future research.

Implications for the Interpretation of the N400 and Late
Positivity ERP Responses

The present findings have interesting and potentially impor-
tant implications for the interpretation of language-related
ERP responses. In this section, we will therefore relate our

22Vosse and Kempen (2009) describe their parsing framework as a
“dynamic model of syntactic parsing based on activation and inhibitory
competition.”
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results to current approaches to the N400 and late positivity
in turn.

With regard to the N400, many researchers have recently
come to favor a lexically-based interpretation of this
component. According to this perspective, modulations
of N400 amplitude do not reflect the computation of
message-level meaning, but can rather be reduced to the
effort required to retrieve a word from semantic memory
(Kutas and Federmeier 2000). Effort is conditioned, in part,
by intrinsic properties of the word such as its frequency, but
also by its degree of preactivation given the preceding sen-
tence and discourse context (Lau et al. 2008; Brouwer et al.
2012; Stroud and Phillips 2012). These assumptions can
explain why N400 amplitude is modulated by single-word
predictability (e.g. DeLong et al. 2005) and also why, in
English and Dutch, “semantic reversal anomalies” (i.e. sen-
tences such as “The hearty meals were devouring ...”, Kim
and Osterhout 2005) engender only late positivity effects
but not N400 effects.

Table 20 Summary of model fit for sdiff (weighted distinctness)
and ambiguity in the P600 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
403740 403841 —201859 403718
Random effects:
Groups Name Variance Std.Deyv.
item (Intercept)  0.06 0.24

c.(sdiff) 1.5e—08 0.00012
subj (Intercept) 1.2 1.1

c.(sdiff) 1.3e—08 0.00011
Residual 19 4.4
Fixed effects:

Estimate Std. Error  t value
(Intercept) 0.72 0.18 4
ambiguityunambig —-0.6 0.033 —18
c.(sdiff) 0.00053 3.4e—05 15
ambiguityunambig:c.(sdiff) —0.00059  2.6e—05 -23
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Table 21 Statistics for models in the P600 time window based on the sdif £, comparing the modelling of ambiguity with and without interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)
sdiff.ambiguity.no_int: mean ~ ambiguity + c.(sdiff) + ... 10 404244 —202112.37
sdiff.ambiguity: mean ~ ambiguity * c.(sdiff) +... 11 403740 —201859.03 506.68 1 < 2.2e—16 ***

(Random effect structure elided. See page 12)

Table 22 Summary of model fit for signdist (directed, net change
in prominent features) and ambiguity in the P600 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
403875 403976 —201927 403853
Random effects:
Groups Name Variance  Std.Dev.
item (Intercept) 0.059 0.24

c.(signdist) 0.015 0.12
subj (Intercept) 1.2 1.1

c.(signdist) 0.0082 0.091
Residual 19 44
Fixed effects:

Estimate Std. Error t value
(Intercept) 0.72 0.18 4
ambiguityunambig —0.6 0.033 —18
c.(signdist) 0.31 0.028 11
ambiguityunambig:c.(signdist) —0.36 0.02 —18

While this lexical view of the N400 is rather appeal-
ing and is able to account for a wide range of findings
in the language-related ERP literature, it does not suf-
fice to explain the present findings. Firstly, consider the
basic finding of an increased N400 whenever a reanalysis
towards an undergoer-initial order was required. This could
be explained by the lexical view under the assumption that,
following the actor interpretation of the first noun phrase
and the subsequently encountered transitive verb, the pro-
cessing system expects to encounter a second noun phrase
marked for (or at least compatible with) accusative (rather

than nominative) case. In terms of preactivation, this would
entail preactivating accusative case forms—either in terms
of full-form lexical entries or of abstract, but nevertheless
lexically stored, grammatical information. (But note that
this explanation presupposes a rather specific view of lexi-
cal organization.) Crucially, however, it is not clear how this
explanation might extend to the additional modulation of
the actor-reanalysis effect via person / pronominality. The
system has no way of predicting whether the second noun
phrase will be a first person pronoun or a non-pronominal
NP (since there is no expectation to encounter an actor argu-
ment at this point, one could not make the argument that
a first person argument is more highly expected since it
is a more prototypical instantiation of an actor argument).
Thus, it is not clear how a purely lexically-based account
of the N400 might account for the present findings (for fur-
ther examples of problematic results for this class of N400
models, see Lotze et al. 2011; Bornkessel-Schlesewsky et
al. 2011; Bourguignon et al. 2012). Rather, our data suggest
that the N400—as one instance of a broader class of negativ-
ity responses—reflects at least certain aspects of integration
between the current input and the input previously encoun-
tered. While top-down factors such as predictability, which
can plausibly be translated into the notion of lexical pre-
activation, play an important part in determining N400
amplitude, bottom-up properties of the current input item
must also be taken into account.

