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Abstract

The cerebellar peduncles, comprising the superior cerebellar peduncles (SCPs), the middle 

cerebellar peduncle (MCP), and the inferior cerebellar peduncles (ICPs), are white matter tracts 

that connect the cerebellum to other parts of the central nervous system. Methods for automatic 

segmentation and quantification of the cerebellar peduncles are needed for objectively and 

efficiently studying their structure and function. Diffusion tensor imaging (DTI) provides key 

information to support this goal, but it remains challenging because the tensors change 

dramatically in the decussation of the SCPs (dSCP), the region where the SCPs cross. This paper 

presents an automatic method for segmenting the cerebellar peduncles, including the dSCP. The 

method uses volumetric segmentation concepts based on extracted DTI features. The dSCP and 

noncrossing portions of the peduncles are modeled as separate objects, and are initially classified 

using a random forest classifier together with the DTI features. To obtain geometrically correct 

results, a multi-object geometric deformable model is used to refine the random forest 

classification. The method was evaluated using a leave-one-out cross-validation on five control 

subjects and four patients with spinocerebellar ataxia type 6 (SCA6). It was then used to evaluate 

group differences in the peduncles in a population of 32 controls and 11 SCA6 patients. In the 

SCA6 group, we have observed significant decreases in the volumes of the dSCP and the ICPs and 
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significant increases in the mean diffusivity in the noncrossing SCPs, the MCP, and the ICPs. 

These results are consistent with a degeneration of the cerebellar peduncles in SCA6 patients.
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1 Introduction

The cerebellar peduncles are major white matter tracts which communicate information 

between the cerebellum and other brain regions, including the cerebral cortex and the spinal 

cord (Sivaswamy et al, 2010). They comprise the superior cerebellar peduncles (SCPs), the 

middle cerebellar peduncle (MCP), and the inferior cerebellar peduncles (ICPs). An 

illustration of the structures of the peduncles is shown in Fig. 1, together with the cerebellum 

and the brainstem. The SCPs are the major efferent pathways that convey the output 

information from the cerebellum to the midbrain. The SCPs originate primarily from the 

dentate nuclei and then continue upward toward the brainstem, where the left and right SCPs 

cross each other in a region known as the decussation of the SCP (dSCP). The fibers then 

head toward the red nuclei on the opposite side, where some fibers terminate but most 

continue through to the thalamus (Perrini et al, 2012). The MCP is the largest afferent 

system of the cerebellum and acts as the afferent pathway from the pons to the cerebellum. It 

wraps around the pons and ends in the cerebellar cortex (Perrini et al, 2012; Mori et al, 

2005). The ICPs contain both afferent and efferent signals and connect the medulla to the 

cerebellum (Mori et al, 2005).

The cerebellar peduncles play an important role in motor and non-motor control (Nolte, 

2002) and are known to be affected by various neurological diseases, including 

spinocerebellar ataxia (Ying et al, 2009; Murata et al, 1998), schizophrenia (Wang et al, 

2003), and multiple system atrophy (Nicoletti et al, 2006). Previous studies on cerebellar 

peduncle atrophy have used manual delineations of the peduncles on magnetic resonance 

images (Ying et al, 2009; Murata et al, 1998), which can be subjective and time-consuming. 

Automatic segmentation of the cerebellar peduncles is therefore a crucial step which will 

enable larger studies involving more objective, reproducible, and efficient analytic methods.

By capturing the anisotropy of water diffusion in white matter tracts, diffusion tensor 
imaging (DTI) (Le Bihan et al, 2001) provides a noninvasive tool for reconstruction of the 

cerebellar peduncles. Many algorithms for automatic segmentation of the white matter tracts 

based on DTI have been proposed. These methods can be grouped into two categories: 1) 

clustering and labeling of computed fibers (O’Donnell et al, 2006; O’Donnell and Westin, 

2007; Maddah et al, 2005, 2008; Wang et al, 2011; Zhang et al, 2008; Lawes et al, 2008; 

Suarez et al, 2012; Ye et al, 2012) and 2) volumetric segmentation (Bazin et al, 2011; Hao et 

al, 2014; Awate et al, 2007; Wang and Vemuri, 2005; Lenglet et al, 2006; Ye et al, 2013). 

Some prior methods have been developed specifically for the cerebellar peduncles. For 

example, Zhang et al (2008) compute a proximity measure for each pair of computed fibers 

and then cluster the fibers using a single-linkage algorithm. In Ye et al (2012), a supervised 
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Gaussian classifier is employed to label the fiber tracts. In Bazin et al (2011), an atlas-based 

Markov random field is used to segment the cerebellar peduncles volumetrically, and then 

each voxel is given a label.

None of the existing methods adequately segment the dSCP. In Zhang et al (2008) and Ye et 

al (2012), for example, the dSCP is entirely missing such that the SCPs pass beyond the red 

nuclei while never crossing (see Fig. 2(a)). The problem occurs in large part because fiber 

tracking methods do not correctly track the separate tracts through the dSCP. Fiber tracking 

methods that resolve crossing fibers have been reported (Qazi et al, 2009; Malcolm et al, 

2010; Peled et al, 2006; Landman et al, 2012; Ramirez-Manzanares et al, 2007; Behrens et 

al, 2007; Zhou et al, 2014; Michailovich et al, 2011), but none of them have yet 

demonstrated the ability to resolve the dSCP. Although imaging methods that acquire more 

diffusion information—e.g., high angular resolution diffusion imaging (HARDI) (Tuch et al, 

2002) and diffusion spectrum imaging (DSI) (Wedeen et al, 2005)—can potentially enable 

detailed evaluation of the crossing fibers in the dSCP, they take a much longer imaging time 

than standard DTI, which makes them less practical for clinical use. In addition, with the 

large number of existing and ongoing DTI acquisitions, scientific studies on the cerebellar 

peduncles using DTI are still widely performed (Cavallari et al, 2013; Clemm von 

Hohenberg et al, 2013; Hanaie et al, 2013; Hüttlova et al, 2014; Wang et al, 2014; Buijink et 

al, 2014; Ojemann et al, 2013). Therefore, development of better cerebellar peduncle 

segmentation methods on DTI remains an important technical goal.

One way to avoid using fiber tracking in tract segmentation is to directly segment the tracts 

by labeling the voxels based on features derived from DTI. For example, the DOTS method 

reported in Bazin et al (2011) explicitly models crossing regions and attempts to find them 

by matching their features near where they are expected to be found according to an atlas 

registered to the subject. Unfortunately, because of the small size of the dSCP, DOTS is 

unable to register the feature atlas close enough to find the dSCP in test subjects. An 

improvement to DOTS reported in Ye et al (2013) incorporates the linear Westin index 

(Westin et al, 1997) as an additional feature, but this is still insufficient to provide a robust 

initialization and segmentation of the dSCP.

