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Abstract

We assess the challenges of studying action and language mechanisms in the brain, both singly

and in relation to each other to provide a novel perspective on neuroinformatics, integrating the

development of databases for encoding – separately or together – neurocomputational models and

empirical data that serve systems and cognitive neuroscience.
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Bridging the Gap Between Models and Experiments

The present article offers a perspective on the neuroinformatics challenges of linking

neuroscience data with models of the neural and other interactions that yield those data. We

will focus on cognitive and systems neuroscience. The perspective is particularly informed

by consideration of the brain mechanisms underlying action and language and emerged from

discussions held as part of the Workshop on “Action, Language and Neuroinformatics” held

in July of 2011 (see the section “Acknowledgement, Discussion Groups and Workshop

Participants” for further details). The Appendix provides a Tabulation of Present and Future

Resources relevant to the issues discussed in this article.

What is a Model?

For one researcher, a model may be a technique for marshaling diverse data into a coherent

format, whereas for others a model (conceptual or computational) provides an account of

how interactions of entities within the brain mediate between inputs, internal states and

outputs. We refer to the former as “data models” and the latter as “processing models.”

Clearly, the result of data modeling is crucial to any specification of what it is that a

processing model has to explain. If the word “model” is used in what follows without a

qualifying adjective or context, it will be in the sense of a “processing model”.

There is a third type of model – not a model of data, not a model of the brain, but a model in

the brain. This idea goes back, at least, to Craik (1943). It relates both to the general notion

of perceptual schemas and motor schemas (Arbib 1981), the control theory concepts of

feedback and feedforward, and the notion of forward and inverse models of a system

(Wolpert and Kawato 1998). Thus, in modeling neural mechanisms for action and action

recognition, processing models of how the brain employs forward and inverse models may

play a crucial role (Oztop et al. 2013; Oztop et al. 2005).

Fostering Modeler-Experimentalist Collaboration

Even among experimentalists who have rich interactions with modelers, few make explicit

what challenges – whether at the level of explaining specific data or in search of a

conceptual framework – they want modelers to address, and few will adjust their agenda to

test novel predictions of models. Thus a challenge of particular interest here is to chart how

neuroinformatics could provide means to deepen these interactions. Among the relevant

issues are understanding how to summarize data sets into a form for which modeling is

appropriate, and appreciating the value of models which do not fit data but do provide fresh

insights – this in addition to the more obvious appreciation of those which do so – while

avoiding something like the “epicycles” used to adjust the orbits of Ptolemaic astronomy,

i.e., without introducing ad hoc mechanisms whose only raison d’etre is to explain a very

limited data set.

Arbib and colleagues (Arbib et al. 2014b) argue for indexing models not only with respect to

brain structures (e.g., a model of circuits in basal ganglia and prefrontal cortex) but also with

respect to brain operating principles (BOPs) which provide general mechanisms (such as

reinforcement learning, winner-take-all, feedforward-feedback coupling, etc.) which may be
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employed in analyzing the roles of very different brain regions in diverse behaviors.

Moreover, they argue that each model should be associated with summaries of empirical

data (SEDs) defined at the granularity of the model. There are at least two problems here. (a)

Even if experimentalists make clear the exact methodology used to extract data and process

it – as in the framework offered by Lohrey et al. (2009) to integrate an object model,

research methods (workflows), the capture of experimental data sets and the provenance of

those data sets for fMRI – the problem remains of integrating data gathered with different

protocols into a meaningful challenge for modeling. (b) If model A explains view A of data

set D, while model B explains view B of D; and yet the models are different, how may one

build on them to more fully address aspects of D revealed in the combination of the 2 views?

For example, one model might be successful if it can explain the averaged responses of a

brain region to a key set of stimuli rather than explaining individual variations, whereas

another model might be designed to explain key patterns of individual variation (e.g.,

aphasic versus non-aphasic).

Arbib et al. introduce the Brain Operation Database (BODB, http://bodb.usc.edu/bodb/) as a

particular implementation of this general framework. BODB requires that SEDs associated

with a model be divided (at least) into those which are used to design the model, and those

used to test the model. For computational models, the latter SEDs are compared with

summaries of simulation results (SSRs) obtained using the model.

If there are summary data, then somewhere there are unsummarized data. Often such data

are only available, if at all, in Supplementary Material for a published paper, or on a

laboratory Website. This raises two challenges: The development of further Websites for the

integration of unsummarized data and the linkage of summarized data (perhaps in another

Website) to the data they summarize. For example, the huge volumes of data associated with

each individual fMRI scan in one comparison for a specific experimental-control condition

comparison may be summarized into brain imaging tables which might aggregate multiple

scans for that comparison into a single table, losing detail but, hopefully, gaining conceptual

clarity in the process. BrainMap (Laird et al. 2005), brainmap.org, provides the classic

repository for such brain imaging data, and Laird et al. (2009) discuss the potential analyses

that are possible using the BrainMap database and coordinate-based ALE (activation

likelihood estimation) meta-analyses, along with some examples of how these tools can be

applied to create a probabilistic atlas and an ontological system describing function-structure

correspondences. Nielsen (2013) focuses on neuroinformatics tools of the BrainMap-based

Brede Wiki, http://neuro.imm.dtu.dk/wiki/, which support federation and interaction of brain

imaging data. (See the section on “Federation” below for more on the general issues

concerning federation.).

A range of brain models has been documented in the ModelDB database, http://

senselab.med.yale.edu/modeldb/. Model DB and BODB seem good targets for federation.

The former provides documented code for each model, with instructions on how to run it to

get published results; the latter links each model to the summaries of experimental data used

Information Sharing Statement
See Appendix for shared resources related to this work.
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to design and test it, and provides tools to retrieve and compare models which address

related sets of data. While BODB tends to focus on systems and cognitive neuroscience

models “up a level” from many of the models in ModelDB, Bohland et al. (2013) have

focused on the challenges of linking data at multiple levels from genes and gene expression

that guide brain development and provide the molecular signatures of populations of

neurons to the architecture of functional brain subsystems. How can modelers begin to build

systems that span the layers between information processing in brain circuits – the typical

domain of neural processing models – and genes, gene products, and regulatory networks

that may be at the root of disorders involving abnormal development of skilled action and

language? How can we link the Allen Brain Atlas (Jones et al. 2009) (www.brain-map.org)

database of gene expression patterns in the mouse brain to emerging databases for monkey,

human and other species while addressing neural homologies? We may note earlier efforts

associated with the NeuroHomology Database, NHDB, to look at homologies between

macaque and human brains relevant to the linkage of macaque neurophysiology to human

brain imaging (Arbib and Bota 2003; Bota and Arbib 2004), but, unfortunately, NHDB is no

longer available. These efforts included algorithms designed to address the problem of

linking neuroanatomical data both across atlases within a species and across species

(homology). A number of ideas from NHDB are incorporated in the Brain Architecture

Management System, BAMS (http://brancusi1.usc.edu/) which supplies inference engines

and five interrelated modules (Bota and Swanson 2008): Brain Parts, Cell Types, Molecules,

Connections (between regions and cell types), and Relations (between parts identified in

different neuroanatomical atlases).

Action, Language and the Brain: A Brief Background

We first review data and models linking mirror neurons (in monkeys) to mirror systems (in

humans) and their implications for mechanisms for action recognition, imitation, and

language and their evolution. We then turn to the specific challenges for model building and

database construction and federation posed by neurolinguistics.

