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Abstract

Diffusion tensor imaging (DTI) provides connectivity information that helps illuminate the 

processes underlying normal development as well as brain disorders such as autism and 

schizophrenia. Researchers have widely adopted graph representations to model DTI connectivity 

among brain structures; however, most measures of connectivity have been centered on nodes, 

rather than edges, in these graphs. We present an edge-based algorithm for assessing anatomic 

connectivity; this approach provides information about connections among brain structures, rather 

than information about structures themselves. This perspective allows us to formulate multivariate 

graph-based models of altered connectivity that distinguish among experimental groups. We 

demonstrate the utility of this approach by analyzing data from an ongoing study of schizophrenia.
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Introduction

Although magnetic resonance (MR) examination has provided invaluable anatomic 

information about the structure of the human brain, researchers have recognized that signal-

intensity and morphological changes cannot provide a complete picture of neurological and 

psychiatric disorders. Investigations of psychiatric disorders, brain development, and 

epilepsy stand to benefit immensely from noninvasive delineation of connectivity. Basic and 

clinical neuroscience researchers have widely adopted diffusion tensor imaging (DTI) to 

delineate anatomic connectivity, in a broad range of settings, including brain development 

(Cascio et al. 2007; Dubois et al. 2006; Eluvathingal et al. 2007; Hagmann et al. 2010; 
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Hüppi and Dubois 2006; Kasprian et al. 2008), aging (Makris et al. 2007; Ystad et al. 2011), 

epilepsy (Liao et al. 2011), multiple sclerosis (Testaverde et al. 2012), and psychiatric and 

behavioral disorders (Ayling et al. 2012; Sexton et al. 2009; Travers et al. 2012; Wang et al. 

2012; White et al. 2008). Recognizing the importance of DTI, functional MR and other 

modalities in constructing connectivity models of the human brain, the NIH has initiated the 

Human Connectome Project, the goal of which is to “acquire and share data about the 

structural and functional connectivity of the human brain” (NIH 2013).

Most DTI analyses do not directly compare connectivity (i.e., the presence or strengths of 

connections) across experimental groups. One of the most common forms of DTI analysis is 

tract-based spatial statistics (TBSS), which was developed by Smith et al. (Smith et al. 

2006). In this approach, DTI data (e.g., voxel-wise fractional anisotropy [FA] values) are 

registered to a skeletonized mean FA image, which is created from a preliminary registration 

of all subjects’ FA volumes; voxel-wise statistics, such as multiple regression, are then 

computed across the common FA skeleton. As with other voxel-wise approaches, TBSS 

suffers from the multiple-comparison problem, which the authors advise to ameliorate via a 

permutation-based approach (e.g., (Nichols and Holmes 2002)). An additional problem with 

voxel-wise analyses, as currently performed, is that these algorithms are typically applied to 

signal-intensity (e.g., FA) values, rather than to connectivity patterns; although changes in 

FA values imply altered connectivity, researchers have yet to elucidate the relationship 

between DTI-derived scalar values and connectivity.

The major alternative to mass-univariate voxel-wise analysis of scalar DTI metrics is 

tractography. As described by Toga et al. (2012), tractography consists of two major steps: 

voxel-wise estimation of a diffusion vector, and deterministic or probabilistic estimation of 

fibers across voxels (i.e., fiber tracking). This process yields a (strictly triangular) 

connectivity matrix (CM), in which entries quantify connectivity strength between two brain 

regions. CM comparison across experimental groups, or over time, has the potential to 

delineate detailed differences in connectivity. The principal challenges inherent to 

comparing CMs are threefold: undersampling; reliance on structure-centered, rather than 

connection-centered, statistics; and reliance on mass-univariate statistics.

Graph theory offers a natural means for describing connectivity patterns, in that nodes and 

edges represent brain structures and connections among them, respectively; there is a one-to-

one mapping between a CM and an undirected graph. A rapidly growing group of 

neuroscientists, computer scientists and mathematicians have investigated graph-theoretical 

approaches to modeling brain networks (He and Evans 2010). Researchers have used this 

framework to compare topological properties of these network graphs, such as modularity, 

characteristic path length, and communicability (Bullmore and Sporns 2009; Crofts and 

Higham 2009; Watts and Strogatz 1998). For example, the small-world property describes a 

network that consists of sparsely connected cliques (highly interconnected groups of nodes), 

in contrast to lattices—which are uniformly connected—and randomly connected networks.

