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Abstract

Simulations in neuroscience are performed on local servers or High Performance Computing 

(HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for 

neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for 

scientific computation, then report how we deployed NEURON, a widely used simulator of 

neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud 

technology research based on the Open-Stack software; Rackspace, a public commercial cloud, 

also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary 

software. We describe the manual procedures and how to automate cloud operations. We describe 

extending our simulation automation software called NeuroManager (Stockton and Santamaria, 

Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public 

cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by 

performing several studies in which we examine speedup, efficiency, total session time, and cost 

for sets of simulations of a published NEURON model.
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Introduction

The NEURON simulation tool is widely used in computational neuroscience (Brette et al. 

2007; Hines and Carnevale 1997). Researchers use NEURON on personal workstations, 

laboratory servers, and High Perfomance Computing (HPC) clusters to perform single and 

networked neuron simulations. Increasing complexity in the development of computer 

models and size of parameter spaces require efficient integration of these resources while 

keeping track of the origin of data structures and results, which is a significant challenge for 

both manual and script–assisted operation. For this reason we have recently developed the 

NeuroManager metasimulation tool (Stockton and Santamaria 2015), which provides 

workflow automation, input parameter isolation, hierarchical model construction, and 

automated batch simulation on a combination of laboratory servers, clusters, and super 

computers, for greater research efficiency and high–throughput parameter space exploration 

(Teka et al. 2016).

The world of computing is moving towards a software– defined commodity model of 

computation that provides both on-demand servers and on-demand networks (Buyya et al. 

2009). It would be useful to the neuroscience community if our traditional tools could match 

pace with this new movement. In this paper we discuss cloud computing for neuroscience 

simulation, show how to run NEURON in the cloud, and present NeuroManager’s ability to 

seamlessly add on-demand cloud–based simulator resources to the user’s working 

simulation power.

The Cloud in Scientific Research

The Cloud is Ubiquitous in Science

Cloud technology has been changing the face of computing, including public–commercial 

cloud computing services and companies such as Amazon Elastic Cloud Computing (EC2) 

(Amazon 2016), Google Cloud Platform’s Compute Engine (Google 2016), and Rackspace 

(Rackspace 2016a); private working clouds such as FermiCloud (Wu et al. 2014), CERN’s 

multiple particle physics research clouds,1 and the private–commercial CQSCS2 (Cheng et 

al. 2015); clouds for cloud technology research such as the hybrid Chameleon Cloud 

(Chameleon Cloud 2016), or the Open Cloud Institute (UTSA 2016); and mobile 

applications extended with cloud services such as Apple’s Siri (Nusca 2011). For the 

research community, cloud computing offers the opportunity to leverage practically 

unlimited computing power, as needed, while reducing investment in hardware 

infrastructure. Yet there are challenges, including the need for specialized expertise, prior 

investment in other computational facilities, and the need to focus on research topics rather 

than adapting to new computing mechanisms.

Although there are many views of cloud computing (Geelan 2009), for this paper the 

essence of cloud computing is that it provides on–demand software servers and clusters, 

called Infrastructure as a Service (IaaS) (Mell and Grance 2011). The user creates, 

1https://www.openstack.org/user-stories/cern/
2CQSCS = Construction Quality Supervision Collaboration System.
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configures, uses, and destroys them as needed with little regard for how or where they are 

implemented. The cloud server is based on an image, a file which is a snapshot of a software 

server that has a particular configuration of operating system plus other software. The user 

can also create custom images by configuring an existing server then saving it as an image. 

A cloud server also has a flavor, which determines a server’s number of processors/cores, 

amount of RAM, bulk storage, and other resources.

Modern cloud technology provides performance essentially indistinguishable from hardware 

servers (Barham et al. 2003; Figueiredo et al. 2003; Keahey et al. 2005b), and can, in some 

cases, provide the specialized processing hardware such as GPU (Graphics Processing 

Units) hardware or Infiniband interconnections3 traditionally associated with hardware 

servers or clusters. Typically, there is no waiting queue for cloud servers and no layer 

between the user and the cloud server, though the so–called ‘bare–metal’ versions, which 

allow the user exclusive access to hardware, may require reservations.4 Public clouds and 

private clouds both provide cloud services, but private clouds tend to have better 

performance characteristics (Sadooghi et al. 2015).

Hardware cluster computing (often called grid or traditional HPC computing) provides 

unshared access to subsets of shared networked hardware, negotiated by a local resource 

manager; different ‘queues’ provide access to node–specific hardware such as coprocessors, 

GPUs, or large memory nodes. Often clusters provide high– speed communications such as 

Infiniband (Texas Advanced Computing Center 2016). Foster et al. (2008) provide extensive 

comparisons of grid and cloud computing from the aspects of architecture, security model, 

business model, programming model, virtualization, compute model, data model, locality, 

and provenance.

Many scientific communities have embraced or investigated the use of cloud resources for 

their research, including particle physics (Sadooghi et al. 2015), astrophysics (Smith 2011), 

high-energy physics (Segal et al. 2010; Taylor et al. 2015), computational chemistry 

(Thackston and Fortenberry 2015b), chemical modeling for high–throughput drug discovery 

(Moghadam et al. 2015), bioinformatics (Hanson et al. 2014), medical imaging (Kagadis et 

al. 2013), geophysics (Mudge et al. 2011), social sciences (Wittek and Rubio-Campillo 

2012), geochemistry (Huang et al. 2014), genomic analysis (Ban et al. 2015), and various 

projects at the Department of Energy (Yelick et al. 2011).

Each scientific application presents a unique computational challenge, requiring a specific 

combination of vertical and horizontal scalability (described below) and thus an individual 

blend of the intrinsic advantages of HPC, private cloud, and public cloud.

Advantages of Cloud Computing for Simulation

Horizontal scalability—Primarily, cloud computing provides horizontal scaling — 

adding processors to allow more simulations to run simultaneously — but also does offer 

vertical scaling options such as increased server performance and faster simulation 

3https://www.chameleoncloud.org/about/hardware-description/
4https://www.chameleoncloud.org/docs/bare-metal-user-guide/
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completion (Arcitura 2016; Vaquero et al. 2011). Vertical scaling — increasing the power 

or resources of a processor to make a single simulation run faster — is better associated with 

the kind of traditional HPC seen in the Texas Advanced Computing Center Stampede 

supercomputer’s Xeon coprocessor– equipped nodes (Texas Advanced Computing Center 

2016). For the researcher, horizontal scaling tends to improve makespan for a set of 

simulations (elapsed time between start of the first simulation to completion of the last 

simulation) rather than the speed of a single simulation, but involves less investment of 

programming effort than vertical scaling’s focus on improving the internal parallelism of a 

single simulation. In addition, the server management involved in horizontal scaling tends to 

be more future– proof, accessible, and portable than vertical scaling, which often involves 

highly refined hardware–specific tuning of specific internal simulation algorithms. Although 

cloud servers do offer a form of vertical scaling (Vaquero et al. 2011), it does not always 

translate into higher performance (Thackston and Fortenberry 2015b). The user must 

experiment to find the best configuration (Belgacem and Chopard 2015).

No Hardware Investment or Maintenance—The researcher does not need to invest in, 

maintain, or upgrade hardware resources, and there is no risk of losing hardware to 

obsolesence (Thackston and Fortenberry 2015b). Beginning researchers can lower their 

hardware acquisition barrier, and seasoned researchers can follow the computational 

demands of their projects with fine precision (Armbrust et al. 2010; Creeger 2009). Some 

companies have significantly reduced their data–center size through cloud computing 

(Creeger 2009). In addition, hardware expertise is kept where the hardware exists — 

externally, so the researcher does not need to hire or access hardware experts (Creeger 

2009). There is, however, need for cloud software expertise similar to that of HPC centers, 

though this can be ameliorated with specialized software (Yelick et al. 2011), such as 

NeuroManager.

