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Abstract

Girls and women with Turner syndrome (TS) have a completely or partially missing X 

chromosome. Extensive studies on the impact of TS on neuroanatomy and cognition have been 

conducted. The integration of neuroanatomical and cognitive information into one consistent 

analysis through multi-table methods is difficult and most standard tests are underpowered. We 

propose a new two-sample testing procedure that compares associations between two tables in two 

groups. The procedure combines multi-table methods with permutation tests. In particular, we 

construct cluster size test statistics that incorporate spatial dependencies. We apply our new 

procedure to a newly collected dataset comprising of structural brain scans and cognitive test 

scores from girls with TS and healthy control participants (age and sex matched). We measure 

neuroanatomy with Tensor-Based Morphometry (TBM) and cognitive function with Wechsler IQ 

and NEuroPSYchological tests (NEPSY-II). We compare our multi-table testing procedure to a 

single-table analysis. Our new procedure reports differential correlations between two voxel 

clusters and a wide range of cognitive tests whereas the single-table analysis reports no 
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differences. Our findings are consistent with the hypothesis that girls with TS have a different 

brain-cognition association structure than healthy controls.1
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1 Introduction

Turner syndrome (TS) is a genetic disorder caused by a complete or partial absence of one 

X-chromosome in females. TS occurs in about 1 in 2000 newborn girls (Sybert and 

McCauley, 2004; Gravholt, 2005) and has been linked to complex aberrant neuroanatomy 

(e.g. Hong et al. (2014)) and selective impairments in cognitive function (e.g. Hong et al. 

(2009)). Associations between neuroanatomical and cognitive profiles are rarely elucidated 

with few notable exceptions (e.g. Brown et al. (2004)).

We will refer to the joint statistical analysis of two separate data tables or matrices as multi-

table analysis. One reason for the paucity of multi-table analysis between neuroanatomy and 

cognition is the heterogeneity of the different data sources. Brain images and cognitive 

subtest scores are measurements that live in different mathematical spaces and are 

interpreted by different experts with significantly different scientific training.

One approach to study brain-cognition associations is through pairwise testing between 

brain regions and cognitive subtests. This approach ignores the dependencies between 

regions and between cognitive subtests. It assumes that brain regions are known a priori. 

However, this is not the case for regions in the presence of brain disorders and disease. This 

approach is also subject to multiple testing, as statistical tests are performed for each brain 

region and cognitive subtest pair, and one has to control for false discoveries by adjusting p-

values using the Family-Wise Error Rate (FWER) or False Discovery Rate (FDR). Pairwise 

approaches are also unable to capture multivariate associations between brain regions and 

cognitive subtest variables.

In contrast, a multi-table approach to this problem can go beyond pairwise associations by 

considering linear combinations of the columns in both data tables. Many methods are 

available; Canonical Correlation Analysis (Hotelling, 1936), Partial Least Squares (Tucker, 

1958; Wold, 1966; Fornell and Bookstein, 1982), Reduced-Rank Regression (Izenman, 

1975) and their penalized versions for the high dimensional setting. The increased power to 

detect more than pairwise associations comes at the price of interpretability. It is often 

challenging to link results back to medically actionable information, partly because most 

multi-table methods are exploratory and do not assign significance levels.

In this article, we introduce a new two-sample testing procedure for multi-table method 

based on sparse Canonical Correlation Analysis (sCCA) (Parkhomenko et al., 2007; 

Waaijenborg et al., 2008; Parkhomenko et al., 2009; Lê Cao et al., 2009; Witten et al., 2009). 

Sparse CCA integrates two data sources observed on the same set of participants. It finds 
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sparse, maximally correlated linear combinations of variables in both datasets 

simultaneously. Our procedure assigns significance levels using permutation tests and 

incorporates spatial dependency structure in the image domain using a newly constructed 

cluster size test statistic. Our procedure comprises the following steps: First, add column 

with group labels to the non-imaging data table. Second, compute sCCA between the non-

imaging and imaging data tables. Third, compute test statistics from sCCA’s canonical 

variables. Fourth, randomize group labels by permutation and recompute steps two and three 

many times to obtain null distribution of test statistics. Fifth, assign significance levels by 

comparing observed test statistics to the null distribution.

