
Noname manuscript No.
(will be inserted by the editor)

A comprehensive framework to capture the arcana
of neuroimaging analysis

Thomas G. Close1,2* · Phillip G. D.
Ward1,3,4 · Francesco Sforazzini1 ·
Wojtek Goscinski6 · Zhaolin Chen1,5 ·
Gary F. Egan1,3,4

the date of receipt and acceptance should be inserted later

Abstract Mastering the “arcana of neuroimaging analysis”, the obscure knowl-
edge required to apply an appropriate combination of software tools and pa-
rameters to analyse a given neuroimaging dataset, is a time consuming process.
Therefore, it is not typically feasible to invest the additional effort required
generalise workflow implementations to accommodate for the various acquisi-
tion parameters, data storage conventions and computing environments in use
at different research sites, limiting the reusability of published workflows.

We present a novel software framework, Abstraction of Repository-Centric
ANAlysis (Arcana), which enables the development of complex, “end-to-end”
workflows that are adaptable to new analyses and portable to a wide range
of computing infrastructures. Analysis templates for specific image types (e.g.
MRI contrast) are implemented as Python classes, which define a range of po-
tential derivatives and analysis methods. Arcana retrieves data from imaging
repositories, which can be BIDS datasets, XNAT instances or plain directories,
and stores selected derivatives and associated provenance back into a reposi-
tory for reuse by subsequent analyses. Workflows are constructed using Nipype
and can be executed on local workstations or in high performance computing
environments. Generic analysis methods can be consolidated within common
base classes to facilitate code-reuse and collaborative development, which can

Thomas G. Close
E-mail: tom.close@monash.edu

1Monash Biomedical Imaging, Monash University, Melbourne, Australia
2Australian National Imaging Facility, Australia
3Australian Research Council Centre of Excellence for integrative Brain Function, Mel-
bourne, Australia
4Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne,
Australia
5Department of Electrical and Computer Systems Engineering, Monash University, Mel-
bourne, Australia
6Monash eResearch Centre, Monash University, Melbourne, Australia

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

2 Thomas G. Close et al.

be specialised for study-specific requirements via class inheritance. Arcana pro-
vides a framework in which to develop unified neuroimaging workflows that
can be reused across a wide range of research studies and sites.

Keywords Neuroimaging · Workflows · Repository · Reproducibility ·
Reusability · Large-scale · Python

Introduction

Despite the availability of well-established neuroimaging analysis packages
(Cox, 1996; Smith et al., 2004; Friston, 2007; Tournier et al., 2012), the arcana
of neuroimaging analysis is substantial due to the range of available tools,
tuneable parameters, and imaging sequences involved (Cusack et al., 2015).
The distribution of complete “end-to-end” workflows, from acquired data to
publication results, is necessary for routine reproduction because of the effort
required to accurately reimplement such analyses (Kennedy, 2018). It is also
difficult to adapt existing workflows to new studies without detailed knowl-
edge of their design. Therefore, flexible, portable and complete workflows are
important to promote reproduction and code reuse in neuroimaging research.

A barrier to designing portable and complete workflows is the heterogeneity
of data storage conventions (Marcus et al., 2007; Das et al., 2012; Gorgolewski
et al., 2016). To address this, the emerging Brain Imaging Data Standard
(BIDS) (Gorgolewski et al., 2016) provides a way to standardise the storage of
neuroimaging data in file system directories. BIDS specifies strict file and di-
rectory naming conventions, which facilitate the design of portable BIDS Apps
(bids-apps.neuroimaging.io). However, for research groups with sufficient
informatics support, software-managed repositories (Marcus et al., 2007; Das
et al., 2012) can provide additional features, such as flexible access-control and
automated pipelines. For published workflows, the choice of repository should
be transparent in order to maximise their audience.