Although this approach has clearly demonstrated its utility, it suffers from two principal 

limitations. First, graph-theoretical metrics measure properties of nodes, rather than of 

edges. For example, although a change in efficiency may indicate an important change in 
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connectivity for a brain structure S, it does not directly indicate the other structures that have 

gained or lost connections to S. Second, these metrics have no formal foundation; the choice 

of which network metrics to compute in a given analysis has no grounding in first principles, 

and conclusions based on various metrics may differ.

More recently, Zalesky et al. have proposed a network-based statistic (NBS) to ameliorate 

the multiple-comparison problem for graph-theoretical metrics (Zalesky et al. 2010). Instead 

of computing connection-wise probabilities, they propose computing p-values for network-

based graph-theoretical metrics. Toward this end, they apply permutation testing and 

connection-wise significance thresholds to generate a network for which they compute a 

NBS; of note, they determine these significance thresholds empirically. In essence, under 

this approach networks are equivalent to the clusters that are detected using statistical 

parametric mapping. They demonstrated that a network-based approach results in fewer 

false positive results, at the cost of loss of information about pair-wise connectivity.

We herein investigate the utility of discrete Bayesian multivariate analysis of connectivity 

matrices. Although we also use graphs to model brain networks, our approach focuses on 

connections among brain structures, rather than on brain structures themselves. This 

difference allows us to delineate specific connectivity differences that distinguish 

experimental groups. In addition, we make extensive use of bootstrap re-sampling and 

ensemble methods to minimize overfitting that results from undersampled data. We 

demonstrate the utility of this approach by analyzing data from an ongoing study of 

schizophrenia.

Methods

Our approach for analyzing CM values consists of three steps (Fig. 1): connectivity-score 

computation, variable selection, and Bayesian network (BN) generation.

Subjects

We analyzed DTI data from 126 subjects: 48 individuals with schizophrenia (age=40.2±13.4 

years) and 78 control subjects (age=39.8±12.9 years). All participants provided written 

informed consent that had been approved by the University of Maryland Internal Review 

Board. All participants were evaluated using the Structured Clinical Interview for the DSM-

IV. We recruited subjects with an Axis I diagnosis of schizophrenia or schizoaffective 

disorder through the Maryland Psychiatric Research Center, and neighboring mental-health 

clinics. We recruited control subjects, who did not have an Axis I psychiatric diagnosis, 

through media advertisements. Exclusion criteria included hypertension, hyperlipidemia, 

type 2 diabetes, heart disorders, and major neurological events, such as stroke or transient 

ischemic attack. Illicit substance and alcohol abuse and dependence were exclusion criteria. 

Except for seven medication-free participants, schizophrenia patients were taking 

antipsychotic medications. We found no significant different in age and sex across group (p-

value=0.88 for age based on two-sample t-test, and p-value=0.27 for sex based on Fisher’s 

exact test).
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Clinical Assessment

Psychosis in schizophrenia patients was assessed with the 20 item Brief Psychiatric Rating 

Scale total score (Overall and Gorham 1962), where the four positive symptom items—

conceptual disorganization, suspiciousness, hallucination, and unusual thought content—

were used to calculate the psychosis score. Cognitive capacities were assessed by processing 

speed (digit symbol coding subtest of the WAIS-III) (Wechsler 1997) and working memory 

(digit sequencing task) (Keefe et al. 2004). Processing speed and working memory are 

considered among the most robust cognitive domain deficits in schizophrenia (Dickinson et 

al. 2007; Knowles et al. 2010).

Diffusion Tensor Imaging (DTI)

All MR examinations were performed at the University of Maryland Center for Brain 

Imaging Research, using a Siemens 3-Tesla TRIO MR system (Erlangen, Germany) 

equipped with a 32-channel phased-array head coil. The DTI data were collected using a 

single-shot, echo-planar, single refocusing spin-echo, T2-weighted sequence, with GRAPPA 

(acceleration factor 2), yielding voxel dimensions 1.7×1.7×3.0 mm, acquisition time 

approximately 8 min. The sequence parameters were: TE/TR=87/8, 000 ms, FOV=200 mm, 

axial slice orientation with 50 slices and no gap, five b=0 images and 64 isotropically 

distributed diffusion-weighted directions with b=700 s/ mm2. All data passed quality-

assurance control of< 3 mm accumulated motion during the scan. There was no difference in 

average motion per TR between patients and controls (0.42±0.21 mm versus 0.43±0.20 mm 

for patients and controls, respectively). We registered image data to the AAL atlas (Tzourio-

Mazoyer et al. 2002), which has 90 structures, and therefore 4,005 potential pair-wise 

connections.

