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Abstract

Defining brain structures of interest is an important preliminary step in brain-connectivity analysis. 

Researchers interested in connectivity patterns among brain structures typically employ manually 

delineated volumes of interest, or regions in a readily available atlas, to limit the scope of 

connectivity analysis to relevant regions. However, most structural brain atlases, and manually 

delineated volumes of interest, do not take voxel-wise connectivity patterns into consideration, and 

therefore may not be ideal for anatomic connectivity analysis. We herein propose a method to 

parcellate the brain into regions of interest based on connectivity. We formulate connectivity-based 

parcellation as a graph-cut problem, which we solve approximately using a novel multi-class 

Hopfield network algorithm. We demonstrate the application of this approach using diffusion 

tensor imaging data from an ongoing study of schizophrenia. Compared to a standard anatomic 

atlas, the connectivity-based atlas supports better classification performance when distinguishing 

schizophrenic from normal subjects. Comparing connectivity patterns averaged across the normal 

and schizophrenic subjects, we note significant systematic differences between the two atlases.
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 Introduction

Analysis of human brain connectivity, largely based on diffusion tensor imaging (DTI) and 

functional MR (fMR) data, has played a central role in the noninvasive interrogation of 

anatomic and functional connectivity, in normal development and in a broad range of brain 

disorders. The goal of brain-connectivity analysis includes discovering global network 
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characteristics, such as economic connectivity (Bullmore and Sporns 2012), delineating 

short paths (Hagmann et al. 2007; Varshney et al. 2011), detection of functional clusters 

(Bullmore and Sporns 2009; van den Heuvel et al. 2009), and investigation of clinical 

correlates of altered connectivity (Supekar et al. 2008; Belmonte et al. 2004). A fundamental 

problem that confronts researchers initiating connectivity-based analysis is the delineation of 

structures of interest, or nodes, in the brain network under consideration. Although modern 

tractography tools can generate large graphs with connectivity values at high spatial 

resolution, it is generally difficult to store and process such large graphs, and voxel-wise 

analysis may suffer from loss of statistical power relative to structure-wise connectivity 

analysis. Therefore, researchers commonly base such analyses on an atlas, to group voxels 

into structurally or functionally homogeneous regions, each of which is represented by a 

node in the corresponding network. A macroscopic view of this network is then constructed, 

with connectivity defined among all voxels in a pair of regions. Due to the central role of the 

atlas in defining the brain network, the choice of atlas structures is gaining increasing 

attention, although no single approach has been universally accepted. There are generally 

two common atlas-selection approaches in the literature: using pre-defined anatomical 

atlases, and using atlases generated from random-voxel seeds. Predefined anatomical atlases 

are human-crafted atlases, based mostly on cytoarchitectural features, which in general do 

not reflect connectivity. Such atlases include the AAL atlas (Tzourio-Mazoyer et al. 2002), 

the Harvard-Oxford atlas (Amunts et al. 2005), the atlas generated by the ANIMAL 

algorithm (Collins et al. 1995), and many others. Usually such atlases are registered from 

standard spaces to the subjects' local image space, and individual brain networks are 

generated thereafter using tractography tools. Note that atlases of white-matter tracts (e.g., 

Mori et al. 2005) do not include the structures connected by these tracts, and therefore 

cannot be used as-is to perform atlas-based connectivity analysis. Alternatively, atlases 

generated from random-voxel seeds have the advantage that researchers have more control 

over the size, function and location of each structure, and can thereby systematically study 

the impact of network size and resolution on a particular research problem (Zalesky et al. 

2010; Hayasaka and Laurienti 2010).

Neither pre-defined anatomical atlases nor random-voxel seed-based atlases were developed 

to directly support connectivity analysis. In contrast, with respect to functional connectivity, 

several research groups have used clustering algorthms to generate fMR-based networks 

(e.g., Beckmann et al. 2005; Zang et al. 2004). Although there have been attempts to 

generate connectivity-based atlases based on anatomical connectivity (e.g., Roca et al. 2009, 

2010), these attempts have been limited to a small subset of brain voxels or small numbers 

of subjects, due to the computational burden of clustering these data. For these reasons, this 

data-driven atlas-generation approach has been rarely used despite its great potential.