Wait–Free Access—In general, cloud servers appear to the user just like standalone 

hardware servers and are immediately accessible. In contrast, busy HPC clusters can cost the 

user substantial time sitting in job–waiting queues (Foster et al. 2008; Hoffa et al. 2008).

Better Resilience—Better Resilience of simulation capability. The loss of a computing 

resource such as an HPC cluster or cloud due to maintenance, business failure, or cash flow 

glitches can lead to simulation work slowdowns. Dependency on a single point of simulation 

computing power is a serious weakness in any research scenario. Being able to muster 

additional resources quickly and easily in order to keep simulation work active is a clear 

advantage of cloud computing (Grozev and Buyya 2014).

Dynamic Time/Cost Tradeoffs—Given proper software support, cloud computing 

allows the researcher to directly, immediately, and reversably trade off cost and time/

makespan for a given set of simulations. In many situations, this could involve 

improvements of days or even weeks of researcher/user time (Mudge et al. 2011). In 

contrast, the process of investing in hardware to decrease makespan is indirect, delayed, 

irreversible, and static.
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A Flexibly Tailored Runtime Environment—A researcher can produce instances with 

a variety of operating systems, server capability, support software, simulator configurations, 

and simulator versions. In this way, researchers are able to reconstruct exact simulation 

conditions, support legacy software (Figueiredo et al. 2003), interface components designed 

for different operating systems (Yoginath and Perumalla 2013), resolve difficult 

configuration bugs without risk, and have complete support for custom operating systems, 

applications (Rehr et al. 2010), simulators, and/or custom modifications to existing 

simulators.

Improved Scientific Computing Provenance—In contrast to physical servers and 

clusters, the researcher can register an exact copy of the virtual machine (cloud server) on 

which a given simulation was done (Bechhofer et al. 2013; Dudley and Butte 2010; Howe 

2012; Sliman et al. 2013). This feature can extend current neuroscience approaches to model 

sharing and provenance such as ModelDB, a public database of computational neuroscience 

models (Migliore et al. 2003). With cloud support, then, the ModelDB submission of a 

model could also include an OpenStack compatible image and/or configuration script that 

would allow the user to recreate the exact server on which a model was run.

The Academic and Commercial Clouds Used in this Study

We worked with three separate clouds in this study — one academic and two commercial.

Academic Cloud — Chameleon—The Chameleon Cloud (2016) is a cloud testbed 

designed for open source research into cloud computing. Sponsored by the National Science 

Foundation (National Science Foundation 2014), Chameleon is a federated cloud that 

integrates private cloud research clouds hosted by the University of Chicago and the Texas 

Advanced Computing Center. Chameleon offers an OpenStack KVM5 Cloud which began in 

October 2015 and was used in the work described in this paper. Our quotas relevant to this 

paper were 20 instances, 40 virtual CPUs, 100GB of RAM, 50 floating IP addresses, and 

1000GB of storage. We were able to choose from Chameleon–supplied images that included 

CentOS-6 and -7, Fedora-20, and Ubuntu Server.

Commercial Cloud — Rackspace—Rackspace (2016a) offers commercial public and 

private cloud services to individuals and businesses, including cloud servers, cloud clusters, 

and cloud storage; web hosting; and database hosting on a pay–as–you–go basis. We made 

use of their developer+ program (Rackspace 2016b) for the work in this paper. Our default 

quotas were 100 instances/IPs, 128GB of RAM, and up to 10 TB of SSD and 10TB of 

storage. We had about 22 stock images to choose from, including 13 images from the 

CentOS, CoreOS, Debian, Fedora, Red Hat, Ubuntu, and Vyatta varieties of LINUX, and 9 

images from 3 types of Windows Server.

Commercial Cloud — Amazon Elastic Computing—Amazon Web Services (AWS) 

provides public and private cloud services worldwide, such as cloud instances (EC2), load 

balancing, storage (Elastic Block Storage, or “EBS”), web hosting, networking, and mobile 

5KVM = Kernel-based Virtual Machine and refers to the type of hyper-visor employed by the cloud to run virtual machines; see http://
www.linux-kvm.org.
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services (Amazon 2016; Fusaro et al. 2011). We made use of their Free Tier6 which gave us 

up to 20 instances and up to 750 hours per month of the “t2.micro” flavor, for a length of 

one year. We had the choice of over 24 images from Amazon, Red Hat, SUSE, and Ubuntu 

LINUX, and Microsoft Windows Server.

In this document we refer to Amazon Web Services as “AWS” and the Amazon EC2 cloud 

as “Amazon EC2” or “EC2” in accordance with current practice (Belgacem and Chopard 

2015; Kaminski and Szufel 2015; Sadooghi et al. 2015; Yoginath and Perumalla 2015).

Hardware and Pricing Options—Although cloud computing is complex, in this project 

we deal primarily with the “Compute” aspect of a cloud — creating, configuring, running, 

and terminating instances. For a variety of customers, there are many other offerings 

including networking, webhosting, monitoring, and various types of storage.

For the most part, cloud instances are not tied to specific hardware. However, for issues of 

performance, specialized software, company policies, and restrictive software licenses 

(DAntoni 2013), cloud technology has evolved to allow a gradient of virtuality.

The Chameleon Cloud’s KVM Cloud (used in the majority of this paper’s experiments) 

offers no option to control which hardware hosts a virtual server. Instead, their “Bare Metal 

Reconfiguration” resources (Cha, 2016) allow user customization through a reservation 

system that gives the requester the ability to reserve hardware nodes for a specific date/time 

period with specific characteristics including: site, platform type, number of CPUs, number 

of cores, compute vs storage, and presence of Infiniband support. This reservation is called a 

“lease” and, once it begins, the user can launch instances with a flavor of “baremetal” which 

run directly on the reserved nodes. At that point, the instances are similar in many ways to 

those on the virtual cloud.

Rackspace offers “OnMetal Cloud Servers” which are created just as Virtual Servers are 

Laffoon (2016), yet do not share users, and are totally solid state. For example, the 

“Compute” flavor is a ten core Xeon machine with 32 GB RAM and a 32 GB system disk. 

The OnMetal servers are more expensive than Virtual Servers, though direct comparison is 

difficult.

Amazon EC2 provides many options for customizing the performance of cloud instances, 

networks, and storage (Amazon Web Services 2016; Thackston and Fortenberry 2015a). 

Instead of separating virtual and hardware servers the way Chameleon and Rackspace do, 

their instances are flavored using not only the normal number of virtual CPUs, memory, and 

included storage, but also by the exact type of hardware (processor, storage, GPU) that 

flavor is hosted on. For example, instances of the “m4.large” flavor are hosted on 2.4 GHz 

Intel Xeon E5-2676 v3 (Haswell) processors.7 In addition, EC2 provides the “Dedicated 

Instances” option that provides physical isolation of the user’s instances from other users 

and the “Dedicated Hosts” option that provides physical control for server–bound software 

licenses.8

6https://aws.amazon.com/free/
7These details can be seen at https://aws.amazon.com/ec2/instance-types/.
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Cloud pricing is by instance flavor, bandwidth, and storage. For the Chameleon Cloud 

academic research cloud, pricing was hidden to us as researchers; what is tracked are Virtual 

CPU hours, gigabyte hours, and RAM hours.