Image Preprocessing

We processed T1-weighted MR images on a Linux workstation, running under CentOS 6.6, 

as follows. First, we applied the brain extraction tool (Smith 2002), which is a component of 

the FMRIB Software Library (FSL-RRID:birnlex_2067) (Jenkinson et al. 2012), to remove 

non-brain structures in both T1-weighted and DTI volumes; we used typical settings as 

described in (Soares et al. 2013). We then used FSL’s FAST algorithm for tissue 

segmentation. We next registered each subject’s T1-weighted image to the Montreal 

Neurological Institute (MNI) space, using FSL’s nonlinear registration algorithm. Based on 

the generated deformation field, we parcellated each individual brain into 90 structures 

defined in the AAL (RRID:nlx_157677) template.

Similarly, we used an FSL-based pipeline to process DTI data in a manner similar to 

(Korgaonkar et al. 2012). First, we corrected the DTI data for head movement and eddy-

current distortion. We then fitted a diffusion tensor model at each voxel. For each subject, 

we used the transformation from structural to diffusion space generated by FSL FDT 

registration to register the labeled brain regions obtained by T1 MR parcellation to that 

subject’s DTI space; this step yielded a brain parcellation defined in that subject’s DTI 

space.

Herskovits et al. Page 4

Neuroinformatics. Author manuscript; available in PMC 2016 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Connectivity-score Computation

For a connectivity network of N brain structures, the corresponding CM has N (N–1) / 2 

connection-strength entries. For two distinct brain structures p and q, let C(p, q) denote the 

connectivity score for the connection between p and q. Our procedure to generate C(p, q) is 

as follows. 1) Based on the results of FSL probabilistic fiber-tracking (Behrens et al. 2007) 

with 500 seeds / white-matter voxel (after (Buchanan et al. 2014)), count the number of 

samples starting with white-matter voxels in brain region p and passing through brain region 

q. 2) Normalize this quantity (i.e., the streamline number) by the volume of region p, 

thereby generating the CM entries. 3) Replace C(p, q) and C(q, p) by the average of these 

two quantities, to enforce symmetry with respect to connectivity; the CM thus becomes 

upper-triangular. 4) Determine a threshold T such that, if we treat all C(p, q) values below 

this threshold as not connected (i.e., if C(p, q)<T, C(p, q)←0), we obtain a network with 

connection density=0.3, which has been observed to be a lower limit for primate brain 

networks (Felleman and Van Essen 1991; Sporns 2011). We apply this threshold, and refer 

to the resulting C(p, q) as a connectivity score.

Variable Selection

We use bootstrap resampling for variable selection, i.e., to detect connections that 

distinguish among experimental groups. Each resampling iteration k yields a perturbed 

version of the original data set D, designated as Dk. Then, for Dk, we compute Wilcoxon 

statistics and apply a false-discovery rate corrected p-value threshold of 0.05, to determine 

whether any connections differ across experimental groups. Let Bk denote the set of 

connections demonstrating significant group differences for Dk, and let K denote the total 

number of iterations. We aggregate B1, B2, …, BK to form a model ensemble, and calculate 

the frequency of occurrence of each connection E, defined as f(E) =(ΣkI[E ∈ Bk])/K, where 

I[condition]=1 if condition is true, otherwise 0. If f(E)>0.8, that is, if connection E was 

detected in at least 80 % of resampled data sets, we select E as a biomarker.

Bayesian-Network Generation

To apply discrete BNs to the selected edges, we must define a threshold to label each edge 

as manifesting normal or decreased connectivity. Toward this end, we generated BN 

ensembles (see next paragraph) across a range of connectivity discretization thresholds, and 

found that the median of the NC group (which has lower variance than the SZ group) 

yielded a local minimum in the size of the resulting ensemble, and the size of the Markov 

blanket for the group-membership variable G, which should prevent over-fitting. 