While neuroimaging analyses are generally amenable to standardisation
(Kennedy, 2018), minor modifications are often required to accommodate id-
iosyncrasies of the acquisition protocols in use at different sites (Esteban et al.,
2018). Workflows may require conditional logic in construction or execution to
be portable. Nipype is a flexible Python framework for neuroimaging analysis
in which workflows are constructed programmatically in Python (Gorgolewski
et al., 2011). Programmatic construction allows for rich control-flow logic that
is not readily available in alternative workflow frameworks (Cusack et al., 2015;
Achterberg et al., 2016; Amstutz et al., 2016), and has been used to imple-
ment workflows that are robust to differences in fMRI protocols across a large
number of sites (Esteban et al., 2018).

The trend towards large multi-site and multi-contrast datasets collected
over a number of years (Van Essen et al., 2012; Thompson et al., 2014; Sud-
low et al., 2015) presents additional challenges to workflow design. Analysis
packages are constantly being developed and improved, so the state-of-the-art

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

bids-apps.neuroimaging.io
https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 3

workflow for a particular analysis can change over time. Therefore, it is chal-
lenging to ensure workflows are applied consistently over the course of long
studies (Cusack et al., 2015).

While analysis workflows for different contrasts and modalities are typ-
ically implemented independently, they can share common processing steps
(e.g. non-linear registration to standard space, surface parcellation) and their
outputs may need to be integrated to produce publication results. For large
scale studies, which are typically processed on the cloud or high-performance
computing (HPC) clusters, rerunning common segments can lead to signifi-
cant increases in computation time and project cost. In addition, duplication
of processing segments increases time for manual quality control (QC), mak-
ing the reuse of intermediate derivatives a practical requirement for some large
studies (Schreiber et al., 2018).

To maximise the reusability of neuroimaging workflows and avoid frequent
reimplementation of standard analyses, workflow implementations should be
flexible, extensible and applicable to a wide range of storage systems. In addi-
tion, in order to promote routine reproduction of neuroimaging studies, pub-
lished workflow implementations should include the complete procedure, from
acquired data to publication results. However, ensuring workflow implemen-
tations are flexible, portable and complete adds a high degree of complexity
and effort to the design process.

Our objective was to extract common elements of repository-centric work-
flow design into an abstract framework to make it practical to implement
flexible, portable and complete workflows for a wide range of neuroimag-
ing analyses. Abstraction of Repository-Centric ANAlysis (Arcana) (arcana.
readthedocs.io) is a Python framework for designing complex workflows in
which modular Nipype pipelines operate on data stored in repositories. Inter-
mediate derivatives are derived on demand, checking against stored provenance
for required updates. Analyses can be applied to XNAT, BIDS and plain-
directory repositories, and using Nipype’s execution plugins, run on worksta-
tions or be submitted as batch jobs to HPC schedulers. Arcana’s architecture,
with programmatic workflow construction—yet clear delineation between anal-
ysis design and application—facilitates the implementation of complex work-
flows that are portable and complete.

The utility of the Arcana framework is demonstrated by the implementa-
tion of analysis suites for T1, T2* and diffusion weighted MRI (DWI) data
and the application of DWI tractogram (Tournier et al., 2012) and vein masks
(Ward et al., 2017) workflows to data collected from a healthy subject.

Methods

Framework overview

The separation of analysis design and application in the Arcana framework
follows the conceptual divide between classes and objects in Object-Oriented

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

arcana.readthedocs.io
arcana.readthedocs.io
https://doi.org/10.1101/447649

4 Thomas G. Close et al.

Fig. 1 Example study. Blue boxes represent input data (filesets or fields) stored in a reposi-
tory and green derivatives from that data stored alongside the original data. Orange ovals are
pipelines that operate on data in the repository to derive the derivatives. Arrows represent
data flows, i.e., inputs and outputs to pipelines

(OO) software design. Study classes encapsulate types of data, such as scans
of a specific imaging contrast or modality, with the suite of analysis methods
that can be performed on them. Study objects apply the analysis suite defined
in the Study class to a specific dataset.

The set of input data, the derivatives that can be derived from it, and
methods that construct pipelines to derive the derivatives, are linked together
by the data specification table class attribute of the Study (Figure 1). Likewise,
free parameters used in pipeline construction are defined in the class’ parameter
specification table. Class inheritance can be used to specialise analysis suites by
overriding entries in the specification tables or pipeline constructor methods.
Analysis suites for multi-modal data can be implemented by combining Study
classes within MultiStudy classes.