With regard to the late positivity, the close relation-
ship between positivity amplitude and behavioral responses
(reaction times) provides converging support for accounts of
this component which posit a general (task-related) expla-
nation rather than a specific linguistic function (e.g. reanal-
ysis or effortful combinatorial analysis, Hagoort 2003;
Kuperberg 2007). In addition to the account advocated here,

Table 23 Statistics for models in the P600 time window based on the signdist, comparing the modelling of ambiguity with and without

interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)
signdist.ambiguity.no_int: mean ~ ambiguity + c.(signdist) + ... 10 404211 —202095.55
signdist.ambiguity: mean ~ ambiguity * c.(signdist) + . .. 11 403875 —201926.73 337.66 1 < 2.2e—16 ***

(Random effect structure elided. See page 12)
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Table 24 Statistics for the minimally adequate models for each
predictor in the P600 time window: the models do not differ by much

Table 26 Statistics for models in the P600 time window with NP1
unambiguous

Df AIC logLik Df AIC logLik
dist.ambiguity.no_int: 10 403101 —201540.73 dist: mean ~c.(dist) +. .. 200678 —100334.17
mean ~ ambiguity + c.(dist) +. .. sdiff: mean ~ c.(sdiff) +. .. 200976 —100483.28
sdiff.ambiguity: 11 403740 —201859.03 signdist: mean ~ c.(signdist) +. .. 5 200981 —100485.95
mean ~ ambiguity * c.(sdiff) +. ..
signdist.ambiguity: 11 403875 —201926.73 (Random effect structure elided. See page 12)

mean ~ ambiguity * c.(signdist) +. . .

(Random effect structure elided. See page 12)

such a view has been proposed most prominently from the
perspective of the conflict monitoring hypothesis (e.g. Kolk
et al. 2003; van de Meerendonk et al. 2009). According
to this proposal, late positivity effects in language process-
ing reflect the detection of conflicting information and an
ensuing check of the input for errors in previous process-
ing steps. Evidence for this perspective stems, for example,
from the finding that late positivities can be observed
in response to various types of conflicts including ortho-
graphic errors (Vissers et al. 2006) and that, while both
weak and strong semantic conflicts induce N400 effects,
only strong conflicts engender an additional late positivity
(van de Meerendonk et al. 2010). The conflict monitoring
hypothesis can therefore also account for the observation
that a reanalysis of the actor-first preference engenders late
positivity effects (in addition to N400 modulations): here,
conflict is high in comparison to sentences with an actor-
initial word order. More precisely, in contrast to the N400,
which is observable for all visually presented words (cf. the
description in the very first study Kutas and Hillyard 1980),
but can be described as an effect in certain contexts, the
late positivity belongs more to the class of relative effects,
occurring primarily in contrast to a condition with less
(resolvable) conflict in experiments with a conflict-focused
task (e.g. acceptability judgments) (Sassenhagen et al. 2013;
Frenzel et al. 2011; Hahne and Friederici 2002).

Howeyver, a crucial difference between the conflict mon-
itoring account and the present approach is that, accord-
ing to the conflict monitoring view, the late positivity

Table 25 Statistics for models in the P600 time window with NP1
ambiguous

Df AIC logLik
dist: mean ~ c.(dist) + ... 202377 —101179.75
sdiff: mean ~ c.(sdiff) +. .. 202102 —101042.26
signdist: mean ~ c.(signdist) +. .. 9 202396 —101189.33

(Random effect structure elided. See page 12)
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Table 27 Summary of model fit for sdif £ (weighted distinctness) in
the P600 window, with NP1 ambiguous

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
202103 202179 —101042 202085
Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.1 0.32
c.(sdiff) 1.1e—07 0.00034
subj (Intercept) 1.1 1
c.(sdiff) 2.2e—07 0.00047
Residual 19 4.4
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.72 0.18 4
c.(sdiff) 0.00053 9.2e—05 57

Table 28 Summary of model fit for sdif £ (weighted distinctness) in
the P600 window, with NP1 unambiguous

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance
200977 201019 —100483 200967
Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.1 0.32
subj (Intercept) 1.4 1.2
Residual 19 43
Fixed effects:

Estimate Std. Error t value
(Intercept) 0.12 0.2 0.58
c.(sdiff) —6.4e—05 1.2e—05 -5.6
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Fig. 11 Mean EEG in the P600 time window as a function of dist
(centered) and its interaction with ambiguity. Dashed lines indicate the
95 % confidence interval

reflects a (domain-general) reanalysis of the input (con-
flict resolution) (van de Meerendonk et al. 2009) while
we posit that conflict resolution is reflected in the N400.
Evidence for the N400 as the locus of conflict resolution
stems from the observation that recent studies examining
reanalyses of the actor-first preference have consistently
found N400 effects, with additional late positivities depend-
ing on the behavioral relevance of the object-initial order
(Bornkessel et al. 2004b; Haupt et al. 2008). Specifically,
when the object-initial order was licensed by the presence
of an object-experiencer verb and therefore did not call for
a behavioral reorientation (i.e. judgement of the sentence as
unacceptable), only an N400 effect was observed but no late
positivity. The present results provide converging support
for this perspective, since conflict resolution in the sense
of a reanalysis should be more closely tied to the conflict-
inducing feature in the input rather than to the behavioral
response. Thus, the observation that the amplitude of the late
positivity correlated considerably more strongly with the
reaction times for the judgment task is expected under the
assumption that the N400 reflects (input-related) conflict
resolution, while the late positivity reflects the behavioral
consequences of the conflict (and its resolution) in the given
task environment.”3