In this paper, we propose a novel method for tractably generating a comprehensive 

connectivity-based brain atlas based on a probabilistic update rule generalized from the 

Hopfield network framework. Our method integrates connectivity information to refine an 

existing atlas (e.g., an anatomical atlas), so that each structure manifests common 

connectivity patterns for subjects in the same experimental group. Just as it may not be 

optimal to rely solely on cytoarchitectural information to perform parcellation, it may not be 

ideal to rely solely on connectivity information to perform parcellation (Cloutman and Ralph 
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2012). We therefore initialize our clustering algorithm with structures from a standard atlas. 

To achieve high-resolution structures while maintaining computational tractability, we 

formulate the parcellation problem as a graph cut, where the topology of the graph is a 

uniform spatial grid, and the edge weights are computed using connectivity-based similarity 

metrics. We obtain individual brain parcellations using a novel multi-class Hopfield network 

approach, initialized with a standard atlas. We support group-based inference by matching 

the resulting subjects' parcellations by maximum overlap, and by group averaging. We tested 

our approach using DTI data from a study of patients with schizophrenia compared with 

normal controls, and found that for these data, our data-driven atlas generates more 

homogeneous structures (with respect to connectivity) than the standard atlas structures used 

for initialization, and that this greater homogeneity results in greater statistical power when 

distinguishing subjects with schizophrenia from control subjects.

 Materials and Methods

Figure 1 provides an overview of our connectivity-based atlas generation and evaluation.

 Data and Preprocessing

Imaging was performed at the University of Maryland Center for Brain Imaging Research 

using a Siemens 3T TRIO MRI (Erlangen, Germany) system and 32 channel phase array 

head coil. The high-angular resolution diffusion imaging (HARDI) protocol was used to 

assess white matter integrity as measured by fractional anisotropy. Diffusion tensor data 

were collected using a single-shot, echo-planar, single refocusing spin-echo, T2-weighted 

sequence with a spatial resolution of 1.7 × 1.7 × 3.0 mm. The sequence parameters were: 

TE/TR=87/8000ms, FOV=200mm, axial slice orientation with 50 slices and no gaps, 64 

isotropically distributed diffusion weighted directions, two diffusion weighting values (b=0 

and 700 s/mm2) and five b=0 images. These parameters were calculated using an 

optimization technique that maximizes the contrast to noise ratio for FA measurements. The 

total scan time was approximately 9 minutes per participant.

We analyzed DTI data from 78 subjects with schizophrenia and 48 normal subjects to 

generate voxel-wise connectivity data maps. We used the FSL tools (RRID:birnlex_2067) 

FDT and PROBTRACTX (Jenkinson et al. 2012; Behrens et al. 2007) to perform 

probabilistic tractography on each subject's DTI data, resulting in a voxel-wise connectivity 

matrix for each subject. We restricted potential seed masks for streamline tracking in FSL to 

white-matter regions as delineated by the JHU white matter atlas (Mori et al. 2005). We set 

the target region of interest (ROI) to all voxels covered by the AAL-90 atlas 

(RRID:nlx_157677), so that most of the gray matter and sub-cortical regions would be 

included, resulting in approximately 100,000 voxels in the ROI of each subject. The 

parameters for PROBTRACKX were: the seed space was specified as JHU white matter 

atlas; the curvature threshold was 0.2 (default); and the seed points per voxel was 50, which 

should be sufficient for brain network analysis, based on Buchanan et al. (2014).
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 Connectivity Profile and Graph-Cut Formulation

Various criteria have been used for grouping voxels into homogeneous groups. For example, 

in fMR analysis, voxels whose time courses are strongly cross-correlated can be regarded as 

belonging to the same functional region, which leads to the notion of a functional network 

(Zang et al. 2004). In terms of structural networks, the connectivity profile has been widely 

used as a metric for generating parcellations (e.g., Nanetti et al. 2009; Kötter et al. 2001; 

Passingham et al. 2002). We also assume that voxels having similar connectivity profiles 

should be grouped together.

The most accurate representation of a connectivity profile of a voxel is a complete list of the 

numbers of connections to all voxels. However this representation has very high 

computational complexity for computing profile similarity between voxels, and hence it is 

practical only if each structure has relatively few connections. This is not the case for 

probabilistic tractography, in which many voxels project streamlines to many other voxels. 

