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Abstract

Regional morphological analysis represents a crucial step in most neuroimaging studies. Results 

from brain segmentation techniques are intrinsically prone to certain degrees of variability, mainly 

as results of suboptimal segmentation. To reduce this inherent variability, the errors are often 

identified through visual inspection and then corrected (semi)manually. Identification and 

correction of incorrect segmentation could be very expensive for large-scale studies. While 

identification of the incorrect results can be done relatively fast even with manual inspection, the 

correction step is extremely time-consuming, as it requires training staff to perform laborious 

manual corrections. Here we frame the correction phase of this problem as a missing data 

problem. Instead of manually adjusting the segmentation outputs, our computational approach 

aims to derive accurate morphological measures by machine learning imputation. Data imputation 

*Correspondence to: Farshid Sepehrband, PhD, Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and 
Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA, T: (+1) 
323-442-7246, farshid.sepehrband@loni.usc.edu. 

Information Sharing Statement
The raw data used in this article were obtained from the Philadelphia Neurodevelopmental Cohort (PNC) dataset, which can be 
downloaded at the website: https://www.nitrc.org/projects/pnc/. The processed, quality controlled data, which was used to evaluate 
imputation approach is described in this GitHub repository: https://github.com/sepehrband/Mining_NeuroAnat, and is available upon 
individual inquiry to the corresponding author, Farshid Sepehrband (farshid.sepehrband@loni.usc.edu). LONI pipeline can be 
accessed and downloaded at the website: http://pipeline.loni.usc.edu. The imputation techniques were implemented using available R 
libraries (including: impute: https://bioconductor.org/packages/release/bioc/html/impute.html, softImpute: https://cran.r-
project.org/web/packages/softImpute/index.html, missForest: https://cran.r-project.org/web/packages/missForest/index.html).

HHS Public Access
Author manuscript
Neuroinformatics. Author manuscript; available in PMC 2021 January 01.

Published in final edited form as:
Neuroinformatics. 2020 January ; 18(1): 59–70. doi:10.1007/s12021-019-09426-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/pnc/
https://github.com/sepehrband/Mining_NeuroAnat
http://pipeline.loni.usc.edu/
https://bioconductor.org/packages/release/bioc/html/impute.html
https://cran.r-project.org/web/packages/softImpute/index.html
https://cran.r-project.org/web/packages/softImpute/index.html
https://cran.r-project.org/web/packages/missForest/index.html


techniques may be used to replace missing or incorrect region average values with carefully 

chosen imputed values, all of which are computed based on other available multivariate 

information. We examined our approach of correcting segmentation outputs on a cohort of 970 

subjects, which were undergone an extensive, time-consuming, manual post-segmentation 

correction. A random forest imputation technique recovered the gold standard results with a 

significant accuracy (r=0.93, p<0.0001; when 30% of the segmentations were considered incorrect 

in a non-random fashion). The random forest technique proved to be most effective for big data 
studies (N>250).
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Introduction

MRI-based neuroanatomical studies are commonly performed using morphological analysis 

and feature extraction of brain structural images. Such analysis opens a more specific 

window into morphological cortical characteristics in development, aging and gender 

differences in health and disease (Eckert, 2004; Long et al., 2012; Luders et al., 2006; Perez 

et al., 2018; Sepehrband et al., 2018; Vijayakumar et al., 2016). FreeSurfer is one such 

example as an open-source software used to automatically extract and quantify cortical 

features from neuroimaging and has been widely used to study morphological characteristics 

of neuroanatomical structures, such as the cortical thickness and volume of the brain (Fischl, 

2012). Several studies have assessed the reliability and accuracy of the brain segmentation 

techniques and concluded that they are intrinsically prone to certain degree of variability, 

mainly arising from suboptimal segmentation or miss-classification (Eggert et al., 2012; 

Gronenschild et al., 2012; Makowski et al., 2017; Perlaki et al., 2017; Tustison et al., 2014). 