Accordingly, we define the indicator connectivity variable BC(p, q) as ‘decreased 

connectivity’ if C(p, q) is less than the median of the NC group; otherwise, we define BC(p, 

q) as ‘normal connectivity’. The set of binary variables BC(p, q) characterizes each subject’s 

connectivity profile.

Given a set of binary connectivity profiles for all subjects, we can apply standard BN-

generation algorithms to determine multivariate combinations of connectivity patterns that 

distinguish among experimental groups. In addition, we again employ bootstrap resampling 

to these data to prevent over-fitting. We constrain BN structures to place the group-

membership variable G as a leaf node in BNs; that is, G may have parent nodes, but may not 
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have child nodes. In this manner, we assess the extent to which connectivity patterns affect 

G, rather than assessing the effects of G on connectivity patterns. During the kth bootstrap 

iteration, we identify the Markov blanket (i.e., parent set) of G in BNk, and denote this set of 

variables as MBk. We identify the most probable network resulting from resampling as 

BNmax, and the probability of this network as Pmax. We then consider all networks generated 

by resampling; based on the Bayes factor literature (e.g., (Kass and Raftery 1995), we select 

only those networks with probability greater than 0.1×Pmax when generating a Markov-

blanket ensemble. We then use the resulting ensemble to calculate the frequency of each 

connection, in a manner similar to that described in the preceding section.

Experimental Results

Variable Selection

We employed bootstrap resampling with K=2,000, and frequency threshold of 0.8; this 

process yielded 15 connections (Table 1) that could potentially distinguish between the NC 

and SZ groups. All of these connections manifested decreased connectivity in the SZ group, 

relative to the NC group. Note the prominence of decreased interhemispheric connectivity, 

and extensive decreased connectivity of both thalami, in the SZ group.

Bayesian-Network Generation

We applied a connectivity-strength threshold based on the median of the NC group, to all 

C(p, q) in Table 1, thereby obtaining 15 binary variables. We then employed greedy search 

and the BDe metric (Heckerman et al. 1995) as implemented in the R package bnlearn 

(Scutari 2009), and bootstrap resampling with 2,000 iterations, to generate the Markov 

blanket ensemble shown in Table 2. Selecting those BNs with Bayes factor>0.10 (relative to 

Pmax), we obtained the 3 BNs shown in Fig. 2, and box plots for each of these variables in 

Fig. 3. Note the high variability shown in box plots of the four features, which is expected, 

given undersampling.

Table 3 shows the conditional-probability tables corresponding to the networks in Fig. 2. 

Examination of these tables provides insight beyond that obtained from the corresponding 

network structures. For example, the conditional probabilities in Table 3 indicate that, of 

subjects with normal left fronto-temporal connectivity (even-numbered rows), those that 

have either normal right-frontal or interhemispheric connectivity are very unlikely to have 

schizophrenia, whereas Table 3 indicates that those with decreased right-frontal and 

interhemispheric connectivity are more likely than not to have schizophrenia. Similarly, 

extensively decreased interhemispheric connectivity, as manifest in CMR-CAL and PLR-

CML (rows 1–2), is highly characteristic of schizophrenia subjects; the inverse is also true 

(rows 7–8).

For comparison, we generated a BN directly from the 126 samples of 15 binary connectivity 

variables, without resampling. Figure 4 shows this network, which contains the same three 

variables found in BNs generated by resampling techniques. We can apply standard BN 

inference algorithms (Huang and Darwiche 1996) to answer arbitrary queries of the 

variables in this BN. For example, with no evidence, we obtain the prior probability 
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distribution over all variables (e.g., P(NC)=0.68). If we set G=SZ and CMR-CAL=Normal, 

we find that P(PLR-CML=Normal | G=SZ, CMR-CAL=Normal)=0.77.

Validation

We employed two methods for validating the connectivity variables that we detected for 

these data: cross validation, and correlation with clinical assessment.

Cross Validation

First, we used these 4 variables without thresholding to construct several support vector 

machine (SVM) models, and then performed 10-fold cross validation of these models. Table 

4 indicates that classification accuracies for models including 2 or 3 connectivity variables 

were greater than those for either variable alone, indicating that connectivity patterns that 

distinguish NC from SZ are better represented by multivariate than by univariate models.