In this paper, we propose an automatic method to volumetrically segment the cerebellar 

peduncles including the dSCP. The method models the dSCP, the noncrossing portions of the 

SCPs, the MCP, and the ICPs as separate objects based on the observation that the diffusion 

properties in these regions, including the primary eigenvectors (PEVs) of the tensors and the 

Westin indices describing the shape of the tensors (Westin et al, 1997), exhibit certain 

homogeneous properties. These features, together with spatial position information, are used 

to train a random forest classifier (RFC) (Breiman, 2001) from manual delineations. The 

RFC is then used on new subjects to segment and label the peduncles. Because smoothness 

is not enforced in the RFC, a further segmentation step is carried out using a multi-object 

geometric deformable model (MGDM) (Bogovic et al, 2013), which refines and smooths out 

the boundaries. An example of the proposed segmentation, depicting the SCPs that 

decussate, is shown in Fig. 2(b). Note that in this work, we do not include the SCPs beyond 

the decussation because they cannot be well identified on DTI (Mori et al, 2005).
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To show that the algorithm is scientifically useful, we studied differences between healthy 

controls and patients with a genetically defined cerebellar disease, spinocerebellar ataxia 

type 6 (SCA6). SCA6 is an autosomal dominant cerebellar ataxia and is characterized by 

progressive problems with movement (Murata et al, 1998). Patients with SCA6 can 

experience discoordination, speech difficulties, and involuntary eye movements (Sinke et al, 

2001). By studying the relationship between the cerebellar peduncles and SCA6, a better 

understanding of the disease with respect to anatomical changes can be obtained. Although 

previous studies have partially explored this relationship, they were applied in an indirect 

way by either measuring the diameter of the midbrain at the SCP level (Murata et al, 1998), 

or manually delineating regions of interest (ROIs) for analysis (Ying et al, 2009). In this 

work, we automatically segmented the cerebellar peduncles of controls and SCA6 patients. 

Then the volume, fractional anisotropy (FA), and mean diffusivity (MD) of each peduncle 

were quantified and compared between the two groups.

The rest of the paper is organized as follows. Section 2 provides our cerebellar peduncle 

segmentation method, including the random forest classification and MGDM refinement. It 

also describes the parameter settings and the data acquisition used in this work. In Section 3, 

validations of the proposed method including controls and patients with SCA6 are presented 

with qualitative evaluation and quantitative measurement. An experiment that involves a 

larger data set and compares the statistics of controls and SCA6 patients is also presented. 

The results of the experiments and the limitations and potential extensions of the proposed 

method are discussed in Section 4. Finally, Section 5 summarizes and concludes this paper.

2 Materials and methods

2.1 Random Forest Classification of the Cerebellar Peduncles

An RFC is used to label each voxel, providing an initial estimation of the locations of the 

cerebellar peduncles. The RFC, which is trained by manual delineations of the peduncles, 

determines the classification using characteristic features including diffusion properties and 

spatial location information.

2.1.1 RFC—An RFC is a supervised classifier that is composed of a number of decision 

trees. In this work, the RFC is implemented using the WEKA software (Hall et al, 2009) 

(http://www.cs.waikato.ac.nz/ml/index.html). Each tree is constructed based on a bootstrap 

sample randomly sampled with replacement from the training set, where the bootstrap 

sample has the same size as the training set (Breiman, 2001). At each node of a tree, a subset 

of features is selected randomly and the split is determined based on the selected features 

(without linear combination), i.e., the “Forest-RI” strategy in Breiman (2001). Specifically, a 

classification and regression tree (CART) (Breiman et al, 1984) methodology for growing 

trees is used in the RFC, where the split that results in the greatest decrease in the Gini 

impurity is selected at each node (Breiman et al, 1984). Splitting is terminated when no 

impurity decrease can be achieved, or some pre-defined termination criterion, such as the 

maximum depth of the tree, is reached. For each test sample, each tree provides a label by 

the terminal node where the sample ends. Using the results from all trees, a membership 

function mi indicating the likelihood of the sample belonging to class i can be calculated as 
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mi = Ni/N, where Ni is the number of the trees predicting class i, and N is the total number 

of the trees in the forest. The class that corresponds to the maximum membership is selected 

as the label. This process yields both an estimated label and membership functions for all the 

labels which will be later used in the MGDM segmentation. In this work, seven labels are 

used: left noncrossing SCP (lSCP), right noncrossing SCP (rSCP), dSCP, MCP, left ICP 

(lICP), right ICP (rICP), and background (BG). Note that the noncrossing SCPs and the 

dSCP are different objects.

2.1.2 Features in the RFC—To apply the RFC, features must be extracted from the 

images and input into the classifier. Here, based on the observation that the cerebellar 

peduncles can be identified using the diffusion properties and spatial location, we use the 

PEV, the Westin indices (Westin et al, 1997), and a registered template to provide features.

When there is one primary diffusion direction, the PEV provides a good approximation of 

the direction (Mori et al, 2005). Therefore, the PEV is a useful feature indicating the 

existence of tracts where there is no overlap. However, the PEV has bidirectional ambiguity; 

for example, (−1, 0, 0) and (1, 0, 0) represent the same PEV. Therefore, we map the PEV u = 

(u1, u2, u3) into a 5D Knutsson space as follows (Knutsson, 1985):

(1)

This mapping eliminates the directional ambiguity, and the resulting 5D Knutsson vector v 
serves as a feature in the RFC. An example of the Knutsson vector focused on the cerebellar 

peduncles in two axial slices is shown in Fig. 3(a). The locations of the cerebellar peduncles 

are indicated within these slices and also shown as labels in Fig. 3(b).

Although the PEV is a useful feature for the identification of tracts, it does not give useful 

information on whether fibers cross in a region. Thus, additional information for 

differentiation of noncrossing and crossing regions is required. The Westin indices can be 

used for this purpose (Westin et al, 1997). The linear index Cl, the planar index Cp, and the 

spherical index Cs describe how linear, planar, and spherical, a tensor is shaped, respectively. 

Let λ1 ≥ λ2 ≥ λ3 ≥ 0 be the eigenvalues of the diffusion tensor; the Westin indices are 

calculated as follows (Westin et al, 1997):

(2)

Note that 0 ≤ Cl, Cp, Cs ≤ 1 and Cl + Cp + Cs = 1. An example of the Westin indices is 

provided in Fig. 3(c). When there is one primary diffusion direction, the tensor is linear-

shaped and therefore high Cl values are expected. In the dSCP, the tensor is planar because it 

has crossing fibers, and therefore Cp increases and Cl drops. In isotropic areas, the tensor is 

spherical, and therefore Cs is large. Therefore, the Westin indices C = (Cl, Cp, Cs) are 

included as features to differentiate the cases of noncrossing tracts, crossing tracts, and 

isotropic areas.
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An initial estimate of the spatial locations of all the cerebellar peduncles including the dSCP 

can be provided by registering a template to the subject to be segmented. We generated such 

a template by manual segmentation of a single subject. After experimentation, we 

determined that SyN registration (Avants et al, 2008) using the linear Westin index provides 

a reliable registration of the template to the target subject, where the mean square difference 

is selected as the similarity measure. To incorporate the information provided by SyN 

registration into the RFC, signed distance functions (SDFs), ϕlSCP, ϕrSCP, ϕdSCP, ϕMCP, 

ϕlICP, and ϕrICP are calculated from these transformed lSCP, rSCP, dSCP, MCP, lICP, and 

rICP labels, respectively. We refer to the SDFs as spatial information because these features 

provide information on the spatial locations of the cerebellar peduncles. These distance 

maps ϕ = (ϕlSCP, ϕrSCP, ϕdSCP, ϕMCP, ϕlICP, ϕrICP) can indicate how far a voxel of the target 

subject is from the registered labels. Since the tracts should be close to the corresponding 

registered labels, lower values on a certain SDF could indicate higher possibility of the voxel 

belonging to the tract.