Suboptimal segmentation are mainly related to incorrect inclusion of non-brain tissue. Many 

factors could result to such incorrect segmentation, including low T1 contrast-to-noise ratio, 

image artifacts (e.g. due to subject motion), field inhomogeneity, error in pre-processing 

steps (e.g. skull stripping errors) and segmentation imperfection (Gedamu et al., 2008; 

Klapwijk et al., 2019; Mortamet et al., 2009; Waters et al., 2018). These findings emphasize 

the need for quality control of the neuroanatomical measures obtained with automated 

segmentation pipelines such as FreeSurfer.

Post-processing of the automated brain segmentation results consists of identification and 

correction of the suboptimal segmentations. Identification of suboptimal segmentations can 

be accomplished through manual inspection or outlier detection analysis in a relatively time 

efficient fashion. The step that makes the brain segmentation techniques extremely costly is 

the correction step where conventional approaches adopt manual correction of the parcel 

boundaries. However, such quality control requires training staff to perform manual 

corrections, the process of which can be extremely time-consuming, costly, and inefficient 

for big data studies. Another possible remedy is to simply discard incorrect segmentation 

outputs. One can perform a complete-case analysis, which assumes the complete cases are a 

Cruz et al. Page 2

Neuroinformatics. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



random sample of the original. Alternatively subjects with incorrect segmentation can be 

excluded. However, these manipulations can reduce the sample size to a small portion of the 

original sample, decreasing overall statistical power and limiting statistical learning 

implementation (Dinov, 2018; Hastie et al., 2009). Furthermore, deleting cases with missing 

data, is costly and ineffective in neuroimaging studies, given the cost and effort that is 

invested to acquire the MR images in first place.

Here we frame the correction step of the brain segmentation as a missing data problem and 

employ statistical and analytical data imputation techniques to make this step automated and 

efficient. Missing data can be defined as: data missing completely at random (MCAR), when 

the probability of a missing value does not depend on the data themselves; or data missing 

not at random (MNAR), when the probability of a missing value depends on the observed, 

known data in the dataset (Dinov, 2018; Rubin, 2004). One way to deal with the missing 

data is to simply fill the missing data values with the mean of the population. This solution is 

not optimum, as it could introduce systematic bias to the dataset (Lee et al., 2015) and does 

not take advantage of the multivariate information found in the dataset (Dinov, 2018). Using 

multivariate data imputation techniques, neuroanatomical similarities of large sample 

cohorts can be exploited to extract the missing information.

The current study aims to answer the following questions: (1) Can missing morphometric 

values be recovered through data imputation techniques? (2) What statistical or analytical 

technique provides an optimal solution to this problem? and (3) What is the effect of sample 

size on the reliability of the data imputation techniques? In the present study, we compare 

four methodologically diverse imputation methods, namely averaging, k-nearest neighbors, 

random forest, and low-rank matrix approximation on the Philadelphia Neurodevelopment 

Cohort (PNC) study (Satterthwaite et al., 2016, 2014), with a large sample size of N=970.

Methods

Dataset

The Big Data for Discovery Science (BBDS: http://bd2k.ini.usc.edu) (Toga et al., 2015) 

toolset was utilized to pre-process datasets of cross-sectional structural T1-weight MRI 

images from the single-site Philadelphia Neurodevelopment Cohort (PNC) study 

(Satterthwaite et al., 2016, 2014). Neuroimaging data from 997 participants, ages 8 – 22 

years (mean age ± SD = 14.6 ± 3.4), comprised of 512 females, were acquired through the 

database of Genotypes and Phenotypes (dbGaP). MRI scans consisted of three-dimensional 

(3D) T1-weighted structural MRI scans and were acquired using T1-weighted MPRAGE 

sequence with the following parameters: TR = 1810 ms, TE = 3.5 ms, FOV = 180 × 240 

mm2, matrix = 256 × 192, 160 slices, TI = 1100 ms, flip angle = 9, effective voxel resolution 

= 0.9 × 0.9 × 1 mm3. A 3T Siemens Tim Trio whole-body MRI with 32-channel head coil 

was utilized to collect the data. 27 participants were excluded from the present analysis due 

to poor image quality, or failure in pre-processing, leaving 970 participants with complete 

data.
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Data preparation

Data preparation comprised of feature extraction using the FreeSurfer (v5.3.0) software 

package, which is documented and freely available for download online (http://

surfer.nmr.mgh.harvard.edu/) (Fischl, 2012) and data processing using the Laboratory of 