23 Note that an explanation along these lines can also account for the
dissociation between mild and strong conflicts observed by van de
Meerendonk et al. (2010). As it appears plausible to assume that only
the strong conflicts were registered as behaviorally significant, our
account derives the finding of a late positivity for these conflicts, while
no such effect was observed for mild conflicts. This explanation leads
to the testable prediction that, with different task instructions (e.g. a
judgment task emphasizing that even mild implausibilities should be
classified as such), van de Meerendonk et al. (2010)’s mild conflict
stimuli should also engender a late positivity.

-2 0 2
ambiguity : ambig jambiguity : unambig

mean

-2 0 2
signdist
Fig. 12 Mean EEG in the P600 time window as a function of

signdist (centered) and its interaction with ambiguity. Dashed
lines indicate the 95 % confidence interval

Towards a Neurobiologically Realistic Computational
Model of Actor computation

The present results demonstrate that the sdif f measure is
a promising candidate for a neurocognitively plausible for-
malization of actor competition, as it is a valid predictor of
neurophysiological activity related to sentence comprehen-
sion. In addition, we propose that this metric can be viewed
as a first step towards a computational formalization of the
neurobiological model described in section “The Extended
Argument Dependency Model (eADM) and Actor-Centered
Comprehension”. Specifically, we suggest that the insights
gleaned from the present work may further our understand-
ing of how linguistic categories posited within the eADM—
such as the actor role—are recognized and processed in
a neurobiologically plausible manner and how we might

-2000 0 2000
ambiguity : unambig

mean

-2000 0

Fig. 13 Mean EEG in the P600 time window as a function of sdif £
(centered) and its interaction with ambiguity. Dashed lines indicate the
95 % confidence interval
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Mean

signdist

ambiguous

unambiguous
ambiguity
Fig. 14 Mean EEG in the P600 time window as a function of
signdist (centered) and its interaction with ambiguity. The colors
indicate the “height”, i.e., a range of (predicted) values of the mean
EEG; the value is given by the contour curves. Colors that are closer

together (e.g. light vs. dark blue) indicate finer differences. More color
indicates more variation

envisage the relation between linguistic and non-linguistic
categories.

Our proposal builds on the suggestion that, in view
of its cross-linguistic ubiquity, actor could be modeled
as an attractor category (Bornkessel-Schlesewsky and
Schlesewsky 2013a). Recent work in computational neuro-
science has shown that attractor networks provide a neuro-
biologically plausible means of modeling decision-making
processes (Deco et al. 2009; Deco et al. 2012), both for
complex value-based choices as well as for perceptual clas-
sifications (“perceptual decision-making”; Heekeren et al.

Mean

sdiff

ambiguous

unambiguous
ambiguity

Fig. 15 Mean EEG in the P600 time window as a function of sdiff
(centered) and its interaction with ambiguity. The colors indicate the
“height”, i.e., a range of (predicted) values of the mean EEG; the value
is given by the contour curves. Colors that are closer together (e.g. light
vs. dark blue) indicate finer differences. More color indicates more
variation
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2004; Basten et al. 2010). In an attractor network, deci-
sions can be modeled via attractor states in a neural network
which are associated with (stable) high firing rates. Which
state “wins” during decision making is determined by the
current input and the initial stochastic firing behaviour of the
network. Based on the overarching (language-independent)
importance of the actor category (see section “Evidence
for the Actor Heuristic and for Competition for the Actor
Role”), it has been proposed that an attractor network
for actor categorization exists independently of language
(Bornkessel-Schlesewsky and Schlesewsky 2013a). This
network is universal, as it reflects the general human ability
to recognize goal-directed action. The stable firing patterns
inherent to this network are plausibly based on sets of input
features that co-occur in domain-general actor recognition.
As the linguistic actor category overlaps to a certain degree
with these general features (e.g. via the features +HUMAN,
+ANIMATE and +1ST. PERSON), there is a propensity for
actor recognition via the general attractor network. With
regard to more language-specific features (e.g. case mark-
ing), the system will learn that these correlate with the
remaining (domain-general) actor features such that, in the
mature system, they also push the network towards the actor
recognition attractor state.”* Crucially, an important con-
sideration pertains to the degree of evidence for a certain
decision—e.g. the classification of a certain event partici-
pant as an actor—that the current input offers. The sdiff
metric can be viewed as a measure that captures this degree
of evidence.

