
Group-wise FMRI Activation Detection on DICCCOL Landmarks

Jinglei Lv1,2, Lei Guo1, Dajiang Zhu2, Tuo Zhang1,2, Xintao Hu1, Junwei Han1, and Tianming 
Liu2,*

1School of Automation, Northwestern Polytechnical University, Xi’an, China

2Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and 
Bioimaging Research Center, The University of Georgia, Athens, GA, USA

Abstract

Group-wise activation detection in task-based fMRI has been widely used because of its 

robustness to noises and its capacity to deal with variability of individual brains. However, current 

group-wise fMRI activation detection methods typically rely on the co-registration of individual 

brains’ fMRI images, which has difficulty in dealing with the remarkable anatomic variation of 

different brains. As a consequence, the resulted misalignments could significantly degrade the 

required inter-subject correspondences, thus substantially reducing the sensitivity and specificity 

of group-wise fMRI activation detection. To deal with these challenges, this paper presents a 

novel approach to detecting group-wise fMRI activation on our recently developed and validated 

Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL). The 

basic idea here is that the first-level general linear model (GLM) analysis is first performed on the 

fMRI signal of each corresponding DICCCOL landmark in individual brain’s own space, and then 

the estimated effect sizes of the same landmark from a group of subjects are statistically assessed 

with the mixed-effect model at the group level. Finally, the consistently activated DICCCOL 

landmarks are determined and declared in a group-wise fashion in response to external block-

based stimuli. Our experimental results have demonstrated that the proposed approach can detect 

meaningful activations.
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1. INTRODUCTION

Activation detection to task-based fMRI has been widely recognized as a benchmark 

approach to localizing functional brain regions that are involved in specific perceptual, 

cognitive or functional tasks (Friston et al., 1994; Heeger and Ress, 2002; Matthews and 

Jezzard, 2004; Logothetis et al., 2008). However, despite the dominant successes of 

analyzing individual brain’s activation patterns (e.g., Worsley and Friston, 1997; Bullmore 

et al., 1996; Woolrich et al., 2001a), it has been challenging to derive consistent fMRI 

activation patterns across different brains and populations, due to the individual variability 

and different sources of noises (e.g., Thirion et al., 2007; Derrfuss and Mar, 2009; Laird et 

al., 2009; Hamilton, 2009; Costafreda, 2009; Tahmasebi, 2010). To address this challenge, 

researchers in the neuroimaging field have developed group-wise activation detection 

methods, such as the two-level group-wise GLM method (Beckmann et al., 2003), Bayesian 

inference (Woolrich et al., 2004b), multi-level analysis (Thirion et al., 2007), group ICA 

analysis (Calhoun et al., 2009), and group Markov Random Field (MRF) methods (Ng et al., 

2010), among others. The rationale behind these group-wise fMRI activation detection 

methods is to leverage the statistical power from multiple brains in order to gain the 

robustness to noises and the less sensitivity to individual variability. For instance, the FSL 

FEAT/FLAME toolkits (Beckmann et al., 2003; Smith et al., 2004) incorporated a two-level 

group-wise GLM analysis procedure that warps the individual activation significance maps 

to the same template space via image registration methods (e.g., FSL FLIRT), and then 

infers the group-wise significantly activated regions from the pooled activation maps. The 

major advantages of this two-level GLM method include the facilitation of valid group 

analyses and inference, good flexibility and generality, and easy and meaningful 

interpretation of results (Beckmann et al., 2003; Smith et al., 2004).

Though these group-wise fMRI activation detection methods possess various advantages 

and have been successfully applied in different scenarios, there are still at least three 

challenges that warrant further research. First, existing group-wise activation detection 

methods still heavily rely on image registration algorithms that warp an individual brain’s 

MRI/fMRI images and activation maps into the template space. It has been widely 

recognized that image registration algorithms have difficulty in dealing with the anatomic 

variation of different brains (e.g., Ardekani et al., 2004; Thirion et al., 2006; Stiers et al., 

2006; Jan et al., 2009; Tahmasebi, 2010; Li et al., 2010c; Zhu et al., 2012). Consequently, 

the misalignments between different activation maps from individual brains could 

substantially decrease the sensitivity and specificity of those group-wise fMRI activation 

detection methods (e.g., Thirion et al., 2006; Stiers et al., 2006; Thirion et al., 2007). As a 

remedy, current group-wise fMRI activation detection methods rely on spatial smoothing to 

account for the misalignments across different brain images (Friston et al., 1996; Mikl et al., 

2008; Tahmasebi et al., 2009; Tahmasebi, 2010; Yue et al., 2010; Li et al., 2012e), which 

potentially decreases the sensitivity and specificity of the detection of truly activated brain 

regions (Mikl et al., 2008; Yue et al., 2010). Second, there is considerable variability of 

activation magnitudes for the corresponding brain regions across individual subjects and 

imaging sessions (Smith et al., 2005; Thirion et al., 2007), due to physiological noises, head/

body motion, resting-state activity and other factors. This variability imposes additional 
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challenges to the robust and reliable inference of group-wise consistent activation foci. 

Third, there is considerable individual variability of brain networks evoked by a specific 

fMRI task (Thirion et al., 2007), and thus meta-analysis has been commonly used as a 

remedy to enhance the statistical power and reliability of individual fMRI studies (Derrfuss 

and Mar, 2009; Laird et al., 2009). To deal with the abovementioned three challenges, 

continuous efforts have been devoted to developing new group-wise fMRI analysis methods 

including: methods based on registration (Beckmann et al., 2003; Li et al. 2011, Li et al. 

2013); methods adaptive to moderate variability (Ng et al., 2012; Kim et al., 2010, Xu et al., 

2010; Kang et al., 2012). Advantages of these contributions are valuable in building up 

correspondence across subjects for group analysis.

This paper presents a novel, alternative group-wise fMRI activation detection approach that 

employs a recently discovered and validated dense map of individualized and common 

cortical landmarks, named DICCCOL (Dense Individualized and Common Connectivity-

based Cortical Landmarks) (Zhu et al., 2012; Li et al., 2012a). Briefly, these 358 

DICCCOLs possess intrinsic structural correspondences across individuals and populations, 

and these landmarks were located and optimized from an initialization of 2056 cortical 

landmarks regularly placed on the cortical surfaces of ten template subjects (Zhu et al., 

2012). The optimization procedure aimed to maximize the group-wise consistency of DTI-

derived white matter fiber connection patterns represented by the trace-map models (Zhu et 

al., 2011; Zhu et al., 2012), and it turned out that these optimized connectivity-based cortical 

landmarks exhibit both structural and functional correspondences across subjects and 

populations (Zhu et al., 2012). The neuroscience foundation is that each cortical region’s 

cytoarchitectonic area has a unique set of extrinsic inputs/outputs (named the “connectional 

fingerprint” (Passingham et al., 2002)), which largely determines the functions that each 

cortical area could possibly possess. This close relationship between structural connectivity 

pattern and brain function has been reported and replicated in a series of recent works (Li et 

al., 2010a; Zhu et al., 2011; Zhu et al., 2012; Zhang et al., 2011b; Li et al., 2012a; Li et al., 

2012b; Li et al., 2012c). Extensive validation studies using multimodal DTI/fMRI datasets 

of over 240 brains have demonstrated the reproducibility and predictability of these 358 

DICCCOL landmarks (Zhu et al., 2012). These 358 DICCCOL models and the source codes 

for their prediction in individual brains based on DTI data have been released online at: 

http://dicccol.cs.uga.edu.