Neuro Imaging (LONI) pipeline system (http://pipeline.loni.usc.edu) (Dinov et al., 2010, 

2009; Moon et al., 2015; Torri et al., 2012). Cortical volume (mm3), surface area (mm2), and 

average cortical thickness (mm) were derived for cortical regions drawn from the Desikan-

Killiany atlas (Desikan et al., 2006a). The morphological measurements were performed 

using recon-all module of the FreeSurfer, which uses an atlas-based parcellation approach. 

Prior to registration, recon-all applies following pre-processing steps: motion correction, 

non-uniform intensity normalization, Talairach transform computation, intensity 

normalization and skull stripping (Dale et al., 1999; Desikan et al., 2006b; Fischl et al., 

2004b, 2004a, 2002, 1999; Fischl and Dale, 2000; Reuter et al., 2012, 2010; Reuter and 

Fischl, 2011; Segonne et al., 2007, 2004; Sled et al., 1998; Waters et al., 2018). The final 

dataset matrix had 970 × 70 dimensions for each cortical morphometry (i.e., 970 subjects 

and 70 cortical thicknesses). All 70 cortical thickness measures were used as the input for 

the multi-variate imputation techniques. In comparing data imputation techniques, the 

present study focuses mainly on the cortical thickness variables, as cortical thickness is more 

prone to error compare to cortical volume and area measures, and, therefore, more 

challenging to recover.

A team of specialist at LONI USC manually quality corrected the dataset and inspected the 

segmented cortex for each subject. Suboptimal segmentations were manually corrected 

following FreeSurfer guidelines. The Deriva Scientific Data Asset management system was 

utilized for data management (http://bd2k.ini.usc.edu/tools/deriva/), with the BDbag tool 

used for the retrieval of neuroimaging data and demographic information (http://

bd2k.ini.usc.edu/tools/bdbag/). The data preparation process resulted in a complete, quality-

controlled dataset.

Generating missingness

The complete, quality-controlled dataset featuring the cortical thickness of participants (N = 

970) were obtained from the GitHub repository of (Sepehrband et al., 2018), which served 

as the gold standard for the present study (https://github.com/sepehrband/

Mining_NeuroAnat). This study simulated different types of missing data in the 

neuroimaging datasets using the missing completely at random (MCAR) approach and the 

missing not at random (MNAR) approach (Dinov, 2018). This process is summarized in 

Figure 1. The MCAR approach removed percentages of data (from 10% to 60%) completely 

at random to create artificial datasets with missing values. The MNAR approach removed 

similar percentages (10% to 60%) from only a given, randomly-selected, part of the brain. 

The latter scenario aligns more with real-world cases of brain segmentation compared to the 

former. MNAR occurs when the segmentation error occurs more frequently in certain 

regions of the brain for all subjects. For example, if segmentation errors are mostly observed 

in the medial temporal lobe, then the output of the data form in to a MNAR. To ensure that 

the regional selection does not affect the imputation performance, the MNAR region-of-

interest was reordered five times, which corroborated the initial observation.
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Data imputation techniques

Four data imputation techniques were selected to represent different statistical approaches, 

namely the “mean” method, k-nearest neighbors (KNN), the low-rank matrix approximation 

and random forest (RF).

“Mean” technique

The mean technique recovers missing value with the mean value of all available subjects. 

Mean imputation is among the simplest of imputation techniques and can defined as the 

replacement of a missing observation with the mean of the non-missing observations for that 

variable. Though the method has advantages (maintained sample size, ease of use) the 

variability in the data is reduced. With systematic bias introduced to the data, the standard 

deviations and variance estimates tend to be underestimated (Gómez-Carracedo et al., 2014).

