
Automating NEURON Simulation Deployment in Cloud
Resources

David B. Stockton1 and Fidel Santamaria2

1Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX
78249, USA

2Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA

Abstract

Simulations in neuroscience are performed on local servers or High Performance Computing

(HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for

neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for

scientific computation, then report how we deployed NEURON, a widely used simulator of

neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud

technology research based on the Open-Stack software; Rackspace, a public commercial cloud,

also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary

software. We describe the manual procedures and how to automate cloud operations. We describe

extending our simulation automation software called NeuroManager (Stockton and Santamaria,

Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public

cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by

performing several studies in which we examine speedup, efficiency, total session time, and cost

for sets of simulations of a published NEURON model.

Keywords

Computer simulation; Cloud computing; Grid computing; NEURON (RRID:SCR_005393);
Computational neuroscience; NeuroManager

Correspondence to: David B. Stockton.
33OpenStack API: http://developer.openstack.org/api-guide/quick-start/
34Rackspace API: https://developer.rackspace.com/docs/cloud-servers/v2/developer-guide/#api-reference

Compliance with Ethical Standards

Conflict of interests The authors declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

We made use of Rackspace’s developer program (Rackspace 2016b) which provides $50 free access per month to any developer for
one year; we paid for all use above that amount. We also made use of Amazon’s Free Tier (https://aws.amazon.com/free/) which gives
any developer free access to 750 hours per month of instances built upon the “t2.micro” flavor for one year; we paid for all use above
that amount as well as use of all flavors that were not “t2.micro”.

Information Sharing Statement The NeuroManager software and instance configuration scripts are available at https://github.com/
SantamariaLab/NeuroManager under an open source license that is presented at that location. MATLAB commercial software is
available at http://www.mathworks.com/products/matlab/. Other software mentioned in this paper is freely available and has a footnote
indicating the URL at which it can be found. The Miyasho model used in all simulations is available at ModelDB (RRID:SCR 007271,
Model 17664).

HHS Public Access
Author manuscript
Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

Published in final edited form as:
Neuroinformatics. 2017 January ; 15(1): 51–70. doi:10.1007/s12021-016-9315-8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://developer.openstack.org/api-guide/quick-start/
https://developer.rackspace.com/docs/cloud-servers/v2/developer-guide/#api-reference
https://aws.amazon.com/free/
https://github.com/SantamariaLab/NeuroManager
https://github.com/SantamariaLab/NeuroManager
http://www.mathworks.com/products/matlab/

Introduction

The NEURON simulation tool is widely used in computational neuroscience (Brette et al.

2007; Hines and Carnevale 1997). Researchers use NEURON on personal workstations,

laboratory servers, and High Perfomance Computing (HPC) clusters to perform single and

networked neuron simulations. Increasing complexity in the development of computer

models and size of parameter spaces require efficient integration of these resources while

keeping track of the origin of data structures and results, which is a significant challenge for

both manual and script–assisted operation. For this reason we have recently developed the

NeuroManager metasimulation tool (Stockton and Santamaria 2015), which provides

workflow automation, input parameter isolation, hierarchical model construction, and

automated batch simulation on a combination of laboratory servers, clusters, and super

computers, for greater research efficiency and high–throughput parameter space exploration

(Teka et al. 2016).

The world of computing is moving towards a software– defined commodity model of

computation that provides both on-demand servers and on-demand networks (Buyya et al.

2009). It would be useful to the neuroscience community if our traditional tools could match

pace with this new movement. In this paper we discuss cloud computing for neuroscience

simulation, show how to run NEURON in the cloud, and present NeuroManager’s ability to

seamlessly add on-demand cloud–based simulator resources to the user’s working

simulation power.

The Cloud in Scientific Research

The Cloud is Ubiquitous in Science

Cloud technology has been changing the face of computing, including public–commercial

cloud computing services and companies such as Amazon Elastic Cloud Computing (EC2)

(Amazon 2016), Google Cloud Platform’s Compute Engine (Google 2016), and Rackspace

(Rackspace 2016a); private working clouds such as FermiCloud (Wu et al. 2014), CERN’s

multiple particle physics research clouds,1 and the private–commercial CQSCS2 (Cheng et

al. 2015); clouds for cloud technology research such as the hybrid Chameleon Cloud

(Chameleon Cloud 2016), or the Open Cloud Institute (UTSA 2016); and mobile

applications extended with cloud services such as Apple’s Siri (Nusca 2011). For the

research community, cloud computing offers the opportunity to leverage practically

unlimited computing power, as needed, while reducing investment in hardware

infrastructure. Yet there are challenges, including the need for specialized expertise, prior

investment in other computational facilities, and the need to focus on research topics rather

than adapting to new computing mechanisms.

Although there are many views of cloud computing (Geelan 2009), for this paper the

essence of cloud computing is that it provides on–demand software servers and clusters,

called Infrastructure as a Service (IaaS) (Mell and Grance 2011). The user creates,

1https://www.openstack.org/user-stories/cern/
2CQSCS = Construction Quality Supervision Collaboration System.

Stockton and Santamaria Page 2

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.openstack.org/user-stories/cern/

configures, uses, and destroys them as needed with little regard for how or where they are

implemented. The cloud server is based on an image, a file which is a snapshot of a software

server that has a particular configuration of operating system plus other software. The user

can also create custom images by configuring an existing server then saving it as an image.

A cloud server also has a flavor, which determines a server’s number of processors/cores,

amount of RAM, bulk storage, and other resources.

Modern cloud technology provides performance essentially indistinguishable from hardware

servers (Barham et al. 2003; Figueiredo et al. 2003; Keahey et al. 2005b), and can, in some

cases, provide the specialized processing hardware such as GPU (Graphics Processing

Units) hardware or Infiniband interconnections3 traditionally associated with hardware

servers or clusters. Typically, there is no waiting queue for cloud servers and no layer

between the user and the cloud server, though the so–called ‘bare–metal’ versions, which

allow the user exclusive access to hardware, may require reservations.4 Public clouds and

private clouds both provide cloud services, but private clouds tend to have better

performance characteristics (Sadooghi et al. 2015).

Hardware cluster computing (often called grid or traditional HPC computing) provides

unshared access to subsets of shared networked hardware, negotiated by a local resource

manager; different ‘queues’ provide access to node–specific hardware such as coprocessors,

GPUs, or large memory nodes. Often clusters provide high– speed communications such as

Infiniband (Texas Advanced Computing Center 2016). Foster et al. (2008) provide extensive

comparisons of grid and cloud computing from the aspects of architecture, security model,

business model, programming model, virtualization, compute model, data model, locality,

and provenance.

Many scientific communities have embraced or investigated the use of cloud resources for

their research, including particle physics (Sadooghi et al. 2015), astrophysics (Smith 2011),

high-energy physics (Segal et al. 2010; Taylor et al. 2015), computational chemistry

(Thackston and Fortenberry 2015b), chemical modeling for high–throughput drug discovery

(Moghadam et al. 2015), bioinformatics (Hanson et al. 2014), medical imaging (Kagadis et

al. 2013), geophysics (Mudge et al. 2011), social sciences (Wittek and Rubio-Campillo

2012), geochemistry (Huang et al. 2014), genomic analysis (Ban et al. 2015), and various

projects at the Department of Energy (Yelick et al. 2011).

Each scientific application presents a unique computational challenge, requiring a specific

combination of vertical and horizontal scalability (described below) and thus an individual

blend of the intrinsic advantages of HPC, private cloud, and public cloud.

Advantages of Cloud Computing for Simulation

Horizontal scalability—Primarily, cloud computing provides horizontal scaling —

adding processors to allow more simulations to run simultaneously — but also does offer

vertical scaling options such as increased server performance and faster simulation

3https://www.chameleoncloud.org/about/hardware-description/
4https://www.chameleoncloud.org/docs/bare-metal-user-guide/

Stockton and Santamaria Page 3

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.chameleoncloud.org/about/hardware-description/
https://www.chameleoncloud.org/docs/bare-metal-user-guide/

completion (Arcitura 2016; Vaquero et al. 2011). Vertical scaling — increasing the power

or resources of a processor to make a single simulation run faster — is better associated with

the kind of traditional HPC seen in the Texas Advanced Computing Center Stampede

supercomputer’s Xeon coprocessor– equipped nodes (Texas Advanced Computing Center

2016). For the researcher, horizontal scaling tends to improve makespan for a set of

simulations (elapsed time between start of the first simulation to completion of the last

simulation) rather than the speed of a single simulation, but involves less investment of

programming effort than vertical scaling’s focus on improving the internal parallelism of a

single simulation. In addition, the server management involved in horizontal scaling tends to

be more future– proof, accessible, and portable than vertical scaling, which often involves

highly refined hardware–specific tuning of specific internal simulation algorithms. Although

cloud servers do offer a form of vertical scaling (Vaquero et al. 2011), it does not always

translate into higher performance (Thackston and Fortenberry 2015b). The user must

experiment to find the best configuration (Belgacem and Chopard 2015).

No Hardware Investment or Maintenance—The researcher does not need to invest in,

maintain, or upgrade hardware resources, and there is no risk of losing hardware to

obsolesence (Thackston and Fortenberry 2015b). Beginning researchers can lower their

hardware acquisition barrier, and seasoned researchers can follow the computational

demands of their projects with fine precision (Armbrust et al. 2010; Creeger 2009). Some

companies have significantly reduced their data–center size through cloud computing

(Creeger 2009). In addition, hardware expertise is kept where the hardware exists —

externally, so the researcher does not need to hire or access hardware experts (Creeger

2009). There is, however, need for cloud software expertise similar to that of HPC centers,

though this can be ameliorated with specialized software (Yelick et al. 2011), such as

NeuroManager.

Wait–Free Access—In general, cloud servers appear to the user just like standalone

hardware servers and are immediately accessible. In contrast, busy HPC clusters can cost the

user substantial time sitting in job–waiting queues (Foster et al. 2008; Hoffa et al. 2008).

Better Resilience—Better Resilience of simulation capability. The loss of a computing

resource such as an HPC cluster or cloud due to maintenance, business failure, or cash flow

glitches can lead to simulation work slowdowns. Dependency on a single point of simulation

computing power is a serious weakness in any research scenario. Being able to muster

additional resources quickly and easily in order to keep simulation work active is a clear

advantage of cloud computing (Grozev and Buyya 2014).

Dynamic Time/Cost Tradeoffs—Given proper software support, cloud computing

allows the researcher to directly, immediately, and reversably trade off cost and time/

makespan for a given set of simulations. In many situations, this could involve

improvements of days or even weeks of researcher/user time (Mudge et al. 2011). In

contrast, the process of investing in hardware to decrease makespan is indirect, delayed,

irreversible, and static.

Stockton and Santamaria Page 4

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A Flexibly Tailored Runtime Environment—A researcher can produce instances with

a variety of operating systems, server capability, support software, simulator configurations,

and simulator versions. In this way, researchers are able to reconstruct exact simulation

conditions, support legacy software (Figueiredo et al. 2003), interface components designed

for different operating systems (Yoginath and Perumalla 2013), resolve difficult

configuration bugs without risk, and have complete support for custom operating systems,

applications (Rehr et al. 2010), simulators, and/or custom modifications to existing

simulators.

Improved Scientific Computing Provenance—In contrast to physical servers and

clusters, the researcher can register an exact copy of the virtual machine (cloud server) on

which a given simulation was done (Bechhofer et al. 2013; Dudley and Butte 2010; Howe

2012; Sliman et al. 2013). This feature can extend current neuroscience approaches to model

sharing and provenance such as ModelDB, a public database of computational neuroscience

models (Migliore et al. 2003). With cloud support, then, the ModelDB submission of a

model could also include an OpenStack compatible image and/or configuration script that

would allow the user to recreate the exact server on which a model was run.