As these 358 DICCCOLs have intrinsic structural correspondences across different brains, 

we aim to examine the group-wise consistent activation patterns of these common structural 

landmarks in block-based task fMRI data as follows. First, the first-level general linear 

model (GLM) analysis is performed on the fMRI BOLD signal of each corresponding 

DICCCOL landmark in each individual subject’s own brain space (Friston et al., 1994; 

Woolrich et al., 2001b). Second, the consistent activation significances among the 

corresponding DICCCOL landmarks are statistically integrated and assessed at the group 

level using the mixed-effects model (Smith et al., 2004). Here, a major advantage of the 

DICCCOL-based fMRI activation detection is that the activation significance levels of 

DICCCOLs in different brains can be directly integrated and pooled without the need of 

intersubject image registration, which avoids the substantial inaccuracies possibly caused by 

the spatial alignments across individuals using image registration methods (Zhu et al., 2012). 
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Therefore, the intrinsically-established correspondences among DICCCOLs effectively 

tackle the abovementioned first challenge. As an example, Fig.1 illustrates the major 

difference between the DICCCOL-based group-wise activation detection method and 

traditional group-wise activation detection methods. In traditional group-wise fMRI 

activation detection methods (e.g., Beckmann et al., 2003), the activation significance levels 

of corresponding image grid voxels in different brains are integrated, as illustrated by the 

gray vertical lines in Fig.1. However, due to the inaccuracy of image registration algorithms 

and the individual brain variability (Thirion et al., 2007; Derrfuss and Mar, 2009; Jan et al., 

2009; Tahmasebi, 2010; Zhu et al., 2012), the image grid voxels have inaccurate 

correspondences. In fact, the anatomically corresponding landmarks might be located on an 

irregular curve, as annotated by the red spheres on the yellow curve. Since those 

anatomically corresponding landmarks across individuals represented by the red spheres can 

be relatively accurately determined by the DICCCOL system (Zhu et al., 2012), it becomes 

feasible and possible to determine group-wise activated DICCCOL landmarks directly from 

individual brains via statistical analyses. Essentially, these statistical inferences based on the 

intrinsically-established DICCCOL correspondences among a group of subjects can be more 

reliable and robust to the variability in individual activation magnitudes and the evoked 

brain networks, thus effectively dealing with the abovementioned second and third 

challenges in group-wise activation detection.

The proposed DICCCOL-based activation detection methods have been applied on a 

working memory task-based fMRI dataset with DTI images (Faraco et al., 2011; Zhu et al., 

2011) and on the recently released Human Connectome Project (HCP) fMRI/DTI dataset 

(Barch et al., 2013), and extensive experimental results have demonstrated the reasonably 

good sensitivity and specificity of the methods. The rest of the paper is organized as follows. 

In Section 2, we detail the DICCCOL-based activation detection methods. Section 3 

presents the experimental results including comparisons with previous methods and 

reproducibility studies. Discussions and conclusions are provided in Section 4.

2. MATERIALS AND METHODS

2.1. Overview

The computational pipeline of our methods is summarized in Fig.2. First, DTI and task-

based fMRI images are co-registered in the same fMRI image space using the FSL FLIRT 

registration toolkit (http://www.fmrib.ox.ac.uk/fsl/). White matter fibers are tracked from 

DTI data via MedINRIA (http://www-sop.inria.fr/asclepios/software/MedINRIA/). 

Afterwards, we located and optimized 358 DICCCOL landmarks on individual cortical 

surfaces via the approaches in Zhu et al., 2012. With the co-registered DTI and task-based 

fMRI data, we extracted fMRI BOLD time series for each DICCCOL landmark. The 

commonly used general linear model (GLM) is then applied on these fMRI time series 

individually to estimate the response effect size for each landmark. As the 358 DICCCOL 

landmarks possess intrinsic structural correspondences (Zhu et al., 2012), we performed 

group-wise mixed-effect statistics on each landmark’s effect sizes obtained from different 

brains for the purpose of detecting group-wise consistently activated landmarks.
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2.2. Data acquisition and pre-processing

Dataset 1—In an operational span (OSPAN) working memory task-based fMRI 

experiment under IRB approval (Faraco et al., 2011), 19 subjects were scanned and fMRI 

images were acquired on a 3T GE Signa scanner at the Bioimaging Research Center of The 

University of Georgia. Briefly, acquisition parameters were as follows: fMRI: 64×64 matrix, 

4mm slice thickness, 220mm FOV, 30 slices, TR=1.5s, TE=25ms, ASSET=2. Each 

participant performed a modified version of the OSPAN task (3 block types: OSPAN, 

Arithmetic, and Baseline) while fMRI data was acquired (Faraco et al., 2011). DTI data was 

acquired with dimensionality 128×128×60, spatial resolution 2mm×2mm×2mm; parameters 

were TR 15.5s and TE 89.5ms, with 30 DWI gradient directions and 3 B0 volumes acquired. 

The fMRI data was co-registered with the DTI image space using a linear transformation via 

FSL FLIRT. For fMRI images, the preprocessing pipelines included motion correction, slice 

time correction, global drift removal, temporal pre-whitening, (Li et al., 2010a; Zhu et al., 

2011; Zhu et al., 2012). For DTI data, preprocessing included skull removal, motion 

correction and eddy current correction (Liu et al., 2007). Brain tissue segmentation was 

conducted on DTI data using the approach in Liu et al., 2007. The cortical surface was 

reconstructed from the brain tissue maps using in-house software (Liu et al., 2007). The 

whole-brain streamline fiber tracking was performed using the MedINRIA package.

Dataset 2—The publicly available fMRI/DTI data from the Human Connectome Project 

(HCP) Q1 release. In the HCP Q1 release dataset, the task-based fMRI data was collected on 

68 participants with 7 task designs, which are working memory, gambling, motor, language, 

social cognition, relational processing and emotion processing (Barch et al., 2013). The 

acquisition parameters of fMRI data are as follows: 90×104 matrix, 220mm FOV, 72 slices, 

TR=0.72s, TE=33.1ms, flip angle = 52°, BW =2290 Hz/Px, in-plane FOV = 208 × 180 mm, 

2.0 mm isotropic voxels. For task fMRI images, the preprocessing pipelines included motion 

correction, spatial smoothing, temporal pre-whitening, slice time correction, global drift 

removal. The detailed task description and paradigm are referred to Barch et al., 2013. In 

this paper, we used the fMRI data of emotion task and working memory task as an 

independent large-scale dataset to evaluate and validate our methods.