For each voxel at (x, y, z), we also supplement the SDFs with relative positions to the centers 

of the registered labels as additional spatial features:

(3)

where ( , , ) is the center of the registered labels. The relative positions

(4)

give more detailed relationships between voxels and transformed templates.

In summary, the final feature vector f to be used in the RFC is a 32-dimensional vector 

composed of the Knutsson vector v, the Westin indices C, and the spatial information from 

the SDFs ϕ, and the relative positions x, i.e.,

(5)

2.1.3 Manual Delineations—To train the RFC, manual delineations of the cerebellar 

peduncles were made using a PEV edge map (Fan et al, 2010) and the linear Westin index. 

The PEV edge map is computed by first estimating the gradient matrix G of the 5D 

Knutsson vector with a finite difference operator (Fan et al, 2010):

(6)

Then the Frobenius norm can be calculated to obtain the edge map (Fan et al, 2010):
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(7)

On the PEV edge map, the PEVs inside a tract are homogeneous and appear as dark regions; 

at the tract boundaries, the PEVs are different from their neighbors and appear as bright 

edges (see Fig. 4). Therefore, the PEV edge map contributes to the identification of the tracts 

for human raters. In addition, the noncrossing tracts have higher Cl values and crossing 

tracts have lower Cl values, which makes the Cl map a useful feature for tract delineation. In 

practice, these two maps are sufficient for manual determination of the cerebellar peduncles. 

Fig. 4 gives an example of the manual delineation and its relationship with the PEV edge 

map and the Cl map.

2.2 MGDM Segmentation

The RFC provides an initial classification of the cerebellar peduncles, but we still have two 

problems to contend with. First, the RFC applies to each voxel independently, which 

potentially leaves objects disconnected or highly irregular. Second, the RFC training may 

have unbalanced samples (where majority classes tend to be favored in RFC decisions), 

which will produce a bias in the sizes or positions of segmented objects. We therefore use 

MGDM (Bogovic et al, 2013) as a second stage in order to provide both spatial smoothness 

and additional fidelity to the data.

2.2.1 MGDM—MGDM is a framework for multiple object segmentation (Bogovic et al, 

2013). It efficiently evolves objects using a decomposition of the signed distance functions 

of all objects, and prevents overlaps and gaps between objects. The conventional speed 

functions that are used in geometric deformable models (Caselles et al, 1997; Xu et al, 2000) 

can be applied in MGDM, and MGDM also enables users to use different speed functions on 

the boundaries between different object pairs. Let ϕi,j be the level set function for the 

boundary between object i and j. Then its evolution can be written as:

(8)

where freg:i,j represents a region speed, fadv:i,j stands for an advection speed, and κ is a 

curvature speed. As with any deformable model, MGDM works best if initialized close to 

the final configuration. Therefore, our RFC segmentation result forms the initialization for 

MGDM. Using this framework, we can design the speed functions for specific boundaries to 

refine the RFC segmentation.

2.2.2 Speed Design of MGDM Smoothing—To preserve smoothness, a curvature 

speed on each boundary is used in MGDM. Using the membership functions from the RFC 

output, region speeds are also specified. A region speed shrinks or expands the boundary 

according to the membership functions and prevents the shrinkage caused by the curvature 

speed so that the boundaries will not deviate far from the RFC result. Region speeds can also 

correct bias in the RFC. Since the number of background voxels exceeds those of the tracts 

and the ratio can range from the scale of 10:1 to 1000:1, depending on which peduncle it is, 
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the RFC results can be biased. For example, a voxel belonging to the cerebellar peduncles 

can have a relatively high membership value of the true label, yet it is exceeded by an even 

higher background membership value. By choosing thresholds of the membership in the 

region speeds, a compensation for the RFC bias can be achieved.

Specifically, the region speed on each boundary is designed as follows:

(9)

Here α is a weighting constant, ti is a thresholding constant for tract i, and mi represents the 

corresponding membership computed from the RFC. The constant ti replaces the 

background membership for the RFC bias compensation, and is determined empirically. In 

practice, this replacement achieves more accurate results and prevents the background from 

being overestimated.

2.3 Parameter Settings

In the RFC, 100 trees were constructed and at each tree node five features were randomly 

sampled during traning. No constraint on the depth of the tree was used. For other settings in 

the WEKA software, default values were used. To save computational time and memory in 

the RFC training and test phase, only voxels that are within a certain distance to any of the 

transformed labels on the registered template were considered. The distance was set to 10 

mm to include all the possible voxels of the cerebellar peduncles. In MGDM, the parameters 

were chosen empirically, where α = 0.5, ε = 0.05, ti = 0.3 (i ≠ MCP), and ti = 0.375 (i = 

MCP).

2.4 Data Acquisition and Preprocessing

Two DTI data sets were used in this work, and they are whole-head acquisitions. In the first 

data set, there are nine subjects (five controls and four patients with SCA6); in the second 

data set, there are 43 subjects (32 controls and 11 SCA6 patients) that are different from the 

subjects in the first data set. The first data set was used for the validation of the proposed 

method and the second data set was used to study group differences between controls and 

SCA6 patients.

Diffusion weighted images (DWIs) were acquired using a multi-slice, single-shot EPI 

sequence on a 3T MR scanner (Intera, Philips Medical Systems, Netherlands). The sequence 

in the first and second data set consist of 32 and 30 gradient directions, respectively, and one 

b0 image. The b-value is 700 s/mm2. The original in-plane resolution of the two data sets is 

2.2 mm × 2.2 mm, with a matrix size of 96 × 96; and the original slice thickness of the two 

data sets is 2.2 mm with 65 slices acquired. The scanner resampled the slices and generated 

the output resolution of 0.828 mm × 0.828 mm × 2.2 mm, where the in-plane matrix size is 

256 × 256. Then we isotropically resampled the DWIs, where the resolutions of the first and 

the second data set are 1 mm and 0.828 mm isotropic, respectively. Finally, diffusion tensors 

were computed using CATNAP (Landman et al, 2007) in the JIST software (Lucas et al, 

2010).
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3 Results

3.1 Validation

A leave-one-out cross-validation was performed on the nine subjects in the first data set. 

Manual delineations of the cerebellar peduncles including the dSCP were made on these 

subjects. For each test subject, the other eight subjects were used in the training phase. Both 

control subjects and patients with SCA6 were included in the training. Our experiments 

were performed on a 12-core Linux machine. The feature extraction took around 30 minutes 

for each training or test subject, of which the SyN registration took around 20 minutes. The 

training phase with already extracted features took around two hours on average.

In training an RFC, a measure of the relative importance of each feature called variable 
importance (Breiman, 2001) can be computed. The variable importance measures the mean 

decrease in classification accuracy after permuting the feature over all the trees (Breiman, 

2001). In this experiment, the patterns of the variable importance are similar across the 

subjects. The means and standard deviations of the variable importance of the elements in 

the feature vector are shown in Fig. 5. The SDF of the MCP and the linear Westin index 

have much higher importance than the other features.