The Academic and Commercial Clouds Used in this Study

We worked with three separate clouds in this study — one academic and two commercial.

Academic Cloud — Chameleon—The Chameleon Cloud (2016) is a cloud testbed

designed for open source research into cloud computing. Sponsored by the National Science

Foundation (National Science Foundation 2014), Chameleon is a federated cloud that

integrates private cloud research clouds hosted by the University of Chicago and the Texas

Advanced Computing Center. Chameleon offers an OpenStack KVM5 Cloud which began in

October 2015 and was used in the work described in this paper. Our quotas relevant to this

paper were 20 instances, 40 virtual CPUs, 100GB of RAM, 50 floating IP addresses, and

1000GB of storage. We were able to choose from Chameleon–supplied images that included

CentOS-6 and -7, Fedora-20, and Ubuntu Server.

Commercial Cloud — Rackspace—Rackspace (2016a) offers commercial public and

private cloud services to individuals and businesses, including cloud servers, cloud clusters,

and cloud storage; web hosting; and database hosting on a pay–as–you–go basis. We made

use of their developer+ program (Rackspace 2016b) for the work in this paper. Our default

quotas were 100 instances/IPs, 128GB of RAM, and up to 10 TB of SSD and 10TB of

storage. We had about 22 stock images to choose from, including 13 images from the

CentOS, CoreOS, Debian, Fedora, Red Hat, Ubuntu, and Vyatta varieties of LINUX, and 9

images from 3 types of Windows Server.

Commercial Cloud — Amazon Elastic Computing—Amazon Web Services (AWS)

provides public and private cloud services worldwide, such as cloud instances (EC2), load

balancing, storage (Elastic Block Storage, or “EBS”), web hosting, networking, and mobile

5KVM = Kernel-based Virtual Machine and refers to the type of hyper-visor employed by the cloud to run virtual machines; see http://
www.linux-kvm.org.

Stockton and Santamaria Page 5

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.linux-kvm.org
http://www.linux-kvm.org

services (Amazon 2016; Fusaro et al. 2011). We made use of their Free Tier6 which gave us

up to 20 instances and up to 750 hours per month of the “t2.micro” flavor, for a length of

one year. We had the choice of over 24 images from Amazon, Red Hat, SUSE, and Ubuntu

LINUX, and Microsoft Windows Server.

In this document we refer to Amazon Web Services as “AWS” and the Amazon EC2 cloud

as “Amazon EC2” or “EC2” in accordance with current practice (Belgacem and Chopard

2015; Kaminski and Szufel 2015; Sadooghi et al. 2015; Yoginath and Perumalla 2015).

Hardware and Pricing Options—Although cloud computing is complex, in this project

we deal primarily with the “Compute” aspect of a cloud — creating, configuring, running,

and terminating instances. For a variety of customers, there are many other offerings

including networking, webhosting, monitoring, and various types of storage.

For the most part, cloud instances are not tied to specific hardware. However, for issues of

performance, specialized software, company policies, and restrictive software licenses

(DAntoni 2013), cloud technology has evolved to allow a gradient of virtuality.

The Chameleon Cloud’s KVM Cloud (used in the majority of this paper’s experiments)

offers no option to control which hardware hosts a virtual server. Instead, their “Bare Metal

Reconfiguration” resources (Cha, 2016) allow user customization through a reservation

system that gives the requester the ability to reserve hardware nodes for a specific date/time

period with specific characteristics including: site, platform type, number of CPUs, number

of cores, compute vs storage, and presence of Infiniband support. This reservation is called a

“lease” and, once it begins, the user can launch instances with a flavor of “baremetal” which

run directly on the reserved nodes. At that point, the instances are similar in many ways to

those on the virtual cloud.

Rackspace offers “OnMetal Cloud Servers” which are created just as Virtual Servers are

Laffoon (2016), yet do not share users, and are totally solid state. For example, the

“Compute” flavor is a ten core Xeon machine with 32 GB RAM and a 32 GB system disk.

The OnMetal servers are more expensive than Virtual Servers, though direct comparison is

difficult.

Amazon EC2 provides many options for customizing the performance of cloud instances,

networks, and storage (Amazon Web Services 2016; Thackston and Fortenberry 2015a).

Instead of separating virtual and hardware servers the way Chameleon and Rackspace do,

their instances are flavored using not only the normal number of virtual CPUs, memory, and

included storage, but also by the exact type of hardware (processor, storage, GPU) that

flavor is hosted on. For example, instances of the “m4.large” flavor are hosted on 2.4 GHz

Intel Xeon E5-2676 v3 (Haswell) processors.7 In addition, EC2 provides the “Dedicated

Instances” option that provides physical isolation of the user’s instances from other users

and the “Dedicated Hosts” option that provides physical control for server–bound software

licenses.8

6https://aws.amazon.com/free/
7These details can be seen at https://aws.amazon.com/ec2/instance-types/.

Stockton and Santamaria Page 6

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://aws.amazon.com/free/
https://aws.amazon.com/ec2/instance-types/

Cloud pricing is by instance flavor, bandwidth, and storage. For the Chameleon Cloud

academic research cloud, pricing was hidden to us as researchers; what is tracked are Virtual

CPU hours, gigabyte hours, and RAM hours.

In the Rackspace pricing scheme,9 instances are charged for existence time, running or not.

Ingoing data (“bandwidth”) is not charged, but outgoing bandwidth is charged by the

gigabyte in tiers. Image and other storage is also charged by the gigabyte–hour. Rackspace

has volume discounts and also levels of technical support.

In the Amazon pricing scheme,10 instances are charged only if running. Ingoing data is not

charged, while outgoing data is charged by the gigabyte in tiers. Storage is charged by the

gigabyte–month. Amazon has volume discounts and support levels.

The standard pay–on–demand pricing is common to both; however Amazon has two other

purchasing options.11 With their “Reserved Instances” option, the user reserves not an

instance, but subscribes to a discount for one or three years that is specific to the instance

flavor desired. Users can sell their Reserved Instances on the Amazon– provided “Reserved

Instance Marketplace”, which would allow a researcher to perform a period of heavy

simulation then recoup costs quickly by selling the remainder of the reservation.

Amazon also has a “Spot Instances” program where customers can bid on potential

instances. When their bid exceeds the going rate (“Spot Price”), those instances are created

and automatically granted to the customer, until which time that the Spot Price exceeds their

bid — then the instances are automatically terminated. This approach can lead to low prices

but is only useful for applications in which the automatic external termination is not an issue

(Gong et al. 2015).

Running NEURON in the Cloud

For the NEURON simulator, using the cloud means creating a cloud server with a

compatible operating system, installing additional software facilities as required, installing

NEURON on that server, uploading model and other simulation files, compiling mod files as

required,12 running the simulator, retrieving resulting data files, then terminating the server

to avoid additional cost.

In order to avail oneself of the on–demand character of the cloud while minimizing cost and

human workload, this process must be fully automated. Ideally, the use of computational

resources should be integrated into simulation management software to improve daily

workflow and to pare costs of resource use to the minimum. Automation can allow the user

to take advantage of sophisticated scheduling algorithms that allow tradeoffs between

several complex parameters: total simulation time, the cost of computer resources, the

8https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
9Discussion here: https://www.rackspace.com/cloud/public-pricing#cloud-servers and calculator here: https://www.rackspace.com/
calculator
10Discussion here: https://aws.amazon.com/ec2/pricing/ and calculator here: http://calculator.s3.amazonaws.com/index.html
11https://aws.amazon.com/ec2/purchasing-options/
12In NEURON, mod files are used to define the simulation program for a biomechanism such as an ion channel. After definition, they
are translated into C code and compiled into a biomechanism library before use in actual simulation.

Stockton and Santamaria Page 7

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
https://www.rackspace.com/cloud/public-pricing#cloud-servers
https://www.rackspace.com/calculator
https://www.rackspace.com/calculator
https://aws.amazon.com/ec2/pricing/
http://calculator.s3.amazonaws.com/index.html
https://aws.amazon.com/ec2/purchasing-options/

heterogeneity of available resources, and the reliability of grid resources (Li et al. 2016;

Panda and Jana 2015).

In this section we discuss the specific steps we found necessary to make use of the

NEURON simulator on Chameleon Cloud, Rackspace, and EC2. Although both Chameleon

and Rackspace clouds are based on the Open-Stack open source cloud software,13 there are

differences in their purposes, configurations, and even in their Application Programmer’s

Interfaces (APIs). EC2 has similar functionality but the API is substantially different from

OpenStack. We worked manually with EC2 and manually and automatically with

Chameleon and Rackspace.

Building a NEURON-Ready Cloud Server

Our experiences with Chameleon, Rackspace, and Amazon were slightly different. Since

Chameleon is a cloud research resource, our project intially was completely bare. As a result

it was necessary, using the Chameleon browser– based Dashboard, to set up a basic virtual

network that included a virtual router to allow the network access to the outside world,

which is a stereotypical set of cloud operations known as the “External Virtual Server

Accessibility Cloud Design Pattern” (Erl et al. 2015). That network allowed us to create

servers that were externally accessible using a public IP address. In contrast, on Rackspace

and Amazon those details are, by default, invisible to the user and it was possible to create

instances immediately that were externally–accessible. Both Chameleon and Amazon

required preliminary setup of a security group that determines what traffic is allowed, and an

SSH key pair for communication with the instances. The Chameleon preparations steps

were:

– Create a virtual network and name it.

– Create a subnet of the virtual network and name it.

– Choose IPv4 or IPv6.

– Select DHCP yes.

– Assign DNS Name Servers.

– Select the gateway IP.

– Select the local network address range.

– Create a virtual router and name it.

– Attach router to external network.

– Add a new interface to the router and attach it to the new subnet.

Network setup completed, we were able to create server instances using each of the

Chameleon, Rackspace, and Amazon dashboards. On Chameleon, for most experiments

(Section “Experimental Methods, Results, and Analyses”) we chose a CentOS-6 server to

match our in–lab servers, with a medium ‘flavor’ called ‘m1.medium’ that gave us 2 Virtual

13http://www.openstack.org

Stockton and Santamaria Page 8

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.openstack.org

CPUs, 4 GB of RAM, and 40 GB of storage. On Rackspace, we chose a CentOS-6 server

with a flavor called ‘2 GB General Purpose v1’ with 2 CPUs, 2 GB of RAM, and 40 GB of

storage. On Amazon, we used the Amazon Linux AMI image14 with the c4.large flavor

which has 2 CPU and 3.75 GB of RAM.

On the Chameleon Cloud, the user then must allocate a floating IP address from an address

pool and assign it to the instance. The user logs into the instance through the Internet using

that floating IP address. For Rackspace and Amazon, creating the server automatically

allocated and assigned the public IP address. In all cases, the user makes use of dual key

SSH-2 authentication (Barrett et al. 2005) to communicate with the servers.

The three clouds are different in the software stack available on the OS upon creation; this is

true also of each image. Our goal was to configure the servers for NEURON simulation with

Python (Hines et al. 2009). We referred to the basic approach described by the NEURON

website15 and by Andrew Davison16 to install NEURON without Interviews, since we do

not use the GUI. Because each cloud’s images are different, we were obliged to scour the

installation output logs in detail to determine which elements of the OS were necessary but

not present; we then incorporated those elements into our configuration scripts. We credit

the NEURON developers with providing the installation feedback that allowed us to do that.

