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12 Abstract
13 Neuroimaging science has seen a recent explosion in dataset size driving the need to develop database management with efficient
14 processing pipelines. Multi-center neuroimaging databases consistently receive magnetic resonance imaging (MRI) data with
15 unlabeled or incorrectly labeled contrast. There is a need to automatically identify the contrast of MRI scans to save database-
16 managing facilities valuable resources spent by trained technicians required for visual inspection. We developed a deep learning
17 (DL) algorithm with convolution neural network architecture to automatically infer the contrast of MRI scans based on the image
18 intensity of multiple slices. For comparison, we developed a random forest (RF) algorithm to automatically infer the contrast of
19 MRI scans based on acquisition parameters. The DL algorithm was able to automatically identify the MRI contrast of an unseen
20 dataset with <0.2% error rate. The RF algorithm was able to identify the MRI contrast of the same dataset with 1.74% error rate.
21 Our analysis showed that reduced dataset sizes caused the DL algorithm to lose generalizability. Finally, we developed a
22 confidence measure, which made it possible to detect, with 100% specificity, all MRI volumes that were misclassified by the
23 DL algorithm. This confidencemeasure can be used to alert the user on the need to inspect the small fraction ofMRI volumes that
24 are prone to misclassification. Our study introduces a practical solution for automatically identifying the MRI contrast.
25 Furthermore, it demonstrates the powerful combination of convolution neural networks and DL for analyzing largeMRI datasets.

26 Keywords Convolutional neural network . Deep learning . Magnetic resonance imaging . Database management . Automatic
27 contrast identification

28

29 Introduction

30 A recent trend in the neuroimaging community has been to
31 increase dataset size in order to improve the power of studies
32 (Marcus et al. 2013; Weiner et al. 2013; Zuo et al. 2014).
33 Successfully managing large datasets requires multiple servers
34 for storage, software for efficient access and management, and
35 personnel, i.e., system administrators and software developers.

36There have been great efforts to develop the framework and
37software to facilitate the setup of a successful neuroimaging
38database (Cheng et al. 2009).
39Large neuroimaging databases have been setup in academ-
40ic imaging centers and high-tech companies, often for accu-
41mulating data frommultiple clinical trials. A generic schemat-
42ic for the hierarchy of the parties involved in acquiring brain
43magnetic resonance imaging (MRI) data is illustrated in
44Fig. 1. In the dataset we analyzed, distinct neuroimaging sites
45acquire brain scans, then typically, a neuroimaging processing
46company serves as the MRI reading center for the trial and
47analyzes the data to provide informative results. Clinical trials
48investigate the efficacy of a drug in one of two ways: (1) make
49a cross sectional comparison between one patient group taking
50the drug of investigation and another patient group taking
51either placebo or the standard of care drug or (2) make a
52longitudinal comparison within a group of patients, before
53and after taking the drug. Investigators working in the clinical
54trials provide specific detailed guidelines including
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55 acquisition parameters and instructions for the patients to ac-
56 quire several different types of brain MRI contrasts acquired
57 in different scans. This helps to minimize variability between
58 datasets and increase precision of the results.
59 A typical clinical trial is associated with heterogeneity in
60 scanner platforms and data export workflows across several
61 MRI facilities acquiring data for the study. Therefore, theMRI
62 contrast cannot be reliably determined from the names of the
63 corresponding data files or the description of the acquisition
64 included within the file metadata. The MRI technicians may
65 not strictly follow the guidelines or use slightly altered acqui-
66 sition parameters. In addition, during data conversion, the
67 DICOM header may be corrupted and not have the necessary
68 information. Finally, the scan parameters could not help to
69 distinguish T1-weighted images before and after contrast
70 (i.e. T1P and T1C). Manual entries are required by the MRI
71 technicians to distinguish T1P and T1C, a process that is
72 prone to error. The gold standard for identifying the contrast
73 of a MRI volume is for a trained technician to use visual
74 inspection. The number of MRI scans can reach into the thou-
75 sands for a single trial, therefore human visual inspection
76 takes up valuable time and resources (Gardner et al. 1995;
77 Pizarro et al. 2016). Thus, the ability to identify the contrast

78of the scan automatically would represent a significant reduc-
79tion of time, labor and cost.
80Current in-house practice for brain MRI contrast identifi-
81cation is a semi-automated process. The first step is to use a
82decision-tree (DT) algorithm that exploits the acquisition pa-
83rameters recorded within the metadata of a MRI volume. In a
84second step, the MRI volumes undergo interactive quality
85control, at which time the operator can manually rename
86MRI volumes, if the contrast has been incorrectly identified
87by the DT algorithm. This semi-automated process is limited
88in cases when the metadata does not contain sufficient infor-
89mation to correctly distinguish between similar contrasts e.g.,
90T1-weighted images before and after the injection of gadolin-
91ium contrast. Another limitation is the requirement for contin-
92ual updates of the DT algorithm when new contrasts are intro-
93duced, making the algorithm difficult to maintain. Finally, the
94current approach fails to utilize any of the information
95contained within the intensity values of the images, relying
96solely on 1% of the available data.
97To our knowledge, no method currently exists to automat-
98ically identify the contrast of a MRI scan based on the image
99contrast. Such a fully automated algorithm can potentially
100overcome the problems that arise from existing solutions.

Fig. 1 Schematic diagram to illustrate hierarchy of parties involved in
acquiring the neuroimaging dataset we analyzed. For each trial, different
neuroimaging sites were hired to scan multiple subjects. Each subject was
scanned multiple times over different days. In each visit, a subject was

scanned multiple times with different MRI contrasts. The MRI datasets
accounting for over 105 scans are transferred for systematic and objective
analysis
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101 Here we present a deep learning (DL) algorithm developed to
102 automatically identify the contrast of a brain MRI volume. We
103 discuss the model architecture for neural networks used se-
104 quentially and how the DL algorithm was trained, validated,
105 and tested. The DL algorithm predicted data from an unseen
106 dataset containing five contrasts with 0.15% error rate and
107 another dataset containing eight contrasts with 0.19% error
108 rate. For comparison, we developed a random forest (RF)
109 algorithm to automatically identify the contrast of a brain
110 MRI volume. The RF algorithm predicted data from an un-
111 seen dataset containing eight contrasts with 1.74% error rate.
112 We demonstrate how smaller dataset sizes decrease the per-
113 formance of the DL algorithm. We computed receiver operat-
114 ing characteristic (ROC)-based contrast-specific probability
115 thresholds, developed for the user of the DL algorithm.
116 Finally, we discuss the utility of this algorithm and how it
117 has been implemented in practice. We used the notation
118 throughout the manuscript that boldface symbols represent
119 vectors and matrix size is specified as k × l ×m.