Analysis methods defined by a Study class are applied to a specific dataset
by instantiating an object of the class and requesting a derivative listed in
the class’ data specification table. At initialisation, a Study object is passed
references to a Repository, a Processor, and an Environment objects, which
define where and how data is stored and processed. When a derivative is
requested, a Study object queries the Repository for intermediate derivatives
that can be reused before constructing a workflow to produce the requested
derivative. The manner in which the workflows are executed (i.e. single/multi-
process or via SLURM scheduler) is specified by the Processor and software
modules required by the analysis are loaded by the Environment. Selected
workflow products are stored back in the repository for reuse by subsequent
analyses (Figure 2). Input data to a study are selected from repositories using
criteria defined in Input objects passed to the Study object at initialisation
and matched against entries in the class’ data specification table.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 5

Constructs

1

1

1

1

1..*

1

 Processed

Data egest

Data ingest

Pipelines

Processor Study

Repsository

Input

Environment Configures

Fig. 2 Unified Modelling Language (UML) diagram of information flow in the Arcana
framework. Boxes: Python classes, blue=analysis-design, green=analysis-application. Ar-
rows: orange=data, magenta=workflow description, diamond=aggregated-in. Study classes
construct analysis pipelines, which are sent to the Processor to be processed. Input data is
selected by Input objects and pulled to the compute environment to be processed along with
existing intermediate derivatives. After the derivatives are pushed back to the repository.

Analysis design: Study classes

Study classes encapsulate a study dataset (i.e. data collected across multi-
ple subjects using the same acquisition protocol) with the suite of analytical
methods that can be applied to the dataset. The hierarchy of a study dataset
is assumed to have two levels, subjects and sessions, with each session for each
subject corresponding to a specific visit, e.g. timepoint in longitudinal study.
Derivatives can be created at any point in this hierarchy: per-session, per-
subject, per-visit and per-study. Iteration over subjects and visits is handled
implicitly by the framework. All Study classes must inherit from the Study base
class and be created by the StudyMetaClass metaclass or subclasses thereof.

Data and parameter specification tables

At the heart of each Study class is the data specification table, which is stored
in the data specs class attribute and specifies the input and output data of
the analysis, and all stages in between. There is a one-to-one relationship
between entries in the data specification table and data that are stored in the
repository, or will be stored if and when they are derived. Which intermediate
derivatives to include in the data specification table, and therefore store in
the repository, is left to the discretion of the researcher designing the analysis.
However, as a general rule, derivatives that require manual QC or are likely
to be reused between different branches of analysis should be included in the
table.

Data specified in the data specification table can be of either a fileset or field
type. Filesets represent single files, or sets of related files typically contained
within a directory (e.g. a multi-volume DICOM dataset). Fields represent
integer, floating point, datetime, or character string values. By default, a Field

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

6 Thomas G. Close et al.

represents a single value but if the array flag is set, a Field represents a list of
values. Each Fileset references a FileFormat object, which specifies the formats
of the files in the set. File formats are explicitly registered by the researcher
at design time using the FileFormat.register(format) class method to avoid
conflicts where the same extension is used for different formats in different
contexts.

Fileset and field specifications are passed to the data specification of a
Study class via the add data specs class attribute as a list of named File-
setSpec and FieldSpec objects (Figure 3). Specifications for acquired data (i.e.
input data to the study) are distinguished from derived data by using the File-
setInputSpec and FieldInputSpec subtypes. However, the distinction is fluid,
with derived specifications able to be overridden by acquired specifications in
subclasses or MultiStudy classes, and vice-versa, or passed inputs when the
class is instantiated.

All data specifications have a frequency attribute which specifies where the
data sits in the hierarchy of the dataset and can take the values ’per session’,
’per subject, ’per visit’ or ’per study’. In addition, derived specifications are
passed the name of a method in the class that constructs the pipeline to derive
them. Therefore, while a pipeline can have multiple outputs, each derivative
is derived by only one pipeline.