Mirror Neurons and Mirror Systems as a Bridge from Action to Language

In the 1990s it was discovered that some of the neurons in an area of premotor cortex of the

macaque brain dubbed F5, whose firing was specific for the monkey’s grasping action (e.g.,

precision grip but not power grip) were also active when the monkey observed a human or

other monkey performing a similar action (di Pellegrino et al. 1992; Gallese et al. 1996).

These were dubbed mirror neurons, with canonical neurons being those active when the

monkey executes the grasp but not when he observes it. More generally, then, a mirror

neuron for an action is one which is active both when the animal executes a specific action

and when it observes more or less similar actions executed by another. Since there are few

single neuron recordings in humans, the interest in mirror neurons led to brain imaging

studies which sought and found mirror systems in the human brain in the sense of regions

that show relatively high activation in PET or fMRI studies both when the subject executes

any of a broad set of actions or observes execution of actions from that class (see Rizzolatti

and Sinigaglia 2008 for a comprehensive overview). A mirror system for grasping was

found in the human brain in or near Broca’s area, traditionally thought of as a speech area
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but better thought of as a language area since it is involved in sign language as well as

spoken language (Poizner et al. 1987). This fueled the so-called mirror system hypothesis

that mirror neurons for grasping evolved into mirror systems for communication via manual

gesture as a major step toward the evolution of the human language-ready brain (Arbib

2012; Rizzolatti and Arbib 1998). It should be noted that monkeys have mirror neurons but

very little capacity for imitation, but it is generally agreed that a mirror system is part of the

ape and human capacity for imitation: Imitation requires augmenting a capacity to recognize

an action already in one’s own repertoire with the ability to incorporate a novel observed

action performed by another into one’s repertoire.

Demiris et al. (2013) study information processing in the mirror neuron system. Models of

the mirror neuron system in monkeys both inform study of human mirror systems and have

been used for enabling robots to imitate and learn how to perform tasks from human

demonstrations. The paper uses BODB to address the challenges to neuroinformatics

following from the diversity of experimental setups, methodologies, and computational

structures when, for example, we seek to interpret imitation neuroimaging results for

humans in terms of neurophysiological recording of mirror neurons in the macaque.

Moreover, the definition of “mirror system” remains fluid. Aziz-Zadeh et al. (2011) report

that congenital amputees (born with no forearms or hands) nonetheless have a “mirror

system” for grasping actions. They propose that this system contains “visually learned

mirror neurons” – but, of course, such neurons could not be mirror neurons in the strict

sense of firing for both execution and observation. However, it makes sense to posit

potential mirror neurons which have the potential to become mirror neurons but need not do

so. Since humans can learn by observation, we need to form a visual image of an action

before we can acquire the action for ourselves, making it possible for us (like congenital

amputees) to get neurons tuned only “halfway” to becoming mirror neurons when we do not

go on to acquire the ability to execute the action (Arbib 2012). Future computer modeling of

imitation in mirror neurons would make this clear, showing potential mirror neurons at

varied stages of exploiting their potential.

Surprisingly, the functional role of mirror neurons in monkeys has not been established – the

evidence shows that they exist in the sense of being active both for execution and

observation of similar actions, but there are few data recorded from monkeys during social

interaction to assess the actual role of mirror neurons in social behavior (see, e.g., Fujii et al.

2008; Santos et al. 2011). This points to the need for at least two (linked) repositories for

neurophysiological data: one of neurophysiological data linked to behavior, with the data

organized so that one may extract summaries showing parametric variation across similar

tasks under similar conditions; and the other linking neurophysiological data to dyadic

interactions, since for social neuroscience to advance, ways must be found to track neural

activity in conspecifics of different species as they interact with one another. Compare the

call for a comparative neuroprimatology advanced by Gasser et al. (2013). It should also be

stressed that although it is assumed that regions active in human brain imaging studies for

both observation and execution of a class of actions (human mirror systems) depend on

mirror neurons, there is (almost) no evidence for mirror neurons in human. More

disturbingly, many imaging studies showing activity in these regions impute these activity to
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mirror neurons even when “mirroring” is not involved – unfortunate since we know that in

monkey mirror neurons are associated with other cell types. Meanwhile, new data are

emerging for comparison of functionally related neural structures in monkey and human

(Orban et al. 2004; Peeters et al. 2009), with the same experimental fMRI paradigm

employed in the two species (Vanduffel et al. 2002). During most of these experiments the

human and monkey subjects stare at the same visual stimuli (e.g., Nelissen et al. 2005).

Until recently, comparative fMRI studies relied on spatial assumptions related to cortical

expansion models to bring the data from the two species in register. Typically, putative

homologous areas were used as landmarks in monkeys and humans to align the fMRI

activation maps, and to identify inter-species functional similarities (the Caret approach; as

used in, e.g., Denys et al. 2004). However, the premise that homologous areas are both

anatomically and functionally equivalent cannot be taken for granted. Mantini et al. (2012)

therefore developed the interspecies activity correlation method which compares activations

in the temporal domain, and which is devoid of any spatial assumption. This method may be

crucial for defining cortical regions that correspond functionally but not anatomically, and

will thus be relevant to improving existing evolutionary models (more on this topic later).

Such studies support the view that MRI-based databases (fMRI, anatomy DTI, DSI) will

provide a very important tool to study homologies between species in the future, allowing

quantification (rather than just observation) of cross-species similarities and dissimilarities

in brains. Neurophysiological experiments in the monkey (e.g. concerning connectivity

between relevant brain regions, or concerning the functional role of putative mirror regions

in mirror-type behaviors) will remain crucial to fuller understanding of the human mirror

system and grounding processing models thereof. We see again the need for databasing

homologies. Modelers (especially in linking skilled action and motor control to speech and

language) must work across species – taking physiological hints from (usually) macaque

studies to make sense of fMRI data from humans, to develop models of these processes in

human brain areas.

Synthetic brain imaging (e.g., Arbib et al. 2000; Bonaiuto and Arbib 2014; Horwitz et al.

1999a) provides one approach to using simulations of processing models of neural circuit to

predict brain imaging results, PET and fMRI. An important technique in fMRI is structural

equation modeling, SEM (McIntosh 2012), as a means to determine “effective

connectivity.” To over-simplify, if fluctuations in activity in region A when executing a

specific task are strongly correlated with those in region B, then if certain further conditions

hold, we may infer that activity in A helps drive activity in region B in that task, and further

processing may establish whether that “effective connection” is direct or follows a path

through other regions. Such paths presumably demand the existence of anatomical

connections; it is then a challenge for processing models to explain why an anatomical

connection should be effective in one task but not in another. Future versions of synthetic

brain imaging may be able to address this by building models grounded on anatomical

connectivity and neurophysiological activity and using them to predict SEM results

(Horwitz et al. 1999b). We may also note a number of important contributions to the linkage

of brain mapping and cognitive processes by Karl Friston and his colleagues (Friston 2002;

Friston et al. 2007, 1997; Friston and Dolan 2010).
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To explore how apes may learn new manual gestures for communication, Gasser et al.