120 Methods

121 The database we analyzed, courtesy of NeuroRx Research,
122 was constructed through a processing pipeline to process over
123 105 MRI datasets. The contrasts of the MRI volumes were
124 identified in the beginning of the pipeline with a semi-
125 automated process consisting of a DT algorithm and manual
126 intervention process. We used the results of our semi-
127 automated process as the ground truth for this project. We
128 developed two algorithms to automatically identify the con-
129 trast of a MRI volume based on the ground truth. The first
130 method used a RF classifier that considered scan parameters
131 and basic image statistics as input features, while the second
132 method used a DL algorithm based on convolutional neural
133 network. We assessed and compared the performance of the
134 two algorithms in predicting an unseen dataset. We assessed
135 the DL algorithm in more detail to describe its efficiency in
136 predicting the various contrasts and develop an ROC-based
137 contrast-specific probability threshold.

138 Neuroimaging Dataset

139 The hierarchy of the parties involved in acquiring the neuro-
140 imaging data is illustrated in Fig. 1. In the dataset we analyzed,
141 an overall hundreds of neuroimaging sites were contracted to
142 acquire patient brain scans. Since part of the clinical trials
143 required longitudinal imaging, each subject had up to N
144 timepoints, where N is based on the study aim; a defined set
145 of contrasts was acquired at each timepoint.
146 A pipeline was developed for efficient processing of the
147 data. The pipeline consisted of multiple sequential phases,
148 meaning successful output of a previous phase was a

149prerequisite prior to processing the next phase. MRI contrast
150identification is a critical task performed at the initial phase of
151the pipeline. We evaluated the DL algorithm performance in
152two stages. In stage I, we developed the DL algorithm and
153investigated how the dataset size influenced performance by
154generating equally balanced datasets of smaller size. We used
155a balanced dataset with 40,283MRI scans, containing the five
156most common contrasts, and referred to, hereon, as the refer-
157ence dataset. After developing the DL algorithm in stage I, we
158included additional and less common contrasts in stage II to
159test whether the algorithmwas able to retain high performance
160when an unbalanced sample was used. In stage II, we used a
161dataset with 45,785 MRI scans, incorporating three additional
162contrasts, and referred to, hereon, as the extended dataset.

163Target Contrast, the Ground Truth

164We previously developed a semi-automated algorithm in
165house to identify the MRI volume contrast using the
166following two steps. In step 1, a customized DT algo-
167rithm was used on acquisition parameters contained in
168the metadata of each MRI scan to identify the contrast.
169In step 2, trained MRI experts visually inspected the
170dataset slice-wise, as part of an interactive quality control
171process. If necessary, MRI volumes were manually
172renamed to reflect the correct contrast. We used the
173semi-automated process to generate the target contrast,
174ci, defined as a binary class vector of size C × 1 where
175C is the total number of contrasts. The target contrast
176corresponded to our ground truth, which were used to
177train, validate, and test the DL and RF algorithms eval-
178uated in this manuscript.

179Deep Learning (DL) with Neural Networks

180We developed a DL algorithm with neutral networks to infer
181the contrast of a MRI volume based on image intensity. The
182DL algorithm consisted of an initial convolutional neural net-
183work (CNN), which inferred the contrast on a single slice of
184the MRI, and a subsequent dense neural network (DNN),
185which relied on the CNN output to infer a contrast for the
186entire MRI volume. We made the implementation openly
187available on GitHub (https://github.com/AS-Lab/Pizarro-et-
188al-2018-DL-identifies-MRI-contrasts) and developed the
189algorithm in Python with a Theano backend (Al-Rfou et al.
1902016) and compiled on Keras (Chollet 2015). Keras is a high-
191level software package that provides extensive flexibility to
192easily design and implement DL algorithms. We manually
193selected all of the parameters that defined the network archi-
194tecture, including the number and type of layers, the number
195of layer nodes, and C, the number of final possible contrasts.
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196 Convolutional Neural Network (CNN) Architecture

197 The CNN architecture was based on an existing
198 convolution-based neural network, made publicly avail-
199 able in Keras (Chollet 2015). The architecture was pre-
200 viously developed to identify the content on 32 × 32
201 images from CIFAR10 (Krizhevsky and Hinton 2009).
202 In particular, it consisted of a sequential model written
203 in modular form as illustrated in Fig. 2. The first three
204 modules were convolutional modules with a final down-
205 sampling operation. Each convolutional module
206 consisted of the following seven operations: 2D convo-
207 lution (Krizhevsky et al. 2012), batch normalization
208 (Ioffe and Szegedy 2015), rectified linear unit (ReLU)
209 activation (Dahl et al. 2013), 2D convolution, batch
210 normalization, ReLU activation, and max pooling
211 (Krizhevsky et al. 2012). The final CNN module was
212 essentially a fully connected network (Bengio 2009) that
213 inferred the contrast of the MRI volume. It consisted of
214 reshaping the output of the final convolutional module
215 to a linear array, comprising the following operations:
216 fully connected network (i.e. dense), batch normaliza-
217 tion, ReLU activation, fully connected network, and a
218 softmax activation (Dunne and Campbell 1997).
219 The cited references provide in-depth detail regarding
220 each operation; however, a brief description and

221motivation for each layer follows. The input layer pre-
222pared the data to have size 1 × 32 × 32 with the image
223processing steps described in 2.5.2. A 2D convolution
224layer generated the convolution of an image and a kernel
225of size 3 × 3. For instance, the first 2D convolution layer
226estimated 32 kernels of size 3 × 3. An image of size 1 ×
22732 × 32 was convolved with each kernel to generate 32
228images, making the output of size 32 × 32 × 32. A 2D
229convolution “viewed” different areas of the image, and
230as depth increased, the scope widened. Batch normaliza-
231tion, as the name implies, normalized each image by re-
232moving the intensity mean and standard deviation. Batch
233normalization was used to accelerate the training of a deep
234network, shown to reach optimum parameters in less steps
235(Ioffe and Szegedy 2015). In a ReLU operation, any in-
236tensity value <0 was set to 0, while any value ≥0 was
237unchanged. A ReLU operation introduced a nonlinear
238function and efficiently replaced the previously used sig-
239moid operation. A max pooling operation extracted the
240element with the highest value within a window of size
2412 × 2, effectively reducing the image size by 2. Max
242pooling was used to avoid over-fitting and reduce the
243computational cost. A softmax activation operation trans-
244formed the arbitrary values to probability values between
245[0, 1]. A softmax activation was used to make a final
246selection output as a contrast probability, pC, of size C × 1.

Fig. 2 The convolutional neural
network (CNN) architecture was
comprised of 27 sequential layers.
There were three repeating
modules (green, blue, orange) of
seven layers. The first module is
detailed on the left; rectified linear
unit is abbreviated as ReLU. The
purple module was a fully
connected network that contained
the bulk (90%) of the network
parameters and inferred the
contrast on each slice. The data
size is presented above in
parentheses before and after each
layer. For example, the input was
one slice with size 1 × 32 × 32,
the input to the fully connected
network (in purple) was of size
128 × 2 × 2, and the final output
was the inference with size C × 1,
where C is the total number of
contrasts
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247 Dense Neural Network (DNN) Architecture

248 The CNN generated inference, pC, on a per-slice basis, yet we
249 were interested in making an inference on the entire MRI
250 volume. We developed an additional dense neural network
251 (DNN), illustrated in Fig. 3, to compute a volumetric infer-
252 ence, p. First, the input to DNN of size n ×Cwas generated by
253 computing CNN-generated pC on n = 30 slices. The DNN
254 architecture was made from similar types of layers as the fully
255 connected portion of the CNN algorithm (purple module in
256 Fig. 2). The DNN output, p, of size C × 1 approximated the
257 probability the MRI volume belonged to one of the possible
258 contrasts, C.