2.3. DICCCOL landmark prediction

For each subject with DTI data, the 358 DICCCOL landmarks were predicted via the 

approaches in (Zhu et al., 2012; Zhang et al., 2011b). Briefly, the group-wise consistent 

fiber connection patterns from ten template brains were used as the predictive models of 

each cortical landmark. In particular, the DTI-derived fiber connection patterns are 

quantitatively described by the trace-map model (Zhu et al., 2011; Zhu et al., 2012), which 

represents the global shape and connectivity pattern of a fiber bundle on a standard unit 

sphere. As a result, the fiber bundles emanating from cortical regions within and across 

individual brains can then be effectively and efficiently compared on the standard sphere 

space. Then, we searched within a neighborhood of a linearly warped candidate location in 

the new subject brain, and identified the location with the most similar fiber connection 

pattern as those in the ten template brains. This search process is akin to the landmark 

optimization procedure in (Zhu et al., 2011; Zhu et al., 2012). Fig.3 shows 4 randomly 

selected landmarks and their consistent fiber connection patterns in 3 subjects. Extensive 
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experiments have already demonstrated that the predicted landmarks possess good fiber 

consistence across subjects and the landmark localization is quite accurate (Zhu et al., 2012).

2.4. DICCCOL-based activation detection

2.4.1. FMRI signal extraction and individual effect size estimation—The DTI 

images of each subject were registered with the fMRI images via FSL FLIRT. The brain 

tissue segmentations were performed on the DTI-derived FA (fractional anisotropy) and 

ADC (apparent diffusion coefficient) images via the approaches in Liu et al., 2007. As 

mentioned in Lv et al., 2010, gray matter fMRI signals are much more meaningful than 

those of white matter voxels, but the surface reconstruction method cannot guarantee each 

surface vertex is located in gray matter (Liu et al., 2007). Therefore, we firstly searched the 

nearest gray matter voxel with the guidance of DTI-based tissue segmentation map in fMRI 

space for each landmark on the cortical surface (Li et al. 2010b; Ge et al., 2011). Fig.4 

illustrates this process (from the left (Fig.4a) to the right (Fig.4d)). It is interesting that the 

fMRI time series extracted for the same landmark from three brains exhibit similar time 

course shapes, suggesting that the three landmarks could be consistently activated in 

response to the stimuli.

With the data processing pipeline in Figs.4a-4d, we extracted fMRI signals for each 

DICCCOL landmark of each subject. Then, for the fMRI time series of each landmark, the 

GLM model (Friston et al., 1994; Worsley et al., 1997) was applied to estimate the effect 

size to stimulus blocks. Notably, we extracted and used the GLM source codes implemented 

in the FSL FEAT package for this work. In traditional activation detection, the effect size of 

each fMRI time series in each voxel is used to perform the mixed-effects analysis, and 

afterwards the derived z-score is used to measure the significance level of activation. Here, 

we conduct the same regression on the fMRI time series of DICCCOL landmarks, but the 

estimated effect sizes are used to perform the group-wise mixed-effects analysis, as 

explained in the next section.

2.4.2. Group-wise mixed-effects analysis—Although the 358 DICCCOL landmarks 

have structural correspondence across subjects, different brains may not necessarily respond 

to external stimuli in the same way. That is, there are variabilities in individual activation 

magnitudes and the evoked brain networks (Smith et al., 2005; Thirion et al., 2007; Derrfuss 

and Mar, 2009; Laird et al., 2009). Therefore, we applied a multi-subjects analysis to 

explore the group-wise activation significance of each landmark among a group of subjects. 

Our rationale here is the same as those in other group-wise fMRI activation detection 

methods (Beckmann et al., 2003; Woolrich et al., 2004b; Thirion et al., 2007; Ng et al., 

2010), that is, group-wise approach improves the statistical power and reliability of 

individual fMRI studies. Specifically, for each landmark, we first set the estimated effect 

sizes from a group of subjects, which were generated from the application of GLM in 

individual brains, as the input of the mixed-effects model (Everitt and Bullmore, 1999) via 

the tool of FSL FLAME (Smith et al., 2004). Specifically, inter-subject random-effects 

component of the mixed-effects variance was modeled and estimated using the sophisticated 

estimation techniques, and by using MCMC we get an accurate estimation of the true 

random-effects variance and degree of freedom at each DICCCOL (Beckmann et al., 2003; 
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Woolrich et al., 2004b). Single group t-test was employed to measure the average activation 

level for each DICCCOL, and further the translated z-scores are used to measure the group-

wise activation significance of each DICCCOL landmark (Beckmann et al., 2003; Woolrich 

et al., 2004b), as shown in Fig.5. Afterwards, we determined the activated DICCCOL 

landmarks with a threshold to the derived z-scores.

3. RESULTS

In this section, we present a series of experiments to assess the consistencies of functional 

performances of the corresponding DICCCOL landmarks across subjects (Section 3.1), to 

examine the influences of spatial smoothing and image registration in group-wise activation 

detections (Section 3.2), to perform DICCCOL-based group-wise activation detection and 

compare it with other methods (Section 3.3), to conduct quantitative comparisons of group-

wise activation detection methods (Section 3.4), to perform analysis of sensitivity and 

specificity (Section 3.5), and to perform reproducibility analysis (Section 3.6). All of these 

experiments were performed on the multimodal fMRI/DTI datasets in Faraco et al., 2011 

and Zhu et al., 2011 and the HCP Q1 release dataset (Barch et al., 2013), which were pre-

processed via the approaches in Section 2.2.

3.1. Assessment of consistencies of DICCCOL activations

Although there are notable variations in individual functional activities (Smith et al., 2005; 

Thirion et al., 2007; Derrfuss and Mar, 2009; Laird et al., 2009), fortunately, there are still 

common activation patterns among different human brains (Beckmann et al., 2003; Smith et 

al., 2004). In this section, we aim to assess the consistency of DICCCOLs’ functional 

performance in a group of subjects. Specifically, for each brain, we first individually 

perform the first-level GLM analysis on fMRI signals of 358 DICCCOLs via FSL FEAT 

with the overall stimulus curve, as detailed in Section 2.4.1, and the derived z-scores are 

used to measure the functional activation significance of DICCCOLs. As an example, Table 

1 shows the fMRI signals and z-scores of DICCCOL #16 in randomly selected 10 subjects. 