(2013), discussing ontogenetic ritualization of primate gesture as a case study in dyadic

brain modeling, use an assessment of ontogenetic ritualization to clarify the physical

interactions and neural changes that seem necessary to support the transition from action to

gesture more generally, charting the model development and integration involved in passing

from separate models of various brain mechanisms to the analysis of dyadic interactions of

two brains of two agents interacting with each other. As a byproduct of this, they chart the

challenge to existing models of the macaque mirror system (Bonaiuto et al. 2007; Bonaiuto

and Arbib 2010; Oztop and Arbib 2002) as they explore the processes that must underlie the

ability of great apes to learn new gestures in interaction with each other (Arbib et al. 2014a).

Such modeling studies may elucidate why it is that human brains, but not monkey brains,

can support imitation.

Language

Much of our current understanding of language is based on work in psycholinguistics

(Traxler and Gernsbacher 2006) where data include error rates and timing of responses to

linguistic tasks, but not neural correlates. However, the results of such studies can constrain

processing models even though the constituent processes are not neurally localized. Further

pertinent data come from studies of language acquisition in children, and studies of language

learning more generally. Neurolinguistics can use findings from psycholinguistics, but

further seeks data from aphasia (how brain lesions impair language performance) and other

clinical populations as well as from fMRI and other cortical mapping methods that localize

regions where the BOLD or PET signal is greater for a given task than a control task – but

this does not preclude a role for other regions in the task, nor does it clarify whether (and if

so, why) the increased activation is required for the task. Understanding how these multiple

areas interact in real time constitutes the major challenge facing the development of

processing models for neurolinguistics. In view of the very important role of timing in

language processing – linguistic input inherently unfolds over time, with each new incoming

element serving to further constrain or elaborate the current representation – event-related

brain potentials (ERPs) and other EEG- and MEG-based measures also play a particularly

important role.

An important database for following the acquisition of language is given by CHILDES, the

Child Language Data Exchange System (MacWhinney 2000), http://childes.psy.cmu.edu/,

which is the child language component of the TalkBank system, http://talkbank.org. The

goal of TalkBank is to foster fundamental research in the study of human and animal

communication by constructing sample databases within each of the subfields studying

communication. It will use these databases to advance the development of standards and

tools for creating, sharing, searching, and commenting upon primary materials. Perhaps of

most relevance to neuroinformatics is its AphasiaBank effort (MacWhinney et al. 2011),

http://talkbank.org/AphasiaBank/, whose goal is construction of a shared database of

multimedia interactions for the study of communication in aphasia – aiming, however, at the

improvement of evidence-based therapy for aphasia rather than at processing models of

language in which the effects of brain lesions can be simulated.
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Modern psycholinguistics has reached a measure of consensus regarding many important

features of language processing, and these features carry over into the (still very limited

range of) neurobiologically constrained processing models (Bornkessel and Schlesewsky

2006; Friederici 2002; Hagoort 2005; Ullman 2004). In particular, most current models

assign some role to competition between items (MacWhinney 1987; Vosse and Kempen

2000; Vosse and Kempen 2009) on the various linguistic levels (but see Clifton and Staub

2008 for explicit empirical counterarguments). All current models assume that processing

occurs incrementally, trying to make role assignments and attachments as soon as possible

(Kempen and Hoenkamp 1987) based on the relative strength of surface cues to

interpretation (MacWhinney 2011). Because processing is competitive and cue-driven, it can

maintain memory representations of incompletely assembled linguistic units for a certain

period and it can tolerate a certain amount of sloppy interpretation (Ferreira et al. 2002).

However, it has been proposed that storage of incompletely attached patterns entails

processing costs (Gibson 1998; Hawkins 1999) and that this can lead to avoidance of certain

structures. An alternative, more recent, conceptualization of such “complexity” effects is

that they derive from similarity-based interference during memory retrieval (e.g., Lewis et

al. 2006; McElree et al. 2003).

These core features of language processing are modulated in interesting ways by cross-

linguistic differences in language structure, as has been explored both psycho- and

neurolinguistically (Bornkessel-Schlesewsky et al. 2011; Bornkessel-Schlesewsky and

Schlesewsky 2009). Current models of the learning of lexical structure (Li et al. 2007;

Silberman et al. 2007) derive from work with highly analytic languages such as English or

Chinese. Such models may be unable to account for the intense interaction between lexicon,

morphology, and syntax found in polysynthetic languages such as Inuit or Navajo. Even

languages as closely related as English and German can show qualitative differences in the

electrophysiological signatures for processes at the form-to-meaning interface (Bornkessel-

Schlesewsky et al. 2011). The goal remains to formulate neurologically-grounded models of

language processing. Some target areas for these models would include auditory and

articulatory processing (Bohland et al. 2009b; Hickok 2009), lexical representation (Bohland

et al. 2009b), procedural learning (Ullman 2004), and perspective-taking (Arbib 2012;

MacWhinney 2008). However, the development of these models faces a number of serious

empirical challenges. Data from the study of subjects with brain lesions have failed to isolate

clear patterns of damage, partly because of the dynamic nature of language processing, and

partly because of major differences in brain organization prior to stroke.

In addition to data from fMRI and ERP, cortico-cortical evoked potential studies

(Matsumoto et al. 2005) can help narrow down the range of possibilities for such models.

This special issue presents three models whose differing foci pose challenges for both model

integration, and for understanding how to bring diverse data sets into a shared, integrated

framework. Kempen (2013) models syntactic structure formation as an interactive activation

and inhibition process running in a neural network and evaluates its success in accounting

for selected psycholinguistic phenomena. Alday et al. (2013) build on their own fMRI and

ERP data (Bornkessel-Schlesewsky and Schlesewsky 2009) from sentence comprehension

tasks in a range of typologically diverse languages as part of a search for basic cognitive or

neurobiological organizational principles to develop an initial computational model and
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show how it interacts with language-specific properties. Barrès and Lee (2013) offer an

approach to language production rooted in construction grammar and extend it to

comprehension. The approach is distinctive in that it relates utterances to abstract semantic

representations (SemReps) of visual scenes rather than syntactic trees. Eye-tracking

experiments provide a test of the model assumptions, while a dual path model in relation to

aphasia grounds their distinction between the heavy semantics of world knowledge and the

light semantics of the categories of the grammar. The assumption, widely held by

psycholinguists, that non-syntactic representations play a crucial role in language is shared

by Alday et al. (2013) in their neurobiologically and cross-linguistically plausible model.

All this raises challenges for summarizing empirical fMRI and ERP data for modelers. In

particular, we need a standard ontology for ERP recordings. At present, no tools are

available to extend BrainMap-style meta-analyses to ERPs and this is clearly a disadvantage.

The standard component labels such as “N400” and “P600” are problematic for modeling

because there is a lot of leeway in their definition. Just using the N400 label gives no

information about scalp distribution or the time course of the N400 component in a specific

experimental condition. Thus, it seems necessary to provide somewhat more detailed

information in order to allow database users to come up with their own categorization of an

effect if desired. For this, information about timing and topography (as well as polarity)

appears most crucial.

The Neural ElectroMagnetic Ontologies (NEMO) project (http://nemo.nic.uoregon.edu/wiki/

NEMO) is a potential candidate. NEMO aims to create EEG and MEG ontologies and

ontology based tools. MINEMO (Minimal Information for Neural ElectroMagnetic

Ontologies, Frishkoff et al. 2011) extends MINI (Minimal Information for Neuroscience

Investigations) to the ERP domain, with checklist terms explicated in NEMO. A related

issue is to develop standards for extracting components from ERP signals and for linking

them to a limited set of brain regions using, e.g., fMRI data.