After training, test data were segmented as proposed. The RFC step with extracted features 

took around two minutes, and the MGDM step took around seven minutes. An example of 

the 3D rendering of the segmentation result is displayed in an oblique view in Fig. 6(a), 

where the noncrossing and crossing SCPs are combined to get the complete left and right 

SCPs. Examples of the cross sections of the segmentation result overlaid on the FA map are 

also given on different slices and compared with the manual delineations in Figs. 6(b) and 

6(c). The first axial slice shows a cut through the brainstem where the SCPs decussate, and 

the second slice shows a cut through the cerebellum where all the cerebellar peduncles are 

visible. It can be seen that the proposed segmentation method is able to correctly localize the 

cerebellar peduncles.

To quantitatively evaluate the segmentation accuracy of the proposed method, the Dice 

coefficients (Dice, 1945) and average surface distances (ASDs) between the segmentation 

results and manual delineations were computed, and they are listed in Tables 1 and 2, 

respectively. The numbers are also listed for the RFC initialization to show the improvement 

of MGDM over RFC alone. For convenience, in the tables, the intermediate RFC result and 

the final segmentation after MGDM refinement are called “RFC” and “RFC + MGDM”, 

respectively.

Since no existing method provides a comparison of the segmentation of cerebellar peduncles 

including the dSCP, and volumetric delineations of the cerebellar peduncles of the subjects 

are available, we compared our result with two registration-based methods. Each subject was 

segmented by the two registration-based methods using a leave-one-out cross-validation as 

well. For the first comparison method, we used the SyN registration algorithm (Avants et al, 

2008) to map the training delineations to the test target, using the Cl images and mean 

square difference as the similarity measure. The Cl images were chosen over the FA maps 

because they provide better contrast for the tracts. Then spatial STAPLE (Asman and 
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Landman, 2012) was used as the voting scheme. Spatial STAPLE achieves better label 

fusion than the STAPLE algorithm (Warfield et al, 2004) by incorporating spatially varying 

rater performance. For the second comparison method, we applied the tensor-based 

registration method implemented in DTI-TK (Zhang et al, 2007) to map the training 

delineations to the test target using the diffusion tensor. Then spatial STAPLE (Asman and 

Landman, 2012) was also used to provide the final segmentation. The two comparison 

methods are referred to as “SyN + s-STAPLE” and “DTI-TK + s-STAPLE”, respectively. 

The corresponding Dice coefficients and the ASDs are given in Tables 1 and 2. In our 

experiments, for each test subject, eight registrations must be performed, and each 

registration took around 20 minutes for both SyN and DTI-TK. Spatial STAPLE took around 

2 minutes for each test subject.

The final segmentation of our method is compared with our intermediate RFC result, the 

SyN + s-STAPLE result, and the DTI-TK + s-STAPLE result. To show the statistical 

significance of the performance difference, the paired Student’s t-test and Wilcoxon signed-

rank test were performed with respect to the Dice coefficients and ASDs, respectively. The 

p-values are shown in Tables 3 and 4.

To better understand the implications of these experimental results, we first study the 

difference between RFC and RFC + MGDM results. It can be seen from Table 1 that the 

proposed method (RFC + MGDM) improves over the RFC results and has mean Dice 

coefficients ranging from 0.720 to 0.850, a range which is generally thought to be 

acceptable, especially for small white matter tracts (Awate et al, 2007; Oishi et al, 2011). In 

Table 2, we can see that the mean ASDs of the proposed intermediate RFC segmentation and 

final RFC + MGDM segmentation are in the range of 0.472 mm to 0.755 mm and 0.335 mm 

to 0.697 mm, respectively. Compared to RFC results, the final segmentation (RFC+MGDM) 

has higher mean Dice coefficients and lower mean ASDs for all the structures, showing the 

improvement of using MGDM. The improvement of the lICP and rICP segmentation is 

significant in terms of both Dice coefficients and ASDs in both statistical tests (see Tables 3 

and 4).

We now turn to the comparisons of our method (RFC + MGDM) with the two multi-atlas 

registration-based methods. In Tables 1 and 2, for all the structures, the mean Dice 

coefficients of the final results of the proposed method are higher than the two competing 

methods, and the mean ASDs of the proposed method are lower than the two competing 

methods. With respect to the Dice coefficients, in both statistical tests (see Table 3), the 

proposed method performs better than SyN + s-STAPLE with significance for the lSCP, the 

rSCP, the dSCP, and the lICP; the proposed method also shows significantly better 

performance than DTI-TK + s-STAPLE for the lSCP, the rSCP, the dSCP, and the MCP. 

With respect to the ASDs, in the paired Student’s test (see Table 4), the proposed method 

better segments the lSCP, the rSCP, and the dSCP than SyN + s-STAPLE with significance, 

and better segments the lSCP and the dSCP than DTI-TK + s-STAPLE with significance; in 

the Wilcoxon signed-rank test (see Table 4), the proposed method better segments the lSCP, 

the rSCP, and the dSCP than SyN + s-STAPLE and DTI-TK + s-STAPLE with significance.
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3.2 Application to SCA6

The proposed method was next applied on the second data set which contains 32 controls 

and 11 patients. All the data in the first smaller data set were included in the training phase 

and were not used in the testing phase.

Tract volumes, average FAs, and average MDs of the segmented cerebellar peduncles were 

calculated. The values were corrected using a general linear model to remove the 

confounding effects of age and sex using the method in Friston et al (1994). These corrected 

numbers were then analyzed with a Student’s t-test and a Wilcoxon rank-sum test for 

comparison between the two groups. The corrected statistics are shown in the box plots in 

Fig. 7, where structures with significant differences observed in both the Student’s t-test and 

the Wilcoxon rank-sum test are indicated. The p-values in the two tests are listed in Table 5. 

Significant decreases in the volumes of the dSCP, the lICP, and the rICP are observed in the 

SCA6 group in both statistical tests. Although a significant FA increase in the lICP is 

observed in the SCA6 group in the Wilcoxon rank-sum test, no significant FA changes in 

both statistical tests are found for any tract. The MD is observed to be increasing with 

statistical significance in the lSCP, the rSCP, the MCP, the lICP, and the rICP in the SCA6 

group in both statistical tests.

4 Discussion

4.1 Interpretation of the Results

In training the RFC, the high variable importance of ϕMCP is probably because the number 

of MCP voxels is much larger than those of the other peduncles. The high variable 

importance of Cl is consistent with the fact that manual delineations are based, in part, on 

the Cl map and also because Cl is high for noncrossing white matter tracts, which is largely 

what is being segmented.

In the cross-validation study, the ICPs have worse mean Dice coefficients and ASDs than the 

other structures. This could be because the ICPs extend out of the cerebellum into the spinal 

cord and can be influenced by the field of view (FOV) of the DWIs.