Although these fMRI BOLD signals exhibit different local curve patterns, they still exhibit 

similar overall shapes in response to the block-based task stimulus curve (the top row in 

Table 1). Importantly, the significance z-scores across these 10 subjects are consistently 

high (the right column in Table 1), suggesting the group-wise consistent activation of this 

DICCCOL landmark in response to the block-based task. Notably, the z-scores for the same 

DICCCOL landmark in 10 subjects also show considerable variation, e.g., varying from 3.39 

in the fifth subject to 17.42 in the second subject. Fortunately, the statistical characteristics 

such as the high mean (9.53) of the z-score distribution among this group of subjects allow 

us to reliably assess the group-wise activation level and the consistency of these landmarks.

Afterwards, we mapped the derived individual z-scores of DICCCOLs back to their 

locations with colors. Eight randomly selected subjects are shown in Fig.6. Although these 

358 landmarks’ z-scores show different magnitudes and contrasts across different brains, the 

spatial distributions of the highly activated regions are reasonably similar. These results 

suggest the feasibility of performing group-wise activation detection via the DICCCOL 

landmarks. This visualization result is in agreement with previous literature reports (Smith et 
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al., 2005; Thirion et al., 2007; Derrfuss and Mar, 2009). To better visualize the consistency, 

as well as the variability of the DICCCOL activation levels, we stacked all 358 landmarks’ 

z-scores across 19 subjects in the group into a matrix and color-coded them in Fig.7. 

Notably, the same color bar with scale from -10.0 to 15.0 is set in Fig.7 for ease of 

comparison across subjects. In Fig.7, each column contains the z-scores of 358 DICCCOL 

landmarks in one subject, and each row contains z-scores of the same DICCCOL landmarks 

in a group of 19 subjects. The DICCCOL landmarks are in the same original order (Zhu et 

al., 2012). It is interesting that we can see similar overall DICCCOL activation patterns 

across subjects. It is evident that the DICCCOL landmarks in the yellow blocks in Fig.7 

exhibit consistent high z-scores across subjects.

In order to further quantitatively measure the consistency of z-score distributions across 19 

subjects, we calculated the Cronbach’s α (Cronbach, 1951) of them. Specifically, in the z-

score matrix Z in Fig.7, which contains z-scores from K subjects, Zi represents z-score 

vector with n DICCCOL landmarks in Eq.(1).

(1)

The Cronbach’s α is calculated as below, where  is the variance of z-scores of each 

subject, and  is the variance of the z-score matrix of Z in Eq.(2).

(2)

Here K=19 and n=358. The calculated α of the z-score matrix is 0.88, which presents high 

consistency of z-score distribution across subjects. This result further supports that it is 

feasible to perform group-wise activation detection based on the DICCCOL landmarks, 

despite the considerable variation in the individual landmark’s activation levels across 

different subjects.

3.2. Assessment of the influences of spatial smoothing and image registration

Traditional voxel-based fMRI activation detection methods, including group-wise activation 

detection approaches (Friston et al., 1996; Beckmann et al., 2003; Smith et al., 2004; Mikl et 

al., 2008; Tahmasebi et al., 2009; Tahmasebi, 2010; Yue et al., 2010; Li et al., 2012e), 

usually rely on image registration and/or spatial smoothing steps to establish 

correspondences of voxels or groups of voxels across different subjects. In this section, we 

revisit and examine the influences of spatial smoothing and image registration on the fMRI 

activation detection, particularly, in the context of DICCCOL-based activation detection.

3.2.1. The influence of spatial smoothing—In traditional activation detection 

methods including group-wise approaches, spatial smoothing is usually implemented during 

the pre-processing of fMRI data of each brain in the group. In general, spatial smoothing 

with a Gaussian kernel facilitates finding the intersections of activation foci across different 
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subjects (e.g., Mikl et al., 2008; Yue et al., 2010; Li et al., 2012e) and further detecting 

commonly activated regions. However, this spatial smoothing step could also potentially 

result in adding false positives and/or false negatives during the activation detection, as 

already pointed out in a variety of previous studies (e.g., Mikl et al., 2008; Yue et al., 2010; 

Li et al., 2012e). As an example, Fig.8 presents a series of z-score maps with different 

smoothing FWHM (Full Width Half Maximum) sizes. Here, 0 mm means no spatial 

smoothing. In Fig.8, the bright regions with higher z-score are potential fMRI activations. It 

is evident that with the increase of the FWHM of Gaussian kernel, the borders of bright 

regions in the blue circles become blurred and finally disappear, which makes the two bright 

regions in the blue circle merge into one (Fig.8c). This type of spatial smoothing effect 

would possibly cause the sacrifice of spatial resolution of fMRI activation detection. In 

contrast, the small activated region in the red circles is weakened and even disappears with 

the increase of the FWHM, as shown in Figs.8a-8c. This type of spatial smoothing effect 

would possibly cause the false negatives in fMRI activation detection. That is, the sensitivity 

of activation detection is degraded. Meanwhile, the activation centers in the yellow circles 

shifts with the increase of the FWHM, which has already been demonstrated in our prior 

studies in Li et al., 2010a and Li et al., 2012d. Therefore, this type of spatial smoothing 

effect would result in the false positive or inaccuracy in activation detection. Based on the 

typical examples shown in Fig.8, we can see that the spatial smoothing step, if applied 

before the individual or group-wise activation detections, could possibly result in several 

downside effects including border blurring, weakening small region activation (Tahmasebi 

et al., 2009), and shifting activation centers (Li et al., 2012d). Thus, in the proposed 

DICCCOL-based activation detection methods in this paper, we do not perform spatial 

smoothing during the activation detection procedures.

For better 3D visualization, we also mapped the traditional group-wise z-scores using the 

above three different FWHM settings of spatial smoothing back to the cortical surfaces in 

MNI standard space, as shown in Fig.9. The green spheres in Fig.9 are overlaid DICCCOL 

landmarks. In Fig.9, when the FWHM increases, the red areas with higher z-scores will 

expand and involve more landmarks (from the top row to the bottom row in Fig.9), which 

are likely to be false positives. Three examples of these possible false positive activation 

detections with increasing smoothing FWHMs are highlighted by the black dashed circles in 

Fig.9. This example further justifies our method of not performing spatial smoothing during 

the preprocessing step, which is in line with other similar suggestions made in Bowman et 

al., 2008. In addition, the histograms of z-scores at the locations of the 358 DICCCOL 

landmarks are presented in Fig.10. It is evident that larger FWHMs will equalize the 

distributions of z-scores, and potentially increase the false positives, as shown in Fig.10.