However, language disabilities that may be under at least partial genetic control, such as

stuttering (Fisher 2010) or Specific Language Impairment could provide a useful entry point

for modeling (Fisher and Scharff 2009). New efforts are now enabling connections to be

made between genes and gene expression and the higher-level organization of brain systems,

addressing the challenges in unifying diverse human brain datasets. Bohland et al. (2013)

include a discussion of how such data can be used to support and test models of brain

mechanisms underlying language. A future challenge for neurolinguistics is to grapple with

development (as opposed to acquisition and learning) as well, the key consideration being

that the system is not constant across the time during which learning is taking place, but is

rather also developing in many ways, partly under the control of genes and partly in

response to the physical and social environment (Fisher and Ridley 2013).

Challenges of Databasing Empirical Data

In developing neurobiologically realistic models of language, we need to integrate data from

different methods. Specifically, given the rapidity of language processing, we cannot rely

only on fMRI but also need to consider methods with a high temporal resolution such as
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EEG and MEG. The integration between fMRI and ERP data thus appears particularly

important, since these are the main two methods that have been used to glean data for

neurolinguistic models. Source localization of ERPs in terms of dipoles does not seem to

provide a good solution – even with a high number of electrodes, the inverse problem still

persists. Here an inverse model is one that works back from a pattern of electrical activity

detected at electrodes attached to the scalp to infer the pattern of cortical activity underlying

it. Unfortunately, this problem is woefully ill-posed. Moreover, due to the different nature of

the EEG and BOLD signals, constraining source localizations with neuroanatomical

information from fMRI studies does not necessarily resolve the problem. Similar concerns

hold for MEG (Sato et al. 2004) and estimating cortical current sources from EEG using

near-infrared spectroscopy as a hierarchical prior has been suggested as a cheaper alternative

(Aihara et al. 2012).

Thus, it appears that we need to look for alternative ways of integrating the different data

types. In the spirit of this article, processing models could play a central role in linking

spatial and temporal data. In addition to providing a functional link, these models may also

allow us to seek paths from cortical models to ERPs, i.e., forward models in the sense of

inferring the ERP from the cortical activity predicted by the model. Such efforts require

processing models that use anatomy to constrain placement of neurons in 3D brain volumes,

with estimates of propagation delays between different brain regions (Barrès et al. 2013).

Alternatively, it may be more promising to attempt to link EEG oscillations (i.e. variations

of activity in different frequency bands) and BOLD activity. Indeed, several studies using

concurrent EEG and fMRI measures have found that oscillatory activity can be used to

predict BOLD activity on a trial-by-trial basis (Debener et al. 2006, 2005). From a different

perspective, combining EEG with TMS may also help to provide spatial information for

EEG data. Here, too, it may be helpful to attempt to work on specific problems within

smaller focused communities before considering large-scale or universal connections.

In addition, there are many more general issues that have been addressed in the articles and

editorial pages of this journal. Turning to neuroanatomical and related data to support

processing models at the neurobiologically consistent neural network level, ideally we

would want the information on how cells of type A projects to cells of type B. We also need

timing information – not just region C goes to D, but how information flows from one

region to another. This is currently possible (although not often done) for anatomically

distinct cell populations, but this becomes far more challenging for functionally defined cell

classes that might be spatially intermingled.

How can one find a format for primary data in a particular domain that experimentalists will

agree upon? The reduced view of a dataset given in a published paper may be inadequate.

One solution may be for journals to require entering data into domain-specific databases.

Storing data as Supplementary Materials on a paper by paper basis is not nearly as useful

since it does not require adoption of common ontologies which structure search and

comparison. Such issues have long been a concern in neuroinformatics though usually

focusing on specific data types, including some that we have introduced above. Another

issue is that raw data storage may become uneconomical. The demands of storing and
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manipulating such data may be increasingly met, to the extent they can be met, by

employing cloud architectures (Sobolev et al. 2012). In any case, modelers need access to

the extended data set and the tools to extract “summary views” of the underlying data in a

form amenable to the design and testing of processing models – and we have noted earlier

(in the section Bridging the Gap Between Models and Experiments) the problems for

modeling caused by differences in protocol and viewpoint in the empirical data.

While in an ideal world the data should be refereed, it is not practical – but refereeing a

paper should suffice, allowing other scientists to check the details behind published claims

as and when they see fit. In genetics the data are not reviewed in any serious way but there is

a requirement to submit. However, solutions for genetics may not work for neuroscience

since the field is too diverse – and the brain is much more difficult to describe than the

mostly one-dimensional genome. Moreover, data description in a paper may entail

accidental error. Kennedy (2012) argues that this can be avoided by preparing the raw data

of a publication for data archive/data sharing at the time of publication even when there is

no plan to share the data, but this assumes that a format for the given data type already exists

or is unambiguously defined in the process, and this is too seldom the case in the neural

study of action and language – and for much else in neuroscience. We want a system that

allows people to locally define their own protocol in a very structured manner, but to

globally be more diverse. SEDs in BODB can currently be just text (fMRI tables and

connectivity data are the main exceptions) but a community using a shared workspace

should define a data entry structure for each class of data they share.

Including raw data in a database enables users of the database to conduct their own analyses

(i.e., apply other analysis methods if desired) and also has the advantage that it does not

require one to “trust” other peoples’ choices in data analysis. On the other hand, raw data

may contain unnecessary detail and raise the issue of reliable de-identification of individual

datasets. In this second view, the level of detail included in published peer-reviewed datasets

is enough. BrainMap provides an example of a database that works in this way and it attests

to the utility of this type of “high-level” data repository. It thus seems that summaries of

published data provide a good starting point for data repositories that serve the purpose of

informing both experimental work (meta-analyses as background information to inform

experimental design and hypotheses) and modeling. However, under the assumption that the

concerns regarding dataset de-identification can be resolved, it seems that, ultimately, at

least some databases will need to provide access to raw (or very detailed) data.

It also seems important to find a viable tradeoff between standardizing the format of

inputting/reporting data so as to make data extraction most efficient and not letting this

format become too rigid, thus making it difficult to incorporate datasets that fall outside the

mainstream. How does one link different summaries of the same set of experimental data?

One approach might be to use hierarchical SEDs, providing for each class of empirical data

a hierarchy of summary views of the data at increasing levels of granularity. The rationale

for this approach is that different types of models need data at different levels of analysis.

Making the hierarchy explicit would ensure that the fact that SEDs are linked to different

views of the same dataset would be easily apparent, and makes sure that the link to original

data is not lost. For example, a database dedicated to neurophysiology might store spike and
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event times tagged to anatomically localized cells and related to different task conditions.

The lowest level summary might show a binned and summed histogram of event-triggered

spike times with an inter-spike interval plot, the next level would smooth the histogram to

generate views of neural firing rates related to an event., the next level up might show an

average firing rate for the population, and the highest level might simply say whether firing

increased or decreased from baseline in response to an event (maybe a normalized

population firing rate). In this example, the models of macaque mirror neurons reviewed by

Demiris et al. (2013) link to the highest level SED in the hierarchy, but it would be possible

to inspect the hierarchy to generate targets for more detailed models.