The basic steps to create a NEURON 7.4–ready cloud server were:

– Choose name, image, flavor, key pair, and subnet for the new instance.

– Launch the instance.

– If necessary, allocate a floating IP from a floating IP pool and attach it to the

instance.

– Install basic terminal and compilation software using yum or other software

package manager.

– Install Python 2.7 if necessary.

– Create specific directories in preparation for installation of NEURON.

– Download the NEURON 7.4 tar file from the NEURON repository or local

source and unpack it.

– Configure the NEURON installer with Python location. – Install NEURON

using make and make install.

– For use with NeuroManager, we also install the appropriate version of the freely

available MATLAB (Natick, MA) Compile Runtime (MCR).17

– Create working directory for use with NeuroManager.

14AMI = ‘Amazon Machine Image’.
15http://www.neuron.yale.edu/neuron/download/compile_linux
16http://www.davison.webfactional.com/notes/installation-neuron-python/
17Available free at http://www.mathworks.com/products/compiler/mcr/; the version matches the MATLAB compiler we have
available.

Stockton and Santamaria Page 9

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neuron.yale.edu/neuron/download/compile_linux
http://www.davison.webfactional.com/notes/installation-neuron-python/
http://www.mathworks.com/products/compiler/mcr/

Once the server was created and tested for correctness, we were able to save it as an image

which can be cloned, manually or automatically, to produce multiple servers ready for

simulation use. The actual scripts we used to configure a MATLAB–NEURON–Python

server for the three clouds are available at the NeuroManager GitHub site,18 but the user will

need to adapt to his or her own needs and resources. These images could serve as a shareable

‘appliance’ on compatible clouds (Sharma 2008).19 The cloud objective of universally–

portable images/appliances, however, is still an elusive one (Howe 2012; Cloud Standards

Customer Council 2014).

Figure 1 shows details of six servers using the Chameleon Cloud Dashboard. The server

named ‘dbs-test’ was created using the dashboard from an image called ‘CC–CentOS7–

MCR2013a–NEURON74–Python27’ which we created by the procedure listed above. The

image supports a specific set of two neuroscience simulators: it runs compiled MATLAB

programs that are compatible with MATLAB2013a, and it runs GUI–free NEURON

simulations compatible with NEURON 7.4 that may or may not include Python 2.7 code. In

NeuroManager, the JSON20 file for a specific cloud describes the images available on that

cloud, and each image description lists the neuroscience simulators it supports so that

NeuroManager can check compatibility with the user’s chosen neuroscience simulator. The

remainder of the servers in Fig. 1 were created programmatically using NeuroManager’s

Cloud Management classes. The servers are of the m1.medium flavor and are essentially

identical except for their external IP address.

We do not need a MATLAB license for any of the cloud servers, since we are making use of

the compiled version of MATLAB. Instead, we compile the code on a local server using a

single MATLAB license and push the compiled code to each cloud server. The free

MATLAB MCR, which allows one to run compiled MATLAB without a license, is part of

the configuration of the image upon which each server is based. The end result is that, in

contrast to many applications (DAntoni 2013; Microsoft 2016), there is no additional

licensing fee for use of MATLAB in the cloud.

For manual use, the cloning of a server is the easiest, most convenient way to add resources.

For automatic use, cloning can be slower than actually recreating each server anew, since the

use of cloning may involve transferring a large image file (the image ‘CC–CentOS7–

MCR2013a–NEURON74–Python27’ seen in Fig. 1 is 4.7 GB) between servers internally

within the cloud’s physical network(s). The base OS images are much smaller (the

CentOS-7 image is 677.3 MB) and may transfer internally more quickly. In other

circumstances, installing from a base image followed by configuration may take far longer

than transferring the larger, fully configured image (Keahey et al. 2005a). OpenStack, and

other clouds, offer the ability to pass and automatically run configuration scripts and data

(called ‘user data’) as part of launching a new instance, often with the use of the CloudInit

software (Automating Openstack with cloud init run a script on VM’s first boot 2015). By

18https://github.com/SantamariaLab/NeuroManager
19https://www.chameleoncloud.org/appliances/
20‘JSON’ stands for Javascript Object Notation. Please see http://www.json.org/.

Stockton and Santamaria Page 10

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/SantamariaLab/NeuroManager
https://www.chameleoncloud.org/appliances/
http://www.json.org/

automating these processes, simulation management software can handle the full building of

servers using a locally–optimal procedure without any additional effort by the user.

Running a Simulation Manually on a Cloud Server

Once a cloud server has been created and is NEURON– ready, the user can run a simulation

on it using the same basic manual workflow presented in Stockton and Santamaria (2015).

Automating Cloud Operations

The dashboards provide manual/visual interaction with the cloud. For automated interaction,

there are three options. The first is to use the cloud’s client programs which, once installed

on the user’s computer, provide a command-line interface. For dealing with instances/

servers in OpenStack, the command line interface is called ‘nova’.21 For example, the

command to create a server is

The Amazon equivalent is called the Command Line Interface.22

The second option is to interact directly with the service. OpenStack, like many other cloud

types (Foster et al. 2008; Cloud Standards Customer Council 2014), provides a RESTful23

Application Programming Interface (REST-ful API).24 Amazon EC2 also provides a

RESTful interface (Amazon 2015). By making use of the API through the http protocol,25

the user’s programs (or the user’s simulation manager) can create and terminate servers,

query status and quotas, inquire about current charges, save and manage images, assign and

reassign IP addresses, or perform any of an extensive array of cloud functions. For

authentication in each interaction, Chameleon and Rackspace use the Open-Stack token

procedure. In this procedure, the user’s code requests a token from the cloud using assigned

login credentials; for Chameleon the user uses the account password and for Rackspace the

user retrieves a long numeric code from the account dashboard which effectively becomes

the password. All subsequent API interactions with a given cloud must include that cloud’s

returned token, which will expire at some time and must be replaced by a new token request.

Examples of direct access to the service can be seen in the API Quick Start Guide.26

Amazon’s authentication involves encrypted authorization signatures.27 In API use on all

three clouds, the principle of “Eventual Consistency” is at work, in which the user must

verify states before and after issuing a command in order to ensure that the command’s

results have propagated completely; there is also the possibility that a valid command may

fail and require resubmission (Amazon 2015; Rackspace 2016c).

21http://docs.openstack.org/user-guide/common/cli_overview.html
22https://aws.amazon.com/cli
23http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
24http://developer.openstack.org/api-ref.html
25See RFCs 7230–7237 at http://tools.ietf.org/rfc/index
26http://developer.openstack.org/api-guide/quick-start/api-quick-start.html
27http://docs.aws.amazon.com/AWSEC2/latest/APIReference/making-api-requests.html

Stockton and Santamaria Page 11

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://docs.openstack.org/user-guide/common/cli_overview.html
https://aws.amazon.com/cli
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
http://developer.openstack.org/api-ref.html
http://tools.ietf.org/rfc/index
http://developer.openstack.org/api-guide/quick-start/api-quick-start.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/making-api-requests.html

The third option is to use a Software Development Kit (SDK) that provides a software

interface to the cloud either via the client programs or via the API. Several SDKs have been

written in Python, Perl, C++, and other languages for use with the OpenStack API.28 For

example, in the Python SDK’s novaclient.v2.servers.ServerManager class, the

method creates a new server29. As discussed below in Section “Managing Cloud Instances

Within NeuroManager”, we have developed a minimal MATLAB SDK for integrated

NeuroManager use that uses the RESTFUL API and makes use of the cURL utility30 for the

http protocol. For example, NeuroManager internally uses the class method

to create a set of cloud servers in parallel; in practice, however, the user uses the interface

shown in Fig. 2 and does not deal with the cloud directly. Similarly, EC2 provides a set of

SDKs for use31 and we are in the process of extending our SDK to EC2.

NeuroManager Automates NEURON use on a Blend of Clouds, Clusters, and Standalone
Servers

NeuroManager is a metasimulation tool that automates the submission process for

neuroscience simulations on a variety of platforms including local servers, clusters, and

supercomputers (Stockton and Santamaria 2015). Neuro-Manager forms a Virtual Simulator

based upon a SimCore (in this paper, the SimCore is either a MATLAB–based simulator or

NEURON), places multiple Simulators on a variety of computational resources to form a

Simulator Pool/Farm/Cloud, then schedules Simulations on those Simulators using a

modified min–min scheduling algorithm (Braun et al. 2001). Simulations that become

stalled on cluster waiting queues will be rescheduled on the fastest available Simulator,

which may be on a cloud server. Simulators placed on standalone and cloud servers run as

parallel multitasked processes; in contrast Simulators placed on clusters run as individual

jobs on nodes using the number of cores requested by NeuroManager. Horizontal scaling in

the NeuroManager sense, then, means adding Simulators to current or additional servers,

clusters, and/or cloud servers. By ensuring there is an additional processing core associated

with each additional Simulator, the user scales both parallelism and processing power.

Adding a Simulator without adding an additional processing core still results in increased

parallel performance in many situations, but the individual performance of the Simulators on

that resource will be reduced.

Because NeuroManager acts as a super user and works with each cloud individually, cloud

interoperability and portability are not issues; more formally, NeuroManager falls under the

Cloud Standards Customer Council’s Scenarios 2 and 4 (Cloud Standards Customer Council

28https://wiki.openstack.org/wiki/SDKs
29http://docs.openstack.org/developer/python-novaclient/ref/v2/serverser.html
30https://curl.haxx.se/
31See, for example, the Java SDK: https://aws.amazon.com/sdk-for-java/.

Stockton and Santamaria Page 12

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://wiki.openstack.org/wiki/SDKs
http://docs.openstack.org/developer/python-novaclient/ref/v2/serverser.html
https://curl.haxx.se/
https://aws.amazon.com/sdk-for-java/

2014). As part of the process of extending NeuroManager to cloud instances, we recruited

the cloud concepts of ‘image’ and ‘flavor’ for use with all computational resource types.

NeuroManager uses a combination of JSON configuration files32 and class inheritance to

handle intercloud differences in API, images, flavors, methodologies, and workflow. The

user places within the Simulator definition its requirements for SimCore and flavor

minimums to allow NeuroManager to check them against the machine configuration the user

has chosen.

NeuroManager can work with existing, continuously operating cloud servers, but can also

use temporary cloud servers as required for a specific user configuration. After initial setup

the user has the ability to configure a mixture of local servers, clusters, supercomputers, and

cloud servers with minimal work (Fig. 2). For ‘ephemeral’ cloud servers which we call

‘Wisps’ that minimize cost because they exist only during simulation operations,

NeuroManager can create, configure, use, and terminate the servers automatically, an

example of the ‘Rapid Provisioning Cloud Design Pattern’ (Erl et al. 2015).

Managing Cloud Instances Within NeuroManager

For MATLAB, the language currently employed by Neuro-Manager, there is no existing

OpenStack SDK. In addition, there are differences between the APIs of the two Open-Stack

clouds we used in our work.3334 For these reasons and for better extensibility to other cloud

types, we avoided the need to accumulate specialized client programs by developing a

minimal object-oriented MATLAB SDK that uses the cURL tool’s http protocol support for

interacting directly with the cloud’s instance services. The class hierarchy seen in Fig. 3

implements an instance management interface that hides the differences between the three

clouds, focusing primarily on instance creation and termination, information query, and

quota determination. We first developed the class hierarchy for the two OpenStack clouds,

and the approach is proving extendable to EC2. Neuro-Manager’s instance management

interface means that for daily operation the user does not need to deal with the cloud

directly. This feature is an example of ‘externally– managed multi–cloud brokering’ (Grozev

and Buyya 2014). In addition, the merging of virtual and bare–metal instances by both

Rackspace and Amazon (Section “Hardware and Pricing Options”) means that

NeuroManager could handle either with little or no change, and even mix the types at will.