3.2.2. The influence of image registration—A variety of literature reports have 

demonstrated that current image registration algorithms have difficulty in dealing with the 

remarkable anatomic variation of individual brains (e.g., Derrfuss and Mar, 2009; Yap et al., 

2011; Zhang et al., 2011a; Jia et al, 2010; Asman et al., 2011). Our recent studies in Zhu et 

al., 2012 have shown that the landmark localization accuracy by DICCCOL is substantially 

better than several widely-used image registration algorithms such as FSL FLIRT, FSL 

FNIRT (Andersson et al., 2008), ANTS (Avants et al., 2008) and HAMMER (Shen and 
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Davatzikos, 2002). Here, to illustrate the influence of image registration on group-wise 

fMRI activation detection, we first registered 10 randomly selected subjects’ brain images to 

the MNI space via the FSL FLIRT image registration tool, and the voxel correspondence 

built up by the registration is illustrated by gray dash grids in Fig.11. The same transform 

matrix was applied to DICCCOL landmarks in order to register them to the MNI space. In 

Fig.11, the green spheres represent 4 randomly selected DICCCOLs registered in the MNI 

space. However, the registration method will miss the actual correspondence of our 

DICCCOL landmarks (as illustrated by the green lines), but find the corresponding voxel 

locations as illustrated by the blue dash lines. As a result, with the image registration, for 

each corresponding DICCCOL landmark there are 10 counterpart landmark locations in the 

MNI space from 10 subjects, as represented by the blue stars in Fig.11. Additionally, we 

performed the transformation matrix to the individually detected z-score maps of the 10 

subjects, based on which we compared the performances of functional correspondences 

established by image registration and by our DICCCOL system. Specially, we extracted the 

individual z-scores of both our DICCCOL locations (green spheres) and counterpart 

locations (blue stars) from individual z-scores maps of 10 subjects in the MNI space, 

respectively. The standard deviations of z-scores of blue stars (corresponding voxels) and 

the green spheres (corresponding DICCCOL landmarks) from 10 subjects in Fig.11 are 

provided in Table 2. It is evident that the z-values of green spheres possess lower standard 

deviations than the blue stars, suggesting that the correspondence established by our 

DICCCOL system performs better than that obtained by the image registration method. In 

addition, we performed a global comparison of the standard deviation of individual z-scores 

on all DICCCOLs and all volumetric voxels. The average standard deviation of all 

DICCCOLs’ z-scores is 1.86, while the average standard deviation of all volumetric voxels’ 

z-scores, whose correspondences were achieved by image registration, is 2.76. Therefore, 

this comparison shows that the DICCCOL system is capable of establishing better 

correspondence across different brains.

For additional quantitative analysis, we similarly registered 19 subjects’ DTI image into the 

MNI space via the FSL FLIRT registration tool, and applied the same transform matrix to 

their corresponding DICCCOL locations to warp DICCCOLs to the MNI space. As a result, 

for each corresponding DICCCOL landmark, there are 19 counterpart landmarks from 19 

subjects that are registered to the MNI space. Fig.12a visualizes 16 random selected example 

DICCCOLs on the cortical surface of the MNI space with different colors. For each 

DICCCOL set with the same color, we calculated the average distance among the 19 

registered locations and plotted them in Fig.12b. We can see that the registration method has 

an average distance from 7.0 mm to 11.5 mm. Further, for each example DICCCOL set in 

Fig.12a (in the MNI space), we measured the average z-scores and standard deviations of z-

scores at the DICCCOL locations and for the z-score maps via traditional voxel-based 

group-wise activation detection method. These z-scores are from three experiments without 

spatial smoothing (FWHM: 0mm), with spatial smoothing (FWHM: 5mm), and with spatial 

smoothing (FWHM: 10mm), as visualized by the blue, red and green curves, respectively in 

Fig.13. The comparison of the three curves in Fig.13a and Fig.13b suggests that spatial 

smoothing only shifts the average z-score curve to a higher level, but does not necessarily 

decrease the stand deviation of z-scores.
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3.3. Group-wise activation detection results and comparisons

We applied the DICCCOL-based group-wise activation detection methods in Section 2.4 on 

a group of 19 subjects. With a threshold of z-score>2.5 and p=0.05, we detected activated 

DICCCOLs and mapped them with red color for 4 randomly selected subjects in Fig.14. For 

comparison purpose, we also mapped activations detected by the traditional method of FSL 

FEAT/FLAME with different spatial smoothing parameters to the cortical surfaces of the 

same 4 subjects, as visualized in Fig.15. From the comparison of Fig.14 and Fig.15, we can 

observe two advantages of our method. First, our method can effectively assess group-wise 

activation significance of each landmark even when the landmarks are close to each other on 

the same gyrus or adjacent gyri, e.g., those on the visual cortex highlighted in the yellow 

circles. However, with the same threshold, the traditional method of FSL FEAT/FLAME 

only detects large vague regions in the yellow circles, which has lower anatomical resolution 

and specificity. In other words, our method possesses higher spatial and anatomical 

resolution and accuracy. Second, as discussed in Section 3.2.2, our method based on the 

anatomical correspondence established by the DICCCOL system is able to locate common 

activations across subjects more precisely. In contrast, the traditional method is based on the 

voxel correspondence established by image registration, which has difficulty in dealing with 

anatomical variations across subjects. As a consequence, if we map the activation 

significance level image back to different subjects’ own cortical surfaces in Fig.15, they are 

not necessarily located on the corresponding anatomical structures such as gyri and sulci, 

although the red regions in green and yellow circles possess similar image locations. In 

comparison, in the green and yellow circles in Fig.14, the corresponding activated 

DICCCOL landmarks are ensured to have the same anatomical structures. Hence, although 

the DICCCOL landmarks are not able to cover the whole cortex currently, the anatomical 

correspondence established by DICCCOL is substantially better than traditional image 

registration methods.

3.4. Quantitative comparisons

To quantitatively compare activation detection results by the traditional method (FSL FEAT/

FLAME) based on image registration and our methods (Section 2.4), we co-localized the 

traditional group-wise activation results (Figs.16a-16f and Figs.17a-17f) with our 

DICCCOL-based activation detection results (Fig.16g and Fig.17g). Specifically, we carried 

out traditional full-level group-wise activation detection using the FSL FEAT on volumes of 

the same group of subjects with different spatial smoothing settings (FWHM=0mm or 5mm) 

and different registration methods (linear (FSL FLIRT) or non-linear (FSL FNIRT)). In the 

following of this paper, we use TL to represent traditional method based on linear 

registration, and TN to represent traditional method based on non-linear registration. Also, 

we use “0mm” or “5mm” to indicate different spatial smoothing settings. With the same 

threshold of Z>2.0 and p=0.05, the activation regions from different methods are mapped 

onto the cortical surfaces with red color in Fig.16a (TL-0mm), Fig.16d (TL-5mm), Fig.17a 

(TN-0mm) and Fig.17d (TN-5mm), respectively. The traditional method without spatial 

smoothing (FWHM=0mm, denoted as TL-0mm and TN-0mm) detects reasonable regions in 

spite of inaccuracies induced by image registration. However, with spatial smoothing of 

FWHM 5mm (TL-5mm and TN-5mm), the spatial resolution of activation is reduced 

because of false positives caused by smoothing (Mikl et al., 2008; Tahmasebi et al., 2009; 
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Yue et al., 2010; Li et al., 2012d). For ease of comparison, we further overlaid the 

DICCCOL system (green spheres in Figs.16b, 16e, 17b and 17e) on the cortical surfaces, 

and the DICCCOLs located in the red regions are selected as activation, which are 

visualized in Fig.16c, Fig.16f, Fig.17c, Fig.17f. Fig.16c shows 66 activated DICCCOLs 

using the TL-0mm method, and the number of its common activations with the result by our 

method is 52, which accounts for the majority of both methods. In contrast, the activated 

DICCCOLs using TL-5mm method only have 58 (out of 94) in common with our method. 