Correlation with Clinical Assessment

As an independent source of validation, we sought to determine whether these connectivity 

variables were associated with clinical manifestations of schizophrenia. Toward this end, we 

computed Spearman correlation statistics with the following clinical variables: working 

memory, processing speed, and psychosis; the first two variables were assessed for all 

subjects, whereas the psychosis score was assessed for schizophrenia subjects only. As 

shown in Table 5, working memory was strongly correlated with interhemispheric and left 

fronto-temporal connectivity, and processing speed was strongly correlated with 

interhemispheric connectivity. Within the schizophrenia group, the psychosis score may be 

correlated with left fronto-temporal and right-frontal connectivity, but these correlations did 

not survive Bonferroni correction.

Discussion

CM-based analysis offers a complementary approach to other graph-based connectivity 

analyses. Whereas the latter offer measures of node connectivity, CM-based analysis is 

edge-centered, and allows the assessment of relative connection strengths across 

experimental groups, thereby providing information regarding particular tracts that may be 

affected in neurological or psychiatric disorders.

Our approach, being based on a discrete BN representation, has important strengths and 

weaknesses relative to other approaches to connectivity analysis. We chose to base our 

approach on the discrete, rather than continuous, BN model, because discrete BNs can 

represent any distribution over categorical variables (Pearl 1988), whereas continuous BNs 

are restricted to multivariate Gaussian distributions. Discrete BNs provide several sources of 

connectivity information: the structure of the BN provides immediate visual feedback 

regarding important connections in distinguishing among experimental groups, the 

conditional probabilities, and, more generally, BN inference algorithms, allow researchers to 

determine in detail how connectivity, group-membership, and other variables incorporated 

into the BN model interact. However, this expressive power comes at the cost of having to 

select thresholds for continuous variables, such as the connectivity metric C(p, q). Selecting 

Herskovits et al. Page 7

Neuroinformatics. Author manuscript; available in PMC 2016 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a threshold can be difficult, as the result of subsequent analysis will clearly differ as one 

varies a threshold across its range. Although we found that varying the C(p, q) threshold 

yielded a local minimum of ensemble size and of Markov blanket size at approximately the 

median of the NC group, it may be the case that for some applications, such preliminary 

analyses yield no clear threshold, in which case a discrete BN model may not be appropriate. 

In addition, the number of conditional probabilities will, in the worst case, increase 

exponentially in the number of variables. Some conditional probabilities, such as a few in 

Table 3, may be based on low cell counts, and will therefore have relatively high variance; 

in the case of the analyses reported here, the connectivity models we obtained corresponded 

well with results reported in the literature, indicating that resampling techniques and 

adequate cell counts in other cells at least partially ameliorate undersampling.

Our results confirm reports in the psychiatry literature of consistent connectivity differences 

between schizophrenics and control subjects (Fornito et al. 2012; Konrad and Winterer 

2008). All 15 connectivity measures that resulted from variable selection were decreased in 

schizophrenics relative to control subjects, which is consistent with the literature. Our 

analysis indicates that local connectivity in the left fronto-temporal and right frontal regions, 

as well as interhemispheric connectivity, is decreased in schizophrenics.

Given the high variability in each individual connectivity feature, we would expect that a 

combination of features would more accurately classify subjects than would the best single 

feature. We found this to be the case: models with two or three variables yielded more 

accurate SVM classifiers than the best model based on a single variable. Despite the high 

variability in feature values, we found that a small set of features was consistently seen in 

models obtained by various model-generation techniques. In particular, of the 15 candidate 

variables in Table 1, combinations of CMR-CAL, PLR-CML, PR-FIOR, and TML-FITL 

were present in all models resulting from CM analysis. Therefore, it is highly likely that 

there are systematic anatomic-connectivity differences between these two groups of 

subjects.

Both cross-validation and clinical-correlation results indicate the validity of the four 

connections we obtained from BN-based analysis. Validation based on clinical variables, 

which were not used to generate any of the BN models, yielded particularly interesting 

results. The association between inter-hemispheric connectivity and working memory has 

been reported in schizophrenia (Wheeler et al. 2014). Similarly, disrupted fronto-temporal 

functional connectivity has been reported in schizophrenics with impaired working memory 

(Fletcher et al. 1999; Meyer-Lindenberg et al. 2001), and disrupted fronto-temporal 

connectivity has been demonstrated in patients with first-episode psychosis (Crossley et al. 