For Study classes that correspond to a known type in the BIDS standard,
a dictionary mapping their data specifications to default BidsInput or BidsAs-
socInput selectors can be specified in the default bids inputs class attribute.
BidsInput specifies a primary scan in the BIDS standard using its type, modal-
ity, format and optionally the task it belongs to. BidsAssocInput is used to
select associated files, such as field maps and diffusion encoding matrices rela-
tive to a primary scan. Default BIDS selectors are typically not provided with
a value for the task keyword, which can be set at instantiation of the Study
class with the bids task keyword argument to enable the design of Study classes
that are applicable to any BIDS task.

Similar to data specifications, parameter specifications are included in the
Study class by providing a list of ParamSpec objects to the add param specs
class attribute. ParamSpec objects are initialised with a name and default
value. Special parameters that specify a qualitative change in the analysis, for
example using ANTs registration (Avants et al., 2011) instead of FSL registra-
tion (Smith et al., 2004), are specified by the SwitchSpec subtype. SwitchSpecs
take a name, default value and a list of accepted values at initialisation.

Workflow design: pipeline constructor methods

Workflows are implemented in Arcana as a series of modular pipelines, which
each perform a unit of the analysis (e.g. registration, brain extraction, quanti-
tative susceptibility mapping). Pipelines are represented by Pipeline objects,
which are thin wrappers around Nipype workflows to handle input and output
connections, and namespace management. Each pipeline consists of a (typi-
cally small) graph of Nipype nodes, with each node wrapping a stand alone

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 7

from arcana import (
Study , StudyMetaClass , F i l e s e t InputSpec , F i l e s e tSpec ,
Fie ldInputSpec , Fie ldSpec , ParamSpec , SwitchSpec ,
F i l e s e t Input , XnatRepo)

from banana . f i l e f o r m a t import (
n i f t i g z f o r m a t , dicom format , n i f t i f o r m a t , ana lyze format ,
text format , t ex t mat r ix f o rmat)

STD IMAGE FORMATS = (dicom format , n i f t i f o r m a t , n i f t i g z f o r m a t ,
ana lyze fo rmat)

S e l e c t a F i l e s e t c o l l e c t i o n to use as a d e f a u l t f o r template1
template repo = XnatRepo (

s e r v e r=’ http :// c e n t r a l . xnat . org ’ , p r o j e c t i d=’TEMPLATES’ ,
cache=os . path . expanduser (os . path . j o i n (’ ˜ ’ , ’ xnat−cache ’)))

t e m p l a t e s e l e c t o r = F i l e s e t I n p u t (’MNI152 T1 ’ , n i f t i g z f o r m a t ,
f requency=’ per s tudy ’)

t e m p l a t e c o l l e c t n = t e m p l a t e s e l e c t o r . match (template repo . t r e e ())

class ExampleStudy (Study , metac las s=StudyMetaClass) :

add data specs = [
Acquired f i l e s e t s
F i l e s e t InputSpec (’ a c q u i r e d f i l e 1 ’ , t ex t f o rmat) ,
F i l e s e t InputSpec (’ a c q u i r e d f i l e 2 ’ , STD IMAGE FORMATS) ,
Acquired f i e l d s
Fie ldInputSpec (’ a c q u i r e d f i e l d 1 ’ , int , array=True ,

f requency=’ p e r s u b j e c t ’) ,
F ie ldInputSpec (’ a c q u i r e d f i e l d 2 ’ , f loat , op t i ona l=True) ,
” Acquired ” f i l e s e t with d e f a u l t va lue . Use fu l f o r
standard templates
F i l e s e t InputSpec (’ template1 ’ , STD IMAGE FORMATS,

f requency=’ per s tudy ’ ,
d e f a u l t=t e m p l a t e c o l l e c t n) ,

Derived f i l e s e t s
F i l e s e t S p e c (’ d e r i v e d f i l e 1 ’ , t ext format , ’ p i p e l i n e 1 ’) ,
F i l e s e t S p e c (’ d e r i v e d f i l e 2 ’ , n i f t i g z f o r m a t , ’ p i p e l i n e 1 ’) ,
F i l e s e t S p e c (’ d e r i v e d f i l e 3 ’ , t ext matr ix fo rmat ,