K-Nearest Neighbor (KNN)

A type of supervised machine learning algorithm, K-nearest neighbors is a non-parametric 

method used for classification and regression predictive problems. As a non-parametric 

method, KNN does not make any assumptions about the data, and instead, models based on 

the observed dataset (Hastie et al., 2016). The method is used with databases in which data 

points are separated into several classes, which are then utilized in predicting the 

classification of a new data point. The process first begins with the calculation of the 

distance of a new data point to all other available data points and selects the K-nearest data 

points. The algorithm them assigns the new data point to the class to which the majority of 

K-data points belong, ultimately replacing the missing data with data created from K-nearest 

neighboring data. More specifically, for regression problems, KNN generates a new data 

point for the object based on the average of the values of its nearest K-neighbors. This 

method is used for its ease of interpretation, versatility, and quick results, while still 

achieving relatively competitive prediction results.

Here KNN uses nearest neighbor averaging principle for imputing the missing values 

through unsupervised regression. We found the K nearest neighbors using a Euclidean 

metric, confined to the columns for which that neuroanatomical feature is not missing. These 

nearest neighbors were then averaged to impute the missing data. The R package impute was 

used for KNN implementation. After testing a range of K values between 2 to 50, we 

observed that at K=20 the imputation performance reaches the peak plateau and therefore K 
of 20 was used for KNN implementation.

Low-rank matrix approximation

Low-rank approximation is a popular technique in image processing, machine learning, and 

data mining that compresses more compact representations of the data with limiting loss of 

information (Markovsky and Usevich, 2012). This is achieved by creating a matrix with a 

lesser rank compared to the original matrix. The rank of a matrix is the number of linearly 

independent columns, or vectors, with a low rank being the lowest number of linearly 

independent vectors. Low-rank matrix approximation is useful for dimension reduction, 

compression, classification, and regression tasks. Several algorithms achieve the low-rank 

approximation of matrices, include singular value decomposition, which provides the true 
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rank and gives the best low-rank approximation of a matrix. Disadvantages of the technique 

involve computational demands involving large datasets.

The low-rank matrix approximation method was implemented using the softImpute R 

package (Mazumder et al., 2010). This technique fits a low-rank matrix approximation to a 

matrix with missing values via nuclear-norm regularization. The algorithm works similar to 

the traditional Expectation-Maximization technique, filling in the missing values with the 

current guess, and then solving the optimization problem on the complete matrix using a 

soft-thresholded singular value decomposition. Default parameter was used to implement 

this technique.

Non-parametric Missing Value Imputation using Random Forest

The RF-based imputation was implemented using missForest R package (Stekhoven and 

Bühlmann, 2011), which captures the complex interactions and nonlinear relations between 

variables and observations using a nonparametric, machine learning-based approach. RF is a 

non-parametric method used in performing both regression and classification tasks. This 

algorithm addresses missing values and outlier values by using dimensional reduction 

methods. missForest builds a RF model for each variable in the dataset and utilizes these 

individual models to build a powerful model consisting of multiple trees. This model is then 

used to predict missing values in the variable based on the observed values. Applicable to 

various data types, the algorithm can be used to impute continuous and/or categorical data 

(i.e., averages in the case of regression tasks) and yield an out-of-bag imputation error 

estimate without need of a test set. Advantages of this method is its ability to handle large 

datasets with high dimensionality and relatively high accuracy with large proportions of 

missing data. Disadvantages comprise of its regression range. Specifically, RF does not 

predict beyond the range in the training data and may be prone to over-fitting noisier 

datasets. For missForest implementation, parameters were set to the recommended values 

(Stekhoven and Bühlmann, 2011): number of trees = 100, number of iterations = 10, number 

of variables randomly sampled at each split = 8, which is the square root of the number of 

features (70 cortical measurements).

Evaluation criteria

Imputation methods were compared based on their imputation accuracy, with comparisons 

made between the original values of the gold standard and the imputed values of the 

artificial datasets. Specifically, the evaluation criteria of the data imputation techniques for 

both MCAR and MNAR assumptions comprised of the following: (1) Prediction error, 

which was measured by mean error, normalized root mean square error and the mean 

absolute error, and (2) Correlations with the gold standard. Correlation statistics was based 

on Pearson’s product moment correlation coefficient and follows a t-distribution with N-2 

degrees of freedom if the samples follow independent normal distributions. Additionally, the 

relationship between sample size and accuracy of imputation for different percentages of 

missing data was examined. All the analysis was performed using R version 3.3.1.
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Results

Figures 2 and 3 shows the comparisons of prediction error measures and correlational 

analyses when applying the data imputation techniques to the PNC dataset. As expected, 

imputation performance was weaker when a larger percentage of the data was missing. 