In the Rackspace pricing scheme,9 instances are charged for existence time, running or not. 

Ingoing data (“bandwidth”) is not charged, but outgoing bandwidth is charged by the 

gigabyte in tiers. Image and other storage is also charged by the gigabyte–hour. Rackspace 

has volume discounts and also levels of technical support.

In the Amazon pricing scheme,10 instances are charged only if running. Ingoing data is not 

charged, while outgoing data is charged by the gigabyte in tiers. Storage is charged by the 

gigabyte–month. Amazon has volume discounts and support levels.

The standard pay–on–demand pricing is common to both; however Amazon has two other 

purchasing options.11 With their “Reserved Instances” option, the user reserves not an 

instance, but subscribes to a discount for one or three years that is specific to the instance 

flavor desired. Users can sell their Reserved Instances on the Amazon– provided “Reserved 

Instance Marketplace”, which would allow a researcher to perform a period of heavy 

simulation then recoup costs quickly by selling the remainder of the reservation.

Amazon also has a “Spot Instances” program where customers can bid on potential 

instances. When their bid exceeds the going rate (“Spot Price”), those instances are created 

and automatically granted to the customer, until which time that the Spot Price exceeds their 

bid — then the instances are automatically terminated. This approach can lead to low prices 

but is only useful for applications in which the automatic external termination is not an issue 

(Gong et al. 2015).

Running NEURON in the Cloud

For the NEURON simulator, using the cloud means creating a cloud server with a 

compatible operating system, installing additional software facilities as required, installing 

NEURON on that server, uploading model and other simulation files, compiling mod files as 

required,12 running the simulator, retrieving resulting data files, then terminating the server 

to avoid additional cost.

In order to avail oneself of the on–demand character of the cloud while minimizing cost and 

human workload, this process must be fully automated. Ideally, the use of computational 

resources should be integrated into simulation management software to improve daily 

workflow and to pare costs of resource use to the minimum. Automation can allow the user 

to take advantage of sophisticated scheduling algorithms that allow tradeoffs between 

several complex parameters: total simulation time, the cost of computer resources, the 

8https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
9Discussion here: https://www.rackspace.com/cloud/public-pricing#cloud-servers and calculator here: https://www.rackspace.com/
calculator
10Discussion here: https://aws.amazon.com/ec2/pricing/ and calculator here: http://calculator.s3.amazonaws.com/index.html
11https://aws.amazon.com/ec2/purchasing-options/
12In NEURON, mod files are used to define the simulation program for a biomechanism such as an ion channel. After definition, they 
are translated into C code and compiled into a biomechanism library before use in actual simulation.
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heterogeneity of available resources, and the reliability of grid resources (Li et al. 2016; 

Panda and Jana 2015).

In this section we discuss the specific steps we found necessary to make use of the 

NEURON simulator on Chameleon Cloud, Rackspace, and EC2. Although both Chameleon 

and Rackspace clouds are based on the Open-Stack open source cloud software,13 there are 

differences in their purposes, configurations, and even in their Application Programmer’s 

Interfaces (APIs). EC2 has similar functionality but the API is substantially different from 

OpenStack. We worked manually with EC2 and manually and automatically with 

Chameleon and Rackspace.

Building a NEURON-Ready Cloud Server

Our experiences with Chameleon, Rackspace, and Amazon were slightly different. Since 

Chameleon is a cloud research resource, our project intially was completely bare. As a result 

it was necessary, using the Chameleon browser– based Dashboard, to set up a basic virtual 

network that included a virtual router to allow the network access to the outside world, 

which is a stereotypical set of cloud operations known as the “External Virtual Server 

Accessibility Cloud Design Pattern” (Erl et al. 2015). That network allowed us to create 

servers that were externally accessible using a public IP address. In contrast, on Rackspace 

and Amazon those details are, by default, invisible to the user and it was possible to create 

instances immediately that were externally–accessible. Both Chameleon and Amazon 

required preliminary setup of a security group that determines what traffic is allowed, and an 

SSH key pair for communication with the instances. The Chameleon preparations steps 

were:

– Create a virtual network and name it.

– Create a subnet of the virtual network and name it.

– Choose IPv4 or IPv6.

– Select DHCP yes.

– Assign DNS Name Servers.

– Select the gateway IP.

– Select the local network address range.

– Create a virtual router and name it.

– Attach router to external network.

– Add a new interface to the router and attach it to the new subnet.

Network setup completed, we were able to create server instances using each of the 

Chameleon, Rackspace, and Amazon dashboards. On Chameleon, for most experiments 

(Section “Experimental Methods, Results, and Analyses”) we chose a CentOS-6 server to 

match our in–lab servers, with a medium ‘flavor’ called ‘m1.medium’ that gave us 2 Virtual 

13http://www.openstack.org
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CPUs, 4 GB of RAM, and 40 GB of storage. On Rackspace, we chose a CentOS-6 server 

with a flavor called ‘2 GB General Purpose v1’ with 2 CPUs, 2 GB of RAM, and 40 GB of 

storage. On Amazon, we used the Amazon Linux AMI image14 with the c4.large flavor 

which has 2 CPU and 3.75 GB of RAM.

On the Chameleon Cloud, the user then must allocate a floating IP address from an address 

pool and assign it to the instance. The user logs into the instance through the Internet using 

that floating IP address. For Rackspace and Amazon, creating the server automatically 

allocated and assigned the public IP address. In all cases, the user makes use of dual key 

SSH-2 authentication (Barrett et al. 2005) to communicate with the servers.

The three clouds are different in the software stack available on the OS upon creation; this is 

true also of each image. Our goal was to configure the servers for NEURON simulation with 

Python (Hines et al. 2009). We referred to the basic approach described by the NEURON 

website15 and by Andrew Davison16 to install NEURON without Interviews, since we do 

not use the GUI. Because each cloud’s images are different, we were obliged to scour the 

installation output logs in detail to determine which elements of the OS were necessary but 

not present; we then incorporated those elements into our configuration scripts. We credit 

the NEURON developers with providing the installation feedback that allowed us to do that. 

The basic steps to create a NEURON 7.4–ready cloud server were:

– Choose name, image, flavor, key pair, and subnet for the new instance.

– Launch the instance.

– If necessary, allocate a floating IP from a floating IP pool and attach it to the 

instance.

– Install basic terminal and compilation software using yum or other software 

package manager.

– Install Python 2.7 if necessary.

– Create specific directories in preparation for installation of NEURON.

– Download the NEURON 7.4 tar file from the NEURON repository or local 

source and unpack it.

– Configure the NEURON installer with Python location. – Install NEURON 

using make and make install.

– For use with NeuroManager, we also install the appropriate version of the freely 

available MATLAB (Natick, MA) Compile Runtime (MCR).17

– Create working directory for use with NeuroManager.

14AMI = ‘Amazon Machine Image’.
15http://www.neuron.yale.edu/neuron/download/compile_linux
16http://www.davison.webfactional.com/notes/installation-neuron-python/
17Available free at http://www.mathworks.com/products/compiler/mcr/; the version matches the MATLAB compiler we have 
available.
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Once the server was created and tested for correctness, we were able to save it as an image 

which can be cloned, manually or automatically, to produce multiple servers ready for 

simulation use. The actual scripts we used to configure a MATLAB–NEURON–Python 

server for the three clouds are available at the NeuroManager GitHub site,18 but the user will 

need to adapt to his or her own needs and resources. These images could serve as a shareable 

‘appliance’ on compatible clouds (Sharma 2008).19 The cloud objective of universally–

portable images/appliances, however, is still an elusive one (Howe 2012; Cloud Standards 

Customer Council 2014).