In our framework, we construct a voxel's connectivity profile by first coarsening the spatial 

resolution of the volume (each coarse cell consists of 4 × 4 × 4 voxels), and then counting 

the number of connections from a voxel to each of these coarser cells. This substantially 

reduces the computational and storage costs, and increases the SNR so that more robust 

results can be achieved. The connectivity profile of a specific voxel is then defined as these 

connection values organized as a vector (c1, c2, …, cn)T, where ci is the number of 

connections from the voxel to cell i, for all the coarse cells. This formulation may cause the 

so-called “cross-cell” artifact (Fig. 2), in which two connections that are close to each other 

may be distributed to different cells, and therefore may appear very different from the 

perspective of the vector-based metric. To alleviate such artifacts, we employ Gaussian 

smoothing on the connectivity profile vectors. Note that the coarsened cells are all located 

exclusively in gray matter, and that there are approximately 2,000 such coarsened cells for 

each subject.

In order to integrate spatial proximity and to avoid the generation of spurious clusters, we 

formulate parcellation as a graph-cut problem, where the topology of the graph is 

independent of the connectivity data. In particular, the topology of the graph is simply a grid 

that reflects Euclidean spatial proximity. We use connectivity profiles to calculate the edge 

weights of this graph; thus, a higher edge weight reflects a greater similarity between the 

connectivity profiles of the corresponding voxels. Figure 3 illustrates this representation. In 

Fig. 3, solid lines represent the edges in the graph, and dashed lines are the physical 

connections as determined by the tractography algorithm. The weight of an edge (solid line) 

is a function of the similarity of the connectivity profiles of its two terminal nodes. As in 

Fig. 3, if the cosine similarity metric is used, wij is simply the cosine of the connectivity 

profile vectors corresponding to voxels i and j. From this perspective, our goal is to partition 

the graph into K connected subgraphs, such that the total weights of the links whose 

terminals are in different subgraphs are minimized subject to constraints on the subgraphs. 

In practice, we can choose K based on based on domain expertise, or according to stability 

analysis of the clustering algorithm (Levine and Domany 2001). In our framework, we 

choose K to be equal to 90 to comply with AAL-90 atlas region definitions, in order to 

facilitate comparison of the resulting atlas with the AAL-90 atlas.
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 Multiclass Hopfield Network (MHN)

The optimal graph cut problem is NP-complete (Karp 1972). There are many algorithms that 

approximately solve the graph-cut problem; however, our graph-cut problem is slightly 

different from the prototype, in that we impose a constraint on the subgraphs (each subgraph 

must significantly overlap with an AAL region). Generally, the most effective strategy for 

solving constrained graph-cut problems is spectral clustering, where the constraint results in 

a balance among the subgraphs, referred to as either ration-cut or normalized-cut (Von 

Luxburg 2007). Most other clustering algorithms require initialization, and to varying 

degrees, their results depend on such initialization. This dependence poses a challenge, as 

we seek consistency of parcellation results across runs, and particularly across subjects, to 

enable group-level analyses. One possible solution is to enforce a common initialization for 

all of the subjects. Assuming that the general geometry of brain networks is broadly similar 

across subjects within an experimental group, a clustering algorithm with common 

initialization should yield similar results across subjects within the group, thereby rendering 

these parcellations amenable to group-level analysis. Although spectral clustering would 

appear to be the most promising solution to our graph-cut problem, the challenge with 

spectral clustering is that its initialization lies in the k-means stage, where the cluster means 

of the connectivity profiles, rather than the node labels, are initialized. These cluster means 

have few degrees of freedom, provide little information about the topology of the spatial-

proximity graph, and therefore yield results that manifest different connectivity-based 

clustering results across runs. For example, Fig. 4 shows parcellation results obtained by 

using spectral clustering with initial centroids computed from corresponding AAL-90 

parcellations, for two subjects from our data set. It is clear from visual inspection that the 

circled regions have completely different definitions in the two parcellation results.