Our new method provides two advantages over pairwise association testing: First, pairwise 

tests miss weak associations due to testing many statistical hypotheses, which requires us to 

adjust for multiple comparisons and thus reduces the power to discover weaker associations. 

Second, pairwise tests ignore dependencies between neuroanatomy and cognition: multiple 

brain regions will most likely impact multiple cognitive functions. Such effects may not be 

detectable when considering brain regions individually.

The primary neuroscience objective of the present article is to elucidate complex interactions 

between subsets of neuroanatomical features and subsets of cognitive features. We measure 

neuroanatomy using Tensor-Based Morphometry, where local volume differences are 

represented by Jacobian determinant maps, and cognitive function using test scores from the 

NEuroPSYcho-logical (NEPSY) battery and the Wechsler IQ test.

After describing our Turner syndrome dataset comprised of brain images, IQ and cognitive 

subtests, Tanner stages to track puberty, and other information about our participants, we 

will describe our preprocessing work-flow including image registration and handling of 

missing values. Next, we will introduce our new two-sample multi-table testing procedure 

and compare it to a single-table analysis. We will apply our procedure to the Turner 

syndrome dataset and finish with a report of the potential discoveries of interest from a 

neuroscience viewpoint.

2 Materials and Methods

2.1 Participants

This study is part of an ongoing longitudinal investigation into gene, brain, and behavior in 

girls with TS. We included 54 girls with monosomic TS (mean age 10.2 ± 2.5, range 5.5 

− 15.9 years) and 48 healthy control participants (mean age 10 ± 2.1, range 5.2 − 14.2 

years). We recruited participants with TS through the national Turner Syndrome Society and 

the Turner Syndrome Foundation, and online advertisements at Stanford University School 

of Medicine. We recruited control participants through local print media and parent 

networks. The local Institutional Review Board at the Stanford University School of 

Medicine approved this study. We obtained informed written consent from legal guardians 

for all participants, and written assent from participants over 7 years of age.
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2.2 MR Imaging Acquisition

We utilized a mock MRI scanner prior to the actual scan to desensitize participants to the 

sights and sounds of an actual MRI environment. The participants underwent behavioral 

training to help reduce motion-related artifacts. We acquired all imaging data at the Stanford 

University Lucas Center for Medical Imaging. Magnetic resonance images of the young 

cohort were collected between 2012 and 2015 on a GE Healthcare Discovery 750 MRI 

whole-body MR system (GE Medical Systems, Milwaukee, WI) using a standard birdcage 

head coil. We employed a fast spoiled gradient recalled (FSPGR) echo pulse sequence to 

obtain a high-resolution T1 anatomical brain image of each subject sagittal slices, repetition 

time = 8.2 ms, echo time = 3.2 ms, inversion time= 450 ms, flip angle = 12°, number of 

excitations = 1, field of view 240×192 mm; matrix 256 × 256 × 176 slices; voxel size = 

1.0×1.0 ×1.0 mm thickness, acquisition time = 4 min 29 seconds.

2.3 Image Processing

We applied the following preprocessing steps to all scans: alignment to the plane defined by 

the anterior and posterior commissures (ACPC), voxel resampling isotropically at 1mm, 

correction of bias field with N4 (Smith, 2002), and removal of voxels comprising skull and 

scalp (Tustison et al., 2010).