Similar results were obtained by using non-linear registration, as shown in Fig.17. 

Furthermore, we performed similar comparison with different thresholds of z-score, and the 

activated DICCCOL numbers are plotted in Fig.18. In Fig.18a, the red curve and blue curve 

almost match together before the z-score threshold of 3.0. When the z-score threshold 

increases above 3.0, the blue curve is closer to the green curve, implying that our method 

has similar resolution as the TL-0mm method. However, with higher z-score threshold, the 

TL-0mm method will be less powerful because of false negatives caused by image 

registration misalignment. In contrast, our method is able to better preserve the true 

positives, while avoiding false negatives. In Fig.18b, the blue curve is above the red curve, 

and the difference between them grows larger when the z-score threshold is over 3.0. In 

comparison, the red curve approximates the green curve, which implies that our method has 

higher resolution and specification than the TL-5mm method, especially when the z-score 

threshold is higher. For the TL-5mm method, even using a high z-score threshold, the false 

positives caused by spatial smoothing cannot be effectively prevented.

For further evaluation of the statistical power of the DICCCOL based method, we applied 

the DICCCOL activation detection procedure to the same dataset with spatial smoothing of 

FWHM 5mm. With different threshold, the activated DICCCOL numbers are present with 

orange curve denoted with “Our method-5mm” in Fig.18c and Fig.18d. In comparison, 

activated DICCCOL numbers using three other methods are also curved in the same 

subfigures. It’s shown that based on preprocessing of spatial smoothing, the activation 

numbers using our method are relatively increased. The increment is obviously due to the 

effect of spatial smoothing, but at the same time the involved statistical inaccuracy by 

smoothing is evident. Note that employing the same level of spatial smoothing, our method 

detects similar or relatively more (with certain thresholds) quantity of activated DICCCOLs 

than the traditional method, which indicates that our method possesses similar or even 

higher statistical power than the traditional method because of the alignment of brain regions 

based on the optimized anatomical correspondence.

From the comparison of Fig.16 and Fig.17, we can see that with non-linear registration, 

similar group-wise activation is obtained and the anatomical variation problem is not 

significantly alleviated. Additionally, the correspondence built by non-linear registration 

doesn’t perform as good as our DICCCCOL system, because the intersections of activated 

DICCCOLs with our method in Fig.17 are as low as linear registration. Furthermore, by 

comparing Fig.18c and Fig.18d, we can see that our method without spatial smoothing 

detects more activation than traditional method, no matter the registration is established by 

the linear method or non-linear method.
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3.5. Sensitivity and Specificity

Group-wise activation detection is a statistical assessment of individual activation maps 

based on the alignment of different brains and the correspondence of brain anatomy. 

Individual z-score maps generated from the GLM method depict the activation significance 

of anatomical structures, which are relatively credible reflection of individual brain function. 

Typically, false positives or negatives of group-wise activation could be caused by 

misalignment of anatomical structures. Given the lack of ground truth, in this work we use 

statistics of the individual z-scores on corresponding structures as pseudo ground truth to 

measure the sensitivity and specificity of the traditional methods and our method.

Specifically, we used a threshold of z-score>2.5 and p<0.05 to select individually activated 

landmarks for each subject, and then we voted activated landmarks from each subject and 

determined 36 group-wise activated landmarks with a dominant voting selection. Thus these 

36 landmarks are regarded as pseudo ground-truth activations. Then, by using each different 

method (TL-0mm, TL-5mm, TN-0mm and TN-5mm), we selected 36 top activated 

landmarks. Based on the 36 pseudo ground-truth activations, the sensitivity and specificity 

of each method compared in this paper are measured by the formulas below:

The sensitivity and specificity of four traditional methods, in comparison with our method, 

are summarized in Table 4. From the table we can infer that our method exhibits both higher 

sensitivity and specificity than four traditional methods. The traditional methods have 

substantially lower sensitivity, which might be due to that the spatial smoothing involved 

false positives as discussed in Section 3.2.1 and in Figs.8–9. Therefore, our method based on 

DICCCOL correspondence can better avoid false positive and false negative than traditional 

methods.

3.6. Reproducibility analysis

One of the big challenges in real fMRI data activation detection is the lack of ground truth 

for evaluation. Instead, reproducibility analysis is usually employed for cross evaluation.

3.6.1 Reproducibility study within the same working memory dataset—In our 

research, we first randomly divide the 19 subjects from data set 1 into two groups, G1 

containing 10 subjects (subject #1~subject #10) and G2 containing 10 subjects (subject 

#10~suject #19). We applied the same procedure of our method to each group, as well as 

comparison experiments akin to Section 3.3. The activation spatial patterns are both quite 

similar as the patterns in Fig.16g. And the derived activation numbers for each group with 

the same series thresholds are visualized in Fig.18. Although results from the two groups are 

slightly different in the activation numbers for the same threshold, this variation of data sets 

is similarly captured by three different methods as shown in Fig.18. And our method 

reserves similar performance as the result in Section 3.3. As shown in Figs. 18a and 18b, the 

red curves using our method performs similar trend in two groups as the one in in Fig.17 for 
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the whole data set. Comparing with traditional method with two different methods, the 

performance of our method is stable across different set of data.

For further evaluation of the robustness across different groups of data set, we use the 

Jaccard similarity coefficient to measure the similarity of activations from different groups, 

which is defined as:

(3)

where A, B are two activated DICCCOL sets from different groups. Specifically, we 

measure the similarity of activated DCCCOLs from three different groups: G1 (10 subjects), 

G2 (10 subjects) and Gall (19 subjects). Since different groups may vary in threshold 

selection of z-score when determining activation, we use an alternative way to select active 

DICCCOLs. In detail, we sort the DICCCOLs with their z-scores and select the top 36 

DICCCOLs (10% of total) with high z-score and determine them as activation. So for each 

group, we have a set of 36 activated DICCCOLs using each method. And the Jaccard 

similarities are measured for activations of different groups as shown in Table 3. From the 

table we can infer that, our method possess dramatic cross-group similarity than T-0mm 

method and relatively higher cross-group similarity than T-5mm method. This result 

indicates that our method possesses higher cross-group stability and robustness, which is 

also evidence of accuracy of method.