Combining Cloud Servers with Other Resources

Figure 4 shows a snapshot of NeuroManager’s session– monitoring webpage in the middle

of running a simulation set on mixed resources that include four servers on the Chameleon

Cloud and three servers on the Rackspace public cloud, each hosting two simulators. All

together, the Simulators created in this example form a ‘Simulator Cloud’ of eighteen

independent Simulators. NeuroManager schedules simulations on those Simulators much

like a cluster manager schedules jobs on cluster resources. The scheduling algorithm uses

individual Simulator characteristics to place simulations efficiently and yet handle grid

dynamics, including the ability to move simulations from stalled cluster–hosted simulators

32The JSON format is similar to the XML format but much less cluttered. It permits hierarchical data definition, whereas the more
familiar INI files do not.

Stockton and Santamaria Page 13

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to non–stalled ones on other resources. We also were successful in adding persistent

Amazon EC2 instances to this combination.

Managing Cloud Costs with NeuroManager

NeuroManager provides the ability to create and terminate Wisps, allowing the user to

minimize the existence time of a server, and thus cost (suitable for Rackspace). The ability

to start and stop existing cloud servers allows the user to minimize the runtime of a server

(suitable for Amazon). The ability to distribute Simulators at will on a mixture of

heterogeneous resources allows the user to trade off makespan and costs by determining how

much of the bulk of a simulation set will be run on the cloud, and to determine what

percentage of the cloud portion is on more expensive clouds. NeuroManager’s Simulation

Set approach, where a number of simulations are processed, scheduled, and run in bulk,

permits closer packing of server use and, since the smallest billing time unit of clouds is

typically one hour, helps reduce unused server partial hours. Finally, the user can determine

on–the–fly how much of the simulation output data to download; thus avoiding data transfer

charges for data that is of no interest.35

Cloud Clusters and Parallel NEURON

When configured for parallel use using the paranrn module (Brette et al. 2007; Hines and

Carnevale 2008; Migliore et al. 2006), NEURON uses time–stepped synchronization

(D’Angelo and Marzolla 2014) to perform Message Passing Interface (MPI)–based Parallel

Discrete Event Simulations (PDESs) (Misra 1986; Yoginath and Perumalla 2013),

continuous model simulations (Hines et al. 2008a, b), or continuous–PDES hybrids, and has

been run on physical clusters to good effect (Schneider et al. 2015; Silverstein and Lansner

2011). Unfortunately, cloud clusters36 show significant performance loss due to instance

placement (Ballani et al. 2011), interinstance communications issues such as variability and

latency (El-Khamra et al. 2010; He et al. 2010; Sadooghi et al. 2015), and heterogeneous

workloads among simulation components (Yoginath and Perumalla 2013, 2015). Similarly,

MPI–based applications are strongly dependent on low communications latency (Mauch

2015). While HPCs provide less scalability than clouds and often large wait times, they also

provide hardware–optimized interinstance communications and non–shared processors.

Various groups are working to improve interinstance communications (Ballani et al. 2011;

Ban et al. 2015; Branch et al. 2014; Mauch 2015; Peng et al. 2015) and hypervisor37

scheduling policies (Yoginath and Perumalla 2013, 2015).

Although it is certainly possible to run a distributed, MPI–based application such as parallel-

configured NEURON on a cloud cluster (El-Khamra et al. 2010), the performance of cloud

clusters has not yet reached that of physical clusters, though this may be changing for some

applications (Mossucca et al. 2015). What ‘performance’ means in cloud services, though, is

a complex topic and is neither well-controlled nor well–defined (Mogul and Popa 2012).

Performance–wise, investigators may be best served by running parallel NEURON on

35By programming the UserSimulation() function accordingly; see Stockton and Santamaria (2015).
36Cloud clusters are virtual networks formed from cloud instances.
37The hypervisor is the program that runs on the physical processor and produces the virtual machines, or cloud servers, that are
hosted by the physical processor.

Stockton and Santamaria Page 14

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

physical clusters, as in Schneider et al. (2015), or possibly bare–metal clusters with

Infiniband connections (Rad et al. 2015). Based on these considerations, we have reserved

NeuroManager’s handling of cloud–hosted clusters for the near future.

The multisplit functionality included in the paranrn option (Hines et al. 2008a) provides

single–node multi–core vertical scaling of certain types of single simulations by parsing out

to multiple processors dendritic trees that fall into specific morphology classes.38 By

requesting multiple cores in the cluster job file through the machine class, or by requesting

cloud servers with a flavor that provides multiple processors, the user could leverage both

vertical and horizontal scaling on both cluster and cloud.39

Experimental Methods, Results, and Analyses

We ran experiments to explore the characteristics of NeuroManager’s usage of cloud servers

in comparison to HPC resources from the perspective of single–node NEURON simulation.

Others have done such from other perspectives (Gupta and Milojicic 2011; Iosup et al. 2011;

Ismail and Khan 2015; Jackson et al. 2010; Mauch 2015; Oesterle et al. 2015; Sadooghi et

al. 2015; Thackston and Fortenberry 2015b; Yelick et al. 2011; Zaspel and Griebel 2011).

We set NeuroManager up to run a publicly–available NEURON model obtained from

ModelDB40 (Miyasho et al. 2001), which applies a current step to the soma of a modeled

Purkinje cell. After adjusting the stop time to achieve a runtime of 0.5 hours on the

standalone server, we ran the simulation with identical input parameters for all experiments.

We used the “KhStudy” Simulator41 which modifies one of the model’s NEURON mod

files, compiles all mod files into a library, runs NEURON with the newly–created library and

the other input parameters specified by the user, then generates plots of the resulting

membrane voltage signal using MATLAB compiled code. In most of these experiments we

used the Chameleon Cloud to host the cloud servers, but we have run other sessions using all

three clouds, separately and together.

Runtime Dependence on Flavor

We determined the individual runtimes, Truntime, for our chosen NEURON simulation on

each resource: standalone server, local cluster, and the Chameleon, Rackspace, and Amazon

clouds. Truntime is the actual NEURON simulation runtime of an individual simulation on

the resource as gathered by MATLAB’s tic/toc facility and does not include file transfer or

overheads associated with running multiple simulations. We ran two Simulators (two parallel

simulations) on each resource. Our resources were as follows.

• Hardware standalone server: a Dell PowerEdge T620 with two 2.9 GHz

processors with 6 cores each and 64 GB RAM;

• Local Sun Grid Engine (SGE) HPC cluster: twenty nodes, each with 2 Intel

Xeon E5450 Quad Cores for a total of 8 cores per node and 16GB of RAM.42

38The approach is also suitable for multi–node cluster–based simulations but we focus on single–node applications here.
39Note that cluster and cloud nodes are often limited in cores to eight or fewer each.
40Model 17664; see https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=17664.
41See https://github.com/SantamariaLab/NeuroManager/tree/master/NeurSim/MiyashoMOD/KhStudy.
42http://cbi.utsa.edu/hardware/cluster

Stockton and Santamaria Page 15

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=17664
https://github.com/SantamariaLab/NeuroManager/tree/master/NeurSim/MiyashoMOD/KhStudy
http://cbi.utsa.edu/hardware/cluster

This cluster has other queues which the scheduler also used depending on

number of cores requested and availability;

• Chameleon Cloud: four different flavors of servers, including “m1.small” (1

CPU and 2 GB RAM), “m1.medium” (2 CPU and 4 GB RAM), “m1.large” (4

CPU and 16 GB RAM), and “m1.xlarge” (8 CPU and 16 GB RAM);

• Rackspace cloud: “2 GB General Purpose v1” flavor of server (2 CPU and 2 GB

RAM);

• Amazon EC2: servers with flavors “t2.large” (2 CPU and 8 GB RAM) and

“c4.large” (2 CPU and 3.75 GB RAM).

The smallest Chameleon cloud flavor (“m1.tiny”) was too small to host the CentOS–6 or 7

operating system which we used for all cloud servers.43

The results show that the three largest Chameleon flavors had a shorter simulation runtime

than the standalone server, the HPC, and the other two clouds (Fig. 5). The Rackspace and

Amazon servers had a comparable run time. Note that the “small” flavor had one core for

two Simulators, the “medium” flavor had one core per Simulator, and the HPC had one core

for each Simulator, whereas the lab server and larger flavors had multiple cores per

Simulator. Since the “cloud small” flavor has fewer cores than Simulators, it runs longer.

There was no advantage to running larger flavors where the number of cores exceeds the

number of Simulators; accordingly we used the “medium” flavor for most experiments in the

rest of this study.

The data presented in Fig. 5 also quantifies the variability of the simulation runtime on each

resource. The standalone server, with a fixed hardware configuration and no user

competition, was the most consistent in runtime. Of the remaining resources, the HPC

showed the highest runtime variance. We suspect this to be due to the fact that we were

requesting single core jobs on the cluster’s “all” queue which uses all available hardware.

Each cluster node has a varying number of cores, memory, and communications hardware;

in addition, some Simulators may have been hosted on nodes also running jobs from other

users. This observation is useful because a common criticism of cloud servers is that their

performance can vary due to hardware placement which is not under control of the user; in

fact “server migration”, moving poorer performing virtual servers to different hardware

automatically to improve performance, is a significant aspect of cloud operations (Mishra et

al. 2012).44

The variability seen in the HPC resource can also be seen in cloud resources. When we used

the “t2.large” flavor, which although called “General Purpose”, is intended for burst traffic

only, the first few simulations ran in less than 18 minutes (about the same as the CCloud

larger flavors), but subsequent simulations ran very slowly (up to 1.5 hours). In contrast, the

compute flavors are intended for sustained use and give much faster and more consistent

43Except for Amazon; there is a licensing fee for Centos–7 usage on Amazon EC2, and it must be obtained through the AWS
Marketplace. See https://aws.amazon.com/marketplace/b/2649367011.
44Our experiments did not make use of server migration or load balancing of any kind, however NeuroManager’s scheduler favors
faster Simulators.

Stockton and Santamaria Page 16

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://aws.amazon.com/marketplace/b/2649367011

performance for NEURON simulations. It is important that the cloud user choose the proper

flavor for the intended application.

Effects of Horizontal Scaling on Simulation Session Performance

We investigated the characteristics of horizontal scaling using HPC–based Simulators and

using cloud–based Simulators.

Horizontal scaling on the HPC was administratively restricted to 50 simultaneous jobs per

user, limiting horizontal scaling to a maximum of R = 50 Simulators. Additional jobs are

also restricted to nodes that have space available, so there is a dynamic point where adding

additional HPC–based simulators does not horizontally scale. The user must choose a point

between more parallelism (fewer cores per job and hence more room on the cluster for

running jobs) and more consistency (more cores per job, reducing node–local timesharing

with other users).

Horizontal scaling on the cloud was limited only to the quotas set for each user. In the case

of Chameleon Cloud, we were able to double our default quotas by request, resulting in new

quotas of 20 instances/40 cores/100 GB RAM total. The public clouds have similar quota

systems, which can also be changed through interaction with cloud representatives. In

contrast to the HPC, we were able to add Simulators as needed and knew that they would all

run in parallel without being placed in a waiting state.