To address this problem, we propose a novel clustering algorithm based on a multiclass 

version of the Hopfield network model (Hopfield 1982). Our multiclass Hopfield network 

(MHN) algorithm employs a Hopfield network to perform clustering on a graph structure, 

taking advantage of the natural similarity between the Hopfield network energy function and 

the clustering objective. MHN modifies the parcellation during each iteration, so as to 

increase the homogeneity of connectivity metrics within each structure. By initializing this 

algorithm with cluster labels, rather than cluster centroids, we ensure that region definitions 

are preserved across subjects.

Hopfield networks were originally proposed to model associative memory. A standard 

Hopfield network is formulated by a weighted graph, and binary node values (1 or -1). Upon 

retrieval of stored memory, the update rule converges on the local minimum of the energy 

function (assuming no nodal bias is introduced):

(1)
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The optimal solution to this equation will assign opposite labels to terminal nodes of edges 

with small weights, and the same label to terminal nodes of edges with large weights. 

Minimizing this function therefore can guide the search for a good graph cut.

The update rule for retrieving a local minimum of the energy is very simple: in each 

iteration, we first select an arbitrary order for node update, and then apply the following 

update rule:

(2)

Under these conditions, these updates are guaranteed to converge to a local minimum. To 

generalize the model to accommodate multi-class variables, we modify the energy function 

and the update rule. In our formulation, the connectivity profile signature of a node is 

changed to a 1-out-of-k vector denoting cluster affiliation:

(3)

where I is the identity function, c is the (current) cluster label of the voxel, and k is the total 

number of clusters. The energy function now becomes

(4)

And the update rule becomes

(5)

(6)

where yij denotes the jth component of vector yi computed by the above equation. The last 

equation converts the real-value connectivity profile signature back to the 1-out-of-k vector 

domain. It is straightforward to prove that a similar convergence theorem holds for our MHN 

framework; again, the guarantee is for only a local optimum. To mitigate this problem, we 

employ simulated annealing (Aarts and Korst 1988), which allows the MHN algorithm to 
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explore a larger search space early on, and focus on a smaller fraction of the search space as 

the annealing schedule progresses. The update rule with simulated annealing is

(7)

(8)

(9)

where ek denotes a vector with only one non-zero entry at position k, T specifies the 

“temperature” for the cool-down, or annealing, process, and α is a factor in [0, 1] that 

controls the rate of cooling.

 Growing Individual Brain Parcellations

Individual brain parcellations are grown in individual subjects' local diffusion spaces. We 

used the AAL-90 atlas to initialize parcellation for each subject. We first applied the FSL 

tool FNIRT to register the atlas (MNI space) to each subject's diffusion space. The AAL-90 

atlas consists of 90 structures; we therefore extracted each of the AAL-90 regions as a 

binary mask and then registered each region to the subject's local diffusion space. We then 

concatenated the 90 registered masks to form the initialization of the parcellation, i.e., each 

voxel was represented by a vector with 90 components. We used the default tri-linear 

interpolation method in FNIRT for performing this registration task, which can result in non-

binary values, which MHN keeps intact during initialization. To prevent marked changes 

from the initial AAL structures, we chose a low initial temperature T(0) for MHN's 

simulated-annealing component.

The MHN algorithm applied the Hopfield network update rule to each subject's data, for a 

maximum of 100 iterations. For most of the cases being tested, the update ceased to change 

within 100 iterations. We converted the resulting 1-out-of-90 label vectors back to value 

indices (i.e. numerically from 1 to 90, as cluster labels) for visualization and group-level 

analysis. The result was, for each subject, an individualized atlas in that subject's coordinate 

space, consisting of 90 structures.

 Group Atlases

Individual atlases were registered back to the MNI space; each voxel of these registered 

individual atlases was represented by a 90-dimensional vector, representing the relative 

contributions of the original AAL structures to the final atlas structure at that voxel, for that 
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subject. We averaged these individual registered atlases, to obtain a probabilistic group-level 

MNI-space atlas.

To measure group differences, we require a statistic that is symmetrical, and that reflects the 

distance between two probability vectors. Rather than test a group-difference hypothesis 

directly on high-dimensional data, we randomly partitioned the data into groups, and 

computed a scalar metric reflecting the total difference between the group atlases under that 

particular grouping. We then computed the two-sample t statistic to determine the 

significance of the “difference of the difference” between the two grouping protocols.