259 Neural Network Parameters Estimation

260 The neural network parameters were estimated to minimize
261 the loss, defined in Eq. (2) as the categorical cross-entropy
262 (Murphy 2012). The parameter space was trained using
263 Adam RMSprop with Nesterov momentum (Dozat 2015).
264 The DL algorithm was compiled to run on a Nvidia Quadro

265K2200. The GPU ran about 20 times faster when compared to
266a CPU. This increase in speed provided an efficient way to
267iteratively explore and improve the DL algorithm. The full
268training process took approximately 20 h to complete.
269We used a cross-validation scheme described in 2.5.4 to
270generate training, validation, and testing subsets. We used
271the training subset to estimate the neural network parameters.
272The training subset was loaded in batches, with sizes empiri-
273cally determined by the limit of the GPU memory. The vali-
274dation subset was used to estimate performance at the end of
275each estimation epoch. The algorithm ran for a total of 1000
276estimation epochs, where each epoch consisted of 20 estima-
277tion steps. During each step, the algorithm used 600 slices,
278consisting of n = 30 slices taken from 20 randomly selected
279MRI volumes. The estimation procedure used 400 volumes
280per epoch for 1000 epochs, resulting in the algorithm going
281through the entire training subset approximately 10 times.
282This redundancy increased the probability that the algorithm
283used data from eachMRI volume in the training subset at least
284once. After the estimation procedure completed 1000 epochs,
285the neural network parameters were saved to predict the data
286from the testing subset.

287Random Forest (RF) Approach, Developed
288for Comparison with DL

289We developed a RF classifier to characterize the baseline per-
290formance for a comparable algorithm that can automate the
291inference of a MRI contrast. A RF algorithm is a discrimina-
292tive classifier that consists of an ensemble of DT classifiers,
293where the final classification is determined by summing the
294votes cast by each individual tree (Breiman 2001). RFs have
295been shown to be a powerful automatic classification ap-
296proach in a wide range of classification tasks. The RF input
297features used in this work consisted of the acquisition param-
298eters, including the echo time (TE), repetition time (TR), and
299flip angle, which were extracted from the MRI scan metadata.
300Additional input features included basic image intensities sta-
301tistics: percentiles and mean. The complete list of features
302used for the RF algorithm can be found in section “Feature
303extraction for the RF algorithm”.

304Automated Algorithms Evaluation

305We evaluated the DL and RF automated algorithms in the
306following way. First, we defined the metrics used to estimate
307performance of the DL and RF algorithms at different devel-
308opmental stages. Second, we processed all the MRI volumes
309to prepare the slices for input into the CNN. Third, we extract-
310ed features for the RF algorithm from the DICOM header and
311MRI intensity profile. Fourth, we developed a cross-validation
312scheme to generate uncorrelated subsets and evaluate the two
313algorithms with unseen data. Fifth, we assessed the algorithms

Fig. 3 A dense neural network (DNN) was used to make a volumetric
inference from n slices. The DNNwas comprised of five sequential layers
and made a final inference on the MRI volume; rectified linear is
abbreviated as ReLU. The parentheses represent the data size as input
and output to each layer
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314 in two stages, with datasets comprising of five contrasts and
315 eight contrasts, respectively. Sixth, we studied how the dataset
316 size affected performance for five contrasts. Finally, we plot-
317 ted the distribution of the inferences made to describe how to
318 compute a contrast-specific probability threshold.

319 Performance Evaluation

320 We evaluated the DL and RF algorithms at different develop-
321 mental stages by computing metrics that estimated perfor-
322 mance. We computed the error rate, ε, of each algorithm,
323 based on accuracy, to focus our attention on the incorrectly
324 identified MRI contrasts. We estimated performance of an
325 algorithm by measuring ε, defined to be:

ϵ ¼ 1−accuracy ¼ 1−
1

N
∑
N

i¼1
ci•pi ð1Þ

326327 where ci is the target contrast and pi is the algorithm-generated
328 contrast probability. The error rate was estimated by averaging
329 the total number of MRI volumes used over N.
330 The DL algorithm was trained to minimize the loss defined
331 to be the categorical cross entropy, H. We defined the cross
332 entropy to be a measure of the distance of the algorithm-
333 generated contrast probability from the target contrast. For
334 one MRI volume, i, we defined Hi as follows:

Hi ci; pið Þ ¼ − ∑
C

j¼1
ci jð Þlogpi jð Þ ð2Þ

335336
337

338 The cross entropy was estimated over all possible modali-
339 ties, C. For multiple MRI volumes, the categorical cross en-
340 tropy was averaged over N, as in Eq. (1).
341 We generated confusion matrices to visualize the DL
342 and RF algorithms’ classification performance per con-
343 trast. We tracked the number of MRI volumes per con-
344 trast where each algorithm-generated prediction agreed
345 or disagreed with the ground truth. The vertical axis
346 of the confusion matrix is the contrast as determined
347 by the DL or RF algorithm, while the horizontal axis
348 of the confusion matrix is the ground truth. The num-
349 bers along the diagonal of the confusion matrix reflect
350 the number of MRI volumes when the algorithm-
351 generated prediction and the ground truth agreed. The
352 numbers off of the diagonal of the confusion matrix
353 ref lect the number of MRI volumes when the
354 algorithm-generated prediction and the ground truth
355 disagreed.
356 We characterized the performance of the DL and RF
357 algorithms by computing the sensitivity and specificity
358 to estimate the ability of detecting each contrast.
359 Sensitivity estimates the algorithm’s capacity to correct-
360 ly identify that a MRI volume is a particular contrast
361 while specificity estimates the algorithm’s capacity to

362correctly identify that a MRI volume is not a particular
363contrast. The two metrics were defined as follows:

sensitivity ¼ TP
TP þ FN

specificity ¼ TN
TN þ FP

ð3Þ

364365where TP is the true positive count, FN is the false
366negative count, TN is the true negative count, and FP
367is the false positive count.
368We developed contrast-specific probability thresholds
369for the user of the algorithm, which minimized the er-
370rors made by the algorithm, reflected by maximizing
371sensitivity and specificity. A contrast-specific probability
372threshold, as opposed to taking the maximum value of
373the probability vector, would increase the confidence in
374the algorithm’s ability of making the prediction. To that
375end, we computed ROC curves to find the operating
376point that equally maximizes the algorithm’s sensitivity
377and specificity. We considered any probability value in
378the range [0, 1] to be a candidate threshold. For each
379candidate value, we computed the true positive rate
380(TPR) and false positive rate (FPR), as follows:

TPR ¼ sensitivity ¼ TP
TP þ FN

FPR ¼ 1−specificity ¼ FP
TN þ FP

ð4Þ

381382
383

384We then computed the operating point by weighing TPR
385and FPR equally and maximizing Youden’s index (Youden
3861950), defined as:

Youden’s index ¼ TPR−FPR ð5Þ
387388
389

390Image Processing

391We processed all MRI volumes to prepare the slices for input
392into the CNN. All MRI volumes were masked, down-sam-
393pled, and normalized, as follows. (1) We defined a mask to
394select n = 30 slices centered on the central slice of the volume.
395(2) Each slice was down-sampled to a 32 × 32 resolution, cho-
396sen empirically to provide sufficient data for distinguishing
397contrasts. Higher resolution slices did not improve results
398and caused memory issues. (3) Each down-sampled slice
399was then normalized over the intensity by subtracting the in-
400tensity mean and dividing by the intensity standard deviation.
401The processed images were then recombined and used as in-
402put for the DL algorithm. In summary, each MRI volume, i,
403generated n images with 32 × 32 resolution, each labeled with
404ci that specified the target contrast.
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405 Feature Extraction for the RF Algorithm

406 We extracted features for the purpose of automatic con-
407 trast identification using a RF algorithm. Table 1 sum-
408 marizes the acquisition parameters extracted from the
409 MRI DICOM header file. Non-numerical parameters
410 were mapped to integer values prior to being used as
411 an input feature.
412 In addition to the acquisition parameters described in Table
413 1, we extracted percentile intensities, as follows. We linearly
414 normalized each MRI volume to the range 0–100, then we
415 included the 70th, 80th, 90th, 99th, and 99.5th percentile in-
416 tensities for each volume as features for input to the RF clas-
417 sifier. Lower percentile intensities were not considered, as in
418 general approximately 66.7% of the MRI volume is back-
419 ground. These features were included as a coarse representa-
420 tion of intensity histogram shape, primarily in an effort to help
421 distinguish T1-weighted volumes with and without a contrast
422 agent, i.e., T1C and T1P in Table 2.

423 Cross-Validation Scheme

424 We developed a cross-validation scheme to divide the dataset
425 into uncorrelated subsets: training, validation, and testing
426 (Ripley 2007). The dataset contained MRI scans that were
427 highly correlated. Subjects were typically scanned in the same
428 site and scanner, causing the MRI volumes in a trial to be
429 correlated not only in terms of underlying anatomical

430structures, but also in terms of the image formation model.
431There was a need to provide a training subset which effective-
432ly characterized the variability of the scans. Our cross-
433validation scheme consisted of using a training subset with
434scans from all clinical trials, which proved to be the key to
435getting generalizable results. To that end, we incorporated the
436following two steps into splitting the data. First, we used a
437single timepoint for each subject, even if multiple timepoints
438were acquired. The first step ensured the subjects did not re-
439peat, thus reducing correlation across subsets. Second, we
440constructed the training, validation, and testing subsets, with
441randomly selected MRI volumes from all clinical trials and
442imaging centers. The second step ensured we characterized
443scanner variability.
444The training subset corresponded to 60% of the MRI vol-
445umes from the dataset and was used to estimate the DL and RF
446algorithms’ parameters. The validation subset corresponded to
44720% of the MRI volumes from the dataset and was used ex-
448clusively to track the DL algorithm performance after each
449estimation epoch completed, without feedback to the training.
450The testing subset corresponded to 20% of the MRI volumes
451from the dataset and was used to assess performance of the
452algorithms after training completed.
453We used the cross-validation scheme described above to
454divide the reference dataset containing five contrasts used in
455stage I. The stage I testing subset was used to generate the
456confusion matrix in Fig. 4. The stage I training and validation
457subsets were used to track the performance by training epoch

t1:1 Table 1 DICOM acquisition
parameters used as input features
for automatic MRI contrast
identification using a Random
Forest classifier

t1:2 Parameter Name Dicom Field Units

t1:3 Repetition Time 0018 × 0023 ms

t1:4 Echo Time 0018 × 0081 ms

t1:5 Echo Train Length 0018 × 0091 ms

t1:6 Inversion Time 0018 × 0082 ms

t1:7 Slice Spacing 0018 × 0088 mm

t1:8 Percent Sampling 0018 × 0093 Percent of acquisition matrix lines acquired

t1:9 Percent Phase Field of View 0018 × 0094 Percent

t1:10 Pixel Bandwidth 0018 × 0095 Hz

t1:11 Flip Angle 0018 × 1314 Degrees

t1:12 SAR 0018 × 1316 Watts per kilogram

t1:13 Contrast Media 0018 × 0010 Name of contrast agent, if presenta,d

t1:14 Sequence Variant 0018 × 0021 Name of Sequence Variantb,d

t1:15 Scan Options 0018 × 0022 Name of Scan Optionsc,d

a Encoded as 0 if no contrast agent present, 1 if any contrast agent present
b Encoded as magnetization transfer (MT) = 1, inversion recovery (IR) = 2, SAT (saturation band) = 3, VB (var-
iable bandwidth) = 4, other/empty = 0
c Encoded as MTC\crSP = 1, SK\crSP\crMP\crOSP = 2, SK\crSP\crOSP = 3, SS\crSP = 4, SK\crSP = 5, SP = 6,
SK = 7, other/empty = 0, where MTC=magnetization transfer contrast, SP = spatial presaturation, MP =magne-
tization prepared, OSP = oversampling phase, SK = segmented k-space, SS = steady state
dManually entered by operator
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458 plotted in Fig. 5. We repeated the cross-validation scheme
459 described above to divide the extended dataset used in stage
460 II containing eight contrasts. The stage II testing subset was
461 used to generate the confusion matrix in Fig. 6.

462 Stage I – Five Contrasts

463 In stage I, we used the reference dataset to develop the DL
464 algorithm and assessed how the size of the dataset affected
465 performance. As shown in Table 2, we divided the reference
466 dataset as follows: 24,256 in the training subset, 8016 in the
467 validation subset, and 8011 in the testing subset. The MRI
468 scans were labeled to be one of C= 5 contrasts,whose name
469 we abbreviated as follows: fluid-attenuated inversion recovery
470 (FLR), proton-density weighted (PDW), T1-weighted post-

t2:1 Table 2 ContrastQ1 distribution of
MRI volumes used for cross-
validation is shown below

t2:2 Contrast Abbreviation Cross-validation subsets

t2:3Training Validation Testing

t2:4 fluid-attenuated inversion recovery FLR 4897 1615 1616

t2:5 proton-density weighted PDW 4854 1606 1606

t2:6 T1-weighted post-contrast T1C 4800 1590 1582

t2:7 T1-weighted pre-contrast T1P 4825 1593 1593

t2:8 T2-weighted T2W 4880 1612 1615

t2:9 Reference dataset (stage I) 24,256 8016 8011

t2:10 high-resolution T1-weighted T1G 545 181 170

t2:11 magnetic transfer ON MTON 1399 446 450

t2:12 magnetic transfer OFF MTOFF 1408 449 453

t2:13 Extended dataset (stage II) 27,608 9092 9085

The contrast abbreviation and number of MRI volumes in cross-validation subsets for training, validation and
testing