Figure 1 shows details of six servers using the Chameleon Cloud Dashboard. The server 

named ‘dbs-test’ was created using the dashboard from an image called ‘CC–CentOS7– 

MCR2013a–NEURON74–Python27’ which we created by the procedure listed above. The 

image supports a specific set of two neuroscience simulators: it runs compiled MATLAB 

programs that are compatible with MATLAB2013a, and it runs GUI–free NEURON 

simulations compatible with NEURON 7.4 that may or may not include Python 2.7 code. In 

NeuroManager, the JSON20 file for a specific cloud describes the images available on that 

cloud, and each image description lists the neuroscience simulators it supports so that 

NeuroManager can check compatibility with the user’s chosen neuroscience simulator. The 

remainder of the servers in Fig. 1 were created programmatically using NeuroManager’s 

Cloud Management classes. The servers are of the m1.medium flavor and are essentially 

identical except for their external IP address.

We do not need a MATLAB license for any of the cloud servers, since we are making use of 

the compiled version of MATLAB. Instead, we compile the code on a local server using a 

single MATLAB license and push the compiled code to each cloud server. The free 

MATLAB MCR, which allows one to run compiled MATLAB without a license, is part of 

the configuration of the image upon which each server is based. The end result is that, in 

contrast to many applications (DAntoni 2013; Microsoft 2016), there is no additional 

licensing fee for use of MATLAB in the cloud.

For manual use, the cloning of a server is the easiest, most convenient way to add resources. 

For automatic use, cloning can be slower than actually recreating each server anew, since the 

use of cloning may involve transferring a large image file (the image ‘CC–CentOS7– 

MCR2013a–NEURON74–Python27’ seen in Fig. 1 is 4.7 GB) between servers internally 

within the cloud’s physical network(s). The base OS images are much smaller (the 

CentOS-7 image is 677.3 MB) and may transfer internally more quickly. In other 

circumstances, installing from a base image followed by configuration may take far longer 

than transferring the larger, fully configured image (Keahey et al. 2005a). OpenStack, and 

other clouds, offer the ability to pass and automatically run configuration scripts and data 

(called ‘user data’) as part of launching a new instance, often with the use of the CloudInit 

software (Automating Openstack with cloud init run a script on VM’s first boot 2015). By 

18https://github.com/SantamariaLab/NeuroManager
19https://www.chameleoncloud.org/appliances/
20‘JSON’ stands for Javascript Object Notation. Please see http://www.json.org/.
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automating these processes, simulation management software can handle the full building of 

servers using a locally–optimal procedure without any additional effort by the user.

Running a Simulation Manually on a Cloud Server

Once a cloud server has been created and is NEURON– ready, the user can run a simulation 

on it using the same basic manual workflow presented in Stockton and Santamaria (2015).

Automating Cloud Operations

The dashboards provide manual/visual interaction with the cloud. For automated interaction, 

there are three options. The first is to use the cloud’s client programs which, once installed 

on the user’s computer, provide a command-line interface. For dealing with instances/

servers in OpenStack, the command line interface is called ‘nova’.21 For example, the 

command to create a server is

The Amazon equivalent is called the Command Line Interface.22

The second option is to interact directly with the service. OpenStack, like many other cloud 

types (Foster et al. 2008; Cloud Standards Customer Council 2014), provides a RESTful23 

Application Programming Interface (REST-ful API).24 Amazon EC2 also provides a 

RESTful interface (Amazon 2015). By making use of the API through the http protocol,25 

the user’s programs (or the user’s simulation manager) can create and terminate servers, 

query status and quotas, inquire about current charges, save and manage images, assign and 

reassign IP addresses, or perform any of an extensive array of cloud functions. For 

authentication in each interaction, Chameleon and Rackspace use the Open-Stack token 

procedure. In this procedure, the user’s code requests a token from the cloud using assigned 

login credentials; for Chameleon the user uses the account password and for Rackspace the 

user retrieves a long numeric code from the account dashboard which effectively becomes 

the password. All subsequent API interactions with a given cloud must include that cloud’s 

returned token, which will expire at some time and must be replaced by a new token request. 

Examples of direct access to the service can be seen in the API Quick Start Guide.26 

Amazon’s authentication involves encrypted authorization signatures.27 In API use on all 

three clouds, the principle of “Eventual Consistency” is at work, in which the user must 

verify states before and after issuing a command in order to ensure that the command’s 

results have propagated completely; there is also the possibility that a valid command may 

fail and require resubmission (Amazon 2015; Rackspace 2016c).

21http://docs.openstack.org/user-guide/common/cli_overview.html
22https://aws.amazon.com/cli
23http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
24http://developer.openstack.org/api-ref.html
25See RFCs 7230–7237 at http://tools.ietf.org/rfc/index
26http://developer.openstack.org/api-guide/quick-start/api-quick-start.html
27http://docs.aws.amazon.com/AWSEC2/latest/APIReference/making-api-requests.html
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The third option is to use a Software Development Kit (SDK) that provides a software 

interface to the cloud either via the client programs or via the API. Several SDKs have been 

written in Python, Perl, C++, and other languages for use with the OpenStack API.28 For 

example, in the Python SDK’s novaclient.v2.servers.ServerManager class, the

method creates a new server29. As discussed below in Section “Managing Cloud Instances 

Within NeuroManager”, we have developed a minimal MATLAB SDK for integrated 

NeuroManager use that uses the RESTFUL API and makes use of the cURL utility30 for the 

http protocol. For example, NeuroManager internally uses the class method

to create a set of cloud servers in parallel; in practice, however, the user uses the interface 

shown in Fig. 2 and does not deal with the cloud directly. Similarly, EC2 provides a set of 

SDKs for use31 and we are in the process of extending our SDK to EC2.

NeuroManager Automates NEURON use on a Blend of Clouds, Clusters, and Standalone 
Servers

NeuroManager is a metasimulation tool that automates the submission process for 

neuroscience simulations on a variety of platforms including local servers, clusters, and 

supercomputers (Stockton and Santamaria 2015). Neuro-Manager forms a Virtual Simulator 

based upon a SimCore (in this paper, the SimCore is either a MATLAB–based simulator or 

NEURON), places multiple Simulators on a variety of computational resources to form a 

Simulator Pool/Farm/Cloud, then schedules Simulations on those Simulators using a 

modified min–min scheduling algorithm (Braun et al. 2001). Simulations that become 

stalled on cluster waiting queues will be rescheduled on the fastest available Simulator, 

which may be on a cloud server. Simulators placed on standalone and cloud servers run as 

parallel multitasked processes; in contrast Simulators placed on clusters run as individual 

jobs on nodes using the number of cores requested by NeuroManager. Horizontal scaling in 

the NeuroManager sense, then, means adding Simulators to current or additional servers, 

clusters, and/or cloud servers. By ensuring there is an additional processing core associated 

with each additional Simulator, the user scales both parallelism and processing power. 

Adding a Simulator without adding an additional processing core still results in increased 

parallel performance in many situations, but the individual performance of the Simulators on 

that resource will be reduced.