’ p i p e l i n e 2 ’) ,
F i l e s e t S p e c (’ d e r i v e d f i l e 4 ’ , dicom format , ’ p i p e l i n e 3 ’) ,
F i l e s e t S p e c (’ d e r i v e d f i l e 5 ’ , n i f t i g z f o r m a t , ’ p i p e l i n e 3 ’ ,

f r equency=’ p e r s u b j e c t ’) ,
F i l e s e t S p e c (’ d e r i v e d f i l e 6 ’ , ana lyze format , ’ p i p e l i n e 2 ’ ,

f r equency=’ p e r v i s i t ’) ,
Derived f i e l d s
Fie ldSpec (’ d e r i v e d f i e l d 1 ’ , f loat , ’ p i p e l i n e 2 ’) ,
F ie ldSpec (’ d e r i v e d f i e l d 2 ’ , int , ’ p i p e l i n e 4 ’ ,

f r equency=’ per s tudy ’)]

add param specs = [
Standard parameters
ParamSpec (’ parameter1 ’ , 10) ,
ParamSpec (’ parameter2 ’ , 2 5 . 8) ,
” Switch ” parameters that s p e c i f y a q u a l i t a t i v e change
in the a n a l y s i s
SwitchSpec (’ node1 opt ion ’ , Fa l se) , # Boolean switch
SwitchSpec (’ p i p e l i n e 2 t o o l ’ , ’ toolA ’ , (’ toolA ’ , ’ toolB ’))]

Fig. 3 Example data and parameter specifications. The data specification specifies two
input file sets, ‘one’ and ‘ten’ and ten derived file sets that can be derived from them, at
least indirectly. Each derived data spec, specifies the name of the pipeline constructor that
creates the pipeline that derives them. Parameter specifications specify a name and default
value for free parameters of the Study class

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

8 Thomas G. Close et al.

tool (e.g. FSL’s FLIRT) or analysis package function (e.g. SPM’s coreg tool).
Pipelines source their inputs from, and sink their outputs to, entries in the
data specification table, thereby linking the table together.

Pipelines are constructed dynamically by “pipeline constructor” methods
of the study. Pipeline constructor methods are referenced by name in the
pipeline name argument of the FilesetSpec and FieldSpec objects of data spec-
ifications they derive. Pipeline constructor methods should only receive wild-
card keyword arguments (e.g. my pipeline(self , ∗∗name maps)), and these
arguments should be passed as a dictionary directly to the name maps argu-
ment of the pipeline initialisation to enable inputs and outputs of the pipeline
to be rerouted to alternative data specifications in modified constructor meth-
ods, typically in subclasses and multi-studies (see Extension and specialisation
by class inheritance and Implementing multi-modal studies).

The syntax for pipeline construction is inspired by changes proposed for
Nipype v2.0 (github.com/nipy/nipype/issues/2539). Within a pipeline con-
structor method, a Pipeline object is constructed by the Study.pipeline method
(Figure 4). At initialisation, each pipeline is given a name, which must be
unique amongst the pipelines constructed by the Study. The methods imple-
mented by the pipeline can be characterised by providing a the list of citations
and a text description to the citations and desc keyword arguments, respec-
tively.

The add(name, interface) method is used to add a node to a pipeline
and takes a unique name for the node (within the pipeline) and a Nipype
Interface object, and returns a reference to the newly added node. For clarity,
is recommended to put all static inputs (i.e. parameters) of the interface as
keyword arguments of the interface constructor (Figure 4). However, if an
input conditionally depends on a parameter of the study it can be set via the
inputs attribute of the node (e.g. my node.inputs.my param = 1.0).