Weighted, directed measures, such as sdiff, provide
the means to quantify the effects of attractor basins. Indeed,
the physical metaphor behind attractor basins also provides
insight into why sdiff functions better than dist or
signdist (Fig. 16). The proximity of an attractor is given
by dist, but not whether it is a positive or negative attrac-
tor (true attractor vs. repulsor, or hill vs. basin; see Fig. 17).
This is a decent first approximation, but quickly fails in
more rolling landscapes, e.g. in languages with free word
order, where it is not clear which argument will come first.
The directionality of signdist provides a better approx-
imation, modeling attraction and repulsion, but the best
approximation comes from the strength of the attractor (the
steepness of the sides of the basin / hill or equivalently,
the height and depth; see Fig. 18). This is exactly what
sdiff does—the weightedness distorts the actor space,
creating stronger and weaker attractors (Fig. 19). In this
sense, deterministic case marking and garden path sentences
are examples of attractor basins that are too deep to escape,

24This proposal of a tight interrelationship between domain-general
and linguistic actor features is supported by the recent observation that
properties of an ideal actor may depend—at least to some degree—on
the characteristics of one’s native language (Fausey et al. 2010; Fausey
and Boroditsky 2011).
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Table 29 Statistics for the minimally adequate (stimulus-based) models in the N400 time window compared to their extension via reaction time

(RT)

Df AIC logLik Chisq Chi Df Pr(>Chisq)
sdiff.ambiguity: mean ~ ambiguity * c.(sdiff) + ... 11 395190 —197584.42
sdiff.ambiguity.rt: mean ~ ambiguity * c.(sdiff) + log(rt) +. .. 12 395172 —197574.02 20.80 1 <5.10e—06 ***

(Random effect structure elided. See page 12)

where the language system becomes trapped at the bottom
of a well, or perhaps, to use another meaning of the word
“space”, in a black hole.

Finally, though we have focused on the actor role here,
we propose that the notion of attractor basins could be
used to formalize the entire processing architecture shown
in Fig. 1. Specifically, attractors could be used to model
the categories assumed at every processing step within the
cascade (e.g. phonemes, actor-event schemata etc.). They
could further help to address an issue that is conspicuously
missing from the current model implementation, namely the
need to provide an estimate of the timing of the different
processing steps and, accordingly, of the neurophysiological
responses elicited by them. At present, the model only spec-
ifies the relative order of information processing but offers
no quantifiable timing estimates. However, combining the
assumption of cascaded, hierarchically organized process-
ing steps and the attractor notion opens up a possible avenue
for such a quantification. As noted in section “The Extended
Argument Dependency Model (eADM) and Actor-Centered
Comprehension”, cascaded processing is based on the idea
that, once a sufficient degree of information has accrued,
processing can proceed to the next step. Drawing upon the
attractor notion, we can posit that the faster the system rec-
ognizes that information is relevant for a particular attractor,
the faster processing at the step relevant to that attractor will
be. Accordingly, the formalization of actor space presented
here could be used as the basis for estimating processing
latency as well as amplitude and, in our view, should also
carry over to other linguistic categories. Of course, tim-
ing estimates will not be trivial given the different levels
of neuronal responses that need to be considered here: as
mentioned in section “The Extended Argument Dependency
Model (eADM) and Actor-Centered Comprehension”, scalp

ERPs as examined here are macroscopic responses with
(typically) multiple underlying sources and therefore can-
not be directly compared to the cascade of activity that
is assumed to proceed through individual regions along
the antero-ventral and postero-dorsal streams. Accordingly,
latencies of language-related ERP components such as the
N400 likely do not reflect the absolute timing of information
processing (see Bornkessel-Schlesewsky and Schlesewsky
2013b). Nevertheless, assuming that our proposal regard-
ing the basic relationship between evidence for an attractor
and duration of the processing step in question is correct,
both the direct neuronal responses and the neurophysiolog-
ical responses measured by means of scalp EEG recordings
should be quantifiable as some function of the degree of
evidence for the respective attractor category.

Future Directions and the Role of Neuroinformatics

In the experiment presented here, sdi f £ showed the advan-
tage of a weighted, directed distinctness measure over
simple (unweighted) interference measures. Nonetheless,
morphological case and ambiguities involving the same
dominated the most important prominence variations. In
future work, we aspire to test the metric against a wider
range of stimuli, including globally ambiguous sentences
and generally more naturalistic language. On account of
the modular nature of the implementation, any EEG dataset
could be processed and analyzed, either via adapting /
constructing a suitable front-end (Stage 1) parser or via
manually tagging the stimuli appropriately for Stage 2. As
more work is done in this direction of quantifying linguistic
differences in the brain, it becomes increasingly important
to have diverse test data, especially if learning is to be

Table 30 Statistics for the minimally adequate (stimulus-based) models in the P600 time window compared to their extension via reaction time

(RT)

Df AIC logLik Chisq Chi Df Pr(>Chisq)
sdiff.ambiguity: mean ~ ambiguity * c.(sdiff) + ... 11 403740 —201859.03
sdiff.ambiguity.rt: mean ~ ambiguity * c.(sdiff) + log(rt) +. .. 12 403505 —201740.85 236.36 1 <2.2e—16 ***

(Random effect structure elided. See page 12)

@ Springer



170

Neuroinform (2014) 12:143-179

Table 31 Statistics comparing the predictors for a (unweighted) syn-
tactic subject and (weighted) actor-prominence features P600 time
window

Df AIC logLik

synsigndist.ambiguity: 11 404065 —202021.65
mean ~ ambiguity * c.(synsigndist) 4. ..
sdiff.ambiguity: 11 403740 —201859.03

mean ~ ambiguity * c.(sdiff) +. ..