Because NeuroManager acts as a super user and works with each cloud individually, cloud 

interoperability and portability are not issues; more formally, NeuroManager falls under the 

Cloud Standards Customer Council’s Scenarios 2 and 4 (Cloud Standards Customer Council 

28https://wiki.openstack.org/wiki/SDKs
29http://docs.openstack.org/developer/python-novaclient/ref/v2/serverser.html
30https://curl.haxx.se/
31See, for example, the Java SDK: https://aws.amazon.com/sdk-for-java/.
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2014). As part of the process of extending NeuroManager to cloud instances, we recruited 

the cloud concepts of ‘image’ and ‘flavor’ for use with all computational resource types. 

NeuroManager uses a combination of JSON configuration files32 and class inheritance to 

handle intercloud differences in API, images, flavors, methodologies, and workflow. The 

user places within the Simulator definition its requirements for SimCore and flavor 

minimums to allow NeuroManager to check them against the machine configuration the user 

has chosen.

NeuroManager can work with existing, continuously operating cloud servers, but can also 

use temporary cloud servers as required for a specific user configuration. After initial setup 

the user has the ability to configure a mixture of local servers, clusters, supercomputers, and 

cloud servers with minimal work (Fig. 2). For ‘ephemeral’ cloud servers which we call 

‘Wisps’ that minimize cost because they exist only during simulation operations, 

NeuroManager can create, configure, use, and terminate the servers automatically, an 

example of the ‘Rapid Provisioning Cloud Design Pattern’ (Erl et al. 2015).

Managing Cloud Instances Within NeuroManager

For MATLAB, the language currently employed by Neuro-Manager, there is no existing 

OpenStack SDK. In addition, there are differences between the APIs of the two Open-Stack 

clouds we used in our work.3334 For these reasons and for better extensibility to other cloud 

types, we avoided the need to accumulate specialized client programs by developing a 

minimal object-oriented MATLAB SDK that uses the cURL tool’s http protocol support for 

interacting directly with the cloud’s instance services. The class hierarchy seen in Fig. 3 

implements an instance management interface that hides the differences between the three 

clouds, focusing primarily on instance creation and termination, information query, and 

quota determination. We first developed the class hierarchy for the two OpenStack clouds, 

and the approach is proving extendable to EC2. Neuro-Manager’s instance management 

interface means that for daily operation the user does not need to deal with the cloud 

directly. This feature is an example of ‘externally– managed multi–cloud brokering’ (Grozev 

and Buyya 2014). In addition, the merging of virtual and bare–metal instances by both 

Rackspace and Amazon (Section “Hardware and Pricing Options”) means that 

NeuroManager could handle either with little or no change, and even mix the types at will.

Combining Cloud Servers with Other Resources

Figure 4 shows a snapshot of NeuroManager’s session– monitoring webpage in the middle 

of running a simulation set on mixed resources that include four servers on the Chameleon 

Cloud and three servers on the Rackspace public cloud, each hosting two simulators. All 

together, the Simulators created in this example form a ‘Simulator Cloud’ of eighteen 

independent Simulators. NeuroManager schedules simulations on those Simulators much 

like a cluster manager schedules jobs on cluster resources. The scheduling algorithm uses 

individual Simulator characteristics to place simulations efficiently and yet handle grid 

dynamics, including the ability to move simulations from stalled cluster–hosted simulators 

32The JSON format is similar to the XML format but much less cluttered. It permits hierarchical data definition, whereas the more 
familiar INI files do not.
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to non–stalled ones on other resources. We also were successful in adding persistent 

Amazon EC2 instances to this combination.

Managing Cloud Costs with NeuroManager

NeuroManager provides the ability to create and terminate Wisps, allowing the user to 

minimize the existence time of a server, and thus cost (suitable for Rackspace). The ability 

to start and stop existing cloud servers allows the user to minimize the runtime of a server 

(suitable for Amazon). The ability to distribute Simulators at will on a mixture of 

heterogeneous resources allows the user to trade off makespan and costs by determining how 

much of the bulk of a simulation set will be run on the cloud, and to determine what 

percentage of the cloud portion is on more expensive clouds. NeuroManager’s Simulation 

Set approach, where a number of simulations are processed, scheduled, and run in bulk, 

permits closer packing of server use and, since the smallest billing time unit of clouds is 

typically one hour, helps reduce unused server partial hours. Finally, the user can determine 

on–the–fly how much of the simulation output data to download; thus avoiding data transfer 

charges for data that is of no interest.35

Cloud Clusters and Parallel NEURON

When configured for parallel use using the paranrn module (Brette et al. 2007; Hines and 

Carnevale 2008; Migliore et al. 2006), NEURON uses time–stepped synchronization 

(D’Angelo and Marzolla 2014) to perform Message Passing Interface (MPI)–based Parallel 

Discrete Event Simulations (PDESs) (Misra 1986; Yoginath and Perumalla 2013), 

continuous model simulations (Hines et al. 2008a, b), or continuous–PDES hybrids, and has 

been run on physical clusters to good effect (Schneider et al. 2015; Silverstein and Lansner 

2011). Unfortunately, cloud clusters36 show significant performance loss due to instance 

placement (Ballani et al. 2011), interinstance communications issues such as variability and 

latency (El-Khamra et al. 2010; He et al. 2010; Sadooghi et al. 2015), and heterogeneous 

workloads among simulation components (Yoginath and Perumalla 2013, 2015). Similarly, 

MPI–based applications are strongly dependent on low communications latency (Mauch 

2015). While HPCs provide less scalability than clouds and often large wait times, they also 

provide hardware–optimized interinstance communications and non–shared processors. 

Various groups are working to improve interinstance communications (Ballani et al. 2011; 

Ban et al. 2015; Branch et al. 2014; Mauch 2015; Peng et al. 2015) and hypervisor37 

scheduling policies (Yoginath and Perumalla 2013, 2015).

Although it is certainly possible to run a distributed, MPI–based application such as parallel-

configured NEURON on a cloud cluster (El-Khamra et al. 2010), the performance of cloud 

clusters has not yet reached that of physical clusters, though this may be changing for some 

applications (Mossucca et al. 2015). What ‘performance’ means in cloud services, though, is 

a complex topic and is neither well-controlled nor well–defined (Mogul and Popa 2012). 

Performance–wise, investigators may be best served by running parallel NEURON on 

35By programming the UserSimulation() function accordingly; see Stockton and Santamaria (2015).
36Cloud clusters are virtual networks formed from cloud instances.
37The hypervisor is the program that runs on the physical processor and produces the virtual machines, or cloud servers, that are 
hosted by the physical processor.
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physical clusters, as in Schneider et al. (2015), or possibly bare–metal clusters with 

Infiniband connections (Rad et al. 2015). Based on these considerations, we have reserved 

NeuroManager’s handling of cloud–hosted clusters for the near future.

The multisplit functionality included in the paranrn option (Hines et al. 2008a) provides 

single–node multi–core vertical scaling of certain types of single simulations by parsing out 

to multiple processors dendritic trees that fall into specific morphology classes.38 By 

requesting multiple cores in the cluster job file through the machine class, or by requesting 

cloud servers with a flavor that provides multiple processors, the user could leverage both 

vertical and horizontal scaling on both cluster and cloud.39

Experimental Methods, Results, and Analyses

We ran experiments to explore the characteristics of NeuroManager’s usage of cloud servers 

in comparison to HPC resources from the perspective of single–node NEURON simulation. 

Others have done such from other perspectives (Gupta and Milojicic 2011; Iosup et al. 2011; 

Ismail and Khan 2015; Jackson et al. 2010; Mauch 2015; Oesterle et al. 2015; Sadooghi et 

al. 2015; Thackston and Fortenberry 2015b; Yelick et al. 2011; Zaspel and Griebel 2011).