2009).

Overall, the results we have reported provide four perspectives on anatomic connectivity. 

First, the results of variable selection, i.e., the list of edges that differ significantly between 

groups, summarize differential connectivity patterns. Second, the multivariate BN model 

ensemble identifies that subset of connection patterns that render the group-membership 

variable conditionally independent of all other connectivity variables: once the states of 

these core variables are known, no other connectivity information will influence 
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classification. Third, examination of the ensemble BNs’ conditional-probability tables 

reveals particular connectivity patterns that are characteristic of various subsets of subjects; 

this information may find applications in characterizing subgroups of complex disorders, 

such as schizophrenia and autism. Finally, freely available BN inference algorithms allow 

researchers to perform arbitrary queries on connectivity and group-membership variables 

and determine virtually instantaneously the posterior distributions of the remaining 

variables.

To extend the utility of this approach, we plan to re-implement this analysis as a single 

pipeline, which will take as input DTI data, group-membership, and clinical variables, and 

will allow users to select an atlas, and to select or vary thresholds from default values 

determined by preliminary re-sampling of the data. In addition, we plan to implement a 

version of this analysis that exploits the inherently parallel nature of our approach.
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Fig. 1. 
Overview of the connectivity-matrix analysis algorithm
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Fig. 2. 
The top 3 BNs generated by bootstrap resampling (see Table 2). CMR-CAL = 

Cingulum_Mid_R - Cingulum_Ant_L; PLR-CML = Paracentral_Lobule_R - 

Cingulum_Mid_L; PR-FIOR = Postcentral_R - Frontal_Inf_Oper_R; TML-FITL = 

Temporal_Mid_L - Frontal_Inf_Tri_ L; NC/SZ = control or schizophrenia subject (class-

membership variable)
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Fig. 3. 
Box plots of connectivity strength (arbitrary units) for the 4 variables in the BNs in Fig. 2. 

CMR-CAL = Cingulum_Mid_R -Cingulum_Ant_L; PLR-CML = Paracentral_Lobule_R - 

Cingu-lum_Mid_L; PR-FIOR = Postcentral_R - Frontal_Inf_ Oper_R; TML-FITL = 

Temporal_ Mid_L - Frontal_Inf_Tri_L
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Fig. 4. 
The BN generated without resampling, based on the 15 binary variables listed in Table 1. 

CMR-CAL = Cingulum_Mid_R - Cingulum_ Ant_L; PLR-CML = Paracentral_Lobule_R - 

Cingulum_Mid_L; TML-FITL = Temporal_Mid_L - Frontal_Inf_Tri_L; NC/SZ = control or 

schizophrenia subject (class-membership variable)
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Table 1

Connections that differed between groups in at least 80 % of bootstrap samples. Connectivity strength is in 

arbitrary units. NC = control subject, SZ = schizophrenia subject

Connection structure names Median connectivity Wilcoxon p-value (x 10−5)

Cingulum_Mid_R Cingulum_Ant_L 7.77 4.73 1.31

Precuneus_R Cuneus_R 90.21 73.93 2.53

Precuneus_L Cingulum_Mid_R 6.64 3.58 2.73

Postcentral_R Frontal_Inf_Oper_R 4.15 1.83 2.79

Temporal_Mid_L Frontal_Inf_Tri_L 5.21 2.05 4.01

Thalamus_L Postcentral_L 16.31 7.92 4.57

Paracentral_Lobule_R Cingulum_Mid_L 7.32 3.71 5.19

Cingulum_Mid_R Cingulum_Mid_L 21.52 12.26 5.91

Thalamus_L Parietal_Sup_L 13.29 7.73 6.30

Thalamus_R Putamen_R 25.92 14.68 9.00

Thalamus_R Rolandic_Oper_R 4.05 1.97 13.15

Thalamus_L Rolandic_Oper_L 2.87 1.40 14.37

Thalamus_L Putamen_L 69.54 54.30 15.66

Thalamus_L Insula_L 7.16 3.79 19.72

Temporal_Mid_R Temporal_Sup_R 63.67 53.78 20.32
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Table 2