Challenges in Linking Models and Experiments

In this final section, we gather together a somewhat disparate set of observations, but all

focused on the development of a neuroinformatics which involve the general concern that

processing models must address diverse sets of data from the perspective offered by our

concern with neural mechanisms supporting action, language, and the relations between

them.

Testability of High-Level Computational Models

Many experimentalists seem to want models to be limited to those which make empirically

tested or testable predictions. However, there are two counter-arguments: (a) Models may be

valuable for their implications for robotics applications (Demiris et al. 2013). (b) Predictions

may also be evaluated for computational feasibility even when appropriate empirical

methods for testing are not yet available. This does not settle the matter, but can determine

which models remain viable as new experimental methods become available. In any case,

modelers should understand enough to suggest which predictions might be ripe for testing

(though experimentalists may come up with techniques that the modeler does not know

about). This raises another challenge for databases of models: providing facilities to post

predictions where experimenters will see them – fostering links to relevant data sets that

exist, and encouraging experimenters to test predictions. This relates to the later discussion

of “Collaboratory Workspaces” which can establish focused discussion with relevant

modelers and/or other experimenters.

How Should Models be Described for Databasing?

We want descriptions of models with function-driven components so that the modeler can

break the model down into the essential elements that s/he wants to share with other

modelers in a high-level representation. But what is the appropriate representation? The

code for an actual implementation of a model (as in Model DB) should allow for very

detailed model comparisons, but may obscure essential differences and similarities between

the code at a higher level. Consider what happens as one moves from the NEURON

environment to, e.g., neurolinguistic models. Model comparisons are difficult in general

because of differences in scope and philosophy of the different models. Work will need to

be done in order to find a format that permits such comparisons, with suggestions for

guiding principles including the data that the model explains and its basic functional

principles. One may expect that comparison tools will be rather domain-specific.
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De Schutter (2008) addresses the question “Why are computational neuroscience and

systems biology so separate?” and answers in part that in neuroscience many modelers still

do not share their models freely, while this is standard practice in systems biology. At

present, ModelDB offers a place where brain modelers can deposit their code along with

instructions on how to use that code to conduct simulations that reproduce established

results (and, of course, may also be used to generate new results with the model). By

contrast, BODB seeks to catalog models in terms of summaries of the empirical data used to

design and test them. As such, the two databases are complementary, and it is to be hoped

that in future computational neuroscientists will increasingly provide linked descriptions of

their models in both databases.

The INCF Program on Multiscale Modeling (http://www.incf.org/programs/modeling) offers

links to a number of initiatives that try to solve the model interoperability problem, but does

not address the challenges of cognitive neuroscience that have been of central concern in this

discussion paper. For example, the Network Interchange format for Neuroscience (NineML)

is a markup language for model description designed to support specific implementations

covering a wide range of modeling scales, but it focuses on networks of single compartment

neurons. NeuroML (Gleeson et al. 2010; Goddard et al. 2001) offers an approach to

providing a functional description of models which can be interpreted and imported into

many different neural simulators. However, this currently lacks a high-level view of models

such as that provided by BODB’s hierarchical module–submodule decomposition and can

thus currently only capture neural models with a relatively large amount of biological detail

(as captured in the NEURON and GENESIS models which dominate ModelDB).

Functional principles are also central to the issue of whether databases can help us to move

towards neurobiologically plausible models of language. Note the earlier discussion of

operating principles derived from psycholinguistics without reference to neural correlates.

Most current models are essentially cognitive models which incorporate only a few, very

high level, brain correlates. However, the “boxes” in these models typically map onto many

regions, ignoring their complex connectivity. Furthermore, once we go beyond the input–

output mapping, the relationship between the elements in the models and the elements in the

brain are often unclear. It remains an open challenge to design databases that establish

connections between these different levels, to support model development which maps

functional principles onto neurobiologically realistic ones.

Database Components

How do we capture what an experiment is about? Should we represent it with a free-form

text description or within a structured framework? BrainMap has a taxonomy describing

experiments (over 10,000 experiments from over 2,000 papers have been described with the

taxonomy). The taxonomy has recently been developed further into CogPO (Fox et al. 2005;

Turner and Laird 2012). But apart from labeling the experiments against a taxonomy,

BrainMap uses “prose description” for the experimental conditions behind the stored brain

scan data. The Brede Database description of experiments is close to that of BrainMap,

labeling experiments in terms of the BrainMap taxonomy while also having free-form

descriptions. On top of this, Brede Database labels each experiment against its own
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taxonomy, the so-called external components (Nielsen 2005). The taxonomies may evolve

over time. Given a sufficient amount of data, data-driven analysis could possibly refine

taxonomies.

Databases could foster post-publication review, and a rating facility would allow users to

rate individual database items. Such functionalities seem not to be widespread among

neuroinformatics databases, but the Neuroimaging Informatics Tools and Resources

Clearinghouse (NITRC, http://www.nitrc.org/, Luo et al. 2009), a Web-based source for

neuroimaging tools and resources (Kennedy 2010), supports reviews and ratings on “overall

ease vs. functionality”, “download/installation ease” and “documentation/support quality”.

For some of the pages describing scientific articles, the Brede Wiki maintains a section for

critiques where post-publication reviews might be given. Reviews and ratings of

publications, experimental results, or models could be used to provide a measure of

confidence in those items. In sufficient numbers, these ratings might even aid in the

scientific discovery process. For example, by using ratings as “weights” in meta-analyses,

one might be able to leverage the expert knowledge of the scientific community in

evaluating particular findings to devalue studies likely to have methodological or other

problems and promote studies that appear to be the most sound. This process would

formalize the existing process most researchers undertake manually in “weighting” the –

often inconsistent –results found across the literature when surveying a particular

neuroscientific domain. The downside (for both the machine and human versions) is that this

may downplay the value of true innovations. In any case, the challenge of resolving

inconsistencies in the literature remains. For example, two sets of data may appear

inconsistent –but only because details of how the related protocols differed was not

preserved in the databases.

Database updates and maintenance need to be considered: Does the data reflect current

scientific knowledge? An example of a neuroinformatics database which has not been

updated for a while is the fMRI Data Center and CoCoMac (http://www.cocomac.org), an

online database for detailed information from tract-tracing connectivity studies in macaque

monkeys (Kotter 2004). However, new developments on CoCoMac are under way (Bakker

et al. 2011, http://cocomac.g-node.org). It may be worth noting that few neuroinformatics

databases are (or will be?) complete, see, e.g. the case for coordinate-based databases,

(Derrfuss and Mar 2009), though BrainMap has relatively good coverage (78 %) in terms of

voxel-based morphometry studies (Laird et al. 2011).

Federation

“Federation” refers to the challenging process of making different resources work together,

either automatically and seamlessly, or through additional layers that integrate resources

using one or more web service APIs. A new database may either copy and replicate the data

from other databases or call the original database through an application programming

interface (API). If data is accessed through the online API, the new database loads up the

original database server. This is not the case if the data are distributed. An important issue

for us is that, for a specific processing model, the relevant SEDs may not be actual entries in

a repository of primary data, but may each instead summarize a number of partial results
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extracted from such entries, structured in such a way as to best challenge modeling of

specific brain functions. For example, BODB (Arbib et al. 2014b) takes this approach in

federation with CoCoMac. CoCoMac describes data from studies that use injection of

radiographic tracers that propagate in a retrograde (toward the soma) or anterograde (away

from the soma) fashion along axons. Inspection of which regions are consequently labeled

with the tracer allows inference of a region’s connectivity including an estimate of

connectivity strength according to the intensity of the tracer at the labeled region. BODB

provides connectivity SEDs that extract from this detailed information a more abstract

representation – region X projects to region Y. The details of the projection such as the

tracer type used and its estimated strength can be viewed via links from BODB’s

connectivity SEDs to the corresponding CoCoMac entries. The summary representation in

BODB can be used to create network graphs of selected regions which can then be applied

to constrain a model’s architecture.