We set NeuroManager up to run a publicly–available NEURON model obtained from 

ModelDB40 (Miyasho et al. 2001), which applies a current step to the soma of a modeled 

Purkinje cell. After adjusting the stop time to achieve a runtime of 0.5 hours on the 

standalone server, we ran the simulation with identical input parameters for all experiments. 

We used the “KhStudy” Simulator41 which modifies one of the model’s NEURON mod 

files, compiles all mod files into a library, runs NEURON with the newly–created library and 

the other input parameters specified by the user, then generates plots of the resulting 

membrane voltage signal using MATLAB compiled code. In most of these experiments we 

used the Chameleon Cloud to host the cloud servers, but we have run other sessions using all 

three clouds, separately and together.

Runtime Dependence on Flavor

We determined the individual runtimes, Truntime, for our chosen NEURON simulation on 

each resource: standalone server, local cluster, and the Chameleon, Rackspace, and Amazon 

clouds. Truntime is the actual NEURON simulation runtime of an individual simulation on 

the resource as gathered by MATLAB’s tic/toc facility and does not include file transfer or 

overheads associated with running multiple simulations. We ran two Simulators (two parallel 

simulations) on each resource. Our resources were as follows.

• Hardware standalone server: a Dell PowerEdge T620 with two 2.9 GHz 

processors with 6 cores each and 64 GB RAM;

• Local Sun Grid Engine (SGE) HPC cluster: twenty nodes, each with 2 Intel 

Xeon E5450 Quad Cores for a total of 8 cores per node and 16GB of RAM.42 

38The approach is also suitable for multi–node cluster–based simulations but we focus on single–node applications here.
39Note that cluster and cloud nodes are often limited in cores to eight or fewer each.
40Model 17664; see https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=17664.
41See https://github.com/SantamariaLab/NeuroManager/tree/master/NeurSim/MiyashoMOD/KhStudy.
42http://cbi.utsa.edu/hardware/cluster
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This cluster has other queues which the scheduler also used depending on 

number of cores requested and availability;

• Chameleon Cloud: four different flavors of servers, including “m1.small” (1 

CPU and 2 GB RAM), “m1.medium” (2 CPU and 4 GB RAM), “m1.large” (4 

CPU and 16 GB RAM), and “m1.xlarge” (8 CPU and 16 GB RAM);

• Rackspace cloud: “2 GB General Purpose v1” flavor of server (2 CPU and 2 GB 

RAM);

• Amazon EC2: servers with flavors “t2.large” (2 CPU and 8 GB RAM) and 

“c4.large” (2 CPU and 3.75 GB RAM).

The smallest Chameleon cloud flavor (“m1.tiny”) was too small to host the CentOS–6 or 7 

operating system which we used for all cloud servers.43

The results show that the three largest Chameleon flavors had a shorter simulation runtime 

than the standalone server, the HPC, and the other two clouds (Fig. 5). The Rackspace and 

Amazon servers had a comparable run time. Note that the “small” flavor had one core for 

two Simulators, the “medium” flavor had one core per Simulator, and the HPC had one core 

for each Simulator, whereas the lab server and larger flavors had multiple cores per 

Simulator. Since the “cloud small” flavor has fewer cores than Simulators, it runs longer. 

There was no advantage to running larger flavors where the number of cores exceeds the 

number of Simulators; accordingly we used the “medium” flavor for most experiments in the 

rest of this study.

The data presented in Fig. 5 also quantifies the variability of the simulation runtime on each 

resource. The standalone server, with a fixed hardware configuration and no user 

competition, was the most consistent in runtime. Of the remaining resources, the HPC 

showed the highest runtime variance. We suspect this to be due to the fact that we were 

requesting single core jobs on the cluster’s “all” queue which uses all available hardware. 

Each cluster node has a varying number of cores, memory, and communications hardware; 

in addition, some Simulators may have been hosted on nodes also running jobs from other 

users. This observation is useful because a common criticism of cloud servers is that their 

performance can vary due to hardware placement which is not under control of the user; in 

fact “server migration”, moving poorer performing virtual servers to different hardware 

automatically to improve performance, is a significant aspect of cloud operations (Mishra et 

al. 2012).44

The variability seen in the HPC resource can also be seen in cloud resources. When we used 

the “t2.large” flavor, which although called “General Purpose”, is intended for burst traffic 

only, the first few simulations ran in less than 18 minutes (about the same as the CCloud 

larger flavors), but subsequent simulations ran very slowly (up to 1.5 hours). In contrast, the 

compute flavors are intended for sustained use and give much faster and more consistent 

43Except for Amazon; there is a licensing fee for Centos–7 usage on Amazon EC2, and it must be obtained through the AWS 
Marketplace. See https://aws.amazon.com/marketplace/b/2649367011.
44Our experiments did not make use of server migration or load balancing of any kind, however NeuroManager’s scheduler favors 
faster Simulators.
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performance for NEURON simulations. It is important that the cloud user choose the proper 

flavor for the intended application.

Effects of Horizontal Scaling on Simulation Session Performance

We investigated the characteristics of horizontal scaling using HPC–based Simulators and 

using cloud–based Simulators.

Horizontal scaling on the HPC was administratively restricted to 50 simultaneous jobs per 

user, limiting horizontal scaling to a maximum of R = 50 Simulators. Additional jobs are 

also restricted to nodes that have space available, so there is a dynamic point where adding 

additional HPC–based simulators does not horizontally scale. The user must choose a point 

between more parallelism (fewer cores per job and hence more room on the cluster for 

running jobs) and more consistency (more cores per job, reducing node–local timesharing 

with other users).

Horizontal scaling on the cloud was limited only to the quotas set for each user. In the case 

of Chameleon Cloud, we were able to double our default quotas by request, resulting in new 

quotas of 20 instances/40 cores/100 GB RAM total. The public clouds have similar quota 

systems, which can also be changed through interaction with cloud representatives. In 

contrast to the HPC, we were able to add Simulators as needed and knew that they would all 

run in parallel without being placed in a waiting state.

We ran an experiment consisting of three sets of five NEURON/NeuroManager simulation 

sessions, with the purpose of quantifying the effects of horizontal scaling on simulation 

session performance. In each set the base session consisted of 8 Simulators running a total of 

20 simulations; then we scaled the number of Simulators and simulations by scale factor F = 

[1, 2, 3, 4, 5], resulting in R = [8, 16, 24, 32, 40] Simulators, and N = [20, 40, 60, 80, 100 

simulations.] In Set 1 (HPC only) we ran one Simulator per actual HPC core. In Set 2 

(Chameleon Cloud only) we ran one Simulator per virtual core using only medium flavor 

servers (2 cores per server), resulting in Nservers = [4, 8, 12, 16, 20]. In Set 3 (Chameleon 

Cloud only) we used 8 medium flavor servers in all five scale factors, thus fixing the number 

of cores at 16 and placing 1, 2, 3, 4, and 5 Simulators on each server. Set 1 sessions were 

each run five times, Set 2 sessions three times, and Set 3 sessions one time, for a total of 45 

sessions and 2700 individual identical simulations, each lasting from less than 20 minutes to 

more than one hour depending on the resource.

For analysis, we adapted classic parallel processing performance definitions (Censor and 

Zenios 1997) to Neuro-Manager use by defining the ‘problem’ as a session (one set) of 

simulations and a ‘processor’ as a Simulator–core.

A NeuroManager session that runs a set of simulations is composed of three stages: setup → 
running → teardown. The time taken by a session is:

(1)
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where Tsession is the total time taken by the session, Tsetup is the setup time, M is the 

makespan, and Tteardown is the time to remove all session–related structure from the remote 

resources, including Wisps.