We ran an experiment consisting of three sets of five NEURON/NeuroManager simulation

sessions, with the purpose of quantifying the effects of horizontal scaling on simulation

session performance. In each set the base session consisted of 8 Simulators running a total of

20 simulations; then we scaled the number of Simulators and simulations by scale factor F =

[1, 2, 3, 4, 5], resulting in R = [8, 16, 24, 32, 40] Simulators, and N = [20, 40, 60, 80, 100

simulations.] In Set 1 (HPC only) we ran one Simulator per actual HPC core. In Set 2

(Chameleon Cloud only) we ran one Simulator per virtual core using only medium flavor

servers (2 cores per server), resulting in Nservers = [4, 8, 12, 16, 20]. In Set 3 (Chameleon

Cloud only) we used 8 medium flavor servers in all five scale factors, thus fixing the number

of cores at 16 and placing 1, 2, 3, 4, and 5 Simulators on each server. Set 1 sessions were

each run five times, Set 2 sessions three times, and Set 3 sessions one time, for a total of 45

sessions and 2700 individual identical simulations, each lasting from less than 20 minutes to

more than one hour depending on the resource.

For analysis, we adapted classic parallel processing performance definitions (Censor and

Zenios 1997) to Neuro-Manager use by defining the ‘problem’ as a session (one set) of

simulations and a ‘processor’ as a Simulator–core.

A NeuroManager session that runs a set of simulations is composed of three stages: setup →
running → teardown. The time taken by a session is:

(1)

Stockton and Santamaria Page 17

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where Tsession is the total time taken by the session, Tsetup is the setup time, M is the

makespan, and Tteardown is the time to remove all session–related structure from the remote

resources, including Wisps.

The relative speedup Srel of a specific session S is:

(2)

where NS is the number of simulations in session S, is the runtime for single

simulation i in S, and MS is the makespan developed by session S. Srel(S) indicates how

many times faster the parallel version is and includes all overhead except initial setup time

Tsetup(S) and post–simulation teardown time Tteardown(S).

Similar to relative speedup is the absolute speedup Sabs of a session S:

(3)

where the minimum is taken over all simulations in the session. This equation considers the

parallelism improvement if one assumes the serial runtime had been performed using the

processor that gave the shortest simulation runtime in the session.

We also have the absolute speedup Sabsgroup of a single session S with respect to a group G
of sessions of which it is part; we call this the “AbsGroup Speedup”:

(4)

where is the ith simulation in the jth session of group G, and the minimum is

taken over all i and j. This equation considers the parallelism improvement of a session if

one assumes the serial runtime had been performed using the processor that gave the shortest

simulation runtime of all the sessions in the group, independent of resource.

Normalizing the relative speedup Srel of a session S by the number R of processors/

Simulators/cores used in that session gives the efficiency η of a session, a measure of how

effective the parallel configuration was:

(5)

Stockton and Santamaria Page 18

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The degree to which the efficiency stays constant while the load (total simulation runtime)

and capacity (number of processors) are both increased by the same factor is called the

scalability.

Speedup, Efficiency, and Scalability—For Sets 1 and 2 we calculated the values of Srel

and Sabsgroup (Fig. 6a). We see that the HPC and cloud give a steady, similar Srel, reflecting

the increased number of Simulators/cores in play. When Sabsgroup is calculated relative to the

975.3 second minimum runtime of all of the simulations in Sets 1 and 2 (the minimum

occurred on a cloud–based Simulator), we see that the HPC fairs less well than the cloud

because of the cloud’s faster, more consistent runtimes.

For Sets 1 and 2 we also calculated the values of η and Tsession (Fig. 6b). We see that cloud

and HPC efficiency are similar; both efficiency lines have a shallow downward trend,

reflecting serial aspects of makespan operation including NeuroManager’s scheduling loop.

There is a slight climb in Tsession for both configurations, probably due to the efficiency loss

just mentioned; in every case, however, Tsession was lower for the cloud than for the HPC.

In contrast, Set 3, which scaled Simulators but not cores, had no increased speedup for F >

2, which is the point where the number of Simulators matched the number of cores (not

shown).

Session Time breakdown—Setup time Tsetup is of concern in the use of Wisps, where

time is required to create new servers. NeuroManager uses the cloud’s API to initiate

creation of the Wisps in a Wisp Set in parallel, then waits for all Wisps in the set to reach the

RUNNING state. The much shorter time required by this approach, though still a function of

the number of servers, helps reduce total setup time.

To determine the relationship of Tsetup to session time Tsession as a function of scale factor,

we analyzed Sets 1–3 to break down session time into its component intervals. Figure 7

shows the breakdown of Tsession and Tsetup as a function of number of Simulators for Sets 1

and 2. For Set 3 setup times were constant, with an average of 427 seconds (not shown). In

contrast to the cloud sessions, the setup associated with the HPC is shorter, reflecting many

differences: no need for Wisp Set creation, only a single communications test, vastly fewer

file uploads, and the use of local network communications rather than farther–reaching

communications through multiple networks. Despite these costs, the cloud setup load is

offset by gains in scalability, runtime consistency, speedup, parallel efficiency, and overall

session speed.

To ensure that Wisp creation time on Chameleon was comparable to that on a public cloud,

we supplemented Set 2 data with additional sessions on Rackspace (five sessions involving

creation of ten Wisps each). The average Wisp creation time on Chameleon was 16.1

seconds/Wisp, and on Rackspace 37.4 seconds/Wisp.

Flavor and Cost

We quantified the effects of cloud server flavor, number of simulations, and simulation

length on session time and cost. For this purpose we ran a new set of simulations (Set 4) that

Stockton and Santamaria Page 19

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

consisted of eight sessions (4.1–4.8) ranging from one to four hours each (a total of 560

simulations). We used one Simulator per core with a total of 16 Simulators distributed on the

appropriate number of servers of identical flavor. All servers were on Chameleon Cloud

(Table 1).

Sessions 4.1–4.4 show that, although setup time decreased as the number of servers

decreased, average simulation runtime increased, perhaps due to the lack of timesharing with

other Simulators on the same server. The resulting overall session time Tsession was

independent of configuration. When we increased the number of simulations 4× to 160 (4.5–

4.6) the overall effect is that the two Tsession values are identical. Increasing the number of

simulation steps per simulation 4× (4.7–4.8) emphasized the faster performance of the

smaller flavors, resulting in lower Tsession, despite the resulting larger data downloads.

Although we performed most of our analyses in a no–cost research cloud environment, cost

is a concern if using commercial services. We re–examined the Set 4 results from the

perspective of cost. We calculated the potential cost using the charge for the Rackspace

General Purpose flavor with the same number of cores as the Chameleon Cloud flavor in

use, assuming that there are 750 hours per month and that the minimum billable unit is one

second, and ignoring any data charges or monthly support charges. For ephemeral servers

costs depend on flavor and Tsession; the results are presented in Table 1. The Amazon EC2 c4

compute equivalents (not shown), in comparison, are about 68 % higher than the Rackspace

costs, suggesting that it is advantageous to the user that simulation management software

supports multiple clouds for avoiding the “vendor lock–in” problem (Opara-Martins et al.

2014).

Related Work

The Neuroscience Gateway (NSG) is a portal that provides vetted users web–based access

to super–computer installations of specific versions of standard simulators including

NEURON (Subhashini et al. 2013a, b, 2015). The portal does not use the cloud for

simulations but does offer access to cloud storage.

Yamazaki et al. (2011) report on a service called Simulation Platform that is similar to the

Neuroscience Gateway, but is cloud–based. The platform provides the user with a web–

based interface to virtual machines that offer GENESIS, NEURON, and NEST, as well as

various plotting and analysis tools.

The NSG and Simulation Platform facilities are both complementary to NeuroManager in

that they offer specific implementations to a researcher who desires a point–and– click

interface during sit–down sessions. Both facilities are Software–as–a–Service (SaaS) portals

to which the user comes to do work. In contrast, the user employs NeuroManager to form his

or her own custom simulator farm on–the– fly, from any or all available IaaS resources, for

automated parallel simulation and sophisticated model/simulator configuration and

exploration.

NeuroManager‘s integration of cloud, grid, and server does so without being limited by

middleware boundaries. A more involved approach to managing instances is called

Stockton and Santamaria Page 20

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dynamic Virtual Environments (DVEs) or Virtual Workspaces (VSs) (Keahey et al.

2004, 2005a), and is built upon middleware such as the Globus Toolkit (Foster 2005).

NeuroManager uses JSON files for machine configuration that are similar to the XML

description files used by the DVE/VS system. A fully automated approach to instance

configuration as treated by Keahey et al. (2005a) or Tihfon et al. (2016) appears

indispensible for future work.

The Open Cloud Computing Interface, or OCCI (http://occi-wg.org/) is representative of

efforts to provide a common interface to all cloud types. Another approach is to use a Cloud
Broker such as STRATOS (Pawluk et al. 2012; Grozev and Buyya 2014), which adds a

layer between the customer and multiple (commercial) clouds; that layer manages cloud

differences and negotiates prices. Like STRATOS, NeuroManager’s common resource

interface permits the user to delay deployment decisions until runtime, enabling the user to

work around maintenance, communications trouble, or restrictive quotas. The overall broker

approach, however, appears to be oriented towards business needs, where fairness is

important (Aazam and Huh 2015), in contrast with scientific computing, where fairness can

contribute to poor performance, as described above in Section “Cloud clusters and parallel

NEURON”. NeuroManager uses JSON–format configuration files together with inherited

methods to allow multi– cloud operation. There is an effort to standardize the description

and publishing of cloud entities and differences in a way that is web–accessible through

RESTful services (Smit et al. 2012).

Discussion

In this paper we presented advantages of cloud resources for computational neuroscience.

We have verified a selection of them with detailed experiments that show that the cloud has

better horizontal scalability and overall performance when combined with automated

workflow software such as NeuroManager. In addition, we have shown that we can add

cloud servers quickly and easily without additional investment in hardware, addressed the

problem of waiting queues in clusters by automated rescheduling of waiting jobs onto cloud

servers, shown that we can construct servers with specific versions of simulation software

rather than that provided to us by an institutional resource, and demonstrated how to

reconstruct the exact server on which our simulations were run.

A mental shift away from considering only single– simulation speed and towards examining

the total speed of sets of independent simulations run partially or totally in parallel can save

a researcher considerable time and investment. Vertical scaling, which invests effort to

improve the speed of a single simulation, tends to be perceived as more sophisticated than

horizontal “embarrassingly parallel” operations, which run multiple simulations

simultaneously, but both are potential contributors to improved simulation throughput. The

cloud is not yet suitable for all types of simulations, especially multinode simulations that

are extensively communications–bound, such as large–scale neuronal networks. Not all

simulations, however, require the vertical scaling offered by HPC resources. The HPC’s

limitations on horizontal scaling can reduce simulation throughput in comparison with the

cloud’s ability to appear limitless. By considering both traditional vertical scaling and the

dynamic horizontal scaling now available through the cloud, a researcher can produce higher

Stockton and Santamaria Page 21

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://occi-wg.org/

quality, more detailed examinations of parameter space with less effort, time, and hardware

investment.

Computational neuroscience research can gain advantages such as research speed,

quickness, flexibility, and cost savings by incorporating cloud technology. Cloud resources

can be used to supplement or even replace existing resources, depending on the researcher’s

needs for computational power and speed in simulation throughput. These advantages are

possible only through automation of the use of computational resources, as can be seen by

our outlining of the steps involved. Adding additional resources, no matter how prevalent or

accessible, is only helpful if the user’s workload does not increase proportionally. Any

cloud–capable automation should support multiple clouds to ensure the researcher is not

trapped by vendor limitations and pricing.