In summary, the steps for computing and comparing group-level atlases for control and 

schizophrenia subject are:

1. For each subject, save each of the 90 atlas structures as a binary image.

2. Register each of these binary images to the MNI space using FNIRT in FSL, 

resulting in real-valued (rather than binary) atlas structures.

3. Combine the 90 registered atlas-structure images for each subject to obtain 

“atlas likelihood vectors”, where each of the 90 values of the vector 

corresponding to a voxel measures the likelihood that this voxel belongs to the 

specific atlas structure for that subject.

4. Average the atlas likelihood vectors for each group and normalize such that 

elements of the averaged vectors sum to 1.0, so that we can interpret the 

vectors as categorical distribution parameters. We then construct the group 

atlas by assigning each voxel its most probable cluster label. We can also 

visualize voxel-wise “confidence levels”, meaning the likelihood value of the 

most probable cluster label, to provide a visual summary regarding which 

regions have consistent connectivity patterns and which regions do not. In our 

implementation, the confidence level is visualized simply as the magnitude of 

the largest entry in the atlas likelihood vector.

5. Compute the difference between two group atlases. Because of its symmetry 

and numerical robustness, we choose the squared Hellinger distance (Hellinger 

1909) to quantify the difference between two voxels' probability vectors. This 

metric is preferable to the KL-divergence metric for our purposes because the 

latter commonly goes out of scale in the presence of a component whose value 

is close to 1 in one atlas, and close to 0 in the other.

6. Measure the significance of several grouping protocols. There were three 

grouping protocols used: (i) schizophrenia (SZ) group vs. normal control (NC) 

group (SZ-NC); (ii) Two randomly selected groups from the entire dataset 

(Rand-All); (iii) Two randomly selected groups from the NC group (Rand-

NC). For each of the three partitions, we sample 39 subjects in each group for 

each run, and test each partitioning for 10 runs. Voxel-wise differences in each 

run are overlaid over each other and displayed in a single graph.
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 Results

We first note that the MHN parcellation method results in structurally more homogeneous 

regions compared to AAL structures, in the sense that the voxels within a region have 

significantly more similar connectivity profiles than those of the AAL regions. Figure 5 

compares the average similarity of each MHN region for the NC and SZ groups, relative to 

the corresponding AAL regions. As can these graphs demonstrate, each MHN region is 

significantly more homogeneous in terms of the connectivity profiles of its voxels, and 

hence captures structural connectivity information much more effectively, than the 

corresponding AAL region.

In addition, we performed two analyses to evaluate the merits of the MHN parcellation 

method. In the first experiment, we computed, for each of the AAL and MHN atlases, the 

volume for each defined region, the connectivity values between each pair of defined 

regions, and the two-sample t-test statistics comparing the SZ group with the NC group. In 

the second experiment, we used these region-volume and connectivity data as features to 

train support vector machine (SVM) classifiers, and thereby compared classification 

accuracies across atlases. Note that, in these analyses, changes in atlas-structure volumes are 

not due to atrophy; rather, they are due to changes in connectivity that lead to re-assignment 

of region labels for individual voxels.

 Visualization of Parcellation Results; Statistical Analysis

Results in this section demonstrate that MHN generates parcellations that are significantly 

different from the AAL-90 atlas. For this purpose, we apply MHN to the data set described 

in Section “Data and Preprocessing”. We then compare regional volume differences and 

connectivity differences based on the two-sample t-test statistic.

Figure 6 shows examples of parcellation results for two subjects: S01 (a SZ subject) and S02 

(a NC subject). The figure illustrates consistent differences between the AAL-90 atlas and 

the connectivity-based atlas. The most common structure-deformation pattern is shown in 

three regions, circled in red and yellow; this deformation consists of arranging an atlas 

structure such that its orientation better conforms to subcortical white matter fiber 

orientation; we call this change “columnization”. Visual comparison qualitatively indicates 

the volume change in the light green region in the red circle, which corresponds to the t-test 

results shown as region 27 in Table 1.

To obtain insights regarding group differences in their corresponding atlas structures, we 

tested the hypothesis that a MHN region differed significantly between experimental groups. 

In the first experiment we counted, for each atlas structure, the number of voxels in each 

region across each group and then computed the two-sample t statistic to determine the 

significance of volume changes between the two groups. Since we used AAL-90 regions as 

our initialization, and our implementation of the Hopfield network procedure allowed only 

incremental changes to these regions, we retained structure names for the resulting regions. 