The relative speedup Srel of a specific session S is:

(2)

where NS is the number of simulations in session S,  is the runtime for single 

simulation i in S, and MS is the makespan developed by session S. Srel(S) indicates how 

many times faster the parallel version is and includes all overhead except initial setup time 

Tsetup(S) and post–simulation teardown time Tteardown(S).

Similar to relative speedup is the absolute speedup Sabs of a session S:

(3)

where the minimum is taken over all simulations in the session. This equation considers the 

parallelism improvement if one assumes the serial runtime had been performed using the 

processor that gave the shortest simulation runtime in the session.

We also have the absolute speedup Sabsgroup of a single session S with respect to a group G 
of sessions of which it is part; we call this the “AbsGroup Speedup”:

(4)

where  is the ith simulation in the jth session of group G, and the minimum is 

taken over all i and j. This equation considers the parallelism improvement of a session if 

one assumes the serial runtime had been performed using the processor that gave the shortest 

simulation runtime of all the sessions in the group, independent of resource.

Normalizing the relative speedup Srel of a session S by the number R of processors/

Simulators/cores used in that session gives the efficiency η of a session, a measure of how 

effective the parallel configuration was:

(5)
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The degree to which the efficiency stays constant while the load (total simulation runtime) 

and capacity (number of processors) are both increased by the same factor is called the 

scalability.

Speedup, Efficiency, and Scalability—For Sets 1 and 2 we calculated the values of Srel 

and Sabsgroup (Fig. 6a). We see that the HPC and cloud give a steady, similar Srel, reflecting 

the increased number of Simulators/cores in play. When Sabsgroup is calculated relative to the 

975.3 second minimum runtime of all of the simulations in Sets 1 and 2 (the minimum 

occurred on a cloud–based Simulator), we see that the HPC fairs less well than the cloud 

because of the cloud’s faster, more consistent runtimes.

For Sets 1 and 2 we also calculated the values of η and Tsession (Fig. 6b). We see that cloud 

and HPC efficiency are similar; both efficiency lines have a shallow downward trend, 

reflecting serial aspects of makespan operation including NeuroManager’s scheduling loop. 

There is a slight climb in Tsession for both configurations, probably due to the efficiency loss 

just mentioned; in every case, however, Tsession was lower for the cloud than for the HPC.

In contrast, Set 3, which scaled Simulators but not cores, had no increased speedup for F > 

2, which is the point where the number of Simulators matched the number of cores (not 

shown).

Session Time breakdown—Setup time Tsetup is of concern in the use of Wisps, where 

time is required to create new servers. NeuroManager uses the cloud’s API to initiate 

creation of the Wisps in a Wisp Set in parallel, then waits for all Wisps in the set to reach the 

RUNNING state. The much shorter time required by this approach, though still a function of 

the number of servers, helps reduce total setup time.

To determine the relationship of Tsetup to session time Tsession as a function of scale factor, 

we analyzed Sets 1–3 to break down session time into its component intervals. Figure 7 

shows the breakdown of Tsession and Tsetup as a function of number of Simulators for Sets 1 

and 2. For Set 3 setup times were constant, with an average of 427 seconds (not shown). In 

contrast to the cloud sessions, the setup associated with the HPC is shorter, reflecting many 

differences: no need for Wisp Set creation, only a single communications test, vastly fewer 

file uploads, and the use of local network communications rather than farther–reaching 

communications through multiple networks. Despite these costs, the cloud setup load is 

offset by gains in scalability, runtime consistency, speedup, parallel efficiency, and overall 

session speed.

To ensure that Wisp creation time on Chameleon was comparable to that on a public cloud, 

we supplemented Set 2 data with additional sessions on Rackspace (five sessions involving 

creation of ten Wisps each). The average Wisp creation time on Chameleon was 16.1 

seconds/Wisp, and on Rackspace 37.4 seconds/Wisp.

Flavor and Cost

We quantified the effects of cloud server flavor, number of simulations, and simulation 

length on session time and cost. For this purpose we ran a new set of simulations (Set 4) that 
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consisted of eight sessions (4.1–4.8) ranging from one to four hours each (a total of 560 

simulations). We used one Simulator per core with a total of 16 Simulators distributed on the 

appropriate number of servers of identical flavor. All servers were on Chameleon Cloud 

(Table 1).

Sessions 4.1–4.4 show that, although setup time decreased as the number of servers 

decreased, average simulation runtime increased, perhaps due to the lack of timesharing with 

other Simulators on the same server. The resulting overall session time Tsession was 

independent of configuration. When we increased the number of simulations 4× to 160 (4.5–

4.6) the overall effect is that the two Tsession values are identical. Increasing the number of 

simulation steps per simulation 4× (4.7–4.8) emphasized the faster performance of the 

smaller flavors, resulting in lower Tsession, despite the resulting larger data downloads.

Although we performed most of our analyses in a no–cost research cloud environment, cost 

is a concern if using commercial services. We re–examined the Set 4 results from the 

perspective of cost. We calculated the potential cost using the charge for the Rackspace 

General Purpose flavor with the same number of cores as the Chameleon Cloud flavor in 

use, assuming that there are 750 hours per month and that the minimum billable unit is one 

second, and ignoring any data charges or monthly support charges. For ephemeral servers 

costs depend on flavor and Tsession; the results are presented in Table 1. The Amazon EC2 c4 

compute equivalents (not shown), in comparison, are about 68 % higher than the Rackspace 

costs, suggesting that it is advantageous to the user that simulation management software 

supports multiple clouds for avoiding the “vendor lock–in” problem (Opara-Martins et al. 

2014).

Related Work

The Neuroscience Gateway (NSG) is a portal that provides vetted users web–based access 

to super–computer installations of specific versions of standard simulators including 

NEURON (Subhashini et al. 2013a, b, 2015). The portal does not use the cloud for 

simulations but does offer access to cloud storage.

Yamazaki et al. (2011) report on a service called Simulation Platform that is similar to the 

Neuroscience Gateway, but is cloud–based. The platform provides the user with a web–

based interface to virtual machines that offer GENESIS, NEURON, and NEST, as well as 

various plotting and analysis tools.

The NSG and Simulation Platform facilities are both complementary to NeuroManager in 

that they offer specific implementations to a researcher who desires a point–and– click 

interface during sit–down sessions. Both facilities are Software–as–a–Service (SaaS) portals 

to which the user comes to do work. In contrast, the user employs NeuroManager to form his 

or her own custom simulator farm on–the– fly, from any or all available IaaS resources, for 

automated parallel simulation and sophisticated model/simulator configuration and 

exploration.

NeuroManager‘s integration of cloud, grid, and server does so without being limited by 

middleware boundaries. A more involved approach to managing instances is called 
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Dynamic Virtual Environments (DVEs) or Virtual Workspaces (VSs) (Keahey et al. 

2004, 2005a), and is built upon middleware such as the Globus Toolkit (Foster 2005). 

NeuroManager uses JSON files for machine configuration that are similar to the XML 

description files used by the DVE/VS system. A fully automated approach to instance 

configuration as treated by Keahey et al. (2005a) or Tihfon et al. (2016) appears 

indispensible for future work.