We then employed a standard Tensor-Based Morphometry (TBM) approach (Davatzikos et 

al., 1996; Freeborough and Fox, 1998; Gee and Bajcsy, 1998; Chung et al., 2001) that 

permits localization of brain structures that are different in size and shape but do not 

necessarily conform to exact sulcal-gyral locations. The key step in TBM is the computation 

of deformation fields (and their inverses) that map from a template image to participant 

images. For this article, we builta customized brain template from participant images and 

associated deformations using the Advanced Normalization Tools (ANTS) template 

construction script (Avants et al., 2011) (details can be found on the first author’s GitHub 

repository). This, in turn, generates a spatial gradient of deformation fields that yields a 

Jacobian matrix at every voxel position. We focused on the determinant of each Jacobian 

matrix encoding local volume changes of tissue expansion (bigger than one) and contraction 

(smaller than one) with respect to the template. We follow convention established by (Leow 

et al., 2007) and log-transformed the Jacobian determinant maps to symmetrize volume 

changes around zero to be consistent with previous analyses.

Our statistical analysis focuses on gray matter regions. We use the segmentation algorithm 

FAST (Zhang et al., 2001) to define the gray matter mask in our custom built template brain. 

We apply this mask to each log-Jacobian determinant map to extract volume changes of gray 

matter voxels for each subject.

2.4 Cognitive Assessment

We assessed the cognitive status of our participants using the NEPSY-II (Brooks et al., 

2009). The NEPSY-II classifies cognitive functions into six domains: Attention and 

Executive Functions, Language, Memory and Learning, Sensorimotor, Social Perception, 

and Visuospatial Processing. Test administrators followed standard procedures as outlined in 
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the published product manuals; all cognitive/neuropsychological variables consisted of age-

normed scaled scores. Overall 34 NEPSYII subtests were used in our analysis.

Additionally, we assessed participants cognitive abilities using the Wechsler Preschool and 

Primary Scale of Intelligence-Third Edition (WPPSI-III; Wechsler (2002)) for girls aged 

between 4 and 5 years and the Wechsler Intelligence Scale for Children-Fourth Edition 

(WISCIV; Wechsler (2003)) for girls aged between 6 and 16 years.

2.5 Puberty Stages

In addition to the age of each participant we collected information about puberty status in 

the form of Tanner stages (Marshall and Tanner, 1969) as derived from examination of the 

participant by the study physicians (LH, TG). Tanner stages in girls classify puberty into five 

discrete stages, ranging from prepubertal to mature stage of breast development and pubic 

hair. Considering this type of information is crucial to account for different developmental 

trajectories of our participants.

2.6 Missing Values

We excluded all subtests and participants that exhibit more than 20% of missing entries. This 

reduces the original sample size by four participants to 98. We imputed the remaining 3.7% 

of missing values using predictive mean matching implemented in the R package mice. We 

obtained an imputed dataset by averaging over 20 imputed datasets for subsequent statistical 

analysis. For visualizations of the missing values pattern and the imputation variability see 

Interactions.html in the supplementary material. To confirm that our imputation is unbiased, 

we repeated the analysis five times with different random seeds.

2.7 Multi-Table Analysis: Sparse Canonical Correlation Analyses

We collected Jacobian determinant maps in a matrix X with dimensions 98 (number of 

participants) × 710, 320 (number of gray matter voxels). The second matrix Y contained 

cognitive subtest scores and has dimensions 98 (number of participants) × 27 (number of 

NEPSY subtests). It is not possible to apply standard CCA directly to this problem because 

we have more voxels than observations resulting in an underdetermined system of equations. 

Sparse CCA reduces the solution space to sparse solutions meaning that many noisy 

coefficients will be set to zero. In addition to making the CCA problem solvable, sCCA also 

provides us with isolated clusters of coefficients without having to define an additional 

thresholding parameter. Spatially contiguous clusters occur because the log-Jacobian maps 

are spatially smooth.

Successful employment of sCCA in other recent neuroimaging studies have been reported in 

the literature, Avants et al. (2010); Chi et al. (2013); Duda et al. (2013); Avants et al. (2014). 

The related PLS method is also widely and successfully used in neuroimaging studies, 

Streissguth et al. (1993); Bookstein (1994); McIntosh et al. (1996); McIntosh and Lobaugh 

(2004); Krishnan et al. (2011); Lorenzi et al. (2016a,b).