The measurement of the Dice coefficients and ASDs and the statistical tests indicate that the 

proposed final results (RFC + MGDM) achieve more accurate segmentation than the 

intermediate RFC. These results also show the superiority of the proposed algorithm to the 

two multi-atlas registration-based methods. Note that for the dSCP, the proposed method 

improves the mean Dice coefficient over SyN + s-STAPLE and DTI-TK + s-STAPLE by 

0.092 (13.2%) and 0.125 (18.8%), respectively, and improves the mean ASD over SyN + s-

STAPLE and DTI-TK + s-STAPLE by 0.196 mm (36.9%) and 0.204 mm (37.8%), 

respectively. The improvement of the dSCP segmentation is larger than those of the 

segmentation of the other noncrossing structures. Moreover, this improvement is significant 

in both statistical tests.

In the second experiment that studies the group differences between controls and SCA6 

patients, the significant decreases in the volumes of the dSCP, the lSCP, and the rICP in the 

SCA6 group reveal atrophy of the cerebellar peduncles. Note that the volumes of the 
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noncrossing SCPs do not demonstrate significant differences, which emphasizes the 

importance of segmenting the crossing regions. In the comparison of FA values, it is worth 

noting that the mean FAs in the ICPs of the SCA6 group tend to be higher than those in the 

control group. This could be a result of the ICP volume decrease, where the regions with 

lower FA near the tract boundaries are more affected than the regions with higher FA close 

to the centerline of the tract. The ICPs with lower FA atrophy more while the ICPs with 

higher FA are better preserved, causing the average FA in the ICPs to increase. Furthermore, 

the MD is observed to be increasing significantly in the lSCP, the rSCP, the MCP, the lICP, 

and the rICP in the SCA6 group. The MD increase can be possibly due to the degeneration 

of the neural tracts, which could lead to reduction of cells that constrain water and therefore 

higher diffusion. Thus the increasing MD in these tracts is also a possible sign of their 

degeneration.

4.2 Limitations and Extensions

For the SCP, we have focused on the dSCP and the noncrossing portions below the dSCP. 

The boundary of the SCP beyond the dSCP is quite ambiguous on the PEV edge map and 

the Cl map which we use for delineation. The manual delineations of this part of the SCPs 

involve a large amount of speculation, and therefore it is not included in this work. Despite 

the exclusion, the segmentation of the dSCP and the SCP below the dSCP is able to reveal 

anatomical differences between groups, as shown in the results, and therefore we believe the 

proposed method is valuable for scientific studies.

Currently, the features used in the RFC are based on the quantities calculated from the single 

tensor model. It is also possible to use the features from multi-tensor models which estimate 

multiple fiber directions in a voxel. For example, if a two-tensor model is used, such as 

Behrens et al (2007), the 5D Knutsson map can also be calculated for the two directions 

respectively. Similarly, the proposed method can also be combined with HARDI and DSI, 

where multiple fiber directions can be estimated using constrained spherical deconvolution 

(Tournier et al, 2007) or q-ball reconstruction with the spherical harmonic basis (Hess et al, 

2006) on HARDI, and local maximum method (Hagmann et al, 2007) on DSI. One practical 

issue may be the order of the multiple directions. When the contributions of the fiber 

directions are close, the order may be influenced by noise, which causes incorrect feature 

correspondence. Besides the directional information, scalar quantities such as mixture 

fractions (Behrens et al, 2007; Landman et al, 2012) and generalized FA (Tuch, 2004) can 

also be included to aid classification.

The proposed method segments the structure of the cerebellar peduncles. It is also possible 

to extend it as a general tract segmentation method. For a general set of tracts, the 

noncrossing and crossing regions need to be identified manually using the Cl and the 

Knutsson edge map on training subjects. Features can then be calculated to train the RFC. 

The quality of the manual delineations and the required number of training data will depend 

on the variability of the tracts of interest, and the manual delineations could take a large 

amount of time when the tracts have complex structures.

We performed a preliminary study that shows the potential application of the proposed 

method to the study of cerebellar ataxia. However, the measurement of FA and MD is based 
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on the single tensor and could have limitations. For example, the FA in crossing regions may 

cause misleading interpretation because the values can be influenced by tract integrity and/or 

fiber crossing. Also, the study currently uses measurements calculated in the whole tract 

volume, but it can be extended to more detailed analysis of the tracts. For example, 

Yushkevich et al (2008) use medial representations of tracts and enable statistical analysis in 

a shape-based coordinate system, where detailed information with respect to spatial location 

can also be analyzed.

Another issue that should be noted in the proposed work is the partial volume effect (PVE), 

especially with the dSCP since it is very small. To quantitatively evaluate the level of PVE, 

using the data set in Section 3.2, for each structure we calculated the ratio of the boundary 

voxels to the total voxels to represent the partial volume fraction. Because the volumes are 

significantly different for the dSCP and ICPs between the control and SCA6 group, the 

partial volume fraction was computed separately for the two groups. The means and 

standard deviations are listed in Table 6. It can be observed that the partial volume fraction is 

smaller for the MCP, which is a larger structure, and larger for the dSCP, which is a smaller 

structure. Also, the partial volume fraction is more different between the control and SCA6 

group for the dSCP and ICPs than the other structures, which is consistent with the 

significantly different volumes of the dSCP and ICPs between the control and SCA6 group. 

The quantities (volume, FA, and MD) calculated from the segmentation could be affected by 

PVE, and these values by themselves should be interpreted with care. Using a large number 

of subjects could decrease the variance of statistics due to PVE, yet the results could still be 

biased. However, the method can still be used to reveal group differences. For example, in 

the study between controls and SCA6 patients, we have observed significant anatomical 

differences between patients and healthy controls, despite the presence of PVE.

5 Summary and Conclusion

In this paper, we have proposed an automatic method for segmenting the cerebellar 

peduncles including the decussation of the SCPs, which is nearly always missing in previous 

studies. Like the noncrossing cerebellar peduncles, the dSCP is modeled explicitly as a 

single class. An RFC is used to classify the voxels based on the PEVs, the Westin indices, 

and spatial information. The RFC result is further refined by MGDM segmentation to confer 

smoothness and compensate for possible bias due to unbalanced samples.

A leave-one-out cross-validation was carried out for qualitative and quantitative evaluation 

of the method. The Dice coefficients and average surface distances were calculated. Results 

on nine subjects indicate that the method is able to resolve the crossing of the SCPs and 

accurately segment the cerebellar peduncles. Furthermore, the proposed method outperforms 

two registration-based methods.

Experiments on a larger data set were performed to show that the method is useful for 

scientific studies. Results indicate that the volumes of the dSCP, the lICP, and the rICP 

decrease with statistical significance in the SCA6 group. The changes involving the dSCP 

also emphasizes the importance of the ability to identify the decussation. Furthermore, the 

mean MD values in non-crossing SCP regions, the MCP, and the ICPs are significantly 
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larger in the SCA6 group, which is also a possible indicator of tract degeneration. These 

findings are consistent with the degeneration of the cerebellar peduncles in SCA6 patients 

and show the benefit of applying the proposed method for scientific studies.
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Fig. 1. 
A manually drawn schematic of the cerebellar peduncles. Blue: left SCP; green: right SCP; 

red: MCP; orange: left ICP; yellow: right ICP. Shown together with the cerebellum (gray) 

and the brainstem (purple)
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Fig. 2. 
The SCPs (blue and green) shown with the red nuclei (red) and the dentate nuclei (yellow): 

(a) typical incorrect SCPs obtained from DTI and (b) segmentation of the SCPs including 

the decussation in the proposed method. Note that our SCPs do not extend through the 

dentate nuclei, which leads to a different appearance of the dentate nuclei due to 

transparency
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Fig. 3. 
Diffusion properties and cerebellar peduncles on two representative slices (Row 1 and 2 in 

each subfigure): (a) the 5D Knutsson vector, (b) the cerebellar peduncles for reference, and 

(c) the Westin indices. Within each subfigure, Row 1 shows an axial slice cutting through the 

brainstem where the SCPs decussate, and Row 2 shows an axial slice cutting through the 

body of the MCP
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Fig. 4. 
Manual delineations of the cerebellar peduncles overlaid on the PEV edge map (left) and the 

Cl map (right) on two representative slices (Row 1 and 2) in correspondence with Fig. 3. 