(Random effect structure elided. See page 12)

simulated at some point. To this end, it is crucially important
that databases of EEG data for diverse stimuli from typo-
logically varied languages are available, similar to the cor-
pora and treebanks used by researchers in natural language
processing. A general model of language comprehension is
the goal, not a model for particular dataset.

Call for Data (Banks)

To this end, we would like to see databanks of neuroanatom-
ical and neurophysiological data similar to the “treebanks”
common in computational linguistics and natural language
processing research. Such databanks should provide a val-
idated, state-of-the-art analysis with traditional methodolo-
gies, e.g. ANOVA (including standardized ROIs and/or sin-
gle electrodes as a factor, with grand-average ERP) as well
as parametric labeling of relevant linguistic information—
cloze probability of each word, morphosyntactic features,
thematic relations, known important semantic features (e.g.
animacy and ideally other features that are expressed mor-
phosyntactically in any of the world’s languages), lexical

dist

feature overlap is measured,
but no directionality

Prominence

prediction is hard

Argument

Fig. 17 Attractor basins in actor space as measured by dist. The
directionality of distortion is lost, making prediction difficult

frequency estimates, estimates of syntactic frequency for
any syntactic peculiarities (e.g. non canonical word orders),
etc. The EEG data should preferably be stored in an open
format, or at least in a format for which there are suit-
able plugins and converters—perhaps one of the formats
supported by the open source EEGLAB software pack-
age. Data should not be filtered, rereferenced or otherwise
manipulated offline before storage so as to not limit analy-
sis by alternative techniques (time-frequency analysis, ICA,
etc.). Instead, the measurement parameters (sampling rate,
reference electrode, equipment manufacturer), experimen-
tal setup (presentation mode and aspects pertaining thereto)
and anonymized subject data (age, sex, etc.) as well as

signdist

prominence distorts the space
into attractor basins

actorhgbd follows

Prominence

prominence
distorts the
space into
respulsor
hills

feature overlap is measured,
with directionality

prediction works,
but lacks fine gradience

Prominence

Argument

Fig. 16 Attractor basins in actor space. Prominence can be viewed as
a distortion of actor space. The curvature of actor space then pulls or
pushes actorhood towards a particular argument
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Argument

Fig. 18 Attractor basins in actor space as measured by signdist.
The gradience of distortion is lost, leading to only qualitative
predictions
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sdiff

weighting creates
asymmetric distortion

prediction works,
and has a fine, gradient sensitivity

Prominence

Argument

Fig. 19 Attractor basins in actor space as measured by sdiff.
Both directionality and gradience of the distortion is preserved, thus
enabling accurate prediction. The distortion here is to scale for the
sentence Die Bettlerin bedrdngte den Kommissar auf der Strafse. (See
Table 3)

experimental task, handedness of the test subject and task
interface layout, should be stored as metadata. Optionally,
the number of channels could be stored as well; however,
this is not necessary. Channel names should be standardized
to the 10-10/10-20 system terminology. Behavioral data
should be linked not just as metadata, but also as a proper
dataset unto itself. (Relational databases provide a conve-
nient way to do this.) Only then, can we truly test our models
of sentence comprehension, i.e. our “parsers”, with the same
rigor that has been standard in other computational disci-
plines for years now—with lots of large, standardized tests.

Vosse and Kempen (2008) took an important first step
in this direction, analyzing data from another experiment;
however, it appears important to go beyond comparisons
of modeling output with the published, summarized data.
As discussed by Arbib et al. (this issue), it is important
to remember that summary data implies the existence of
non summarized data, i.e. more complete data. As one
researcher’s noise is another’s signal, even the most basic
filtering removes important data; the usual presentation of
means and ANOVA leads even more to be desired. The
BrainMap database is an excellent start for fMRI data, but
it only makes the want of a comparable database for EEG
data more striking. Recent trends in Open Access and pre-
registration point to such databases as being the way of the
future. We need data sharing beyond rebuttal and as com-
mon proving ground beyond the current experiments hand
crafted to show off a particular model feature.

Beyond the traditional, well parameterized experimental
data, we would ideally also like to see a complementary set
of data acquired in a less structured, free-task environment.