The regions having the lowest p-values are shown in Table 1. Region volumes are 

normalized by individual total brain volumes before computing p-values.
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The t-test results indicate the significance of atlas changes. Based on the MHN-derived atlas, 

we can also measure connectivity changes between atlas structures. The connectivity value 

between two regions is defined as the total number of sampled connections obtained via 

PROBTRACTX between any pair of voxels from the two regions. The t-statistic measures 

the significance of change for each of the 4005 connection values. Part of the results are 

shown in Table 2.

 Classification Accuracy

In addition to directly comparing group-averaged parameters between the atlas structures, 

we also used these atlases to generate classifiers to distinguish the NC from SZ subjects. To 

the extent that our atlas generation procedure delineates connectivity patterns that truly 

differ between the NC and SZ groups, classifiers constructed using our atlas-based variables 

should be more accurate than those using structures from the original AAL atlas.

We generated classifiers based both on volume features and connectivity features derived 

from both atlases. Regional volume features and connectivity features were the same 

parameters used in Section “Visualization of Parcellation Results; Statistical Analysis”. For 

regional-volume features, we tested both normalized (to total brain volume) and non-

normalized atlas structures. For the MHN classifier, we included features in order of their p-

value rankings in Tables 1 and 2. For the AAL-based classifier, we included features in order 

of their p-values obtained from the AAL structures of the two groups. In each cross-

validation experiment, we ran 100 trials, and in each trial we randomly sampled 

approximately 3/4 of the entire data set to generate a training set (including NC and SZ 

groups) for constructing a linear SVM, and used the remaining 1/4 as a test set. We recorded 

mean classification accuracy across the 100 trials for each experiment.

Figure 7 displays classification results based on region volume features and connectivity 

features, with the number of region volume features in a particular experiment ranging from 

2 to 40 out of 90 possible regions, and connectivity features ranging from 100 to 4,000 out 

of 4,005 potential connections. To demonstrate that the MHN algorithm indeed generates 

better parcellations, we performed the same classification experiment with parcellations that 

are solely AAL-90 atlas registered onto individual diffusion spaces (a separate t-test analysis 

is conducted to determine the feature inclusion order for AAL-90 features, which is different 

from the MHN case). These graphs demonstrate that MHN parcellations distinguish 

schizophrenic from non-schizophrenic subjects much more accurately than the original 

AAL-90 atlas structures from which they were derived.

 Group-Level Atlas Differences

This section describes test results regarding group atlas generation. The goal is to 

demonstrate that MHN yields systematic atlas changes across groups. Figure 8 shows the 

atlas resulting from averaging across all SZ subjects, and the corresponding confidence level 

for each voxel. Figure 9 shows the corresponding images for the NC group. Figure 10 

displays the voxel-wise difference between the two groups. For example, the bright voxel at 

the cross-hairs in this Figure indicates that the cluster-label distribution differs greatly 

between the two group atlases at that location. This voxel is near the boundary of the right 
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Superior Temporal Gyrus, which is the region that manifested the most significant volume 

change as measured by our two-sample t statistic.

Figure 11 shows the distribution of voxel-wise differences between several random grouping 

protocols. The difference values are arranged in the descending order of voxel difference 

values. The right figure is a zoomed-in local view of the left figure.

As described in Section “Group Atlases”, we computed two-sample t statistics to test the 

significance of the “difference of difference” for each grouping protocol. In this experiment, 

we randomly generated 10 groupings for each grouping protocol, i.e., in each instance of a 

grouping protocol, we randomly sampled 39 subjects (without replacement) for each group 

according to the grouping protocol, and for each grouping protocol we repeated this 

procedure 10 times. We generated a pair of group atlases for each instance. The p-value for 

the total difference between the SZ-NC partition and the Rand-All partition was 0.0016, and 

the p-value between SZ-NC partition and the Rand-NC partition was 3.33E-5. These results 

imply that the SZ-group atlas has significant systematic connectivity differences relative to 

the NC-group atlas. This also shows that the SZ-group atlas manifests greater variance in its 

connectivity patterns, relative to the NC-group atlas.