When federating databases, data need to be matched across systems. A common means for

database federation is to provide deep linking, i.e., specific items in one database are linked

to corresponding items in another. The widely used PubMed identifier is used across a large

number of neuroinformatics databases and can thus be used to translate document identifiers

between databases. However, it would be valuable to link each paper to more expansive

resources. PubMed provides a LinkOut program (Marenco et al. 2008) to display links to

external resources from their paper abstract view pages. Resource providers (such as

neuroinformatics databases) provide them with a list of PubMed IDs and a way to generate

URLs to their resources. This might provide an incentive for people to enter their data into

neuroinformatics databases. For example, if one goes to the page for the MNS2 paper

(Bonaiuto et al. 2007) on PubMed, http://www.ncbi.nlm.nih.gov/pubmed/17028884, and

clicks on the Brain Operation Database on the “LinkOut – more resources” menu, one is

transferred to the BODB page for that paper, http://bodb.usc.edu/bodb/literature/pubmed/

17028884/, which in turn has links to related models (including the MNS2 model itself) and

related simulation results. Other identifiers to translate between databases are spatial

coordinate descriptions available in, e.g., BrainMap, Brede and now also in BODB.

Conforming to the standards of the Semantic Web with RDF and “Linked Data” may also

make it easier to integrate items across databases. A recent example of using Semantic Web

technologies is the Cognitive Paradigm Ontology (CogPO) based on the BrainMap

taxonomy (Turner and Laird 2012). The Semantic Web Applications in Neuromedicine

(SWAN) effort provides an ontology developed in the context of building a series of

applications for biomedical researchers, as well as in extensive discussions and

collaborations with the larger bio-ontologies community (Ciccarese et al. 2008).

Web services can provide views into a database as XML or JSON text for another web

application or external program. This is a simple, alternative means of sharing across

resources that does not require explicit connection to the underlying database or substantial

knowledge of the underlying schema. Nonetheless, linking data can be problematic when

different databases may employ different ontologies. If we use the same terms to mean

different things, or different terms to mean similar things, we cannot easily answer questions

that span across multiple resources. NeuroLex (http://neurolex.org/wiki/) is a dynamic

lexicon of 22,292 neuroscience terms, including 289 neurons and 940 brain parts. The aim is

Arbib et al. Page 15

Neuroinformatics. Author manuscript; available in PMC 2014 July 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.ncbi.nlm.nih.gov/pubmed/17028884
http://bodb.usc.edu/bodb/literature/pubmed/17028884/
http://bodb.usc.edu/bodb/literature/pubmed/17028884/
http://neurolex.org/wiki/


to remedy the inconsistent use of terminology in databases and the literature. However, this

work on constructing ontologies to help organize neuroscience concepts into category

hierarchies, etc., appears to be at an early stage. Bandrowski et al. (2012) provide a

preliminary report on exploring mammalian brain connectivity using NeuroLex.

Brain regions as database items may be linked across databases, e.g., the BrainNavigator and

Brede Wiki link to the brain regions of BAMS. Future federation may be possible between

BAMS and brain regions defined by spatial profiles of gene expression in the mouse or other

species (see Bohland et al. 2013), as well as between BODB and BAMS. The methods set

forth in Knowledge Engineering from Experimental Design, KefED (Russ et al. 2011), may

be used to curate for BAMS and possibly also BODB. As the BrainMap schema (Fox et al.

2005) is developed into CogPO it may be more relevant for use in other tools, e.g., KefED.

BODB has made some initial efforts to include Brede Database data about papers,

experiments and coordinates by copying the Brede Database from its XML distribution. The

present version of BODB links back with deep links from the “Summary of Experimental

Data” to the experiments in the Brede Database. The Brede Wiki in turn links back to

BODB’s “Summary of Experimental Data” and “Literature” (and Brede Database) through

hard-coded deep links.

The existence of diverse neuroinformatics databases opens up numerous possibilities to link

and query between them. Linking between items in the databases may not be straightforward

as they can have “fuzzy” relationships, e.g., as shown in the Online Brain Atlas

Reconciliation Tool (OBART) (Bohland et al. 2009a) where corresponding brain regions in

different atlases often do not overlap completely. OBART enables users to explore

relationships between multiple existing MRI-based human brain atlases; one may recall

Bota’s work reconciling macaque atlases as part of his NHDB (Bota and Arbib 2004).

(Intriguingly, the Website http://obart.info is devoted to Le buzz du poker gratuit. However,

the current version of OBART can be found at both http://obart.brainarchitecture.org and

http://qnl.bu.edu/obart.)

With the explosion of Web-based resources in the neurosciences, mining these resources is

increasingly challenging without suitable application programming interfaces (APIs) and

systems to support machine to machine interactions. The need for so-called web services has

been recognized in the bioinformatics community (Stein 2002), where data in large

distributed repositories are routinely made machine accessible. In neuroscience, database

interoperability is currently lagging, with many resources containing isolated data that can

only be accessed through manual interaction with a web browser. The Neuroscience

Information Framework (NIF, Gardner et al. 2008, www.neuinfo.org/) has made some

progress along these lines by providing the DISCO framework (Marenco et al. 2010) to

allow individual databases to make particular resources available to the NIF search engine.

NIF allows one to search for items over a host of neuroinformatics databases, but seems ill-

structured – a search engine overlay for a range of resources, rather than a federation. As

noted by Arbib et al. (2014b): “A search for ‘cerebellum model. yielded 1,214,963 results,

most of them irrelevant to computational modeling … [but] the search yielded 17 distinct

results when filtered for the ‘Models’ data type. These models are sourced only from

ModelDB and Open Source Brain.” Immediate improvements could include a capacity for
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more finely structured search and tools to perform inference across resources. More

generally, there is a need for database developers to make data available through simple,

standardized APIs (or direct exposure of database connections) to eliminate the common

practice of downloading and maintaining complete local copies of remote resources through

“screen scraping” or direct transfer. Such services can be implemented, for example, using

REST (Representational state transfer) compliant web services that expose data in text-based

formats such as XML or JSON, and for which there exist implementations in all modern

web application frameworks.

Elsevier’s BrainNavigator (www.brainnav.com/) is an online product containing content and

toolsets built around stereotaxic brain atlases across multiple species. It contains

parcellations and annotations of up to 1,200 unique structures in each species, and drawings

with histology to match, together with tools to visualize in 3D and to overlay against

researcher histology to aid in neuroanatomical interpretation. The nomenclature used is that

of Luis Puelles, Charles Watson, and George Paxinos, and the core database of structures

also has APIs for bi-directional linking based on either structure or stereotaxic coordinate.

Any partner site with structure-based information (such as BAMS, BODB, NeuroLex) can

be linked to or from BrainNavigator on a per-structure basis, and every structure for each

species has its own open URL (to an atlas thumbnail summary) for direct linking in. The

coordinate-based API (REST XML) is in pilot stage, providing where-am-I? lookup,

returning structure name and hierarchy from coordinate input.