3.6.2 Reproducibility study using the HCP fMRI dataset—For further evaluation 

and validation of our method, we employed the publicly available HCP dataset as an 

independent data source, and our methods were applied on the emotion and working 

memory task fMRI datasets, respectively. Similarly, we preformed comparisons with the 

traditional method with spatial smoothing of 5mm in Fig.20 and Fig.21. It is noted that with 

the large amount of 68 HCP Q1 release subjects, our method detected substantially more 

activations than the T-5mm method, which is an additional evidence of the higher sensitivity 

of our method and the better correspondence established by DICCCOL. Similarly, the 

sensitivity and specificity are measured with the method in Section 3.5. From the results on 

two HCP task fMRI datasets in Table 5, our method exhibits reproducibly higher sensitivity 

and specificity than the traditional methods.

4. DISCUSSION AND CONCLUSION

In this paper, we presented a novel, alternative group-wise fMRI activation detection 

framework based on the recently discovered and replicated 358 DICCCOL landmarks (Zhu 

et al., 2012), which provides intrinsic structural correspondences across individuals. 

Experimental results have demonstrated that this capacity substantially alleviates the 

possible misalignment resulted from the traditionally used image registration and inaccuracy 

caused by spatial smoothing processes. Also, the statistical power and robustness can be 

substantially improved by the direct pooling of results from a group of subjects via the 

intrinsically-established correspondences in DICCCOL landmarks. In contrast, registration-

based group-wise activation detection methods have difficulty in dealing with large 
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anatomic variations across subjects and depend heavily on the spatial smoothing, which 

could substantially increase the possibilities of false positives and false negatives in 

activation detection. Our extensive experimental results have demonstrated that the 

DICCCOL-based activation detection approach has better sensitivity and specificity in 

detecting consistently activated brain anatomical landmarks than traditional methods.

The proposed methods also have limitations and can be potentially improved in the 

following directions. First, it should be noted that currently, the 358 DICCCOL landmarks 

cannot cover the whole cerebral cortex nor detect activations at the whole-brain level. 

Nevertheless, the fMRI activation detection results achieved by the 358 DICCCOL 

landmarks already provided novel insights into how group-wise activation detection can be 

better performed using cortical landmarks of intrinsically-established correspondences 

across individuals, which is the major contribution of this work. With the improvement of 

the DICCCOL system in the future, we envision that the number of DICCCOL landmarks 

will increase substantially, and then larger portion of the cerebral cortex can be covered by 

the dense and consistent landmarks. Another potential way to remedy the limitation of the 

spatial coverage of DICCCOL system is that the 358 landmarks and their anatomical 

features can be used as constraints to guide more accurate non-linear cross-subject 

registration, based on which the whole single brains could be precisely aligned and 

activation detection can be better established. Second, the proposed methods should be 

tested and evaluated in larger scale multimodal fMRI/DTI datasets in the future. In this 

work, we used 19 cases of working memory task-based fMRI datasets for the methodology 

development and evaluation. Though this is a reasonably good number for group-wise 

activation detection (Thirion et al., 2007), we plan to evaluate the methods on multiple 

fMRI/DTI datasets such as those in Zhu et al., 2012.

FMRI activation detection has been a critical step in applying fMRI techniques in cognitive 

and clinical neuroscience applications. Thus, the development and validation of robust, 

effective and accurate approaches for fMRI activation detection have been investigated for 

decades (e.g., Friston et al., 1994; Heeger and Ress, 2002; Beckmann et al., 2003; Woolrich 

et al., 2004b; Matthews and Jezzard, 2004; Thirion et al., 2007; Logothetis et al., 2008; Ng 

et al., 2010). However, due to the challenges of considerable variability in brain structure 

and function across individuals and the lack of quantitative representation of common brain 

architectures, novel fMRI activation detection methods have been still in active research in 

the neuroimaging community. The major insight made from this work is that an 

individualized representation of common structural brain architectures across different 

brains, e.g., by the DICCCOL system (Zhu et al., 2012), can substantially improve the 

sensitivity and specificity of fMRI activation detection. We believe that the group-wise 

consistent activation patterns detected on the reproducible and common DICCCOL 

landmarks could provide more confidence in the neural activity information conveyed in the 

fMRI time series data.
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Fig. 1. 
Conceptual comparison of DICCCOL-based activation detection and traditional group-wise 

activation detection methods. Four subjects were linearly warped into the MNI (Montreal 

Neurological Institute) atlas space. (a) (b) and (c) show 3 examples of corresponding 

DICCCOL landmarks, respectively. The 8 red bubbles are randomly selected from the 

DICCCOL system (Zhu et al., 2012). The vertical gray dashed lines represent image slices, 

which have the image grid point correspondences across subjects. The yellow curves show 

the actual correspondences of the DICCCOL landmarks in four different brains.
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Fig. 2. 
The computational pipeline of DICCCOL-based fMRI activation detection methods.
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Fig. 3. 
Examples of DICCCOL landmark prediction. Randomly selected 4 landmarks in 3 subjects 

are visualized here. Yellow spheres are DICCCOL landmarks. For the same landmark, DTI-

derived fiber connections are visualized across subjects. Additional visualizations of other 

DICCCOL fiber connection patterns are available at: http://dicccol.cs.uga.edu.
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Fig. 4. 
Illustration of the extraction of cortical landmarks’ fMRI signals and the regression of 

stimulus curve to them via GLM. (a) Visualizations of 358 DICCCOLs (green bubbles) on 

the cortical surfaces in three subjects. (b) Visualizations of the selected DICCCOLs (red 

dots) on the DTI-derived brain tissue maps. (c) Visualization of the selected DICCCOLs 

(red dots) on fMRI raw images. In (a) (b) and (c), circles and boxes in yellow, blue and 

purple colors are examples of three corresponding landmarks across three different subjects. 