Sparse CCA provides a linear combination of voxels in Jacobian determinant maps that are 

maximally correlated to a linear combination of cognitive subtests. We call these linear 
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combinations, canonical variables v and w. To find maximally correlating canonical 

variables, we solve

maximize
v, w

Corr(Xv, Yw)

subject to a constraint on the l2 norm v
2

2
≤ 1, w 2

2
≤ 1, and a constraint on the and l1 norm 

v
1

≤ c1, w 1 ≤ c2 of the canonical variables. We maximize this objective function (Witten 

et al., 2009) using the R package PMA and find an optimal sparsity regularization parameter 

pair c1 and c2 through permutation tests (explained in next section).

This optimization problem has an intuitive interpretation; we project X onto the candidate 

canonical variable v, and Y onto w resulting in two new vectors that are elements in a n-

dimensional Euclidean space (this dimension is given by the number of observations). In this 

common n-dimensional space we optimize correlation by reprojecting X and Y onto slightly 

modified canonical variable candidates until we find the maximum.

The signs of canonical variables v and w are not identifiable. More precisely, the following 

solutions (v, w) and (−v, −w) are equivalent. We account for this by constructing score 

functions and test statistics that are invariant to sign flips.

2.7.1 Group Differences—The main goal of this study is to find differences between 

TS and control girls in terms of brain-cognition associations. To accomplish this goal, we 

designed a new nonparametric permutation-based test procedure.

We have three different sources of information: First, morphometry measurements in the 

form of log-Jacobian maps stored as images. Second, the cognitive tests stored in a data 

table. Third, the group label factor with two levels encoding whether a participant belongs to 

the TS or healthy control group. To make the data amenable for analysis with sCCA, we 

split the data into an imaging and non-imaging table by joining group labels and cognitive 

tests, denoted by Y~ . In this form, we can pass it to sCCA and compute maximally correlated 

canonical variables. Cognitive tests will have large coefficients in the canonical variables if 

they correlate with morphometry measurements. In addition, large group label coefficients 

provide evidence of differential interactions between morphometry measurements and 

cognitive tests.

2.7.2 Computing Canonical Variables—In sCCA, we need to define one 

regularization parameter per data table c1 and c2. We find optimal regularization parameters 

for the TS group by the permutation-approach implemented in R package PMA, which 

computes the null distribution of Corr(Xv, Yw) and selects the most significant model 

according to the highest z-statistic. We choose not to regularize the cognitive subtest 

canonical variables because we have more observations than subtests and thus all cognitive 

coefficients can be estimated. The regularization strength for the morphometry 

measurements will set the detectable cluster size. A strong regularization will produce small 
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clusters, whereas weak regularization large clusters. In case of strong correlations this 

optimization will choose a weak regularization and produce large voxel clusters, whereas 

with weaker correlations it will choose a strong regularization and produce small voxel 

clusters.

Before going into details of the randomization test with permutations, we define 

permutations π to be in the group of permutations π ∈ G, an element from that group 

describes a reordering of the rows of Y~  by sampling rows without replacement. We further 

define that the first permutation π1 is the identity permutation representing the unpermuted 

case, and the other 1−B per mutations are actual permutations π2,…, πb,…, πB to create the 

null distribution.

Our procedure starts by computing the unpermuted observed case X, π1(Y)  by first 

optimizing regularization parameters c1 and c2 and then solving

v
π1 , w

π1 = maximize
v, w

  Corr Xv, π1(Y)w .

Next, we compute sCCA’s on the permuted datasets X, πb(Y)  by optimizing regularization 

parameters c1 and c2 and then solving

v
πb , w

πb = maximize
v, w

   Corr Xv, πb(Y)w .

To assign significance levels to voxels, cognitive tests, and group labels, we need to define 

test statistics. A good test statistic is problem-specific. In our case, we have to design a 

separate test statistic for morphometry measurements X, cognition tests, and group labels Y~

incorporating the different nature of the data. For X, we include the spatial nature of log-

Jacobian maps by defining cluster size test statistics, and for Y~, we consider the absolute 

values of the canonical variables directly.