Fig. 4 The confusion matrix is illustrated above for five contrasts. The
target contrast was taken from the ground truth identification. The
inferred contrast was determined using the proposed deep learning
algorithm

training size 3: 45
training size 2: 970
training size 1: 24256

validation size 1: 8016

validation size 3: 15
validation size 2: 320

(b) accuracy

(a) categorical loss

Fig. 5 (a) Categorical loss and (b) accuracy for the deep learning as a
function of estimation epoch for three dataset sizes. The solid line is
training accuracy and the dashed line is validation accuracy. The shaded
region is an estimate for the standard error (SEM). The legend specifies
the size of the training set and validation set. We repeated size 1 five
times. We tracked 13 randomly selected parts of size 2 and 25
randomly selected parts of size 3
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471 contrast agent (T1C), T1-weighted pre-contrast agent (T1P),
472 and T2-weighted (T2W). The DL algorithm was developed
473 using the reference dataset and results were summarized for
474 the testing subset as a confusion matrix in Fig. 4.
475 We investigated how the size of the dataset affected the per-
476 formance of the algorithm, which allowed us to estimate the
477 number of samples needed to maintain performance. In other
478 words, how much data would we need to replicate an algorithm
479 performing with similar accuracy? We tracked performance as
480 the value of the accuracy, 1-ε, and loss function, H, for both the
481 training and validation subsets after each epoch completed. We
482 explored three sizes: 40,283MRI scans, 1610MRI scans, and 75
483 MRI scans. First, we estimated the network parameters for the
484 reference dataset of size 40,283 MRI scans to compute the per-
485 formance mean and variance by epoch. We repeated the estima-
486 tion procedure for the reference dataset a total of five runs. Each
487 run involved a random partition of the reference dataset to the
488 training, validation, and testing subsets. Second, we divided the
489 reference dataset into equal parts, each consisting of 1610 MRI
490 scans. Each part was then divided into three subsets: 970 in
491 training subset, 320 in validation subset, and 320 in testing

492subset. We tracked the performance by estimation epoch in 13
493randomly selected parts. Using only 13 parts proved sufficient to
494estimate performance based on the statistical stationarity of the
495mean and standard error of the mean (SEM) of the accuracy and
496loss function. Third, we divided the reference dataset into equal
497parts, each consisting of 75 MRI scans. Each part was then
498divided into three subsets: 45 in training subset, 15 in validation
499subset, and 15 in testing subset. We tracked the performance by
500estimation epoch in 25 randomly selected parts. Using only 25
501parts proved sufficient to estimate performance based on the
502statistical stationarity of the mean and SEM of the accuracy
503and loss function. To summarize the performance, we computed
504the arithmetic mean over the iterations for each size.We then fit a
505decaying exponential function to the mean and SEM with pa-
506rameters that minimized the error between fit and true value. The
507resulting performance by epoch for all three sizes is plotted in
508Fig. 5.

509Stage II – Eight Contrasts

510In stage II we compared the performance between the DL
511algorithm and the RF algorithm. We then explored the ability
512for the DL algorithm to work as an identifying tool for the
513different contrasts and generated ROC curves to develop a
514contrast-specific probability threshold. We used the extended
515dataset which comprised of 45,785 MRI scans, which we
516divided into three subsets: 27,608 in training subset, 9092 in
517validation subset, and 9085 in testing subset. The MRI scans
518were labeled to be one of C= 8 contrasts, including the five
519stage I contrasts and the three additional contrasts: high-
520resolution T1-weighted (T1G), magnetic transfer ON
521(MTON), and magnetic transfer OFF (MTOFF). The contrast
522acronym and number of MRI volumes in each of the three
523cross-validation subsets are summarized in Table 2.

524Results

525We developed a DL algorithm to automatically identify the
526contrast of a brain MRI. We designed the DL architecture to
527make inferences on unseen MRI data. We generated a confu-
528sion matrix to summarize the results obtained in stage I for
529five contrasts. We plotted training and validation performance
530metrics as a function of estimation epoch for three dataset
531sizes from stage I. For comparison to the DL algorithm, we
532designed a RF algorithm to make inferences based on features
533extracted from theMRI metadata and image statistics. In stage
534II, we generated confusion matrices to summarize the results
535obtained for eight contrasts for the DL and RF algorithms. We
536characterized the DL and RF algorithms’ capacity as an iden-
537tification tool for each contrast. Finally, we developed a meth-
538od to maximize performance by selecting a contrast-specific
539probability threshold accessible to the users of the algorithm.

Fig. 6 Confusion matrices are illustrated for eight contrasts generated
using (a) the random forest algorithm and (b) the deep learning
algorithm. The target contrast was defined as the ground truth
identification. The inferred contrast was determined using the two
different algorithms
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540 Stage I – Five Contrasts

541 In stage I, we developed the DL algorithm for the five MRI
542 contrasts that were acquired most frequently in the dataset we
543 analyzed. First, we evaluated the relationship between slice
544 orientation and resolution. Most volumes in the database have
545 approximately 60 axial slices. Therefore, testing the perfor-
546 mance with high resolution images was limited to the axial
547 orientation. WeQ2 compared the following three cases using the
548 proposed algorithm for five contrasts (Table 3):
549 In all cases, we selected the slices centered around the
550 corresponding midline. Using the high-resolution images with
551 axial orientation did not improve the results. Therefore, we
552 continued developing and exploring sagittal orientation and
553 32 × 32 dimensions. It was encouraging that the algorithm
554 performed with low error rate; however, we were surprised
555 the higher resolution image did not improve the results.
556 We summarized the classification results from stage I with
557 a confusion matrix detailing the number of MRI volumes
558 where the DL algorithm and the ground truth agreed and
559 disagreed. Fig. 4 illustrates the confusion matrix for five con-
560 trasts generated with the DL algorithm on the testing subset.
561 The DL algorithm and the ground truth identification inferred
562 the same contrast on nearly all MRI volumes quantified along
563 the diagonal. There were some volumes where the DL algo-
564 rithm and the ground truth identification did not agree, as
565 quantified by the numbers off of the diagonal. The error rate
566 of the DL algorithm for five contrasts was ε = 0.15%. This
567 result raised the question of when the DL algorithm breaks
568 down due to smaller dataset sizes and including additional
569 contrasts, as we did in stage II.
570 Next, we investigated how the size of the dataset affected
571 the performance of the algorithm in order to estimate the
572 dataset size required to preserve performance obtained when
573 using the reference dataset. We tracked accuracy and categor-
574 ical loss of the training and validation subsets of three different
575 sizes after each estimation epoch. Fig. 5 presents the accuracy
576 and categorical loss as a function of estimation epoch for the
577 training and validation subsets plotted for different dataset
578 sizes. We plotted performance for estimation epochs [0, 150]
579 as the trends remained constant above 150 epochs. The mean
580 value is plotted as dots by estimation epochs and the fits are
581 plotted for the training and validation subsets in solid and
582 dashed lines, respectively. The performance generated from

583the data of size 1, in red, did not significantly differ from the
584performance generated from the data of size 2, in green. The
585DL algorithm reached peak performance in less estimation
586epochs when the dataset size was reduced to size 3, as
587reflected by the solid blue line compared to the solid green
588and red lines. However, the DL algorithm was not able to
589generalize as well when the dataset size was reduced to size
5903, as reflected by the dashed blue line compared to the dashed
591green and red lines.