Collaboratory Workspaces

Finally, we turn to the issue of encouraging collaboration between modelers and

experimentalists who share a passion for the same area of neuroscience, though from

different perspectives. As emphasized in several editorials in Neuroinformatics (Ascoli

2006; Kennedy 2006; Kennedy et al. 2011), experimenters need to have an incentive to

share their data – and modelers their models – in order for databases to be potentially useful

tools,. Again, BrainMap provides a good example for how this could work: by entering their

data into the database, users are afforded the possibility of conducting meta-analyses

relevant to their own research. In general, then, the tools provided in a database appear to

provide a good potential source of motivation for researchers to share their data.

Furthermore, the inclusion of data in meta-analyses leads to citations of the original

publication, which is another source of motivation for data-sharing. There may also be

additional incentives, and specifically ones that might be applicable beyond the meta-

analysis scenario type described above. For repositories including raw data sharing, one

option may be to track the number of times a dataset is downloaded as an index.

An alternative option to encouraging people to share their data may be to harvest data

summaries from journal publications. To this end, some of the leading journals in the field

(Human Brain Mapping, Neuroimage, possibly others) are currently devising a standardized

input matrix for entering data, which will make it possible to extract this information in a

relatively automatic fashion. However, this of course only allows for the harvesting of

relatively abstract data summaries and not of raw data. Web-based technologies have long

promised to change the face of scientific collaboration (Kouzes et al. 1996; Sagotsky et al.

Arbib et al. Page 17

Neuroinformatics. Author manuscript; available in PMC 2014 July 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.brainnav.com/


2008), with so-called Web 2.0 concepts – including increased information sharing, blogging,

and social networking – offering new means for increased scientific productivity while

raising other concerns about quality and intellectual property (Waldrop 2008). A critical

challenge for new neuroinformatics efforts is to facilitate meaningful collaborations,

particularly between modelers and experimentalists. Social web technologies, mimicking the

interactions researchers have at conferences and workshops through the use of wikis, blogs,

forums, and real-time chat tools may help to facilitate adoption of such resources.

The issue of data and database ownership is a non-technical issue which may hinder

integration between databases. Maintaining ownership of experimental data or of the

databases which make them accessible may be important for acquiring grants to fund the

continued research. Exposing the data through an API or distributing an entire database may

dilute the possibility, e.g., of co-authorship used to prove the utility of the data or database

for funding bodies. A potential strength of databases may lie in enabling smaller groups to

engage in joint projects sharing data and modeling ideas among themselves rather than with

the general neuroscience public. This type of collaboration, for which BODB aims to offer a

good platform (see the discussion of Collaboratory Workspaces in Arbib et al. 2014b), may

be particularly useful in encouraging data-model integration on particular topics of interest

and could provide a first step towards larger collaborative efforts. It also appears plausible

that researchers may be more highly motivated to share their data (including raw data) for

the purposes of a concrete, smaller-scale project of this type as opposed to the more abstract

goal of increasing the possibility of additional citations by inputting data into a database.
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integration and neuroinformatics needs of the Neurolinguistics group: Bornkessel-Schlesewsky, Small,
MacWhinney, Miikkulainen, Nielsen, Fox, Barrès, Schuler.

1c. The other half of the Action group + the other half of the Neurolinguistics group: Defining shared modeling
challenges and the development of a shared conceptual framework. Kemmerer, Aziz-Zadeh, Cartmill, Gasser,
Grosvald, Wood, Kempen, Lee, Schilling.

2a. Action group: What are the key data and/or conceptual issues ripe for modeling; what are the key lines of
modeling that hold most promise to address these data/issues? Oztop, Demiris, Vanduffel, Cartmill, Arbib, Aziz-
Zadeh, Gasser, Schilling, Wood.

2b. Neurolinguistics group: What are the key data and/or conceptual issues ripe for modeling; what are the key
lines of modeling that hold most promise to address these data/issues? MacWhinney, Kempen, Grosvald, Small,
Bornkessel-Schlesewsky, Miikkulainen. Kemmerer, Lee, Barres
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2c. Neuroinformatics group: What tools are ripe for sharing, or should be ripened? What are promising lines for
federation? Nielsen, Marques, Bohland, Bonaiuto, Bota, Fox, Schuler.

Brief biosketches of the participants, access to selected papers, and abstracts of their talks may be found at the
Workshop Website: http://uscbp.usc.edu/mediawiki/index.php/2011_Workshop.

Appendix: A Tabulation of Present and Future Resources

Table 1

Neuroinformatics resources

Name and URL Scope Notes

Allen Brain Atlas
www.brain-map.org

Gene expression
data from the mouse
brain, human brain,
developing mouse
brain, mouse spinal
cord, and
aggregations of
other gene
expression data.
Gene expression
patterns in the
mouse brain

There are adult and
developing human
atlases, a developing
mouse atlas, and a
macaque atlas here as
well.

Aphasia Bank
http://talkbank.org/AphasiaBank/

Multimedia
interactions for the
study of
communication in
aphasia

This database is
focused on use by
clinicians.

Brain Architecture Management System, BAMS
http://brancusi1.usc.edu/

Information about
neural circuitry

Supplies inference
engines and five
interrelated modules:
Brain Parts (gray
matter regions, major
fiber tracts, and
ventricles), Cell
Types, Molecules,
Connections (between
regions and cell
types), and Relations
(between parts
identified in different
neuroanatomical
atlases).

Brain Operation Database, BODB
http://nsl.usc.edu/bodb/

Links processing
models with
summaries of
empirical data

In addition to
comparison of
empirical data with
simulation results,
BODB accesses
models via both a
structural ontology
(brain structures) and
a functional ontology
(brain operating
principles, BOPs) and
offers tools for model
comparison

BrainMap
http://www.brainmap.org/

Repository for
human fMRI brain
imaging data.

Brain imaging data is
linked to a rich
ontology for the
description of
experimental
procedures. Provides
statistical tools
(activation likelihood
estimation, ALE) for
meta-analysis of
coordinate based
activation data.
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Name and URL Scope Notes

Brede Wiki
http://neuro.imm.dtu.dk/wiki/

Contains
information from
published scientific
articles and
ontologies for
describing that
information
Contains primarily
information from
published peer-
reviewed
neuroimaging
articles

Data and text can be
entered with raw Wiki
text entry (as in
Wikipedia). Web
services allow for
meta-analysis and
coordinate-based
information retrieval.

CoCoMac, Collations of Connectivity data on the Macaque brain
http://www.cococmac.org

Systematic record of
the known wiring of
the primate brain.
The main database
contains details of
hundreds of tracing
studies in their
original
descriptions.

BODB federates with
CoCoMac to provide
summarized accounts
of cortical
connectivity with
links back to the
original CoCoMac
entries for further
information if desired.

ConnectomeDB, the Human Connectome Project
http://www.humanconnectome.org/

NIH funded large
scale project to
generate a database
of the human brain
connectome. It
includes both
anatomical white
matter tracts defined
by Diffusion Tensor
Imaging and
functional
connectivities based
on resting state
fMRI analysis.