Normalized root mean square error (NRMSE) and mean absolute error (MAE) of all data 

imputation methods increased with higher percentages of missing values. In datasets 

generated under MCAR and MNAR assumptions, random forest (RF) outperformed all other 

methods under RMSE, MAE and correlation criteria. The effectiveness of RF compared to 

other techniques can be better appreciate when a high percentage of the data is missing. The 

amount of error found imputing with RF on datasets with 60% missing data was almost as 

low as the amount of error found imputing with low-rank Matrix Approximation (MA) on 

datasets with 20% missing data. Furthermore, RF demonstrates zero mean error measured in 

millimeters, which indicates that no systematic bias is observed in applying the technique.

The mean technique was found to be the least accurate method when applied to the MCAR 

and MNAR-generated PNC datasets, with the highest rates of error and weakest 

correlational strength. The exception to this was observed in the MA results of MNAR 

dataset when more than 15% of the data is missing (see blues line in Figure 3). Similarly, k-

Nearest Neighbors (KNN) demonstrates similar, low performance to mean with increasing 

percentage of missing values in datasets generated under the MCAR assumption. However, 

KNN’s performance in MNAR datasets improved substantially, with RMSE, MAE, and ME 

rates similar to RF. It should be noted KNN did not converge when more than 80% of the 

data of a column is missing.

Figure 4 and 5 plots the correlation between the gold standard and the predicted values by 

the data imputation methods under the MCAR assumption and the MNAR assumptions, 

respectively. There were significant correlations between gold standard and predicted values 

for all techniques at 20% and 60% missingness under the MCAR assumption (p < 0.0001; 

detailed statistics are included in Tables 1). As expected, stronger correlations were found at 

20% missing data across all techniques. Under both MCAR and MNAR, RF demonstrated 

the strongest correlations and was the least affected by sample size, further reinforcing its 

effectiveness above other data imputation techniques. Notably, quantization artifacts were 

introduced to the mean technique, given the univariate nature of this technique. A similar 

artifact was noted in KNN techniques at 60% missing under the MCAR assumption, as the 

search domain for the nearest neighbors becomes narrower with increased missingness in the 

data. Furthermore, RF and KNN data imputation techniques performed almost equally well 

on datasets under the MNAR function. In contrast, there were weak correlations between the 

gold standard and predicted values for MA and mean techniques. In particular, MA error 

variance dramatically increased when a high percentage of the data was missing or under 

MNAR assumption.

Tables 1 and 2 shows comparisons of the correlational analyses between the gold standard 
and the predicted values imputed by the methods under MCAR and MNAR assumptions. In 

corroboration with previous results, RF outperforms other methods and proves to be a 

substantial data imputation technique under both MCAR (r(12220) = .93, p < .0001) and 
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MNAR (r(40738) = .92, p < .0001) assumptions. Notably, the strength of the correlation for 

RF is almost equally good in 20% missing data and 60% missing data.

Figure 6 plots the relationship between sample size and accuracy of the RF imputation 

technique measured by RMSE. Sample size positively and exponentially affects the 

performance of RF, with error decreasing exponentially as sample size increases. RF 

performance approaches the plateau around the sample sizes of 500 and becomes less 

reliable with small sample sizes (e.g., less than 250).

Figure 7 demonstrates correlational analyses conducted with cortical area (left) and cortical 

volume (right) datasets. In alignment with the conclusions derived from the cortical 

thickness data, imputed values by the RF technique demonstrates the strongest correlations 

with the gold standard, outperforming other data imputation techniques.