592Stage II – Eight Contrasts

593In stage II, we extended the application of the DL algorithm to
594eight MRI contrasts, and compared the DL algorithm perfor-
595mance to that of the RF algorithm. We summarized the classifi-
596cation results with a confusion matrix detailing the number of
597MRI volumes where the two algorithms and the ground truth
598agreed and disagreed. Fig. 6 illustrates the confusion matrices
599for eight contrasts generated with the RF and DL algorithms on
600the testing subset. The metadata was not readable for 21 MRI
601volumes, resulting in 9066 total number of volumes tested with
602RF instead of the possible 9087. The RF algorithm misclassified
603several MRI contrasts that were correctly classified by the DL
604algorithm. The DL algorithm outperformed the RF algorithm
605across all contrasts, except for T1G. The error rate of the DL
606algorithm for eight contrasts was ε = 0.19%. The error rate of
607the RF algorithm for eight contrasts was ε = 1.74%. A lower
608error rate generated by the DL algorithm indicates that there is
609relevant information in the image intensity that is not captured by
610the features used in the RF algorithm.
611We characterized the performance of the DL and RF algo-
612rithms as a contrast-identifying tool to describe the results
613generated from the testing subset obtained in stage II. We
614computed the sensitivity and specificity describing the

t3:1 Table 3 Orientation and dimension explored with the DL algorithm

t3:2 Orientation # Slices per volume Dimension Error rate (%)

t3:3 sagittal 30 32 × 32 0.15

t3:4 axial 30 32 × 32 0.35

t3:5 axial 10* 128 × 128 0.49

*- 10 slices were used because of memory issues

t4:1Table 4 The capacity of the DL and RF algorithms to detect each
contrast, as summarized by measures of sensitivity and specificity.
Sensitivity estimates the capacity of the algorithm to correctly identify
that a MRI volume is a particular contrast and specificity estimates its
capacity to correctly identify that a MRI volume is not the particular
contrast

t4:2Contrast deep learning (DL) random forest (RF)

t4:3Sensitivity Specificity Sensitivity Specificity

t4:4FLR 100.00% 100.00% 99.94% 100.00%

t4:5PDW 99.94% 100.00% 99.75% 99.95%

t4:6T1C 99.62% 99.95% 95.25% 99.29%

t4:7T1P 99.50% 99.91% 96.35% 99.01%

t4:8T2W 99.94% 99.99% 99.69% 99.96%

t4:9T1G 99.41% 99.98% 100.00% 99.97%

t4:10MTON 100.00% 100.00% 97.54% 99.93%

t4:11MTOFF 100.00% 99.97% 99.11% 99.83%
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615 capacity for the DL algorithm to identify whether a MRI vol-
616 ume is or is not a particular contrast. We computed sensitivity
617 and specificity based on each contrast and summarized the
618 two metrics in Table 4. The resultant DL values were all
619 >99.41% and there were multiple contrasts with 100.00%
620 sensitivity and specificity. These metrics break down the ac-
621 curacy by highlighting that the DL algorithm could improve
622 overall accuracy by improving the sensitivity in detecting T1
623 contrasts: T1P, T1C, and T1G. The DL algorithm
624 outperformed the RF algorithm across all contrasts except
625 for the sensitivity generated from the T1G contrast. This indi-
626 cates that the RF algorithm is using a feature extracted from
627 the DICOMheader or image intensity profile that is helping its
628 classification of the T1G contrast.
629 We visually inspected the MRI volumes that were
630 misclassified by the DL algorithm to better understand the
631 reason for misclassification. Our visual inspection identified
632 three groups of misclassification.
633 (i) The following list identified six cases where the
634 ground truth identification process failed and the DL
635 algorithm succeeded in correctly inferring the
636 contrast:

637 & Two T1C volumes were mislabeled as T1P and correctly
638 identified by the DL algorithm.
639 & Three mtOFF volumes were provided by the clinic as T1P.
640 These cases were actually mtOFF and identified as such
641 by the DL algorithm.
642 & One T1C volume did not have sufficient contrast failing
643 the quality control process. The DL algorithm identified
644 the volume as T1P.

645 (ii) The DL algorithm wrongly inferred the contrast in the
646 following seven cases, as a result of an acquisition error:

647 & In two cases, T1P volumes confused by the algorithm as
648 T1C because they contained high-intensity voxels at the
649 extreme right edge of the image due to a ghosting artifact.
650 & In three cases, the delay between gadolinium injection and
651 acquisition of the T1C volume was too short or too long,
652 resulting in minimal gadolinium enhancement, thereby
653 confusing the algorithm to infer the T1C volumes as
654 T1P volumes
655 & In one case, the wrong parameter for TR was used, caus-
656 ing the PDW to appear similar to a T2W volume.
657 & In one case, a wrap-around artifact at the top of the head
658 caused the algorithm to infer a T1G volume as a T1P
659 volume.

660 (iii) There were three cases where the DL algorithm failed to
661 infer the correct contrast, without a clear explanation:

662 & One T1P was wrongly inferred as a T1G.

663& One T1C was wrongly inferred as a T1P.
664& One T1C showed the effect of the contrast agent, but the
665effect was not as bright as in the regular case. This MRI
666volume was wrongly inferred as a T1P.