That is, we would like to see a similar dataset of EEG/fMRI
recording of natural stories with a maximal task of a few
comprehension questions taken offline after the main exper-
iment (Whitney et al. 2009) but with fully tagged input.
Computational linguists use more than sets of simple, con-
structed sentences to test their data and so should we—our
models need to be able to handle the full complexity of
human language in its actual use and not just in our ideal-
ized laboratory conditions. These more complex inputs also
present us the chance to move beyond sentence-processing
models towards language-processing models.

The existence of large, standardized datasets also pro-
vides for a proving ground for newer methodologies. For
example, although time-frequency analysis, principal com-
ponent analysis (PCA) and independent component analysis
(ICA) have been used in recent years to differentiate certain
subtleties not readily apparent from traditional ERP-based
analyses, the world of EEG-data is still dominated by ERP.
This is almost certainly related to not just the complexity
of these new methods, but also their unclear relationship
to ERP results. A standard dataset provides exactly the
playground necessary to demonstrate and test new method-
ologies and their relationship to old ones.

Brief Technical Notes on Implementation

The present implementation is in Python 3.2. A previous
version was written and tested in Python 2.7; however, the
implementation of Stage 1 and necessity of using non ASCII
encoding for German sentence data motivated the shift to
the 3.x series of Python with its much more extensive Uni-
code support. File and directory manipulations were all
tested on POSIX compatible platforms.

There are options to set the baseline weights all equal to
one (no weighting) or to a priori estimated weights based on
previous work done in German (Kempe and MacWhinney
1999). A further correction (from empirical data) can then
be applied to the individual baseline weights via additional
options.

To test the weight configuration, a set of potential
constructions in German is provided in a form directly
processable by Stage 2. A test mode operating purely
on these preanalyzed inputs is one of three modes of
operation.

The other modes are a batch mode for generating pre-
dictions about experimental stimuli and an interactive mode
for demonstrations of the model, as well as a mode capa-
ble of processing Stage 1 output vectors, either as list of
experimental conditions from a file or interactively. Both the
batch and interactive modes use a limited version of Stage 1,
featuring a small parser customized for the experiment in
question (see Stage 1).
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More detailed documentation can be found with the

publicly available source code (see below).

Information Sharing Statement

All program source code for the implementation and gen-
eration of figures related to the mixed-models as well

Appendix

Table 32 ANOVA for the N400 window

as the necessary input files is available to the public at
https://bitbucket.org/palday/ginnungagap-code/.
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Effect

roi

wordOrder

ambiguity

npltype

np2type

roi:wordOrder

roi:ambiguity
wordOrder:ambiguity

roi:npltype

wordOrder:npltype
ambiguity:npltype

roi:np2type

wordOrder:np2type
ambiguity:np2type

np ltype:np2type
roi:wordOrder:ambiguity
roi:wordOrder:npltype
roi:ambiguity:npltype
wordOrder:ambiguity:npltype
roi:wordOrder:np2type
roi:ambiguity:np2type
wordOrder:ambiguity:np2type
roi:npltype:np2type
wordOrder:np1type:np2type
ambiguity:npltype:np2type
roi:wordOrder:ambiguity:np1type
roi:wordOrder:ambiguity:np2type
roi:wordOrder:np 1 type:np2type
roi:ambiguity:np1type:np2type
wordOrder:ambiguity:npltype:np2type
roi:wordOrder:ambiguity:np1type:np2type

DFn
4.00
1.00
1.00
1.00
1.00
4.00
4.00
1.00
4.00
1.00
1.00
4.00
1.00
1.00
1.00
4.00
4.00
4.00
1.00
4.00
4.00
1.00
4.00
1.00
1.00
4.00
4.00
4.00
4.00
1.00
4.00

DFd F P p<.05 ges

144.00 14.47 0.00 * 0.03
36.00 19.60 0.00 * 0.01
36.00 19.11 0.00 * 0.01
36.00 5.61 0.02 * 0.00
36.00 54.44 0.00 * 0.14
144.00 5.51 0.00 * 0.00
144.00 7.51 0.00 * 0.00
36.00 21.84 0.00 * 0.01
144.00 13.25 0.00 * 0.00
36.00 0.57 0.45 0.00
36.00 0.75 0.39 0.00
144.00 55.78 0.00 * 0.06
36.00 0.35 0.56 0.00
36.00 0.17 0.68 0.00
36.00 0.17 0.68 0.00
144.00 2.58 0.04 * 0.00
144.00 1.04 0.39 0.00
144.00 0.53 0.72 0.00
36.00 1.30 0.26 0.00
144.00 12.10 0.00 * 0.00
144.00 4.53 0.00 * 0.00
36.00 6.40 0.02 * 0.00
144.00 1.21 0.31 0.00
36.00 1.99 0.17 0.00
36.00 0.23 0.63 0.00
144.00 0.61 0.66 0.00
144.00 2.68 0.03 * 0.00
144.00 0.35 0.84 0.00
144.00 4.03 0.00 * 0.00
36.00 2.88 0.10 0.00
144.00 091 0.46 0.00
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Table 32 (continued)
Sphericity Corrections:
Effect w p p<.05