The NeuroManager metasimulation tool allows automated use of heterogeneous resources,

including cloud resources, and by implementing API-based facilities for hands–off on–

demand server creation and termination, allows the user to minimize costs while increasing

temporary simulation power. NeuroManager’s virtualization means that the user has a nearly

identical interface to HPC computing resources as to cloud resources, so it is straightforward

to develop a simulation set on a local, free resource and then extend the resource set to

external resources that may involve costs or to future internal resources that have a cloud

structure. By forming an environment in which an established simulator such as NEURON

can thrive on multiple types of cutting–edge computing resources, the simulation

management software provides continuity in which computational neuroscience

investigations can gain new power.

Acknowledgments

NSF-EF1137897, NSF-DBI1451032, NIH-G12MD007591 (for use of computational facilities at UTSA), Texas
Advanced Computing Center for providing HPC resources, and the Computational System Biology Core at UTSA
for providing access to the Chameleon Cloud facilities.

References

Automating Openstack with cloud init run a script on VM’s first boot. 2015. https://raymii.org/s/
tutorials/Automating_Openstack_with_Cloud_init_run_a_script_on_VMs_first_boot.html

Aazam M, Huh EN. Cloud broker service-oriented resource management model. Transactions on
Emerging Telecommunications Technologies. 2015

Amazon. Amazon Elastic Compute Cloud – API Reference – API Version 2015-10-01. 2015

Amazon. Amazon Web Services. 2016. https://aws.amazon.com/. Accessed 4 January 2016

Amazon Web Services. Amazon EC2 – virtual server hosting. 2016. https://aws.amazon.com/ec2/

Arcitura. WhatIsCloud.com. 2016. www.whatiscloud.com

Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A,
Stoica I, et al. A view of cloud computing. Communications of the ACM. 2010; 53(4):50–58.

Ballani, H., Costa, P., Karagiannis, T., Rowstron, A. Proceedings of the ACM SIGCOMM 2011
Conference. Association for Computing Machinery; 2011. Towards predictable datacenter
networks; p. 242-253.

Ban K, Tan TW, Chrzeszczyk J, Howard A, Li D. InfiniCloud: leveraging global InfiniCortex fabric
and openstack cloud for borderless high performance computing of genomic data and beyond.
Supercomputing Frontiers and Innovations. 2015; 2:14–27.

Stockton and Santamaria Page 22

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://raymii.org/s/tutorials/Automating_Openstack_with_Cloud_init_run_a_script_on_VMs_first_boot.html
https://raymii.org/s/tutorials/Automating_Openstack_with_Cloud_init_run_a_script_on_VMs_first_boot.html
https://aws.amazon.com/
https://aws.amazon.com/ec2/

Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A. Xen and
the art of virtualization. ACM SIGOPS Operating Systems Review. 2003; 37(5):164–177.

Barrett, DJ., Silverman, RE., SSH, RGB. The secure shell: The definitive guide. O’Reilly Media, Inc;
2005.

Bechhofer S, Buchan I, De Roure D, Missier P, Ainsworth J, Bhagat J, Couch P, Cruickshank D,
Delderfield M, Dunlop I, et al. Why linked data is not enough for scientists. Future Generation
Computer Systems. 2013; 29(2):599–611.

Belgacem MB, Chopard B. A hybrid HPC/cloud distributed infrastructure: Coupling EC2 cloud
resources with HPC clusters to run large tightly coupled multiscale applications. Future
Generation Computer Systems. 2015; 42:11–21.

Branch R, Tjeerdsma H, Wilson C, Hurley R, McConnell S. Cloud computing and big data: A review
of current service models and hardware perspectives. Journal of Software Engineering and
Applications. 2014; 2014

Braun TD, Siegel HJ, Beck N, Bolöni LL, Maheswaran M, Reuther AI, Robertson JP, Theys MD, Yao
B, Hensgen D, et al. A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed
Computing. 2001; 61(6):810–837.

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A,
Goodman PH, Harris FC Jr, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M,
Lansner A, Rochel O, Vieville T, Muller E, Davison AP, El Boustani S, Destexhe A. Simulation of
networks of spiking neurons: a review of tools and strategies. Journal Computer of Neuroscience.
2007; 23(3):349–398. DOI: 10.1007/s10827-007-0038-6

Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer
Systems. 2009; 25(6):599–616. ISSN 0167-739X. http://www.sciencedirect.com/science/
article/pii/S0167739X08001957. DOI: 10.1016/j.future.2008.12.001

Chameleon Cloud Bare Metal User Guide. 2016. https://www.chameleoncloud.org/docs/bare-metal-
user-guide/

Censor, Y., Zenios, SA. Parallel optimization: Theory, algorithms, and applications. Oxford University
Press on Demand; 1997.

Chameleon Cloud. Chameleon Cloud: A configurable experimental environment for large-scale cloud
research. 2016. https://www.chameleoncloud.org/

Cheng Y, Chen Y, Wei R, Luo H. Development of a Construction Quality Supervision Collaboration
System based on a SaaS private cloud. Journal of Intelligent & Robotic Systems. 2015; 79(3–4):
613–627.

Cloud Standards Customer Council. Interoperability and portability for cloud computing: A guide.
2014. p. 1-31.http://www.cloud-council.org/deliverables/CSCC-Interoperability-and-Portability-
for-Cloud-Computing-A-Guide.pdf

Creeger M. Cloud computing: An overview. ACM Queue. 2009; 7(5):2.

D’Angelo G, Marzolla M. New trends in parallel and distributed simulation: From many-cores to cloud
computing. Simulation Modelling Practice and Theory. 2014; 49:320–335. ISSN 1569-190X.
http://www.sciencedirect.com/science/article/pii/S1569190X14001014. DOI: 10.1016/j.simpat.
2014.06.007

DAntoni, J. The SQL virtualization tax?. 2013. https://joeydantoni.com/2013/02/07/the-sql-
virtualization-tax/

Dudley JT, Butte AJ. In silico research in the era of cloud computing. Nature Biotechnology. 2010;
28(11):1181–1185. ISSN 1546-1696. DOI: 10.1038/nbt1110-1181

El-Khamra, Y., Kim, H., Jha, S., Parashar, M. IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE; 2010. Exploring the performance
fluctuations of HPC workloads on clouds; p. 383-387.

Erl, T., Cope, R., Naserpour, A. Cloud computing design patterns. Prentice Hall Press; 2015.

Figueiredo, RJ., Dinda, PA., Fortes, JAB. A case for grid computing on virtual machines. IEEE; 2003.

Foster, I. Network and Parallel Computing. Springer; 2005. Globus Toolkit version 4: Software for
service-oriented systems; p. 2-13.

Stockton and Santamaria Page 23

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
https://www.chameleoncloud.org/docs/bare-metal-user-guide/
https://www.chameleoncloud.org/docs/bare-metal-user-guide/
https://www.chameleoncloud.org/
http://www.cloud-council.org/deliverables/CSCC-Interoperability-and-Portability-for-Cloud-Computing-A-Guide.pdf
http://www.cloud-council.org/deliverables/CSCC-Interoperability-and-Portability-for-Cloud-Computing-A-Guide.pdf
http://www.sciencedirect.com/science/article/pii/S1569190X14001014
https://joeydantoni.com/2013/02/07/the-sql-virtualization-tax/
https://joeydantoni.com/2013/02/07/the-sql-virtualization-tax/

Foster, I., Zhao, Y., Raicu, I., Lu, S. Grid Computing EnvironmentsWorkshop, 2008 GCE’08. IEEE;
2008. Cloud computing and grid computing 360-degree compared; p. 1-10.

Fusaro VA, Patil P, Gafni E, Wall DP, Tonellato PJ. Biomedical cloud computing with Amazon Web
Services. PLoS Computer Biology. 2011; 7(8):e1002147.

Geelan, J. Twenty-one experts define cloud computing. 2009. http://virtualization.sys-con.com/node/
612375

Gong, Y., Zhou, AC., He, B. Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM; 2015. Monetary cost optimizations for
MPI-based HPC applications on Amazon clouds: Checkpoints and replicated execution; p. 32

Google. COMPUTE ENGINE: Scalable, high-performance virtual machines, 2016. 2016. https://
cloud.google.com/compute/. Accessed 4

Grozev N, Buyya R. Inter-cloud architectures and application brokering: taxonomy and survey.
Software: Practice and Experience. 2014; 44(3):369–390.

Gupta, A., Milojicic, D. Open Cirrus Summit (OCS). Sixth. IEEE; 2011. Evaluation of HPC
applications on cloud; p. 2011

Hanson, NW., Konwar, KM., Wu, SJ., Hallam, SJ. IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology. IEEE; 2014. Metapathways v2. 0: A master-worker
model for environmental pathway/genome database construction on grids and clouds; p. 1-7.

He, Q., Zhou, S., Kobler, B., Duffy, D., McGlynn, T. Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing. ACM; 2010. Case study for running
HPC applications in public clouds; p. 395-401.

Hines ML, Carnevale NT. The NEURON simulation environment. Neural Computer. 1997; 9(6):1179–
1209.

Hines ML, Carnevale NT. Translating network models to parallel hardware in NEURON. Journal
Neuroscience Methods. 2008; 169(2):425–455. DOI: 10.1016/j.jneumeth.2007.09.010

Hines ML, Eichner H, Schürmann F. Neuron splitting in compute-bound parallel network simulations
enables runtime scaling with twice as many processors. Journal of Computational Neuroscience.
2008a; 25(1):203–210. [PubMed: 18214662]

Hines ML, Markram H, Schürmann F. Fully implicit parallel simulation of single neurons. Journal of
Computational Neuroscience. 2008b; 25(3):439–448. [PubMed: 18379867]

Hines ML, Davison AP, Muller E. NEURON and Python. Frontiers in Neuroinformatics. 2009;
3(1)doi: 10.3389/neuro.11.001.2009

Hoffa C, Mehta G, Freeman T, Deelman E, Keahey K, Berriman B, Good J. On the use of cloud
computing for scientific workflows. IEEE Fourth International Conference on eScience, 2008
eScience’08. 2008; :640–645. DOI: 10.1109/eScience.2008.167

Howe B. Virtual appliances, cloud computing, and reproducible research. Computing in Science &
Engineering. 2012; 14(4):36–41.

Huang X, Cao G, Liu J, Prommer H, Zheng C. Reactive transport modeling of thorium in a cloud
computing environment. Journal of Geochemical Exploration. 2014; 144(Part A):63–73. ISSN
0375-6742. http://www.sciencedirect.com/science/article/pii/S0375674214001009. Computational
modeling of fluid flow and geochemical processes in ore-forming and geoenvironmental systems.
DOI: 10.1016/j.gexplo.2014.03.006

Iosup A, Ostermann S, Yigitbasi MN, Prodan R, Fahringer T, Epema D. Performance analysis of cloud
computing services for many-tasks scientific computing. IEEE Transactions on Parallel and
Distributed Systems. 2011; 22(6):931–945. ISSN 1045-9219. DOI: 10.1109/TPDS.2011.66

Ismail L, Khan L. Implementation and performance evaluation of a scheduling algorithm for divisible
load parallel applications in a cloud computing environment. Software: Practice and Experience.
2015; 45(6):765–781.

Jackson, KR., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman, HJ., Wright,
NJ. IEEE Second International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE; 2010. Performance analysis of high performance computing applications on
the Amazon Web Services cloud; p. 159-168.