667In order to develop a contrast-specific probability thresh-
668old, we computed the DL-generated probability for each MRI
669volume in the testing subset to belong to a specific contrast, cs.
670Fig. 7 presents the distributions of the probabilities in the
671corresponding subplot for each cs. Let ct be the target contrast
672of a MRI volume. When cs = ct the distribution of the proba-
673bilities was identified in green; conversely, when cs ≠ ct the
674distribution of the probabilities was identified in red. This
675presentation indicates a successful identification if data points
676in green are close to 1 and data points in red are close to 0. The
677DL algorithm was designed to generate a probability vector
678C × 1 with high probability for ct, and low probability for all
679other entries of the probability vector. The corresponding
680global distribution with the range [0, 9000] is shown in the
681inset of each subplot where only the MRI volumes whose
682probabilities were 0.0 or 1.0 can be clearly seen. The zoomed
683perspective distribution with the range [0, 20] is shown in the
684subplot, where the MRI volumes whose probability was any-
685where between [0, 1] can be seen as well. The distribution in
686Fig. 7 is reflective of the results in the confusion matrix in Fig.
6876(b). The algorithm selected the contrast whose value was the
688highest across the generated probability vector. It can be seen
689that the specified contrasts that resulted in more errors in Fig.
6906(b), such as T1P and T1C, generated probability distributions
691with higher entropy in Fig. 7. Conversely, the contrasts with
692fewer errors in Fig. 6(b), generated a nearly binary probabili-
693ties distribution in Fig. 7.
694Next, we developed a contrast-specific probability thresh-
695old for the DL algorithm to minimize the errors reflected by
696maximizing sensitivity and specificity. For each cs and for
697each candidate threshold, we computed TPR and FPR. We
698generated ROC curves by plotting TPR versus FPR in Fig. 8
699for each cs. The inset shows a global perspective of the ROC
700curve with the computed operating point as a red circle in the
701upper left corner. For all contrasts, the red circle is proximal to
702the ideal operating point located in the upper left corner. In the
703magnified corner of the ROC curve, we included the ideal
704operating point with a green star and the operating point with
705a red circle. The red lines oriented at 45° reflect that we com-
706puted the operating point by weighing TPR and FPR equally
707to maximize Youden’s index (Youden 1950). Compared to
708other contrasts, the T1G and T1P contrasts were associated
709with a larger gap between the green star and the red circle.
710In addition, we tracked each candidate threshold whose
711Youden’s index exceeded 0.98 to characterize how the thresh-
712old influences the performance. We plotted Youden’s index as
713a function of candidate threshold in Fig. 9. By comparing to
714the results in Fig. 7, it is visually possible to identify how the
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715 DL-generated probability distribution determined Youden’s
716 index. The plots in Fig. 9 are equivalent to Fig. 8, but they
717 illustrate that the threshold corresponding to the final operat-
718 ing point was selected as the highest threshold to maximize
719 Youden’s index. In the general case, there are multiple thresh-
720 olds that equally maximize Youden’s index. For some con-
721 trasts, a particular threshold is critical to maximize Youden’s
722 index. However, for other contrasts there exists a range of
723 candidate thresholds that provide identical results.We selected
724 the highest threshold in this range because it is the most con-
725 servative threshold, thus providing a safety zone that mini-
726 mizes classification errors. Importantly, the algorithm clas-
727 sifies each MRI volume, and outputs not only the selected
728 class but also the estimated probability that the classification
729 is correct. For probabilities lower than the contrast-specific
730 probability threshold, the user can inspect the volume in ques-
731 tion, and make the final decision.

732 Discussion

733 An overview of the results is presented in this paragraph to
734 frame the discussion. We developed a DL algorithm to auto-
735 matically identify the contrast of a MRI volume. For five
736 contrasts, the DL algorithm identified the contrast in unseen
737 testing data with ε = 0.15%. The algorithm converged to op-
738 timum parameters in fewer estimation epochs when training
739 on smaller subsets. However, the DL algorithm did not

740generalize when the size was reduced to size 3, reflected by
741a decrease in performance on the validation subset. For eight
742contrasts, the RF algorithm identified the contrast from the
743testing subset with ε = 1.74% and the DL algorithm with ε =
7440.19%.We characterized the DL algorithm’s capacity to detect
745each contrast with sensitivity that ranged between [99.41%,
746100.00%] and specificity that ranged between [99.91%,
747100.00%]. We characterized the RF algorithm’s capacity to
748detect each contrast with sensitivity that ranged between
749[95.25%, 100.00%] and specificity that ranged between
750[99.01%, 100.00%]. A contrast-specific probability threshold
751was computed for the DL algorithm with ROC analysis to
752indicate the user when to double-check particular contrasts.
753We modified an existing algorithm to develop a new
754neural network to perform DL and this application has
755proven useful. The algorithm has been successfully im-
756plemented into the processing pipeline. The tool we
757have developed can save database management teams
758valuable resources, including hours spent by technicians
759doing the trivial task of identifying the contrast of the
760MRI volume. In addition, this tool provides the methods
761for inputting MRI into DL for new applications.
762A convolutional neural network is analogous in function to
763the visual system. The first few layers extract low level fea-
764tures such as edges and background. As the layers get deeper,
765the low level features get combined to increase abstraction.
766We traced the output of all the layers of the CNN when using
767different MRI contrasts as input to reveal that:

Fig. 7 Distribution for the deep learning (DL) generated probabilities by
target MRI contrast. The subtitle specifies the target contrast. The inset is
the same plot with the range from [0, 9000] to provide a global

perspective. The green bars reflect the probability for the MRI volumes
targeted by the specified contrast, and the red bars reflect the probability
when the target was not the specified contrast
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Fig. 8 Receiver operating characteristic (ROC) curves are plotted in blue
as true positive rate (TPR) versus false positive rate (FPR) for each
contrast. We computed (FPR, TPR) points for each threshold based on
the DL-generated probabilities distribution in Fig. 7. The green star
indicates the ideal point (0, 1) with the corresponding TPR and FPR
equality line. The red point indicates the Youden’s index, defined in Eq.

(5), with the red line corresponding to TPR and FPR equality. The
corresponding threshold is included in the subtitle with the contrast
name. The inset provides the global perspective with the range [0.0,
1.0] and the black-dashed line represents the random chance of
correctly selecting the contrast, generated with a naïve contrast identifier

Fig. 9 Youden’s index is plotted
for the candidate thresholds. The
red point indicates the selected
threshold corresponding to the
operating point. The green line
indicates the optimal operating
point with no errors. Note: the red
point was selected to be the
maximum threshold to preserve
the maximum value for Youden’s
index. The T2W contrast curve
subtly increases at the selected
threshold 1.0 × 10−5
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768 & When introducing a T1C image into the CNN, the dif-
769 ferent layers show that the bright spots are emphasized
770 and highlighted, effectively behaving as a vessel
771 dilator.
772 & Much to our surprise, a 32 × 32 sample of the entire image
773 was sufficient to generate such high performance. A
774 higher density image was not necessary to reach high ac-
775 curacy levels.