2.7.3 Test Statistic for Morphometry Measurements—On the imaging side, we 

design a test statistic that captures the spatial dependency structure of log-Jacobian maps. 

We begin by mapping the vector v(πb) to its corresponding spatial image. We then threshold 

voxels that have non-zero coefficients resulting in a binary image, and group neighboring 

non-zero voxels into clusters. This will result in a list of voxel clusters ordered from largest 

to smallest Ω1,…, Ωk.

To increase power to detect larger clusters, we only consider clusters of size at least half the 

smallest region in the Harvard-Oxford cortical atlas (half region because this atlas combines 

left and right regions into one label). In total we have K test statistics per image. We define 

the kth cluster size test statistics to be
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TX, k(v) = ∑
i ∈ Ωk

vi .

We can now compute p-values by counting the number of cluster sizes that are at least as 

large as the observed size divided by the total number of permutations

p − value k = 1
B ∑

b = 1, …, B
I TX, k v

π1 ≤ TX, k v
πb

for all k = 1;…,K clusters.

Finally, to account for multiple testing of the K cluster sizes, we adjust p-values using the 

Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995).

The size of the clusters depend on the location within the gray matter. Some regions are 

anatomically larger. This leads to larger cluster size test statistics in these regions. To 

account for this location dependency in our test statistic, we compare the cluster sizes 

according to their rank, e.g. the unpermuted largest cluster with the permuted largest 

clusters.

2.7.4 Test Statistic for Group Labels and Cognitive Tests—We define the test 

statistic for the cognitive canonical variables to be the magnitude of studentized absolute 

values of the coefficients. We denote μ
wl

 as the sample mean and σ
wl

 as the sample 

standard deviation of the lth element computed across all permutations. We denote the 

statistic of the lth element of the coefficient vector as

TY, l
(w) =

wl − μ
wl

σ
wl

.

This test statistic is invariant to sign flips to account for non-identifiability inherent in sCCA.

By counting the number of times that the permuted test statistic is at least as large as the 

unpermuted statistic

p‐valuel = 1
B ∑

b = 1, …, B
I TY, l

w
π1 ≤ TY, l

w
πb

we obtain the p-values for all subtests l = 1,…, 27 on the same b = 1,…, B permutations. 

Since we obtain 27 p-values we again adjust using the BH procedure.
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2.8 Relationship to Suprathreshold Cluster Size Test

We use cluster sizes as the test statistics to incorporate spatial dependencies between voxels. 

This is inspired by the suprathreshold cluster size permutation test commonly used in 

neuroimaging studies (Poline and Mazoyer, 1993; Roland et al., 1993; Nichols and Holmes, 

2002). The usual procedure is to perform separate two-sample tests at each voxel position 

using the t-test or a rank-based test such as the Wilcoxon two-sample rank test, and then to 

adjust for multiple testing using the suprathreshold test. The simplest version of the 

suprathreshold test comprises of two steps: first threshold the voxelwise p-value image by a 

fixed primary value, e.g. αI = 0.001, and second, identify the significantly connected spatial 

contiguous clusters at this threshold using the secondary significant level, e.g. αII = 0.05. By 

regulating the primary threshold one can choose to detect few large clusters (large αI) or 

many small clusters (small αI). The choice of the primary threshold defines the “scale” of 

the analysis.

In our procedure, the first stage corresponds to finding connected components in the zero/

non-zero coefficient binary image, and the second stage corresponds to counting cluster 

sizes in the usual way. Our procedure thus differs in the way we handle the first stage, 

adapting it to multi-table methods.

2.9 Single-Table Analysis: Using Two Separate Principal Component Analyses

We compare our proposed permutation-based multi-table analysis to single-table analyses. 