Conte69 Atlas
http://brainvis.wustl.edu//wiki/index.php/Caret:Atlases:Conte69_Atlas

Human surface-
based brain atlas

A tool to
quantitatively define
anatomical brain
regions.

MEG-SIM
http://cobre.mrn.org/megsim/

Shared database for
simulated and
recorded MEG data.

Still at an early stage.
The stated goal is to
create “realistic
simulated data sets in
formats used by each
of the 3 major MEG
manufacturers. These
can then be directly
tested using various
algorithms which
include multidipole,
spatiotemporal
modeling, current
reconstruction,
minimum norm, and
beamforming
methods.”

ModelDB
http://senselab.med.yale.edu/modeldb/

Documented code
for models,
primarily those
implemented in the
NEURON and
GENESIS modeling
environments

For each model,
provides instructions
on how to run the
code to get published
results.

Neural ElectroMagnetic Ontologies, NEMO
http://nemo.nic.uoregon.edu/wiki/NEMO

EEG and MEG
ontology for ERP
databasing.

Aims at providing
statistical tools for
analysis of EEG and
MEG activations
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Name and URL Scope Notes

patterns. So far, few
entries are available.

Neuroscience Information Framework, NIF
www.neuinfo.org/

Allows one to
search for items
over a host of
neuroinformatics
databases.

Seems ill-structured –
a search engine
overlay for a range of
resources, rather than
a federation

Neurosynth
http://neurosynth.org

Automatically
synthesizes results
of neuroimaging
studies

Extracts activation
coordinates and high-
frequency terms from
published articles and
generates statistical
maps based on
keyword co-
occurrence with
coordinate ranges.

Online Brain Atlas Reconciliation Tool, OBART
http://obart.brainarchitecture.org
http://qnl.bu.edu/obart

Human brain
regions defined by
multiple MRI-based
atlases

Allows comparison of
brain regions based
on spatial definitions
rather than terms or
labels.

Surface Management System Database, SumsDB
http://sumsdb.wustl.edu/sums/index.jsp

Repository of brain-
mapping data
(surfaces &
volumes; structural
& functional data)

It accepts unpublished
data (which however
is not public).
Provides WebCaret
tools for visualization.

Table 2

Other resources

Name and URL Scope Notes

CHILDES, the Child Language Data Exchange System,
http://childes.psy.cmu.edu/

Resources for
following the
acquisition of
language

CHILDES is the child language
component of the TalkBank
system.

Cognitive Paradigm Ontology, CogPO
http://cogpo.org/

Ontology for the
description of
experimental
paradigms in
cognitive science

FrameNet (Fillmore 1976)
https://framenet.icsi.berkeley.edu/fndrupal/

Natural Language
Processing (NLP)
oriented frame
based conceptual
ontology.

Other NLP resources:
WordNet (Miller 1995)
http://wordnet.princeton.edu/
VerbNet (http://
verbs.colorado.edu/~mpalmer/
projects/verbnet.html) PropBank
(Palmer 2009)
(http://verbs.colorado.edu/
~mpalmer/projects/ace.html),
The goal of (Palmer 2009) is to
link all these resources. The more
general goal of linking language
resources is also a major part of
the Linking Open Data Cloud.
See:
http://richard.cyganiak.de/
2007/10/lod/

Purdue ASL Database
http://www2.ece.ohio-state.edu/~aleix/ASLdatabase.htm

Database of
American Sign
Language (ASL)
videos and
transcriptions

Still very preliminary but could be
scaled up.
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Table 3

A target set of new neuroinformatics resources

Scope Notes

Brain development data Such data are hard to find, and can play a role as models start to incorporate
genetics data and take seriously the issues of the “wetware” changing during
long-term learning/continued performance of complex behaviors

Conceptual model ontology and
database

To this day, no database exists that offers an ontology to store and compare
conceptual models. BODB and ModelDB are both oriented towards
computational models and the challenge would be more of integration rather
than having one of these databases take over the role to store conceptual
models.

EEG and MEG visualization tools and
standardized head models for display.

Similar to the Talairach Daemon visualization tool (http://www.talairach.org/
daemon.html) for tomographic imaging, a standard head for display of EEG
and MEG results would benefit the neurolinguistic community both in terms
of the ease of visual comparison and in providing a way to report EEG and
MEG results in papers in a more uniform table-like way as it has become
standard for fMRI results (using Talairach or MNI coordinates).

Electrocorticography (ECoG) data These data, gleaned from electrodes placed directly on the exposed surface of
the brain to record electrical activity from the cerebral cortex, are becoming
increasingly important in speech/language models

Event-related potential (ERP) data
linked to linguistic and other cognitive
tasks.

This requires a standard ontology for ERP recordings. One candidate is
provided by the Neural ElectroMagnetic Ontologies (NEMO) project, http://
nemo.nic.uoregon.edu/wiki/NEMO, that aims to create EEG and MEG
ontologies and ontology based tools. A related issue is to develop standards
for linking extracting components from ERP signals and linking them to a
limited set of brain regions using, e.g., fMRI data. (See above note on EEG
and MEG visualization tools.)

Gestures used both by primates and by
humans

This requires annotated videotapes showing the context and dyadic
interactions in which the gestures occur. For humans, data supporting
analysis of linguistic/paralinguistic (sign and cospeech gesture) vs non-
linguistic hand motions would be useful. Motion Capture would yield even
finer data than videotaping but is more limited in its applicability and would
require extensive processing (e.g., shape and motion recognition) to yield
data that might then be a basis for actual interpretation. Longitudinal data
would be especially useful.

Lesion database linked to MRI and
experimental paradigm database.

The study of linguistic performances of brain damaged patients and the
development of brain based models from this data would benefit from the
creation of a lesion database similar in format to BrainMap. Crucially, such a
database should not be limited to aphasics or to other specific impairments
since brain damage analysis would benefit from a better understanding of the
loss of functions as whole rather than multiplying the smaller scopes
analyses. An example of this would be the comparative analysis of aphasia
and apraxia in a database to better understand the link between language and
action systems. This would gather data relevant to modeling neural
mechanisms of action and language, not being limited to the clinical
emphasis of AphasiaBank

Neurohomology data – NHDB
revisited

A resource (replacing the no longer active NHDB) to integrate data on
human brains and the brains of other species to establish homologies that
support new hypotheses about detailed neurophysiological, neurochemical
and genetic mechanisms that are hard to resolve from the human data alone.
MRI-based databases (fMRI, anatomy (T1, T2), DTI, DSI,) will provide an
important tool to study homologies between species in the future, allowing
one to quantify (rather than just observe) cross-species similarities and
dissimilarities in brains. These can then be integrated with gene expression
data and with macaque (and other animal) neurophysiology.

Neurophysiological data linked to
behavior

Need the data organized so that one may extract summaries showing
parametric variation across similar tasks under similar conditions. The
German Neuroinformatics Node offers some tools and services (see http://
www.g-node.org/tools-and-services) that may be relevant, including a
standard format for data annotation in electrophysiology, and a common
terminology (based on the odML metadata approach) to facilitate data
sharing and reproducibility of experiments. Ideally the neural responses and
the task would have a hierarchy of descriptions at increasing levels of
granularity. Sharing neurophysiological data would also require increased
used of standardized coordinate frames.
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Scope Notes

Neurophysiological data linked to
dyadic interactions

For social neuroscience to advance, ways must be found to track neural
activity in conspecifics as they interact with one another.
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