Stockton and Santamaria Page 24

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://virtualization.sys-con.com/node/612375
http://virtualization.sys-con.com/node/612375
https://cloud.google.com/compute/
https://cloud.google.com/compute/
http://www.sciencedirect.com/science/article/pii/S0375674214001009

Kagadis GC, Kloukinas C, Moore K, Philbin J, Papadimitroulas P, Alexakos C, Nagy PG, Visvikis D,
Hendee WR. Cloud computing in medical imaging. Medical Physics. 2013; 40(7):070901.doi:
10.1118/1.4811272 [PubMed: 23822402]

Kaminski B, Szufel P. On optimization of simulation execution on Amazon EC2 spot market.
Simulation Modelling Practice and Theory. 2015; 58(Part 2):172–187. ISSN 1569-190X. http://
www.sciencedirect.com/science/article/pii/S1569190X15000830. Special issue on Cloud
Simulation. DOI: 10.1016/j.simpat.2015.05.008

Keahey, K., Doering, K., Foster, I. Proceedings Fifth IEEE/ACM International Workshop on Grid
Computing. IEEE; 2004. From sandbox to playground: Dynamic virtual environments in the grid;
p. 34-42.

Keahey K, Foster I, Freeman T, Zhang X. Virtual workspaces: Achieving quality of service and quality
of life in the grid. Scientific programming. 2005a; 13(4):265–275.

Keahey, K., Foster, I., Freeman, T., Zhang, X., Galron, D. Euro-Par 2005 Parallel Processing. Springer;
2005b. Virtual workspaces in the grid; p. 421-431.

Laffoon, K. What is new with OnMetal Cloud Servers. 2016. https://support.rackspace.com/how-to/
what-is-new-with-onmetal-cloud-servers/

Li, Z., Ge, J., Yang, H., Huang, L., Hu, H., Hu, H., Luo, B. A security and cost aware scheduling
algorithm for heterogeneous tasks of scientific workflow in clouds. 2016. ISSN 0167-739Xhttp://
www.sciencedirect.com/science/article/pii/S0167739X15003982

Mauch V. Deployment of virtual Infiniband clusters with multi-tenancy for cloud computing. Cloud
Computing. 2015; 2015:66.

Mell P, Grance T. The NIST definition of cloud computing. 2011

Microsoft. Microsoft SQL Server 2016 Licensing Datasheet. 2016. https://www.microsoft.com/en-us/
cloud-platform/sql-server-pricing

Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML. ModelDB: making
models publicly accessible to support computational neuroscience. Neuroinformatics. 2003; 1(1):
135–139. DOI: 10.1385/NI:1:1:135 [PubMed: 15055399]

Migliore M, Cannia C, Lytton WW, Markram H, Hines ML. Parallel network simulations with
NEURON. Journal of Computational Neuroscience. 2006; 21(2):119–129. [PubMed: 16732488]

Mishra M, Das A, Kulkarni P, Sahoo A. Dynamic resource management using virtual machine
migrations. IEEE Communications Magazine. 2012; 50(9):34–40. ISSN 0163-6804. DOI:
10.1109/MCOM.2012.6295709

Misra J. Distributed discrete-event simulation. ACM Computing Surveys (CSUR). 1986; 18(1):39–65.

Miyasho T, Takagi H, Suzuki H, Watanabe S, Inoue M, Kudo Y, Miyakawa H. Low-threshold
potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the
dendrites of cerebellar Purkinje neurons: a modeling study. Brain Research. 2001; 891(1–2):106–
115. [PubMed: 11164813]

Moghadam BT, Alvarsson J, Holm M, Eklund M, Carlsson L, Spjuth O. Scaling predictive modeling in
drug development with cloud computing. Journal of Chemical Information and Modeling. 2015;
55(1):19–25. [PubMed: 25493610]

Mogul JC, Popa L. What we talk about when we talk about cloud network performance. ACM
SIGCOMM Computer Communication Review. 2012; 42(5):44–48.

Mossucca, L., Zinno, I., Elefante, S., De Luca, C., Goga, K., Terzo, O., Casu, F., Lanari, R. Ninth
International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS). IEEE;
2015. Performance analysis of the DInSAR P-SBAS algorithm within AWS cloud; p. 469-473.

Mudge, JC., Chandrasekhar, P., Heinson, GS., Thiel, S. IEEE 7th International Conference on E-
Science (e-Science). IEEE; 2011. Evolving inversion methods in geophysics with cloud computing
—a case study of an eScience collaboration; p. 119-125.

Nusca, A. How Apple’s Siri really works. 2011. http://www.zdnet.com/article/how-apples-siri-really-
works/

National Science Foundation. Press Release 14–102: Enabling a new future for cloud computing.
2014. https://nsf.gov/news/news.summ.jsp?cntnid=132377. Accessed 05-09-2016

Stockton and Santamaria Page 25

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com//science/article/pii/S1569190X15000830
http://www.sciencedirect.com//science/article/pii/S1569190X15000830
https://support.rackspace.com/how-to/what-is-new-with-onmetal-cloud-servers/
https://support.rackspace.com/how-to/what-is-new-with-onmetal-cloud-servers/
http://www.sciencedirect.com/science/article/pii/S0167739X15003982
http://www.sciencedirect.com/science/article/pii/S0167739X15003982
https://www.microsoft.com/en-us/cloud-platform/sql-server-pricing
https://www.microsoft.com/en-us/cloud-platform/sql-server-pricing
http://www.zdnet.com/article/how-apples-siri-really-works/
http://www.zdnet.com/article/how-apples-siri-really-works/
https://nsf.gov/news/news.summ.jsp?cntnid=132377

Oesterle F, Ostermann S, Prodan R, Mayr GJ. Experiences with distributed computing for
meteorological applications: grid computing and cloud computing. Geoscientific Model
Development. 2015; 8(7):2067–2078. DOI: 10.5194/gmd-8-2067-2015

Opara-Martins, J., Sahandi, R., Tian, F. International Conference on Information Society (i-Society).
IEEE; 2014. Critical review of vendor lock-in and its impact on adoption of cloud computing; p.
92-97.

Panda, SK., Jana, PK. International Conference on Electronic Design, Computer Networks &
Automated Verification (EDCAV). IEEE; 2015. A multi-objective task scheduling algorithm for
heterogeneous multi-cloud environment; p. 82-87.

Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S. IEEE Fifth International Conference on
Cloud Computing. IEEE; 2012. Introducing STRATOS: A cloud broker service; p. 891-898.

Peng Z, Bo XU, Gates AM, Cui D, Lin W. The feasibility and properties of dividing virtual machine
resources using the virtual machine cluster as the unit in cloud computing. KSII Transactions on
Internet and Information Systems (TIIS). 2015; 9(7):2649–2666.

Rackspace. Rackspace website. 2016a. https://www.rackspace.com/en-us

Rackspace. Rackspace developer home. 2016b. https://developer.rackspace.com/

Rackspace. Rackspace Cloud Files FAQs. 2016c. https://support.rackspace.com/how-to/cloud-files-
faq/

Rad P, Chronopoulos AT, Lama P, Madduri P, Loader C. Benchmarking bare metal cloud servers for
HPC applications. 2015 IEEE International Conference on Cloud Computing in Emerging Markets
(CCEM). 2015; doi: 10.1109/ccem.2015.13

Rehr JJ, Vila FD, Gardner JP, Svec L, Prange M. Scientific computing in the cloud. Computing in
Science Engineering. 2010; 12(3):34–43. ISSN 1521-9615. DOI: 10.1109/MCSE.2010.70

Sadooghi I, Martin JH, Li T, Brandstatter K, Zhao Y, Mahesh-wari K, De Lacerda Ruivo TPP, Timm S,
Garzoglio G, Raicu I. Understanding the performance and potential of cloud computing for
scientific applications. IEEE Transactions on Cloud Computing PP(99). 2015; :1–14. DOI:
10.1109/TCC.2015.2404821

Schneider CJ, Bezaire M, Ivan S. Toward a full-scale computational model of the rat dentate gyrus
Structure, function and plasticity of hippocampal dentate gyrus microcircuits. 2015

Segal B, Sanchez CA, Buncic P, Rantala J, Mato P, Blomer J, Quintas DG, Weir DJ, Yao Y,
Harutyunyan A. LHC cloud computing with CernVM. PoS, 004. 2010

Sharma, M. A virtual appliance primer. 2008. https://www.linux.com/news/virtual-appliance-primer.
Accessed 5-20-2016

Silverstein D, Lansner A. Scaling of a biophysical neocortical attractor model using Parallel NEURON
on the Blue Gene/P. BMC Neuroscience. 2011; 12(Suppl 1):191.

Subhashini S, Vadim A, Kenneth Y, Ted C, Maryann M, Amit M, Anita B. A Neuroscience Gateway
— software and implementation. Proceedings of the Conference on Extreme Science and
Engineering Discovery Environment: Gateway to Discovery. 2013a; doi:
10.1145/2484762.2484816

Subhashini, S., Amit, M., Kenneth, Y., Vadim, A., Anita, B., MaryAnn, M., Nicholas, TC. Introducing
the Neuroscience Gateway. IWSG vol .993 of CEUR Workshop Proceedings: Citeseer. 2013b.
CEUR-WS.org

Subhashini S, Amit M, Kenneth Y, Vadim A, Anita B, MaryAnn M, Nicholas C, et al. Early
experiences in developing and managing the neuroscience gateway. Concurrency and
Computation: Practice and Experience. 2015; 27(2):473–488. [PubMed: 26523124]

Sliman L, Charroux B, Stroppa Y. A new collaborative and cloud based simulation as a service
platform: Towards a multidisciplinary research simulation support. IEEE 2013 UKSim 15th
International Conference on Computer Modelling and Simulation (UKSim). 2013:611–616.

Smit M, Pawluk P, Simmons B, Marin L. A web service for cloud metadata. Services (SERVICES)
IEEE Eighth World Congress on IEEE. 2012:361–368.

Smith MS. Nuclear data for astrophysics research: A new online paradigm. Journal of the Korean
Physical Society. 2011; 59(2):761–766.

Stockton and Santamaria Page 26

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.rackspace.com/en-us
https://developer.rackspace.com/
https://support.rackspace.com/how-to/cloud-files-faq/
https://support.rackspace.com/how-to/cloud-files-faq/
https://www.linux

Stockton DB, Santamaria F. Neuromanager: A workflow analysis based simulation management
engine for computational neuroscience. Frontiers in Neuroinformatics. 2015; 9(24) ISSN
1662-5196. doi: 10.3389/fninf.2015.00024

Taylor RP, Berghaus F, Brasolin F, Cordeiro CJD, Desmarais R, Field L, Gable I, Giordano D, Di
Girolamo A, Hover J, LeBlanc M, Love P, Paterson M, Sobie R, Zaytsev A. The evolution of cloud
computing in ATLAS. Journal of Physics: Conference Series. 2015; 664(2):022038. http://
stacks.iop.org/1742-6596/664/i=2/a=022038.

Teka W, Stockton DB, Santamaria F. Power-law dynamics of membrane conductances increase spiking
diversity in a Hodgkin–Huxley model. PLoS Computer Biology. 2016; 12(3)doi: 10.1371/
journal.pcbi.1004776

Texas Advanced Computing Center. TACC Stampede website. 2016. https://www.tacc.utexas.edu/
stampede/

Thackston, R., Fortenberry, R. High performance computing: Considerations when deciding to rent or
buy. SAIS 2015 Proceedings, page Paper 16. 2015a. http://aisel.aisnet.org/sais2015/16

Thackston R, Fortenberry RC. The performance of low-cost commercial cloud computing as an
alternative in computational chemistry. Journal of Computational Chemistry. 2015b; 36(12):926–
933. [PubMed: 25753841]

Tihfon, GM., Kim, J., Kim, KJ. Information Science and Applications (ICISA) 2016, chapter A New
Virtualized Environment for Application Deployment Based on Docker and AWS. Singapore:
Springer Singapore; 2016. p. 1339-1349.Lecture Notes in Electrical Engineering 376

UTSA. Open Cloud Institute website. 2016. http://opencloud.utsa.edu/

Vaquero LM, Rodero-Merino L, Buyya R. Dynamically scaling applications in the cloud. ACM
SIGCOMM Computer Communication Review. 2011; 41(1):45–52.