 Discussion

We have described a novel data-driven, connectivity-based atlas-generation algorithm. Our 

preliminary evaluation indicates that our approach can yield consistent connectivity-based 

parcellation patterns among subjects within an experimental group, and that these patterns 

differ from those of AAL-90 atlas structures, as shown in Fig. 6. These differences include 

re-configuration of some of the standard regions (an example is shown in the red circle in 

this Figure), and the “columnization” effect shown in the yellow circles.

To place the atlas structures generated by MHN in a clinical context, we compared region 

volumes and inter-structure connectivity patterns resulting from our parcellation method. 

The regions manifesting greatest change in the MHN atlas are consistent with previous 

reports in the schizophrenia literature (Honea et al. 2005). In addition, our classification 

experiments confirmed that connectivity-based atlas structures yield classifiers that more 

accurately distinguish schizophrenic from control subjects with greater accuracy than do 

AAL structures (78 % versus 71 % maximal accuracy).

We applied a simple registration and averaging scheme to obtain group-level atlases in the 

MNI space. Averaging removes many individual variations, and thus results in more regular 

shapes. The information about individual variations is preserved in confidence-map 

visualization, from which we can readily tell which regions have relatively consistent 

connectivity patterns. For example in Fig. 9b, the left superior temporal gyrus, right superior 

temporal gyrus, left middle temporal gyrus, and right middle temporal gyrus have lower 

confidence values, indicating lack of consistency of superior/middle temporal regions in 

terms of their connectivity patterns.

Figure 11 illustrates the fact that there are significant group differences between SZ and NC 

subjects that are very unlikely to be explained by chance, as determined by the two-sample t-
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test. The fact that the SZ-NC vs. Rand All comparison yields a larger p-value than the SZ-

NC vs. Rand-NC comparison indicates that the Rand-All group has larger variance than the 

Rand-NC group, which in turn indicates that the SZ group has relatively greater variance in 

connectivity patterns.

Finally, there are six main future directions for extending this approach. First, although our 

method integrates connectivity information into atlas parcellation, our initial implementation 

of MHN anchored on initialization values, and therefore this implementation is not 

completely data driven. Furthermore, as indicated in Fig. 4, the AAL-90 atlas does not 

conform to connectivity patterns, and therefore is not the optimal initialization for 

connectivity-based voxel clustering. To be able to build a connectivity based atlas without 

relying on a pre-defined initialization, we will need to solve the problem of properly 

registering connectivity data to a standard space, so that we can directly average connectivity 

data across subjects. Second, being able to average connectivity data directly in a standard 

space, rather than doing so based on registration of atlas structures, would increase the 

accuracy of our approach. Third, we plan to reimplement MHN to exploit the inherent 

parallel nature of the preprocessing and clustering components; this extension will allow us 

to compare large numbers of different initializations, including random and other non-atlas 

initializations, to gauge convergence properties, to determine the relative performance of 

different parcellation approaches, and will also allow us to increase spatial resolution. 

Fourth, we plan to evaluate methods for automatically determining the optimal number of 

atlas structures, for example based on minimum description length or other entropy-based 

metrics. Fifth, we plan to explore additional clustering approaches, with an emphasis on 

scalability. Finally, we must extend our initial evaluation beyond the single data set and atlas 

presented here. Toward this end, we plan to evaluate MHN using DTI data from normal 

subjects, as well as subjects with disorders known to be at least partially due to altered 

connectivity, such as autism spectrum disorder and schizophrenia. For the latter, we will 

extend the sample we acquired for initial evaluation of the MHN approach. Such evaluation 

is critical to determining the generalizability, scalability and accuracy of our approach.

 Conclusion

Many atlas-based connectivity analyses employ atlases whose parcellations are based on 

histological or mesoscopic anatomic features. To provide a source of connectivity-derived 

atlases, we have implemented a novel whole-brain parcellation method based on anatomical 

connectivity information. Our method recasts brain parcellation as a graph-cut problem on a 

sparse graph; this approach simultaneously captures spatial closeness and connectivity 

information. The graph-cut problem is solved using a novel multi-class Hop-field network 

algorithm, in combination with simulated annealing. Our implementation is computationally 

efficient, and converges very quickly. We have applied our method to data from an ongoing 