Row 1 shows an axial slice cutting through the brainstem where the SCPs decussate, and 

Row 2 shows an axial slice cutting through the body of the MCP
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Fig. 5. 
Means and standard deviations of the variable importance in the cross-validation test. The 

order of the variables is the same as in the feature vector f = (v, C, ϕ, x)
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Fig. 6. 
A segmentation result. (a) A 3D rendering (oblique view) of the cerebellar peduncles 

segmented by the proposed method in the cross-validation test, shown together with the 

cerebellum (gray). Axial cross sections of (b) the manual delineations and (c) the proposed 

segmentation contours overlaid on the FA map. Slice 1: a cut through the brainstem where 

the SCPs decussate. Slice 2: a cut through the cerebellum where all the cerebellar peduncles 

are visible. In all figures here, the left and right noncrossing SCPs are combined respectively 

with the dSCP to obtain the complete left and right SCPs. Blue: left complete SCP; green: 

right complete SCP; red: MCP; orange: lICP; yellow: rICP
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Fig. 7. 
Box plots of (a) tract volumes, (b) average FAs, and (c) average MDs of the segmented 

cerebellar peduncles. The numbers are compared between the control and the SCA6 group. 

Asterisks (*) indicate that statistically significant difference (p < 0.05) is observed in both 

the Student’s t-test and the Wilcoxon rank-sum test

Ye et al. Page 24

Neuroinformatics. Author manuscript; available in PMC 2016 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ye et al. Page 25

Ta
b

le
 1

T
he

 D
ic

e 
co

ef
fi

ci
en

ts
 b

et
w

ee
n 

th
e 

se
gm

en
ta

tio
n 

re
su

lts
 a

nd
 m

an
ua

l d
el

in
ea

tio
ns

. M
ea

n 
D

ic
e 

co
ef

fi
ci

en
ts

 f
ro

m
 th

e 
pr

op
os

ed
 m

et
ho

d 
ar

e 
se

t i
n 

bo
ld

 f
on

t

R
F

C
R

F
C

+M
G

D
M

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

S1
0.

82
8

0.
79

3
0.

70
2

0.
82

6
0.

75
3

0.
76

2
0.

83
9

0.
76

2
0.

68
9

0.
81

7
0.

78
2

0.
78

7

S2
0.

77
6

0.
76

6
0.

75
3

0.
86

0
0.

67
0

0.
66

0
0.

82
4

0.
81

6
0.

81
5

0.
85

0
0.

67
5

0.
67

6

S3
0.

77
4

0.
72

2
0.

83
4

0.
83

1
0.

71
2

0.
71

0
0.

80
3

0.
78

3
0.

87
0

0.
82

8
0.

75
9

0.
75

2

S4
0.

73
9

0.
79

7
0.

71
9

0.
87

4
0.

65
5

0.
61

6
0.

81
5

0.
80

9
0.

75
8

0.
87

0
0.

69
5

0.
64

8

S5
0.

82
0

0.
79

7
0.

81
6

0.
85

6
0.

77
7

0.
72

8
0.

79
8

0.
77

5
0.

86
2

0.
86

4
0.

77
7

0.
77

8

S6
0.

81
3

0.
77

8
0.

28
6

0.
83

8
0.

67
8

0.
68

9
0.

78
6

0.
77

0
0.

71
1

0.
84

3
0.

70
4

0.
72

9

S7
0.

83
3

0.
82

0
0.

75
5

0.
86

5
0.

72
0

0.
68

0
0.

76
9

0.
79

5
0.

77
5

0.
87

2
0.

73
1

0.
70

2

S8
0.

80
7

0.
78

5
0.

82
6

0.
82

9
0.

64
0

0.
66

8
0.

78
5

0.
76

7
0.

78
5

0.
85

1
0.

68
1

0.
70

5

S9
0.

78
5

0.
76

3
0.

78
7

0.
85

1
0.

73
9

0.
67

4
0.

79
9

0.
79

5
0.

83
3

0.
85

5
0.

76
5

0.
70

7

M
ea

n
0.

79
7

0.
78

0
0.

72
0

0.
84

8
0.

70
5

0.
68

8
0.

80
2

0.
78

6
0.

78
9

0.
85

0
0.

73
0

0.
72

0

St
d.

0.
03

1
0.

02
8

0.
16

9
0.

01
7

0.
04

7
0.

04
2

0.
02

2
0.

01
9

0.
06

3
0.

01
8

0.
04

2
0.

04
6

Sy
N

+s
-S

T
A

P
L

E
D

T
I-

T
K

+s
-S

T
A

P
L

E

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

S1
0.

74
8

0.
69

3
0.

63
7

0.
83

2
0.

73
2

0.
77

3
0.

78
4

0.
77

0
0.

72
5

0.
81

9
0.

75
1

0.
75

7

S2
0.

79
3

0.
79

7
0.

70
4

0.
85

2
0.

62
5

0.
65

7
0.

80
3

0.
79

9
0.

74
6

0.
83

9
0.

67
2

0.
68

3

S3
0.

73
1

0.
75

7
0.

79
4

0.
81

5
0.

71
5

0.
62

2
0.

72
4

0.
72

6
0.

59
7

0.
81

3
0.

76
4

0.
69

2

S4
0.

80
4

0.
77

1
0.

76
4

0.
86

5
0.

72
9

0.
66

2
0.

79
6

0.
78

0
0.

58
5

0.
85

2
0.

75
3

0.
69

4

S5
0.

72
1

0.
69

7
0.

75
2

0.
85

6
0.

70
5

0.
72

8
0.

80
3

0.
77

0
0.

74
1

0.
83

2
0.

73
7

0.
72

7

S6
0.

68
9

0.
75

0
0.

52
8

0.
85

3
0.

66
2

0.
72

3
0.

68
6

0.
72

5
0.

56
3

0.
85

3
0.

64
8

0.
68

2

S7
0.

70
9

0.
75

3
0.

64
0

0.
84

8
0.

63
7

0.
67

8
0.

74
8

0.
74

8
0.

57
1

0.
83

5
0.

62
5

0.
65

1

S8
0.

75
3

0.
69

7
0.

61
8

0.
81

4
0.

67
5

0.
67

2
0.

76
5

0.
75

4
0.

63
0

0.
79

0
0.

63
4

0.
58

6

S9
0.

76
4

0.
77

4
0.

83
6

0.
83

8
0.

74
6

0.
74

2
0.