First, we perform two separate Principal Component Analysis (PCA) on the morphometry 

matrix X and the cognitive test matrix Y. Then, we reduce the dimensionality by identifying 

the PCs that explain a large amount of variability and separate TS from healthy control 

participants. Ideally, the major variability in the data is due to the group difference, and we 

will only need to keep one PC per matrix. We then represent morphometry and cognition 

with their respective PCs. To test whether there is an interaction between morphometry and 

cognition, we can use a linear model with an interaction term. We define the cognition PC as 

the response variable, the morphometry PC as an explanatory variable (including an 

intercept), and add and interaction term diagnosis × morphometry PC. To assess if the 

interaction terms explains additional variability, we can use ANOVA to compare the model 

“with interaction term” to the model “without the interaction term”, or we can test if the 

coefficient representing the interaction term is zero.

3 Results

After data removal and imputation of missing values in the cognitive subtests, our sample 

size was 53 TS and 45 control participants. The two groups are age matched. There is no 

evidence that the two age distributions are shifted (p-value from two-sided Wilcoxon rank 

sum test is p = 0.9), and no evidence for a difference in scale (Mood Two-Sample Test of 

Scale is p = 0.3 and Ansari-Bradley Test is p = 0.4). Furthermore, a x2 test of homogeneity 

for Tanner stages for the first three stages (not enough observations in stage four and five, so 

we merged stages three, four, and five) yielded a p-value of 0.4, thus favoring the null 

hypothesis of equal distribution of participants for the two groups. The overall Full Scale IQ 
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for TS girls is 94 ± 14 and for control girls is 113 ± 12, clearly different between the two 

groups.

A sampling bias might exist because of our recruitment methods (conferences, online 

advertisements, local print media, and parent networks). Comparable differences in Full 

Scale IQ between children with TS and healthy controls have been reported in the literature: 

Rovet (1993) reported a mean difference of 13.4 in a study comparing 67 children with TS 

and 27 healthy controls, and Mazzocco (1998) reported a mean difference of 14.9 in a study 

comparing 29 children with TS and 16 sibling healthy controls.

All reported p-values are adjusted using the Benjamini-Hochberg (BH) procedure 

(Benjamini and Hochberg, 1995) to control the False Discovery Rate (FDR). If not explicitly 

stated, we declare significance below an FDR of 5%.

3.1 Multi-Table Analysis

3.1.1 Neuroanatomical Canonical Variable Plots—The permutation test for the 

morphometry measurements yielded two significant clusters (Figure 1 top). The optimal 

regularization parameter was 0.1. The clusters are larger in the TS than in the control group 

(Figure 1 bottom). The clusters partially overlap with the intracalcarine, precuneous, cuneal, 

and supracalcarine cortex in the left and right occipital lobe.

3.1.2 Cognitive Canonical Variable Plots—The permutation test for the cognitive 

scores found 22 tests and the diagnosis as different (Figure 2). Tests come from all five 

NEPSY domains. All marginal distributions of each test score are lower or similar in TS 

compared to the healthy control group (Figure 3).

3.1.3 Joint Neuroanatomy-Cognition Plots—Our new procedure provides a filtering 

tool to select differential correlations between a priori unknown brain regions and cognitive 

tests. A non-zero effect of the diagnosis reflects an interaction between brain regions and 

cognitive test scores. We can explore this correlation structure with scatter plots between 

cluster sizes and cognitive tests (Figures 4 and 5). We compute cluster sizes for each 

participant by summing over each participant’s Jacobian determinant map within a cluster.

In both Cluster 1 and Cluster 2, we observe that TS participants have lower scores compared 

to their healthy controls. This confirms our findings from the marginal distribution plots in 

Figure 3. Visually, we can compare the two slopes per facet. For example, in Cluster 1, 

Auditory Attention and Auditory Attention Correction show a decline in test score with 

increasing cluster size in the healthy control group and an increase in test scores in the TS 

group. In Cluster 2, Arrows and Picture Puzzles show an increase in test score with 

increasing cluster size in the healthy control group, whereas a decline in test score in the TS 

group.