2 roi 0.37 0.00 *
7 roi:wordOrder 0.20 0.00 *
8 roi:ambiguity 0.28 0.00 *
10 roi:npltype 0.22 0.00 *
13 roi:np2type 0.33 0.00 *
17 roi:wordOrder:ambiguity 0.22 0.00 *
18 roi:wordOrder:np1type 0.32 0.00 *
19 roi:ambiguity:npltype 0.07 0.00 *
21 roi:wordOrder:np2type 0.19 0.00 *
22 roi:ambiguity:np2type 0.23 0.00 *
24 roi:npltype:np2type 0.12 0.00 *
27 roi:wordOrder:ambiguity:np1type 0.22 0.00 *
28 roi:wordOrder:ambiguity:np2type 0.06 0.00 *
29 roi:wordOrder:np I type:np2type 0.14 0.00 *
30 roi:ambiguity:npltype:np2type 0.32 0.00 *
32 roi:wordOrder:ambiguity:np1type:np2type 0.12 0.00 *
Table 33 ANOVA for the N400 time window resolved in the Left-Posterior Region of Interest
ANOVA:

Effect DFn DFd F p p<.05 ges
2 roi 4.00 144.00 24.10 0.00 * 0.06
3 wordOrder 1.00 36.00 25.71 0.00 * 0.02
4 ambiguity 1.00 36.00 31.79 0.00 * 0.04
5 npltype 1.00 36.00 0.16 0.69 0.00
6 np2type 1.00 36.00 93.33 0.00 * 0.19
7 roi:wordOrder 4.00 144.00 7.46 0.00 * 0.00
8 roi:ambiguity 4.00 144.00 5.01 0.00 * 0.00
9 wordOrder:ambiguity 1.00 36.00 37.31 0.00 * 0.04
10 roi:npltype 4.00 144.00 0.27 0.89 0.00
11 wordOrder:np1type 1.00 36.00 0.11 0.74 0.00
12 ambiguity:npltype 1.00 36.00 2.62 0.11 0.00
13 roi:np2type 4.00 144.00 3.44 0.01 * 0.00
14 wordOrder:np2type 1.00 36.00 0.87 0.36 0.00
15 ambiguity:np2type 1.00 36.00 1.98 0.17 0.00
16 npltype:np2type 1.00 36.00 1.42 0.24 0.00
17 roi:wordOrder:ambiguity 4.00 144.00 9.99 0.00 * 0.00
18 roi:wordOrder:np1type 4.00 144.00 0.74 0.56 0.00
19 roi:ambiguity:npltype 4.00 144.00 2.76 0.03 * 0.00
20 wordOrder:ambiguity:npltype 1.00 36.00 0.23 0.63 0.00
21 roi:wordOrder:np2type 4.00 144.00 0.72 0.58 0.00
22 roi:ambiguity:np2type 4.00 144.00 1.82 0.13 0.00
23 wordOrder:ambiguity:np2type 1.00 36.00 0.50 0.48 0.00
24 roi:npltype:np2type 4.00 144.00 0.20 0.94 0.00
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Table 33  (continued)

Effect

DFn DFd F P p<.05 ges

25 wordOrder:np1type:np2type 1.00 36.00 5.24 0.03 * 0.00
26 ambiguity:npltype:np2type 1.00 36.00 0.86 0.36 0.00
27 roi:wordOrder:ambiguity:npItype 4.00 144.00 1.71 0.15 0.00
28 roi:wordOrder:ambiguity:np2type 4.00 144.00 1.85 0.12 0.00
29 roi:wordOrder:np 1 type:np2type 4.00 144.00 0.53 0.72 0.00
30 roi:ambiguity:npltype:np2type 4.00 144.00 0.07 0.99 0.00
31 wordOrder:ambiguity:np1type:np2type 1.00 36.00 0.89 0.35 0.00
32 roi:wordOrder:ambiguity:np1type:np2type 4.00 144.00 1.89 0.11 0.00
Sphericity Corrections:

Effect W P p<.05

roi 0.48 0.00 *

roi:wordOrder 0.20 0.00 *
8 roi:ambiguity 0.24 0.00 *
10 roi:npltype 0.15 0.00 *
13 roi:np2type 0.53 0.01 *
17 roi:wordOrder:ambiguity 0.34 0.00 *
18 roi:wordOrder:np1type 0.23 0.00 *
19 roi:ambiguity:npltype 0.13 0.00 *
21 roi:wordOrder:np2type 0.17 0.00 *
22 roi:ambiguity:np2type 0.32 0.00 *
24 roi:npltype:np2type 0.20 0.00 *
27 roi:wordOrder:ambiguity:np I type 0.21 0.00 *
28 roi:wordOrder:ambiguity:np2type 0.41 0.00 *
29 roi:wordOrder:np I type:np2type 0.12 0.00 *
30 roi:ambiguity:npltype:np2type 0.15 0.00 *
32 roi:wordOrder:ambiguity:np1type:np2type 0.14 0.00 *
Table 34 ANOVA for the P600 window
ANOVA:

Effect DFn DFd F p p<.05 ges

2 wordOrder 1.00 36.00 23.01 0.00 * 0.02
3 ambiguity 1.00 36.00 30.55 0.00 * 0.03
4 npltype 1.00 36.00 0.01 0.93 0.00
5 np2type 1.00 36.00 9.65 0.00 * 0.04
6 wordOrder:ambiguity 1.00 36.00 20.21 0.00 * 0.02
7 wordOrder:np1type 1.00 36.00 1.96 0.17 0.00
8 ambiguity:npltype 1.00 36.00 0.23 0.64 0.00
9 wordOrder:np2type 1.00 36.00 441 0.04 * 0.00
10 ambiguity:np2type 1.00 36.00 0.01 0.93 0.00
11 npltype:np2type 1.00 36.00 1.31 0.26 0.00
12 wordOrder:ambiguity:np1type 1.00 36.00 0.50 0.48 0.00
13 wordOrder:ambiguity:np2type 1.00 36.00 5.17 0.03 * 0.00
14 wordOrder:np1type:np2type 1.00 36.00 2.01 0.17 0.00
15 ambiguity:npltype:np2type 1.00 36.00 0.03 0.86 0.00
16 wordOrder:ambiguity:np1type:np2type 1.00 36.00 3.00 0.09 0.00
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Table 35 ANOVA for the P600 time window resolved in the Left-Posterior Region of Interest

ANOVA:

Effect DFn DFd F p p<.05 ges
2 wordOrder 1.00 36.00 28.20 0.00 * 0.02
3 ambiguity 1.00 36.00 26.00 0.00 * 0.04
4 npltype 1.00 36.00 0.00 1.00 0.00
5 np2type 1.00 36.00 85.25 0.00 * 0.23
6 wordOrder:ambiguity 1.00 36.00 43.74 0.00 * 0.05
7 wordOrder:npl1type 1.00 36.00 0.56 0.46 0.00
8 ambiguity:npltype 1.00 36.00 1.33 0.26 0.00
9 wordOrder:np2type 1.00 36.00 2.09 0.16 0.00
10 ambiguity:np2type 1.00 36.00 2.88 0.10 0.00
11 npltype:np2type 1.00 36.00 1.30 0.26 0.00
12 wordOrder:ambiguity:npltype 1.00 36.00 0.50 0.48 0.00
13 wordOrder:ambiguity:np2type 1.00 36.00 0.15 0.70 0.00
14 wordOrder:np I type:np2type 1.00 36.00 7.45 0.01 * 0.00
15 ambiguity:npltype:np2type 1.00 36.00 0.85 0.36 0.00
16 wordOrder:ambiguity:np1type:np2type 1.00 36.00 0.00 0.95 0.00
Table 36 Summmary statistics for the accuracy in trials
Summary statistics:
wordOrder ambiguity npltype np2type N Mean SD FLSD
(¢} A N N 37.00 0.86 0.13 0.01
o A N P 37.00 0.93 0.08 0.01
o A P N 37.00 0.89 0.11 0.01
(¢} A P P 37.00 0.94 0.06 0.01
o U N N 37.00 0.95 0.06 0.01
o U N P 37.00 0.94 0.04 0.01
o U P N 37.00 0.98 0.02 0.01
o U P P 37.00 0.96 0.02 0.01
S A N N 37.00 0.97 0.04 0.01
S A N P 37.00 0.97 0.04 0.01
S A P N 37.00 0.98 0.02 0.01
S A P P 37.00 0.98 0.04 0.01
S U N N 37.00 0.97 0.04 0.01
S U N P 37.00 0.97 0.04 0.01
S U P N 37.00 0.98 0.03 0.01
S U P P 37.00 0.99 0.02 0.01
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Table 37 Summmary statistics for reaction time in trials

Summary statistics:

wordOrder ambiguity npltype np2type N Mean SD FLSD
(0] A N N 37.00 484.45 197.41 16.07
(0] A N P 37.00 435.32 164.68 16.07
(0] A P N 37.00 482.62 184.68 16.07
(0] A P P 37.00 433.66 157.27 16.07
(0] U N N 37.00 465.44 167.91 16.07
(0] U N P 37.00 437.66 155.49 16.07
(0] U P N 37.00 442.40 161.16 16.07
(0] U P P 37.00 424.94 142.27 16.07
S A N N 37.00 436.50 147.15 16.07
S A N P 37.00 427.92 146.34 16.07
S A P N 37.00 442.69 149.04 16.07
S A P P 37.00 427.23 151.57 16.07
S U N N 37.00 438.67 151.13 16.07
S U N P 37.00 433.64 149.12 16.07
S U P N 37.00 437.05 151.31 16.07
S U P P 37.00 420.69 127.54 16.07
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