The four most probable parent sets resulting from bootstrap resampling with 2,000 iterations. We selected the 

parent sets for BNs with probabilities that were within a factor of 10 of the most probable model (i.e., parent 

sets from BNs 1–3) to generate SVM classification models. For reference, note that the BN with no parents 

was never generated in 2,000 trials. NC/SZ = control or schizophrenia subject (class-membership variable)

Rank Parents of NC/SZ BDe Score Bayes Factor

N/A None −86.38 0.000074

1 Cingulum_Mid_R Cingulum_Ant_L −76.86 1

Paracentral_Lobule_R Cingulum_Mid_L

2 Cingulum_Mid_R Cingulum_Ant_L −78.58 0.18

Postcentral_R Frontal_Inf_Oper_R

3 Cingulum_Mid_R Cingulum_Ant_L −79.02 0.12

Temporal_Mid_L Frontal_Inf_Tri_L

Paracentral_Lobule_R Cingulum_Mid_L

4 Cingulum_Mid_R Cingulum_Ant_L −79.43 0.08

Temporal_Mid_L Frontal_Inf_Tri_L
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Table 3

Conditional-probability tables (and counts) corresponding to the BNs shown in Fig. 2. CMR-CAL = 

Cingulum_Mid_R - Cingulum_ Ant_L; PLR-CML = Paracentral_Lobule_R - Cingulum_Mid_L; PR-FIOR = 

Postcentral_R - Frontal_Inf_Oper_R; TML-FITL = Temporal_ Mid_L - Frontal_Inf_Tri_L. NC = control 

subject, SZ = schizophrenia subject

a

CMR-CAL PLR-CML P(NC) P(SZ)

Decreased Decreased 0.34 (18) 0.66 (35)

Decreased Normal 0.78 (21) 0.22 (6)

Normal Decreased 0.95 (21) 0.05 (1)

Normal Normal 0.75 (18) 0.25 (6)

b

CMR-CAL PR-FIOR P(NC) P(SZ)

Decreased Decreased 0.31 (15) 0.69 (33)

Decreased Normal 0.75 (24) 0.25 (8)

Normal Decreased 0.83 (24) 0.17 (5)

Normal Normal 0.88 (15) 0.12 (2)

c

CMR-CAL PLR-CML TML-FITL P(NC) P(SZ)

Decreased Decreased Decreased 0.26 (10) 0.74 (29)

Decreased Decreased Normal 0.57 (8) 0.43 (6)

Decreased Normal Decreased 0.60 (9) 0.40 (6)

Decreased Normal Normal 1.00 (12) 0.00 (0)

Normal Decreased Decreased 0.92 (11) 0.08 (1)

Normal Decreased Normal 1.00 (10) 0.00 (0)

Normal Normal Decreased 0.69 (9) 0.31 (4)

Normal Normal Normal 0.82 (9) 0.18 (2)
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Table 4

Cross-validation classification accuracies for SVM models based on the 4 variables in Fig. 2. CMR-CAL = 

Cingulum_Mid_R -Cingulum_Ant_L; PLR-CML = Paracentral_Lobule_R - Cingulum_ Mid_L; PR-FIOR = 

Postcentral_R - Frontal_Inf_Oper_R; TML-FITL = Temporal_Mid_L - Frontal_Inf_Tri_L

Model Prediction Accuracy

CMR-CAL 0.65

TML-FITL 0.61

PR-FIOR 0.62

PLR-CML 0.62

CMR-CAL + PLR-CML 0.72

CMR-CAL + PR-FIOR 0.76

CMR-CAL + TML-FITL + PLR-CML 0.75
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Table 5

Spearman correlation p-values for the 4 variables in Fig. 2, with respect to clinical-assessment variables. 

Working memory and processing speed were assessed for all subjects, whereas psychosis was assessed for 

schizophrenia subjects only. CMR-CAL = Cingulum_Mid_R - Cingulum_Ant_L; PLR-CML = 

Paracentral_Lobule_R - Cingulum_ Mid_L; PR-FIOR = Postcentral_R - Frontal_Inf_Oper_R; TML-FITL = 

Temporal_Mid_L - Frontal_Inf_Tri_L

Variable CMR-CAL TML-FITL PR-FIOR PLR-CML

Working memory 0.003 <0.001 0.125 <0.001

Processing speed <0.001 0.017 0.224 <0.001

Psychosis (SZ) 0.263 0.023 0.042 0.112
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