We avoid assigning significance levels to the slopes in the scatter plots because the cluster 

selection and cognitive test selection was done on the same data. We think of these plots as 

an exploratory way to interpret the multivariate results.
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3.2 Single-Table Analysis

In this section, we compare our multi-table analysis with two single-table analyses. When 

doing PCA on the cognition test and morphometry tables separately, we notice that the first 

PC separates between control and TS groups (Figures 6 and 7). We take advantage of this by 

reducing our original data to two vectors. To test for interaction, we compare two linear 

models. Model one, has as the response variable morphometry PC1, and explanatory 

variables, cognition PC1 and an intercept. Model two, has the same terms plus an additional 

cognition PC1 × diagnosis (TS or control) interaction term. We found no evidence that the 

interaction term explains more variance as the ANOVA comparison of the two model fits 

yielded a p-value of 0.6. We also tested the interaction term directly by testing the null 

hypothesis that its coefficient is zero. This test yielded a p-value of 0.7 confirming the 

previous test of no evidence for a global brain-cognition interaction.

4 Discussion

In this study we sought to investigate brain-behavior associations of gray matter volume and 

cognitive abilities in a large cohort of females with Turner syndrome. Overall we found two 

voxel clusters and a wide range of cognitive subtests that show an aberrant association in TS 

compared to the control group.

4.1 Joint Neuroanatomy-Cognition Interpretation

Most functional imaging studies on TS report aberrant activation in frontal and parietal lobes 

(Molko et al., 2003; Kesler et al., 2004; Hart et al., 2006; Bray et al., 2011). We observe 

putative, disorder-relevant findings in the occipital cortex. We did not find aberrations in 

frontal and parietal cortices. Discrepancies between our and previous findings are expected 

considering our focus on brain-cognition as opposed to brain-only aberrations. Note that 

these results do not contradict but extend previous findings.

The heterogeneous cognitive profile in TS is believed to span over many cognitive domains 

(Kesler, 2007; Hong et al., 2009). In particular, the arrow subtest showed significant 

between-group differences, a finding which is consistent with Green et al. (2014) who found 

decreased arrows subtest scores in TS. The others sub-tests are to the best of our knowledge 

potential new discoveries and have not been investigated in TS.

4.2 Comparison of Multi-Table and Single-Table Analysis

Our single-table analysis is a global analysis describing cognition and morphometry with 

one variable each, whereas our multi-table analysis is a local analysis on individual voxel 

clusters and test scores. One can think of the two analyses in terms of a global test, such as 

testing for equal mean across multiple groups without identifying which group drives the 

difference, and a local test, such as two-sample pairwise tests. Analog to hypothesis testing, 

not rejecting the global null hypothesis does not imply that the local tests will not be 

rejected. It is more helpful to consider it as providing two levels of analysis. Best practice 

would be to perform both analyses and to form an opinion considering both results.
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5 Conclusion

In this article, we present a combined statistical analysis of neuroanatomy and cognition in 

girls with TS and healthy controls. The estimated canonical variables show aberrant 

associations located in the occipital lobe and a wide range of cognitive tests.

Sparse CCA in combination with a cluster size test statistic yields a meaningful dimension 

reduction from thousands of voxels to a few voxel clusters. We showed that multi-table 

analysis can be used in combination with permutation tests to assign p-values to sets of 

meaningful coefficients. This is a very promising path for complex neuropsychiatric disease 

research given that pairwise association tests cannot capture the multivariate nature of the 

data. For neuropsychiatric diseases we expect to find multi-node pathways and thus our 

presented multi-table method is a valid candidate approach. However, there is no “free 

lunch”, and the price paid for increase in power is greater ambiguity in the interpretation of 

the results.