75
8

0.
77

0
0.

81
7

0.
81

4
0.

71
0

0.
72

5

M
ea

n
0.

74
6

0.
74

4
0.

69
7

0.
84

1
0.

69
2

0.
69

5
0.

76
3

0.
76

0
0.

66
4

0.
82

8
0.

69
9

0.
68

9

St
d.

0.
03

8
0.

03
8

0.
09

9
0.

01
8

0.
04

4
0.

04
8

0.
03

9
0.

02
5

0.
09

4
0.

02
0

0.
05

5
0.

04
9

Neuroinformatics. Author manuscript; available in PMC 2016 May 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ye et al. Page 26

Ta
b

le
 2

T
he

 A
SD

s 
(m

m
) 

be
tw

ee
n 

th
e 

se
gm

en
ta

tio
n 

re
su

lts
 a

nd
 m

an
ua

l d
el

in
ea

tio
ns

. T
he

 m
ea

n 
A

SD
s 

fr
om

 th
e 

pr
op

os
ed

 m
et

ho
d 

ar
e 

se
t i

n 
bo

ld
 f

on
t

R
F

C
R

F
C

+M
G

D
M

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

S1
0.

39
1

0.
56

2
0.

48
4

0.
61

8
0.

64
7

0.
56

1
0.

40
8

0.
67

5
0.

55
2

0.
70

0
0.

58
2

0.
52

3

S2
0.

62
1

0.
62

7
0.

38
5

0.
54

2
0.

89
5

0.
81

6
0.

50
1

0.
51

0
0.

29
8

0.
59

9
0.

90
2

0.
79

6

S3
0.

58
5

0.
74

8
0.

31
4

0.
62

1
0.

70
0

0.
67

6
0.

52
1

0.
59

0
0.

26
8

0.
66

3
0.

61
1

0.
61

4

S4
0.

59
1

0.
45

2
0.

42
3

0.
50

4
0.

82
6

0.
89

3
0.

42
4

0.
44

9
0.

35
8

0.
55

1
0.

79
7

0.
87

3

S5
0.

82
0

0.
79

7
0.

81
6

0.
85

6
0.

77
7

0.
72

8
0.

51
2

0.
53

9
0.

21
2

0.
56

9
0.

58
9

0.
51

6

S6
0.

41
6

0.
48

6
0.

94
5

0.
80

1
0.

77
6

0.
72

3
0.

49
2

0.
55

2
0.

39
5

0.
78

9
0.

73
5

0.
63

5

S7
0.

35
4

0.
37

7
0.

27
5

0.
73

4
0.

64
5

0.
81

3
0.

53
3

0.
50

3
0.

31
3

0.
67

8
0.

64
1

0.
75

5

S8
0.

43
0

0.
45

6
0.

23
4

0.
84

6
0.

87
6

0.
78

5
0.

51
8

0.
54

3
0.

29
1

0.
75

9
0.

81
9

0.
71

0

S9
0.

45
0

0.
51

6
0.

37
6

0.
72

0
0.

63
5

0.
80

1
0.

45
8

0.
47

1
0.

32
8

0.
68

4
0.

59
6

0.
72

5

M
ea

n
0.

51
8

0.
55

8
0.

47
2

0.
69

4
0.

75
3

0.
75

5
0.

48
5

0.
53

7
0.

33
5

0.
66

6
0.

69
7

0.
68

3

St
d.

0.
14

9
0.

14
1

0.
24

6
0.

12
9

0.
10

1
0.

09
7

0.
04

5
0.

06
7

0.
09

7
0.

08
1

0.
11

9
0.

12
1

Sy
N

+s
-S

T
A

P
L

E
D

T
I-

T
K

+s
-S

T
A

P
L

E

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

S1
0.

66
9

0.
82

7
0.

68
4

0.
61

4
0.

69
1

0.
54

0
0.

51
9

0.
61

2
0.

46
3

0.
69

0
0.

63
3

0.
58

3

S2
0.

54
7

0.
53

4
0.

56
2

0.
61

1
1.

08
9

0.
98

4
0.

52
7

0.
51

7
0.

38
8

0.
73

0
0.

85
4

0.
73

9

S3
0.

71
1

0.
63

8
0.

40
0

0.
68

4
0.

76
1

1.
18

3
0.

71
1

0.
67

9
0.

77
2

0.
68

5
0.

60
4

0.
84

2

S4
0.

55
8

0.
54

0
0.

41
1

0.
54

1
0.

61
8

0.
81

0
0.

78
6

0.
51

5
0.

57
1

0.
59

0
0.

57
7

0.
70

4

S5
0.

69
8

0.
74

3
0.

38
6

0.
58

7
0.

84
3

0.
69

8
0.

48
1

0.
54

0
0.

35
0

0.
66

4
0.

67
3

0.
67

7

S6
0.

78
2

0.
60

7
0.

83
1

0.
62

4
0.

73
7

0.
65

7
0.

79
3

0.
68

6
0.

78
7

0.
66

2
0.

79
5

0.
70

6

S7
0.

78
6

0.
61

4
0.

56
8

0.
89

9
0.

90
9

0.
80

3
0.

58
5

0.
57

8
0.

64
0

0.
99

8
0.

92
6

0.
83

5

S8
0.

59
5

0.
76

4
0.

63
0

1.
04

2
0.

76
4

0.
77

0
0.

53
1

0.
56

4
0.

56
7

1.
16

8
0.

87
0

1.
00

3

S9
0.

59
3

0.
53

3
0.

30
9

0.
96

3
0.

64
1

0.
65

5
0.

62
9

0.
52

6
0.

31
4

1.
04

7
0.

72
4

0.
67

5

M
ea

n
0.

66
0

0.
64

5
0.

53
1

0.
72

9
0.

78
4

0.
78

9
0.

61
8

0.
58

0
0.

53
9

0.
80

4
0.

74
0

0.
75

2

St
d.

0.
09

1
0.

10
9

0.
16

9
0.

18
6

0.
14

6
0.

19
4

0.
11

9
0.

06
6

0.
17

4
0.

20
8

0.
12

7
0.

12
4

Neuroinformatics. Author manuscript; available in PMC 2016 May 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ye et al. Page 27

Ta
b

le
 3

T
he

 p
-v

al
ue

s 
of

 th
e 

pa
ir

ed
 S

tu
de

nt
’s

 t-
te

st
 a

nd
 th

e 
W

ilc
ox

on
 s

ig
ne

d-
ra

nk
 te

st
 f

or
 c

om
pa

ri
ng

 th
e 

D
ic

e 
co

ef
fi

ci
en

ts
 b

et
w

ee
n 

R
FC

 +
 M

G
D

M
 r

es
ul

ts
 a

nd
 th

e 

ot
he

r 
th

re
e 

re
su

lts
. N

ot
e 

th
at

 th
e 

m
ea

n 
D

ic
e 

co
ef

fi
ci

en
ts

 o
f 

R
FC

 +
 M

G
D

M
 a

re
 g

re
at

er
 th

an
 th

os
e 

in
 th

e 
ot

he
r 

th
re

e 
re

su
lts

 a
s 

sh
ow

n 
in

 T
ab

le
 1

P
ai

re
d 

St
ud

en
t’

s 
t-

te
st

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

R
FC

0.
75

20
0.