776 The flexible nature of the neural network architecture of the
777 DL algorithm allows for any alterations that may be necessary
778 for future studies. Within contrast identification problems, the
779 developer can change the number of contrasts by editing the
780 number of possible outputs, C. The interested investigator
781 could then either: (1) estimate the network parameters for
782 the entire architecture of the DL algorithm from the beginning
783 or (2) use the stored parameters and only estimate the param-
784 eters for the part of the architecture that pertains to the new
785 number of contrasts, i.e., the last two layers of the CNN. In
786 addition, the investigator could explore the CNN architecture
787 depths by adding or removing convolutional modules. Finally,
788 it is possible to restrict the choices of outputs to those that are
789 relevant for a given clinical trial. One possible way is to in-
790 corporate a bias before the final layer of the CNN to restrict
791 specific choices that are not indicated within a study.
792 Our performance versus dataset size analysis, summarized in
793 Fig. 5, brought forth two concepts regarding data sampling. First,
794 reducing the dataset to size 2 did not significantly affect the
795 performance of the algorithm, as illustrated by the red and green
796 curves. The DL algorithm did not generalize across imaging sites
797 during our initial attempts. The key to getting robust generaliz-
798 able results stemmed from taking representative samples from
799 each site when we implemented cross-validation. Second, reduc-
800 ing the dataset to size 3 significantly reduced the performance of
801 the DL algorithm, as illustrated in Fig. 5 by the red and blue
802 curves. A dataset size of 45 samples was unable to represent
803 the reference dataset, resulting in worse performance metrics.
804 This result emphasized the point that more data improves the
805 power of the study and that a minimal number of samples is
806 required to represent the reference dataset such that performance
807 is not compromised.
808 We computed a contrast-specific probability threshold with
809 ROC curves from the generated probability distribution. As
810 illustrated in Fig. 9, six of the eight contrasts produced a range
811 of values that generated identical maximum values for
812 Youden’s index. The wider this range is, the more likely the
813 algorithm makes correct classification decisions. We selected
814 the most conservative value. In other words, although there is
815 a range of thresholds that give the same Youden’s index, we
816 selected the highest threshold in the range. This translates to a
817 ‘safety zone’, assuring that whenever the reported probability
818 for correct classification is higher than the threshold, the pos-
819 sibility of an error is reduced.

820It should be stated that the DL algorithm is orders of mag-
821nitude slower to implement than the RF algorithm. The pa-
822rameters for the DL algorithm were estimated on a GPU. The
823DL estimation procedure ran for 1000 epochs lasting approx-
824imately 6 h. However, the GPU ran about 20 times faster than
825the CPU; therefore, a similar estimation run on a CPU would
826take approximately 120 h. After training, the DL algorithm
827was used for testing, a process that lasted approximately
82878 min on the GPU, equivalent to 24 h on a CPU. In compar-
829ison, the RF algorithm ran for 6 min during the parameter
830estimation process and 3 min during the testing phase, both
831realized on a CPU.
832One possible improvement to the DL algorithm is to in-
833clude the acquisition parameters, which we used as features
834for the RF algorithm, as additional input to some layer deeper
835than the convolution process. We demonstrated that RF was
836able to classify all T1G volumes with 100% accuracy.
837However, as a result of the feedback from users regarding
838the single T1G volume misclassified by the DL, we attributed
839the misclassification to technical acquisition errors.
840Acquisition parameters could improve classification for one
841contrast, but it may confuse the DL algorithm and cause ad-
842ditional error, as in our experience with the RF algorithm. In
843our experience, relying on the header file is problematic for
844the following reasons: (i) the header file is corrupted or miss-
845ing altogether, (ii) the operator manually enters parameters
846incorrectly, and (iii) inconsistent parameters across different
847neuroimaging sites. We work around these problems by
848exploiting the advantage of the CNN approach in that it
849doesn’t rely on any headers, thus reducing the errors that arise
850from manual intervention.
851The ground truth identification process failed in the six
852cases when MRI technicians made mistakes. Human work is
853prone to error which is one motivation behind developing an
854automated algorithm. However, using supervised learning to
855develop a deep learning algorithm requires “ground truth”
856data. It is the goal of an automated deep learning algorithm
857to learn and supersede the current process. The six cases high-
858light the value in using a DL algorithm to avoid mistakes
859made by technicians. Note that the ground truth identification
860process does not suffer a systematic bias, since there were
861multiple annotators, and a scan can be assigned to any given
862annotator. Thus, the noisy labels are uncorrelated and have

t5:1Table 5 Comparison of error rate results generated from deep learning
by using with 2D and 3D convolution

t5:2Algorithm Error rate (%)

t5:3stage I – five contrasts stage II – eight contrasts

t5:4deep learning 2D 0.15 0.19

t5:5deep learning 3D 0.49 0.87

Neuroinform

JrnlID 12021_ArtID 9387_Proof# 1 - 14/06/2018



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

863 little effect on the overall analysis, considering the size of the
864 dataset.
865 Another potential improvement could be to implement 3D
866 convolution rather than 2D convolution. We edited the archi-
867 tecture of the DL algorithm to incorporate 3D convolution
868 instead of 2D convolution. WeQ3 tested the trained algorithm
869 in stages I and II and summarize the results here (Table 5):
870 Incorporating 3D convolution did not reduce the error rate
871 in detecting the contrast of the MRI volume. One possibility is
872 that when using 2D convolution, each MRI volume generates
873 multiple samples at once. With 3D convolution, there are less
874 samples as the entire volume is loaded. In addition, 3D con-
875 volution requires excessive computational power, potentially
876 causing memory issues. Meanwhile, 2D convolution results in
877 a simpler algorithm requiring less memory and time to exe-
878 cute, two key concepts when dealing with a large neuroimag-
879 ing database.
880 The DL algorithm on its own did not accurately predict the
881 entire testing subset with 100% accuracy. This indicates that
882 the algorithm cannot be used alone. One workaround is to
883 alert the user once the probability of correct classification
884 reported by the algorithm is lower than the operating thresh-
885 old. The user can then inspect the MRI volume in question.
886 When employing this approach, our proposed algorithm com-
887 bined with the user alert process resulted in 100% success rate.
888 Yet another measure that can be added alongside our proposed
889 algorithm is the DT portion of the semi-automated current
890 approach. In the rare case that the two methods disagree, the
891 user can go back and take a second look at the volume to
892 resolve which of the two methods is incorrect.
893 The algorithm was implemented into the processing pipe-
894 line and is currently being used by technicians to validate
895 contrasts of unknown MRI scans. The algorithm makes a pre-
896 diction on the contrast within 4–5 s. The results thus far show
897 that, considering the user’s inspection in cases of probabilities
898 lower than the contrast-specific probability thresholds, the
899 overall success rate is 100%. This implementation will gener-
900 ate feedback from a user perspective to allow for improve-
901 ments in the future.

902 Conclusions

903 We developed an automated algorithm to identify the contrast
904 of a MRI volume using DL with CNN architecture. The CNN
905 inferred contrast over n sagittal slices, followed by realizing
906 the volumetric inference using a DNN. The DL algorithm
907 identified between five and eight contrasts with a < 0.2% error
908 rate. We developed a RF algorithm for comparison and ob-
909 tained a higher, 1.74% error rate for identification amongst
910 eight contrasts. We demonstrate that reducing the number of
911 MRI volumes used for training to size 2 did not affect the
912 performance of the DL for five contrasts. Reducing the

913number of MRI volumes used for training to size 3 signifi-
914cantly reduced the algorithm’s capacity to generalize. We
915characterized the DL algorithm for eight contrasts as a
916contrast-specific identifying tool and computed contrast-
917specific probability thresholds as a reference for the end-user.

918Information Sharing Statement

919Wemade the implementation of our software openly available
920on GitHub (see link below). We developed the algorithm in
921Python with a Theano backend and compiled on Keras. Keras
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