(d) Visualization of the fMRI BOLD time series of one selected landmarks from three 

subjects. (e) With GLM, the effect sizes are estimated for each landmark.
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Fig. 5. 
Group-wise mixed-effects analysis using effect sizes of a group of n subjects. Effect sizes 

estimated by GLM for each DICCCOL landmark in n subjects are pooled together as the 

input of mixed-effects model, and the derived z-score of each landmark is a measurement of 

activation significance. With a threshold to z-cores, the activated DICCCOL landmarks are 

announced.
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Fig. 6. 
The z-score maps of 358 DICCCOLs from 8 randomly selected subjects.
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Fig. 7. 
The distribution of z-scores of 358 landmarks from 19 subjects. The horizontal x-axis 

represents subject IDs, and the vertical y-axis represents DICCCOL IDs.
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Fig. 8. 
Examples of z-score maps with different sizes of smoothing FWHM. The three circles with 

different colors highlight three different types of spatial smoothing effects. With increasing 

the FWHM of spatial smoothing, the borders of bright regions in the blue circles become 

blurred and finally disappear; the small activated region in the red circles is weakened and 

even disappears; the activation centers in the yellow circles shifts.
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Fig. 9. 
Z-score maps of group-wise activation detection with different FWHMs in the spatial 

smoothing steps in one randomly selected subject. Rows of a, b and c represent the results of 

using FWHM 0mm, 5mm and 10mm, separately, and columns 1, 2 and 3 show three 

different views of the subject. Green spheres represent the DICCCOL landmarks.
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Fig. 10. 
Distributions of 358 DICCCOL landmarks’ group-wise z-scores with different sizes of 

smoothing windows. Blue bins represents 0 mm FWHM (means no smoothing), green bins 

and red bins represent 5 mm, 10 mm FWHMs, separately. The x-axis represents z-scores, 

and the y-axis represents the quantity of landmarks.
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Fig. 11. 
Voxel-wise correspondences established by image registration and the correspondences 

among DICCCOL landmarks (4 randomly selected landmarks are shown here). Blue stars 

are the registered and warped locations of DICCCOL landmarks in the MNI space from 

different subjects. Their grid point correspondences are illustrated by the blue dashed lines. 

The correspondences of DICCCOL landmarks are illustrated by the green solid lines.
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Fig. 12. 
(a) Registered locations of 16 randomly selected DICCCOL landmarks from 19 subjects. 

Different colors represent different DICCCOLs, and spheres of the same color represent 

each corresponding DICCCOLs registered from 19 subjects. (b) The average distances of 

the 16 randomly selected landmarks.
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Fig. 13. 
(a) The average group-wise z-scores of the 16 DICCCOL landmarks extracted by the 

locations of same color in Fig.12a. (b) The standard deviation of group-wise z-scores of the 

16 DICCCOL landmarks extracted by the locations of same color in Fig.12a.
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Fig. 14. 
Group-wise activations by our DICCCOL-based method for 4 randomly selected subjects. 

The red spheres are activated DICCCOLs and the blue ones are not activated.
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Fig. 15. 
Activations by traditional group-wise activation detection method of FSL FEAT with 

different spatial smoothing settings are mapped to the cortical surfaces. Threshold for 

selection activation is zscore>2.5 and p=0.05. Red regions are activations with the threshold, 

and blue regions are not activated regions. The 4 subjects are corresponding to the 4 subjects 

in Fig.14 in MNI space. Group-wise activation volume was mapped to each surface 

respectively. (a-d) are activations without spatial smoothing (FWHM =0mm), and (e-h) are 

activations with spatial smoothing of FWHM =5mm.
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Fig. 16. 
Comparison of activation by our method and the traditional method based on linear 

registration on DICCCOL landmarks. (a-c): Activations detected using the TL-0mm 

method. (d-f): Activations detected using the TL-5mm method. (a) and (d): Cortical surfaces 

mapped with activations from the traditional method, on which the red area represents 

activation. (b) and (e) are (a) and (d) overlaid with DICCCOLs (green spheres). (c) and (f): 

Selected activated DICCCOLs when they locate in the red areas of (b) and (e). (g): 

Activated DICCCOLs by our method.
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Fig. 17. 
Comparison of activation by our method and the traditional method using non-linear 

registration on DICCCOL landmarks. (a-c): Activations detected using the TN-0mm 

method. (d-f): Activations detected using the TN-5mm method. (a) and (d): Cortical surfaces 

mapped with activations from the traditional method, on which the red area represents 

activation. (b) and (e) are (a) and (d) overlaid with DICCCOLs (green spheres). (c) and (f): 

Selected activated DICCCOLs when they locate in the red areas of (b) and (e). (g): 

Activated DICCCOLs by our method.
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Fig. 18. 
Comparison of activated DICCCOL numbers by our method and by the traditional method 

using different thresholds of z-score. T-0mm denotes the traditional method with spatial 

smoothing of FWHM 0mm (shown in (a)), and T-5mm is alike (shown in (b)). Our 

method-5mm denotes our method with spatial smoothing of FWHM 5mm (shown in (c)). 

The x-axis in (a)-(b) represents the threshold value of z-score and the y-axis represents 

activated DICCCOL numbers. The curves “common” represent the number of commonly 

activated DICCCOLs by both methods in (a) and (b) respectively.
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Fig. 19. 
Comparison of activated DICCCOL numbers detected by our method and two traditional 

methods in two groups of the same data set. (a) Activated DICCCOL numbers of 3 methods 

in Group 1. (b) Activated DICCCOL numbers of 3 methods in Group 2.
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Fig. 20. 
(a-c): Activations detected using the T-5mm method for the emotion task. (d): Activations 

detected using our method for the emotion task. (e-g) Activations detected using the T-5mm 

method for the working memory task. (h) Activations detected using our method for the 

working memory task. (a) and (e): Cortical surfaces mapped with activations from the 

traditional method, on which the red area represents activation. (b) and (f) are (a) and (e) 

overlaid with DICCCOLs (green spheres). (c) and (g): Selected activated DICCCOLs when 

they locate in the red areas of (b) and (f).
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Fig. 21. 
Comparison of activated DICCCOL numbers by our method and by the traditional method 

using different thresholds of z-score. T-5mm denotes the traditional method with spatial 

smoothing of FWHM 5mm. (a) Comparison for the emotion task. (b) Comparison for the 

working memory task.
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Table 1

FMRI signals (the middle column) and corresponding z-scores (the right column) of an example DICCCOL 

landmark (#16) in 10 randomly selected subjects (IDs in the left column). The block-based stimulus curve is in 

the top row.
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Table 2

Comparison of standard deviations of individual activation z-scores for registered voxels (blue stars) and 

DICCCOL landmarks (green spheres) in Fig.11.

Standard deviations
of z-scores

Landmark
ID #2

Landmark
ID #32

Landmark
ID #256

Landmark
ID #300

Corresponding voxels 2.14 2.38 2.26 2.11

Corresponding DICCCOLs 1.55 1.57 1.24 1.42
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Table 3

Jaccard similarity of activated DICCCOL sets from different groups using three methods.

Methods J(G1, G2) J(G1, Gall) J(G2, Gall) Average

Our method 0.610 0.805 0.763 0.726

T-5mm 0.644 0.762 0.762 0.723

T-0mm 0.542 0.721 0.761 0.675
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