Node interfaces are connected to each other, and to inputs and outputs of
the pipeline, by providing inputs and outputs keyword arguments to the add
method. Both arguments take a dictionary. The keys of the inputs dictionary
correspond to trait names in the node’s input interface, whereas the keys of
the outputs dictionary correspond to names of entries in the data specification
table. The values of both dictionaries are 2-tuples. For pipeline inputs, values
of the inputs dictionary consist of a name of an entry in the data specification
table and the format the input is expected in (i.e. a FileFormat for Fileset spec-
ifications or Python datatype for Field specifications). For pipeline outputs,
values of the outputs dictionary consist of a trait name in the node’s output
interface and the format the output data is generated in. For input connec-
tions from other nodes, values of the inputs dictionary consist of a reference
to the upstream node and the name of a trait in the upstream node’s output
interface (output connections to other nodes are implied by input connections
of other nodes).

If the expected format of a pipeline input or generated format of a pipeline
output does not match that of the corresponding study input or data specifi-
cation, then a conversion node is implicitly connected to the pipeline by the

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

github.com/nipy/nipype/issues/2539
https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 9

def p i p e l i n e 2 (s e l f , ∗∗name maps) :

p i p e l i n e = s e l f . n ew p ipe l i ne (
name=’ p i p e l i n e 2 ’ ,
name maps=name maps ,
desc=” Desc r ip t i on o f the p i p e l i n e ” ,
c i t a t i o n s =[methods paper c i t e])

node1 = p i p e l i n e . add (
’ node1 ’ ,
I n t e r f a c e 1 (

param1 =3.5 ,
param2=s e l f . parameter (’ parameter1 ’)) ,

inputs={
’ i n f i l e 1 ’ : (’ a c q u i r e d f i l e 1 ’ , t ex t f o rmat) ,
’ i n f i l e 2 ’ : (’ a c q u i r e d f i l e 2 ’ , ana lyze fo rmat) ,
’ i n f i e l d ’ : (’ a c q u i r e d f i e l d 1 ’ , int)} ,

outputs={
’ d e r i v e d f i e l d 1 ’ : (’ o u t f i e l d ’ , int)} ,

wa l l t ime =25, requ i rements =[s o f twa r e r eq1])
i f s e l f . branch (’ node1 opt ion ’) :

node1 . inputs . an opt ion = ’ set−extra−opt ion ’

i f s e l f . branch (’ p i p e l i n e 2 t o o l ’ , ’ toolA ’) :
p i p e l i n e . add (

’ node2 ’ ,
I n t e r f a c e 2 (

param1=s e l f . parameter (’ parameter2 ’)) ,
inputs={

’ template ’ : (’ template1 ’ , n i f t i g z f o r m a t) ,
’ i n f i l e ’ : (node1 , ’ o u t f i l e ’)} ,

outputs={
’ d e r i v e d f i l e 3 ’ : (’ o u t f i l e ’ ,

t ex t mat r ix f o rmat)} ,
wa l l t ime =10, requ i rements =[s o f twa r e r eq2])

s e l f . connect output (’ d e r i v e d f i l e 6 ’ , node1 , ’ out ’ ,
n i f t i f o r m a t)

e l i f s e l f . branch (’ p i p e l i n e 2 t o o l ’ , ’ toolB ’) :
p i p e l i n e . add (

’ node2 ’ ,
I n t e r f a c e 3 () ,
inputs={

’ template ’ : (’ template1 ’ , n i f t i g z f o r m a t) ,
’ i n f i l e ’ : (node1 , ’ o u t f i l e ’)} ,

outputs={
’ d e r i v e d f i l e 3 ’ : (’ o u t f i l e ’ ,

t ex t mat r ix f o rmat)} ,
wa l l t ime =30, requ i rements =[matlab req ,

too lbox1 req])
else :

s e l f . unhandled branch (’ p i p e l i n e 2 t o o l ’)

return p i p e l i n e

Fig. 4 Example pipeline constructor method. Pipelines are created using the pipeline
method of the Study class. Pipeline objects are thin wrappers around Nipype Workflow
objects to in order manage the namespaces of the workflow’s inputs, outputs and nodes. Ev-
ery pipeline constructor method should allow wildcard keyword arguments, which are passed
to the name maps argument of the pipeline initialisation. This allows pipeline constructors
in sub and multi classes to map the inputs and outputs of the pipeline onto different data
specifications.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

10 Thomas G. Close et al.

framework to perform the required conversion. Pipeline inputs and outputs
that are conditional on parameters or inputs provided to the study can be
specified outside of the add method using the connect input or connect output
methods, respectively. Conditional connections between nodes can be specified
via the connect method of the pipeline (which simply calls the method of the
same name in the underlying Nipype workflow).