The Open Cloud Computing Interface, or OCCI (http://occi-wg.org/) is representative of 

efforts to provide a common interface to all cloud types. Another approach is to use a Cloud 
Broker such as STRATOS (Pawluk et al. 2012; Grozev and Buyya 2014), which adds a 

layer between the customer and multiple (commercial) clouds; that layer manages cloud 

differences and negotiates prices. Like STRATOS, NeuroManager’s common resource 

interface permits the user to delay deployment decisions until runtime, enabling the user to 

work around maintenance, communications trouble, or restrictive quotas. The overall broker 

approach, however, appears to be oriented towards business needs, where fairness is 

important (Aazam and Huh 2015), in contrast with scientific computing, where fairness can 

contribute to poor performance, as described above in Section “Cloud clusters and parallel 

NEURON”. NeuroManager uses JSON–format configuration files together with inherited 

methods to allow multi– cloud operation. There is an effort to standardize the description 

and publishing of cloud entities and differences in a way that is web–accessible through 

RESTful services (Smit et al. 2012).

Discussion

In this paper we presented advantages of cloud resources for computational neuroscience. 

We have verified a selection of them with detailed experiments that show that the cloud has 

better horizontal scalability and overall performance when combined with automated 

workflow software such as NeuroManager. In addition, we have shown that we can add 

cloud servers quickly and easily without additional investment in hardware, addressed the 

problem of waiting queues in clusters by automated rescheduling of waiting jobs onto cloud 

servers, shown that we can construct servers with specific versions of simulation software 

rather than that provided to us by an institutional resource, and demonstrated how to 

reconstruct the exact server on which our simulations were run.

A mental shift away from considering only single– simulation speed and towards examining 

the total speed of sets of independent simulations run partially or totally in parallel can save 

a researcher considerable time and investment. Vertical scaling, which invests effort to 

improve the speed of a single simulation, tends to be perceived as more sophisticated than 

horizontal “embarrassingly parallel” operations, which run multiple simulations 

simultaneously, but both are potential contributors to improved simulation throughput. The 

cloud is not yet suitable for all types of simulations, especially multinode simulations that 

are extensively communications–bound, such as large–scale neuronal networks. Not all 

simulations, however, require the vertical scaling offered by HPC resources. The HPC’s 

limitations on horizontal scaling can reduce simulation throughput in comparison with the 

cloud’s ability to appear limitless. By considering both traditional vertical scaling and the 

dynamic horizontal scaling now available through the cloud, a researcher can produce higher 
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quality, more detailed examinations of parameter space with less effort, time, and hardware 

investment.

Computational neuroscience research can gain advantages such as research speed, 

quickness, flexibility, and cost savings by incorporating cloud technology. Cloud resources 

can be used to supplement or even replace existing resources, depending on the researcher’s 

needs for computational power and speed in simulation throughput. These advantages are 

possible only through automation of the use of computational resources, as can be seen by 

our outlining of the steps involved. Adding additional resources, no matter how prevalent or 

accessible, is only helpful if the user’s workload does not increase proportionally. Any 

cloud–capable automation should support multiple clouds to ensure the researcher is not 

trapped by vendor limitations and pricing.

The NeuroManager metasimulation tool allows automated use of heterogeneous resources, 

including cloud resources, and by implementing API-based facilities for hands–off on–

demand server creation and termination, allows the user to minimize costs while increasing 

temporary simulation power. NeuroManager’s virtualization means that the user has a nearly 

identical interface to HPC computing resources as to cloud resources, so it is straightforward 

to develop a simulation set on a local, free resource and then extend the resource set to 

external resources that may involve costs or to future internal resources that have a cloud 

structure. By forming an environment in which an established simulator such as NEURON 

can thrive on multiple types of cutting–edge computing resources, the simulation 

management software provides continuity in which computational neuroscience 

investigations can gain new power.
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Fig. 1. 
Cloud server management via browser-based dashboard. The Chameleon Cloud dashboard’s 

‘Instances’ page shows an instance, ’dbs–test’, created using the dashboard, and five other 

instances which were created with NeuroManager’s cloud management classes. All were 

created using the same image as seen in the “Image Name” column; the image itself was 

produced by configuring an instance based on a stock CentOS-7 image using a NEURON/

Python–specific script. All instances have public (“floating”) IP addresses and each makes 

use of the same key pair (here called ‘dbs Laptop Key’) for dual key authentication and 

communications encryption
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Fig. 2. 
NeuroManager configuring resources. a) Line 1: Constructing the NeuroManager object. 

Line 2: Specifying the type of Simulators to be constructed. b) Specifying Simulators to be 

added to a standalone server (Line 1), institutional HPC cluster (Line 2) and remote 

supercomputer cluster (Line 3, Stampede cluster at Texas Advanced Computer Center). c–d) 

Adding cloud servers: Chameleon (c) or Rackspace (d). The servers can be persistent, 

created and terminated by user, or ephemeral (Wisps), automatically created and destroyed 

by NeuroManager. In all cases the “…Info.json” file holds localizing information about the 

resource. In this illustration, assuming numSimulators = 4 and numWisps = 3, we have 5 

fixed and 6 ephemeral machines, each hosting 4 Simulators, for a total of 44 Simulators. For 

details, see text and NeuroManager documentation
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Fig. 3. 
Cloud server management classes. NeuroManager implements instance management 

through use of the cloud’s API using JSON configuration files and a class hierarchy that 

together accommodate differences in settings and methodology. This gives the researcher the 

ability to ignore cloud differences in day–to–day simulation activities. The 

CloudManagement class specifies the interface that the subclasses must implement; the 

OSManagement class implements the interface for OpenStack clouds, and the 

CCCloudManagement and RSCloudManagement classes take specific OS cloud differences 

into account. The Amazon classes are under implementation and thus shown in grey. Arrows 

point to a class’s superclass
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Fig. 4. 
A single NeuroManager session: running a set of simulations on multiple varied 

computational resources. In this example two Simulators were hosted by each server. 

SIMID: simulation id; State: current state of the simulation; Simulator: the name of the 

Simulator the simulation is running on; Machine: name of physical resource the Simulator is 

hosted on; Result: final status of simulation (? = not known yet). We added annotation on the 

right to describe the resources: standalone server, cluster, or cloud server. The persistent 

cloud servers were running before NeuroManager was launched and remained running after 

NeuroManager concluded. The ephemeral servers were created by on the fly by 

NeuroManager and autmatically terminated at the end of the session
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Fig. 5. 
Individual simulation runtime dependence on resource and flavor. The mean and standard 

deviation of Truntime for the NEURON simulation (see text for details) on a standalone 

server, HPC, four flavors of Chameleon Cloud server (CC), one flavor of Rackspace cloud 

server (RS), and one flavor of Amazon EC2 (EC2). For these measurements we used two 

Simulators per cloud server; N is the number of simulations
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Fig. 6. 
Scaling, speedup, and efficiency in cloud and HPC resources. A Session speedup vs scale 

factor. The speedup was calculated relative to the fastest simulation within the specific HPC 

or cloud session (Srel), or the fastest simulation across all sessions within the group 

composed of Sets 1 and 2 (Sabsgroup). b Session time, Tsession, and efficiency, η, vs scale 

factor. All values shown are the averages of 5 trials (HPC) or 3 trials (Chameleon Cloud). 

See text for additional details and discussion
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Fig. 7. 
Tsession breakdown vs. scale factor for HPC and Cloud. On the left, all Simulators are 

located only on a single institutional HPC cluster with one core per Simulator. On the right, 

all the Simulators are located on two–core Wisps with two Simulators per Wisp; setup 

involves Wisp creation in parallel, testing of SSH communications and file transfer, and 

construction of the Simulators on multiple Wisps. All values shown are the averages of 5 

trials (HPC) or 3 trials (Chameleon Cloud). See text for additional details and discussion
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