Wittek P, Rubio-Campillo X. Scalable agent-based modelling with cloud HPC resources for social
simulations. 2012 IEEE 4th International Conference on Cloud Computing Technology and
Science (CloudCom). 2012; :355–362. DOI: 10.1109/CloudCom.2012.6427498

Wu H, Ren S, Timm S, Garzoglio G, Noh SY. Overhead-Aware-Best-Fit (OABF) resource allocation
algorithm for minimizing VM launching overhead. 7th IEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS). 2014

Yamazaki T, Ikeno H, Okumura Y, Satoh S, Kamiyama Y, Hirata Y, Inagaki K, Ishihara A, Kannon T,
Usui S. Reprint of: Simulation Platform: A cloud-based online simulation environment. Neural
Networks. 2011; 24(9):927–932. ISSN 0893-6080. http://www.sciencedirect.com/science/
article/pii/S0893608011002255. DOI: 10.1016/j.neunet.2011.08.007 [PubMed: 21944492]

Yelick, K., Coghlan, S., Draney, B., Canon, RS., et al. The Magellan report on cloud computing for
science. US Department of Energy, Office of Science Office of Advanced Scientific Computing
Research (ASCR); 2011.

Yoginath, SB., Perumalla, KS. Proceedings of the 6th International ICST Conference on Simulation
Tools and Techniques, Simu-Tools ’13, pages 1–9, ICST. Brussels, Belgium: ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering); 2013. Optimized
hypervisor scheduler for parallel discrete event simulations on virtual machine platforms. http://
dl.acm.org/citation.cfm?id=2512734.2512735

Yoginath SB, Perumalla KS. Efficient Parallel Discrete Event Simulation on cloud/virtual machine
platforms. ACM Transactions on Modeling and Computer Simulation (TOMACS). 2015; 26(1):
5.

Zaspel P, Griebel M. Massively parallel fluid simulations on Amazon’s HPC cloud. Network Cloud
Computing and Applications (NCCA) First International Symposium on IEEE. 2011:73–78.

Stockton and Santamaria Page 27

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://stacks.iop.org/1742-6596/664/i=2/a=022038
http://stacks.iop.org/1742-6596/664/i=2/a=022038
https://www.tacc.utexas.edu/stampede/
https://www.tacc.utexas.edu/stampede/
http://aisel.aisnet.org/sais2015/
http://opencloud.utsa.edu/
http://www.sciencedirect.com/science/article/pii/S0893608011002255
http://www.sciencedirect.com/science/article/pii/S0893608011002255
http://dl.acm.org/citation.cfm?id=2512734.2512735
http://dl.acm.org/citation.cfm?id=2512734.2512735

Fig. 1.
Cloud server management via browser-based dashboard. The Chameleon Cloud dashboard’s

‘Instances’ page shows an instance, ’dbs–test’, created using the dashboard, and five other

instances which were created with NeuroManager’s cloud management classes. All were

created using the same image as seen in the “Image Name” column; the image itself was

produced by configuring an instance based on a stock CentOS-7 image using a NEURON/

Python–specific script. All instances have public (“floating”) IP addresses and each makes

use of the same key pair (here called ‘dbs Laptop Key’) for dual key authentication and

communications encryption

Stockton and Santamaria Page 28

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
NeuroManager configuring resources. a) Line 1: Constructing the NeuroManager object.

Line 2: Specifying the type of Simulators to be constructed. b) Specifying Simulators to be

added to a standalone server (Line 1), institutional HPC cluster (Line 2) and remote

supercomputer cluster (Line 3, Stampede cluster at Texas Advanced Computer Center). c–d)

Adding cloud servers: Chameleon (c) or Rackspace (d). The servers can be persistent,

created and terminated by user, or ephemeral (Wisps), automatically created and destroyed

by NeuroManager. In all cases the “…Info.json” file holds localizing information about the

resource. In this illustration, assuming numSimulators = 4 and numWisps = 3, we have 5

fixed and 6 ephemeral machines, each hosting 4 Simulators, for a total of 44 Simulators. For

details, see text and NeuroManager documentation

Stockton and Santamaria Page 29

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Cloud server management classes. NeuroManager implements instance management

through use of the cloud’s API using JSON configuration files and a class hierarchy that

together accommodate differences in settings and methodology. This gives the researcher the

ability to ignore cloud differences in day–to–day simulation activities. The

CloudManagement class specifies the interface that the subclasses must implement; the

OSManagement class implements the interface for OpenStack clouds, and the

CCCloudManagement and RSCloudManagement classes take specific OS cloud differences

into account. The Amazon classes are under implementation and thus shown in grey. Arrows

point to a class’s superclass

Stockton and Santamaria Page 30

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
A single NeuroManager session: running a set of simulations on multiple varied

computational resources. In this example two Simulators were hosted by each server.

SIMID: simulation id; State: current state of the simulation; Simulator: the name of the

Simulator the simulation is running on; Machine: name of physical resource the Simulator is

hosted on; Result: final status of simulation (? = not known yet). We added annotation on the

right to describe the resources: standalone server, cluster, or cloud server. The persistent

cloud servers were running before NeuroManager was launched and remained running after

NeuroManager concluded. The ephemeral servers were created by on the fly by

NeuroManager and autmatically terminated at the end of the session

Stockton and Santamaria Page 31

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Individual simulation runtime dependence on resource and flavor. The mean and standard

deviation of Truntime for the NEURON simulation (see text for details) on a standalone

server, HPC, four flavors of Chameleon Cloud server (CC), one flavor of Rackspace cloud

server (RS), and one flavor of Amazon EC2 (EC2). For these measurements we used two

Simulators per cloud server; N is the number of simulations

Stockton and Santamaria Page 32

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Scaling, speedup, and efficiency in cloud and HPC resources. A Session speedup vs scale

factor. The speedup was calculated relative to the fastest simulation within the specific HPC

or cloud session (Srel), or the fastest simulation across all sessions within the group

composed of Sets 1 and 2 (Sabsgroup). b Session time, Tsession, and efficiency, η, vs scale

factor. All values shown are the averages of 5 trials (HPC) or 3 trials (Chameleon Cloud).

See text for additional details and discussion

Stockton and Santamaria Page 33

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Tsession breakdown vs. scale factor for HPC and Cloud. On the left, all Simulators are

located only on a single institutional HPC cluster with one core per Simulator. On the right,

all the Simulators are located on two–core Wisps with two Simulators per Wisp; setup

involves Wisp creation in parallel, testing of SSH communications and file transfer, and

construction of the Simulators on multiple Wisps. All values shown are the averages of 5

trials (HPC) or 3 trials (Chameleon Cloud). See text for additional details and discussion

Stockton and Santamaria Page 34

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stockton and Santamaria Page 35

Ta
b

le
 1

E
ff

ec
ts

 o
f

fl
av

or
 o

n
T

se
ss

io
n

an
d

co
st

Se
ss

io
n

C
ha

m
el

eo
n

C
lo

ud
fl

av
or

C
or

es
,

Si
m

ul
at

or
s

pe
r

se
rv

er

N
um

be
r

of
se

rv
er

s

N
um

be
r

of
si

m
u-

la
ti

on
s

Se
tu

p
ti

m
e

A
ve

ra
ge

si
m

ul
a-

ti
on

ru
nt

im
e

T
se

ss
io

n

C
or

e-
eq

ui
va

le
nt

R
ac

ks
pa

ce
m

on
th

ly
co

st
Se

ss
io

n
co

st

C
os

t
pe

r
si

m
u-

la
ti

on

4.
1

sm
al

l
1

16
40

90
5

10
20

.4
45

14
$2

3.
36

$0
.5

8
$0

.0
1

4.
2

m
ed

iu
m

2
8

40
41

9
10

53
.2

40
32

$4
6.

72
$0

.5
4

$0
.0

1

4.
3

la
rg

e
4

4
40

27
2

10
73

.2
38

26
$9

3.
44

$0
.5

2
$0

.0
1

4.
4

xl
ar

ge
8

2
40

22
8

11
43

.6
40

30
$1

86
.8

8
$0

.5
5

$0
.0

1

4.
5

sm
al

l
1

16
16

0
93

9
10

28
.6

12
95

0
$2

3.
26

$1
.7

5
$0

.0
1

4.
6

xl
ar

ge
8

2
16

0
19

6
11

49
.7

12
84

1
$1

86
.8

8
$1

.7
7

$0
.0

1

4.
7

sm
al

l
1

16
40

80
0

39
89

.2
13

26
2

$2
3.

36
$1

.7
9

$0
.0

4

4.
8

xl
ar

ge
8

2
40

20
1

44
28

.3
13

85
3

$1
86

.8
8

$1
.9

1
$0

.0
5

Se
ss

io
ns

 4
.1

–4
.4

: E
ff

ec
ts

 o
f

fl
av

or
 c

ho
ic

e
w

he
n

ru
nn

in
g

fi
xe

d
nu

m
be

rs
 o

f
Si

m
ul

at
or

s
an

d
si

m
ul

at
io

ns
. S

es
si

on
s

4.
5–

4.
6:

 E
ff

ec
ts

 o
f

in
cr

ea
si

ng
 n

um
be

r
of

 s
im

ul
at

io
ns

 (
4×

)
on

 tw
o

fl
av

or
s.

 S
es

si
on

s
4.

7–
4.

8:
 E

ff
ec

ts
 o

f
in

cr
ea

si
ng

 th
e

si
m

ul
at

io
n

an
d

sa
ve

d
fi

le
s

si
ze

s
(4

×
).

 A
ll

si
m

ul
at

io
ns

 r
un

 o
n

C
ha

m
el

eo
n

C
lo

ud
. C

os
ts

 w
er

e
ob

ta
in

ed
 f

ro
m

 R
ac

ks
pa

ce
 f

or
 s

im
ila

r
fl

av
or

s.
 A

ll
tim

es
 in

 s
ec

on
ds

. S
ee

 te
xt

 f
or

 m
or

e
de

ta
ils

Neuroinformatics. Author manuscript; available in PMC 2018 January 01.

	Abstract
	Introduction
	The Cloud in Scientific Research
	The Cloud is Ubiquitous in Science
	Advantages of Cloud Computing for Simulation
	Horizontal scalability
	No Hardware Investment or Maintenance
	Wait–Free Access
	Better Resilience
	Dynamic Time/Cost Tradeoffs
	A Flexibly Tailored Runtime Environment
	Improved Scientific Computing Provenance

	The Academic and Commercial Clouds Used in this Study
	Academic Cloud — Chameleon
	Commercial Cloud — Rackspace
	Commercial Cloud — Amazon Elastic Computing
	Hardware and Pricing Options

	Running NEURON in the Cloud
	Building a NEURON-Ready Cloud Server
	Running a Simulation Manually on a Cloud Server
	Automating Cloud Operations
	NeuroManager Automates NEURON use on a Blend of Clouds, Clusters, and Standalone Servers
	Managing Cloud Instances Within NeuroManager
	Combining Cloud Servers with Other Resources
	Managing Cloud Costs with NeuroManager
	Cloud Clusters and Parallel NEURON
	Experimental Methods, Results, and Analyses
	Runtime Dependence on Flavor
	Effects of Horizontal Scaling on Simulation Session Performance
	Speedup, Efficiency, and Scalability
	Session Time breakdown

	Flavor and Cost

	Related Work
	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Table 1