Discussion

The current study provides insight into the effectiveness and reliability of data imputation 

technique as an alternative to the painstaking manual correction of the brain segmentation 

results of large neuroimaging datasets. Our proposed approach aims to substitute the 

correction step, assuming that the suboptimal segmentation results are identified and 

therefore, can be treated as missing values. Findings reveal data imputation to be effective in 

recovering missing values of morphological measures, specifically cortical thickness 

measures, via parameter estimation. Of the multivariate and univariate techniques, RF 

outperforms all other techniques with low prediction error measures (e.g., MAE of 0.11 mm) 

and strong significant correlations between the gold standard and imputed values (r=0.93, 

p<0.0001). Notably, RF worked best with higher percentages of missing data under both 

MNAR and MCAR assumptions, and its reliability is shown to be least affected by 

percentage of missing. This is in alignment with previous studies demonstrating RF as a 

substantial data imputation method (Hudak et al., 2008; Shah et al., 2014; Waljee et al., 

2013).

The use of data imputation techniques can prove to be a useful cost-effective analysis in the 

biomedical field. Manual corrections of brain segmentation outputs can be time-consuming 

and costly. Consider a study cohort of 1000 subjects (e.g., the PNC dataset); if each manual 

correction took 30 minutes to an hour, trained staff could potentially take up to 60,000 

minutes, to complete the correction once for all subjects. To decrease and quantify the inter-

rater variability, the manual correction process is typically repeated, which can bring the 

total processing time up to 12,000 minutes (2000 hours) of trained staff time. Using the 

proposed technique, the correction step can be done under 4 minutes on a commercial 

personal computer. The current study focuses on cortical thickness data, as it is more prone 

to error compare to cortical volume and area measures, and, therefore, assumed to be more 

challenging to recover. Yet, results from similar analysis of other cortical measures were in 

complete corroboration with cortical thickness results (Figure 7).

Limitations of the study include its primary focus on a healthy cohort. The utility of 

multivariate techniques draws from the assumption that humans are neuroanatomically 
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similar, which lends itself well to analyzing healthy, relatively similar cohorts. However, 

these analytical and statistical computational techniques may perform differently on 

populations with neurological disorders and abnormalities. The efficacy of the proposed 

approach in the presence of a neurological disorder is yet to be determined. In addition, this 

study employed the FreeSurfer program for brain segmentation. While results from other 

software could be slightly different (Eggert et al., 2012; Makowski et al., 2017; Morey et al., 

2009; Perlaki et al., 2017; Tustison et al., 2014), it is independent of the overall goal of the 

study, which is to understand whether a data imputation technique can cover missing data in 

the brain segmentation results.

Indeed, we were not able compare all the existing imputation techniques. We selected four 

different techniques with distinct computation approach to imputation. The motivation for 

choosing these specific techniques were to cover a range of distinct statistical approaches 

including univariate (mean), analytical (low-rank matrix completion), inferential/

computational (k-nearest neighbor), and statistical learning (RF). A number of other 

imputation techniques are available which are not included in this study (Gondara and 

Wang, n.d.; Graham, 2009; Schafer, 1999). For example, multiple imputation by chained 

equations (MICE) (Azur et al., 2011; Buuren and Groothuis-Oudshoorn, 2010) is a highly 

cited library that was not included given the similarity to the tested univariate approach.

It is challenging to identify the extent to which the quality of the individual data influences 

the imputation performance. Here low-quality data (27 MRIs) were excluded and a 

homogenous input data was assumed for the included subjects, meaning that the missingness 

is uniformly distributed across subjects. Therefore MRI-derived cortical measures were 

weighted equally when imputation techniques were applied. Inter-subject quality variance, 

derived from automated quality control techniques (Gedamu et al., 2008; Mortamet et al., 

2009), could be additionally used as inclusion criteria or as weighting parameters for 

between group analysis. Image quality assurance and improvement are active research 

focuses (Waters et al., 2018), which may affect the imputation performance. For example, it 

has been shown that the filtering techniques, such as non-local mean filtering (Coupe et al., 

2008; Manjón et al., 2010; Wiest-Daesslé et al., 2008), improves the reliability of brain 

tissue segmentation (Eskildsen et al., 2011). Such pre-processing could result into a smaller 

percentage of incorrect segmentation, subsequently lower percentage of missingness, 

resulting to a superior imputation performance.