As an alternative to sCCA, one can preprocess the data matrices X and Y using PCA and 

reduce dimensionality so that we have fewer components than observations and apply 

standard CCA (Smith et al., 2015). This approach exploits the strong spatial correlation 

structure in the data and allows one to reduce the dimensionality. However it involves two 

choices: first, one has to choose the right number of components to retain, and second, one 

has to select the top most important features and ignore small but still nonzero features. By 

assuming sparsity we can avoid both subjective choices and select appropriate 

regularizations using data driven permutation tests.

Another option would be to split the data into two pairs of data tables, compute two separate 

sCCA’s, and construct a test statistic that contrasts canonical variables. Our experiments 

with this approach showed that it is challenging to match canonical variables from separate 

sCCA optimizations into one consistent analysis. However, if such a matching could be 

found it would provide a more direct separation between groups.

We imputed missing values in the cognitive sub-tests and computed the average dataset over 

all imputed datasets. As it is well known, this underestimates the variability. To test how 

sensitive our results are to imputation, we repeated the analysis five times with different 

random seeds. The repeated analyses selected the same clusters and mostly the same 

cognitive tests. In the manuscript, we show the most conservative result. In the 

supplementary materials, we report all five analyses.

The construction of Jacobian determinant maps involves several processing steps (ACPC 

alignment, re-sampling, bias field correction, skull stripping, and registration). Each step can 

impact our final statistical conclusions. In future work we aim to better quantify uncertainty 

in neuroimaging pipelines and how uncertainty can be propagated to the analysis level.

Our goal here was not predictive, we have not assigned a response status to either the 

behavioral tests or the anatomical measurements; we have only looked for TS-aberrant 

associations.
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Interactions between neuroanatomy and cognition can change with age and throughout 

developmental stages. Such changes can be unrelated to TS. We are currently collecting 

longitudinal data to investigate how associations change over time.

It is critical to extend our understanding of brain-cognition associations to advance the field 

of clinical neuropsychiatry with the hope of designing new targeted interventions for 

disorders and diseases such as TS.

Information Sharing Statement

We implemented the R package braincog available on GitHub.2 Our complete analysis 

workflow is in one Rmd file called Interactions.Rmd also available on GitHub.3 All results 

and plots can be completely reproduced by running:

R -e “rmarkdown::render(‘Interactions.Rmd’)”

This command will produce an Interactions.html report. The computation time for 1000 

permutations on a regular laptop with two CPU cores is about 5 days. We recommend using 

a computing cluster reducing computation time to few hours. Our R pacakge braincog is 

slurm cluster compatible.

The image registration steps including template and Jacobian maps construction are 

available as batch scripts and need to be run prior to the Rmd files.

Processed data are available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Top: Two significant voxel clusters from the multi-table differential correlation analysis. 

Bottom: Actual observed cluster sizes for each participant in mm3. One point represents one 

participant. The points are arrange to avoid overlaps. If overlap occurs, points are 

horizontally shifted by a small amount.
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Fig. 2. 
Violin plots represent the null distribution of the test statistic. Black circles represent the 

observed test statistic.
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Fig. 3. 
Empirical cumulative distribution function of selected tests.
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Fig. 4. 
Scatter plot of cluster size of Cluster 1 versus cognitive test scores. Points are participants. 

Lines are linear model fits.
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Fig. 5. 
Scatter plot of cluster size of Cluster 2 versus cognitive test scores. Points are participants. 

Lines are linear model fits.
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Fig. 6. 
PCA of brain morphometry measurements. Left: Each shapes is one participant projected 

onto PC1 and PC2. Right: In red, the 10% largest (positive) coefficients in the PC1 loadings. 

In blue, the 10% smallest (negative) coefficients in the PC1 loadings. Blue brain regions are 

larger in the TS group and smaller in the healthy control group. Red brain regions are larger 

in the healthy control group and smaller in the TS group.

Seiler et al. Page 22

Neuroinformatics. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
PCA of cognition tests. Top: Each shapes is one participant projected onto PC1 and PC2. 

Bottom: Loadings of PC1. All cognitive test scores except Visuomotor Precision Completion 

Time are higher in the healthy control group.
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