Any external software packages required by a node should be referenced in
the requirements keyword argument as a list of Requirement objects when the
node added to the pipeline. Similarly, the expected memory requirements in
MB and wall time for the node execution should be provided to the keyword
arguments memory, and wall time.

Iteration over subjects and visits is handled implicitly by Arcana and
depends on the frequency of the pipeline’s inputs and outputs. To create a
summary derivative (i.e. frequency != ’per session’) from more frequent data,
Study.SUBJECT ID or Study.VISIT ID should be passed to the joinsource
keyword of the add method to join over subjects or visits, respectively. In this
case, a JoinNode will be created instead of standard Node, which should be
passed the additional keyword argument joinfield to specify the list of input
traits to convert into lists to receive the joined input. Similarly, if the name
of an input trait is provided (or list thereof) to the the iterfield keyword ar-
gument, then a MapNode will be created and the interface will be applied to
all items of the list connected to that input (Gorgolewski et al., 2011). Ad-
ditionally, the values of the subject and visit IDs are directly accessible as
input fields of the pipeline named Study.SUBJECT ID and Study.VISIT ID,
respectively.

Study parameters can be accessed during pipeline construction with the
Study.parameter(name) method. If conditional logic is included in the workflow
construction that alters the pipeline inputs, outputs or parameters then it
should be controlled by a switch instead of a parameter. The analysis branch
designated by a switch value should be tested with Study.branch(name) in
the case of boolean switches and Study.branch(name, ref value) in the case of
string switches.

Extension and specialisation by class inheritance

Because Arcana analyses are implemented as Python classes, class inheritance
can be used to specialise existing analyses.

Instead of being set directly, the data and parameter specifications are
set by the metaclass of the Study (i.e. StudyMetaClass) in order to combine
them with corresponding specifications in the class’ bases. The combined data
and parameter specifications are constructed by visiting the class’ bases in
reverse method resolution order (MRO) and adding specifications from their
add data specs, add param specs attributes, overriding previously added spec-
ifications with matching names. Note that in this scheme, specifications can
only be appended or overridden but not removed by Study subclasses so as
not to break workflows inherited from base classes.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 11

Pipeline constructor methods can be overridden in subclasses like any
Python method. Often the overriding method will call the superclass method
to construct a pipeline, apply modifications and return the modified pipeline.
In this scenario, references to the data specification in the superclass method
can be mapped onto different entries in the table of the subclass by providing
the input map and output map keyword arguments when calling the superclass
method. Additionally the name of the pipeline can be altered by providing the
name argument, which is useful when creating multiple pipeline constructor
methods from a single base method. In these scenarios it is important to also
pass the the wildcard keyword arguments of the overriding method to the
name maps keyword argument of the superclass method to allow the overrid-
ing method to be overridden in turn.

Implementing multi-modal studies: MultiStudy classes

While basic Study classes are typically associated with single image modality
or contrast, the analysis suites implemented by them can be integrated into
multi-modal analysis by aggregating multiple Study classes (sub-studies) in a
MultiStudy class. Analysis suites are integrated by joining the data specifica-
tion tables of the sub-studies of a MultiStudy class. Entries in specification
tables of sub-studies are joined by mapping them to a common entry in the
specification table of the MultiStudy (Figure 5). This enables derivatives from
one sub-study (e.g. brain extracted T1-weighted anatomical) to be referenced
by workflows of other sub-studies (e.g. anatomically constrained DWI tractog-
raphy).