Future work in data imputation may consider introducing other information and more 

modalities into the datasets, including demographic information, diffusion MRI, and 

functional MRI. Future studies may identify the most important units of information via 

regression analyses to result in the most effective data imputation. Recently, automated 

techniques for detecting FreeSurfer failures are proposed, namely FreeSurfer QA tool 

(https://surfer.nmr.mgh.harvard.edu/fswiki/QATools) and Qoala-T (Klapwijk et al., 2019). If 

combined with the proposed approach the entire quality assurance and correction may be 

automated. Finally, it is not known whether the proposed approach can be applied to the 

studies of neurological disorders. In the presence of a pathology non-uniform morphological 

alterations are expected, which could negatively affect multi-variate imputation reliability. 

We also anticipate imputation reliability may be different across neurological disorders 
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given that they selectively affect brain regions. Therefore, unless validated, we do not 

recommend utilization of the proposed approach in neurological disorder studies.
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Figure 1. 
Schematic representation of the data preparation and types of missingness. The x-axis 

represents morphological features from FreeSurfer segmentation (e.g., cortical thickness, 

volume or surface area), the y-axis represents study subjects. Examples of random and non-

random missingness are presented at the bottom row.
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Figure 2. 
Performances of different imputation techniques, for a varying percentage of missing values 

based upon the missing completely at random (MCAR) assumption. Imputed values were 

compared against the gold standard (GS) values. Techniques include random forest (RF), k-

nearest neighbors (KNN), low-rank matrix approximation (MA), and mean. The gray zone 

around each line displays 0.95 confident interval around at each percentage.
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Figure 3. 
Performances of different imputation techniques, for a varying percentage of missing values 

based upon the missing not at random (MNAR) assumption. Imputed values were compared 

against the gold standard (GS) values. Techniques include random forest (RF), k-nearest 

neighbors (KNN), low-rank matrix approximation (MA), and mean. The gray zone around 

each line displays 0.95 confident interval around at each percentage.
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Figure 4. 
Correlations of predicted values with the gold standard under the missing completely at 

random (MCAR) assumption, at 20% and 60% missing data.
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Figure 5. 
Correlations of predicted values with the gold standard under the missing not at random 

(MNAR) assumption at 20% missing in total (i.e., 60% of missing data was simulated under 

the MNAR assumption in 30% of the original data, making for 20% missing in total).
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Figure 6. 
Sample size and imputation performance; plots show the influence of sample size on random 

forest performance for different percentages of missingness in the data.
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Figure 7. 
Correlations of predicted cortical area (left) and volume (right) values with the gold standard 
under the missing not at random (MNAR) assumption at 20% missing in total (i.e., 60% of 

missing data was simulated under the MNAR assumption in 30% of the original data, 

making for 20% missing in total). Note that low-rank matrix approximation technique failed 

to converge in number of instances.
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Table 1.

Pearson’s correlation of different techniques at 20% missing data with the gold standard under MCAR and 

MNAR assumptions. Degrees of freedom = 12220.

missingness Correlation (r) t-statistics confident interval p-value

Soft Impute Random 0.92 254.2 0.914 – 0.919 < 0.0001

Not random 0.66 98.4 0.650 – 0.670 < 0.0001

Mean Random 0.87 199.1 0.870 – 0.878 < 0.0001

Not random 0.88 205.3 0.876 – 0.884 < 0.0001

K-NN Random 0.92 255.1 0.914 – 0.920 < 0.0001

Not random 0.92 256.4 0.915 – 0.920 < 0.0001

RF Random 0.93 275.1 0.925 – 0.930 < 0.0001

Not random 0.93 275.4 0.925 – 0.930 < 0.0001
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Table 2.

Pearson’s correlation of different techniques at 60% missing data with the gold standard under MCAR 

assumptions. Degrees of freedom = 40738.

Correlation (r) t-statistics confident interval p-value

MA 0.73 213.3 0.720 – 0.730 <0.0001

Mean 0.88 373.8 0.877 – 0.882 <0.0001

K-NN 0.88 366.7 0.873 – 0.878 <0.0001

RF 0.92 470.5 0.917 – 0.920 <0.0001
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