63
41

0.
17

26
0.

53
17

0.
00

19
*

1.
4E

-5
**

*

Sy
N

 +
 s

-S
TA

PL
E

0.
00

05
**

*
0.

00
07

**
*

0.
00

37
*

0.
15

21
0.

01
61

*
0.

14
24

D
T

I-
T

K
 +

 s
-S

TA
PL

E
0.

00
80

*
0.

00
71

*
0.

00
44

*
0.

01
62

*
0.

08
34

0.
08

82

W
ilc

ox
on

 s
ig

ne
d-

ra
nk

 t
es

t

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

R
FC

0.
82

03
0.

73
44

0.
05

47
0.

65
23

0.
00

39
*

0.
00

39
*

Sy
N

 +
 s

-S
TA

PL
E

0.
00

39
*

0.
00

39
*

0.
01

95
*

0.
20

31
0.

01
95

*
0.

16
41

D
T

I-
T

K
 +

 s
-S

TA
PL

E
0.

00
78

*
0.

01
17

*
0.

01
17

*
0.

01
95

*
0.

16
41

0.
07

42

N
ot

e:

* p 
<

 0
.0

5,

**
* p 

<
 0

.0
01

Neuroinformatics. Author manuscript; available in PMC 2016 May 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ye et al. Page 28

Ta
b

le
 4

T
he

 p
-v

al
ue

s 
of

 th
e 

pa
ir

ed
 S

tu
de

nt
’s

 t-
te

st
 a

nd
 th

e 
W

ilc
ox

on
 s

ig
ne

d-
ra

nk
 te

st
 f

or
 c

om
pa

ri
ng

 th
e 

A
SD

s 
be

tw
ee

n 
R

FC
 +

 M
G

D
M

 r
es

ul
ts

 a
nd

 th
e 

ot
he

r 
th

re
e 

re
su

lts
. N

ot
e 

th
at

 th
e 

m
ea

n 
A

SD
s 

in
 R

FC
 +

 M
G

D
M

 r
es

ul
ts

 a
re

 lo
w

er
 th

an
 th

os
e 

in
 th

e 
ot

he
r 

th
re

e 
re

su
lts

 a
s 

sh
ow

n 
in

 T
ab

le
 2

P
ai

re
d 

St
ud

en
t’

s 
t-

te
st

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

R
FC

0.
53

39
0.

65
06

0.
14

58
0.

48
10

0.
01

90
*

0.
00

57
*

Sy
N

 +
 s

-S
TA

PL
E

0.
00

03
**

*
0.

00
18

*
0.

00
33

*
0.

26
86

0.
11

60
0.

14
30

D
T

I-
T

K
 +

 s
-S

TA
PL

E
0.

01
84

*
0.

05
71

0.
01

30
*

0.
05

60
0.

37
40

0.
19

70

W
ilc

ox
on

 s
ig

ne
d-

ra
nk

 t
es

t

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

R
FC

0.
82

03
0.

73
44

0.
20

31
0.

82
03

0.
01

17
*

0.
00

39
*

Sy
N

 +
 s

-S
TA

PL
E

0.
00

39
*

0.
00

39
*

0.
00

78
*

0.
25

00
0.

12
89

0.
20

31

D
T

I-
T

K
 +

 s
-S

TA
PL

E
0.

01
95

*
0.

03
91

*
0.

01
95

*
0.

05
47

0.
20

31
0.

16
41

N
ot

e:

* p 
<

 0
.0

5,

**
* p 

<
 0

.0
01

Neuroinformatics. Author manuscript; available in PMC 2016 May 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ye et al. Page 29

Ta
b

le
 5

T
he

 p
-v

al
ue

s 
of

 th
e 

St
ud

en
t’

s 
t-

te
st

 a
nd

 th
e 

W
ilc

ox
on

 r
an

k-
su

m
 te

st
 f

or
 c

om
pa

ri
ng

 th
e 

vo
lu

m
es

, a
ve

ra
ge

 F
A

s,
 a

nd
 a

ve
ra

ge
 M

D
s 

of
 th

e 
ce

re
be

lla
r 

pe
du

nc
le

s 
be

tw
ee

n 
th

e 
co

nt
ro

l a
nd

 S
C

A
6 

gr
ou

p

V
ol

um
e

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

St
ud

en
t’

s 
t-

te
st

0.
08

57
0.

29
02

0.
03

21
*

0.
37

37
0.

04
65

*
0.

00
55

*

W
ilc

ox
on

 r
an

k-
su

m
 te

st
0.

09
77

0.
15

17
0.

02
69

*
0.

56
83

0.
04

66
*

0.
00

13
*

FA

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

St
ud

en
t’

s 
t-

te
st

0.
20

89
0.

13
35

0.
23

44
0.

91
34

0.
15

76
0.

73
10

W
ilc

ox
on

 r
an

k-
su

m
 te

st
0.

38
06

0.
25

96
0.

42
76

0.
98

89
0.

04
66

*
0.

41
16

M
D

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

St
ud

en
t’

s 
t-

te
st

0.
00

05
**

*
0.

00
10

*
0.

14
76

0.
02

62
*

0.
00

28
*

0.
00

02
**

*

W
ilc

ox
on

 r
an

k-
su

m
 te

st
0.

00
01

**
*

0.
00

02
**

*
0.

23
68

0.
03

32
*

0.
00

14
*

0.
00

02
**

*

N
ot

e:

* p 
<

 0
.0

5,

**
* p 

<
 0

.0
01

Neuroinformatics. Author manuscript; available in PMC 2016 May 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ye et al. Page 30

Ta
b

le
 6

Pa
rt

ia
l v

ol
um

e 
fr

ac
tio

n 
fo

r 
th

e 
co

nt
ro

l s
ub

je
ct

s 
an

d 
SC

A
6 

pa
tie

nt
s 

in
 th

e 
da

ta
 s

et
 u

se
d 

in
 S

ec
tio

n 
3.

2

C
on

tr
ol

SC
A

6

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

lS
C

P
rS

C
P

dS
C

P
M

C
P

lI
C

P
rI

C
P

M
ea

n
0.

50
9

0.
50

6
0.

67
7

0.
34

0
0.

50
9

0.
51

4
0.

51
8

0.
52

4
0.

77
5

0.
33

4
0.

57
4

0.
57

5

St
d.

0.
03

2
0.

02
9

0.
06

7
0.

01
8

0.
02

9
0.

02
4

0.
04

0
0.

05
0

0.
10

3
0.

01
7

0.
05

0
0.

05
7

Neuroinformatics. Author manuscript; available in PMC 2016 May 19.


	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Random Forest Classification of the Cerebellar Peduncles
	2.1.1 RFC
	2.1.2 Features in the RFC
	2.1.3 Manual Delineations

	2.2 MGDM Segmentation
	2.2.1 MGDM
	2.2.2 Speed Design of MGDM Smoothing

	2.3 Parameter Settings
	2.4 Data Acquisition and Preprocessing

	3 Results
	3.1 Validation
	3.2 Application to SCA6

	4 Discussion
	4.1 Interpretation of the Results
	4.2 Limitations and Extensions

	5 Summary and Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