schizophrenia study. We found that our connectivity-based atlas resulted in connectivity-

based parcellation patterns that were consistent among subjects within an experimental 

group; as expected. In addition, the resulting atlas structures had more consistent 

connectivity patterns than standard atlas structures. In addition, we achieved more accurate 

classification of schizophrenia and control subjects using our connectivity-based atlas. 
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Finally, we found that regions exhibiting the greatest differences between the two groups 

have been described previously in the schizophrenia literature.
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Fig. 1. Overall workflow
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Fig. 2. “Cross-cell” artifact
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Fig. 3. Topology and connection weights of the formulated graph-cut problem
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Fig. 4. Spectral clustering based on cluster-mean initialization results in widely varying region 
definitions across subjects; subjects A and B were randomly selected from our data set
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Fig. 5. 
Region Connectivity Profile Similarity for NC and SZ Groups. The Similarity metric used is 

the average correlation between the connectivity profiles of pairs of voxels within a region
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Fig. 6. Consistent deviations of MHN parcellations from AAL atlas structures
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Fig. 7. Classification accuracy
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Fig. 8. 
Group atlas of the schizophrenic group. A = anterior, P = posterior, R = right, L = Left, I = 

inferior, S = superior
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Fig. 9. 
Group atlas of the control group. A = anterior, P = posterior, R = right, L = Left, I = inferior, 

S = superior
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Fig. 10. 
Difference map between two group atlases. A = anterior, P = posterior, R = right, L = Left, I 

= inferior, S = superior
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Fig. 11. Voxel-wise group difference distributions
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Table 1
Greatest region volume changes detected using MHN

Region Name p-value

Temporal_Sup_R 4.61E-06

Insula_R 7.54E-06

Rectus_L 1.05E-04

Cuneus_R 1.28E-04

Temporal_Mid_R 5.56E-04

Cuneus_L 1.97E-03

Calcarine_L 5.42E-03

Temporal_Mid_L 5.86E-03

Postcentral_L 5.89E-03

Frontal_Inf_Tri_L 7.17E-03

Parietal_Sup_L 1.23E-02

Cingulum_Ant_L 1.32E-02

Rectus_R 1.37E-02

Frontal_Mid_R 1.52E-02

Parietal_Sup_R 1.57E-02

Cingulum_Mid_R 2.70E-02

ParaHippocampal_L 3.31E-02

Occipital_Mid_R 3.44E-02

Fusiform_R 3.58E-02

Cingulum_Ant_R 4.12E-02

Temporal_Sup_L 4.79E-02

Occipital_Mid_L 4.97E-02

Frontal_Inf_Orb_R 5.11E-02
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Table 2
Greatest connectivity changes detected using MHN

Region 1 Region 2 p-value

Precentral_R Cingulum_Post_R 7.14E-06

Precentral_R Cingulum_Post_L 1.65E-05

Cingulum_Mid_L Cingulum_Mid_R 1.76E-05

Postcentral_L Thalamus_L 3.58E-05

Frontal_Mid_L Frontal_Inf_Tri_L 4.29E-05

Cuneus_R Precuneus_R 1.03E-04

Cingulum_Mid_R Putamen_L 1.08E-04

Temporal_Sup_L Temporal_Mid_L 1.28E-04

Supp_Motor_Area_L Cingulum_Post_R 1.36E-04

Supp_Motor_Area_L Parietal_Sup_L 1.53E-04

Supp_Motor_Area_R Cingulum_Mid_R 1.57E-04

Precentral_L Thalamus_R 2.07E-04

Frontal_Sup_Medial_L Parietal_Sup_L 2.18E-04

Frontal_Inf_Tri_L Rectus_L 2.34E-04

Frontal_Mid_R Supp_Motor_Area_L 2.39E-04

Supp_Motor_Area_L Angular_R 2.46E-04

Rectus_L Cingulum_Post_L 2.59E-04

Cingulum_Mid_R Hippocampus_L 2.67E-04

Precentral_R Cingulum_Mid_L 2.69E-04

Insula_L Temporal_Sup_L 3.13E-04

Insula_R Thalamus_R 3.15E-04

Supp_Motor_Area_L Temporal_Mid_R 3.27E-04

Rolandic_Oper_L Temporal_Sup_L 3.92E-04
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