All MultiStudy classes must inherit from the MultiStudy base class and be
created by the MultiStudyMetaClass metaclass or subclasses thereof. As in the
case of subclassing the standard Study class, additional data and parameter
specifications can be added to the class via add data specs and add param specs
respectively for additional analysis not included in the sub-studies.

Sub-studies are aggregated in the sub-study specification table of a Multi-
Study class via a list of SubStudySpec objects in the add sub study specs class
attribute in the manner of data and parameter specifications. A SubStudySpec
consists of a name, a Study class, and a name map dictionary. The name map
dictionary maps data and parameter specification names from the sub-study
namespace to the namespace of the MultiStudy class, i.e. the dictionary keys
refer to entries in the sub-study specification table and the dictionary values
refer to entries in the multi-study specification table.

Entries in the specification tables of sub-study classes that are not ref-
erenced in the sub study’s name map are implicitly mapped to the Mul-
tiStudy namespace by the MultiStudyMetaClass during construction of the
MultiStudy class using the name of the sub-study as a prefix. If the implic-
itly mapped specification is derived, then its associated pipeline constructor
method is also mapped into the MultiStudy namespace with a prefix. For ex-
ample, derived1 in sub study2 would be mapped to sub study2 derived1 along
with the method sub study2 pipeline1.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

12 Thomas G. Close et al.

Fig. 5 Example MultiStudy. Blue boxes represent input data (filesets or fields) and green
derivatives. Orange ovals are pipelines. Blue and green arrows: pipeline inputs from study
inputs and derived data, respectively. Orange arrows: outputs of pipelines. Dashed boxes
represent data specifications in a sub-study that are present in the global namespace and
mapped into the sub-study space, and dotted arrows the mappings. Sub-studies are linked
by mapping the same data spec in the global space onto data specifications the multiple
sub-study namespaces (e.g. Derived 1, 2 and 3). There are no restrictions between mapping
study input and derivative data specifications: both input and derivative specifications can
be mapped onto input data or derivative specifications in sub-studies. If a spec in the global
spaced is mapped onto a derivative spec in the sub-study space, then the pipeline that
generates that derivative in the sub-study will not run unless it generates other required
derivatives (e.g. Pipeline 3 in Sub-Study 2)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 13

Constructs

Study

+name

+parameters

+data_specs

+parameter_specs

+data(name)

#new_pipeline()

MriStudy

-add_data_specs

-add_parameter_specs

#segmentat ion()

#registrat ion()

#brain_extract ion()

PetStudy

-add_data_specs

-add_parameter_specs

#baeseline_removal()

#umap_calculat ion()

Repository

+get_fileset(fileset)
+get_field(field)
+put_fileset(fileset)
+put_field(field)
#find_data()

#found_fileset(fileset)

#found_field(field)

#connect()

#disconnect()

BasicRepo

+root_dir

XnatRepo

+server

+user

+cache_dir

1

1

Processor

+work_dir

+max_runt ime

+run(pipeline)

SingleProc

-nipype.LinearPlugin

Mult iProc

-nipype.Mult iProcPlugin

SlurmProc

-np.SlurmGraphPlugin

1

1

Input

+name

+pattern

+bind(study)

FilesetInput

+format

+id

+header_values

FieldInput

+dtype

1..*
1

BoldStudy

-add_data_specs

-add_parameter_specs

#noise_regression()
#group_ica()

DwiStudy

-add_data_specs

-add_parameter_specs

#fa()
#tractography()

T1Study

-add_data_specs

-add_parameter_specs

#parcelat ion()

Pipeline

+inputs

+outputs

+citat ions

-nipype.Workflow

Processed

Data Egest

Data Ingest

T2starStudy

-add_data_specs

-add_parameter_specs

#qsm()
#swi()

BidsRepo

+root_dir

BidsInput

+type

+modality

+run

Environment

+satisfies(req)
+load(req)
+unload(req)

1

1Stat icEnv

ModulesEnv

+package_map

+versions_map Configures

Fig. 6 Detailed Unified Modelling Language (UML) diagram of information flow in
the Arcana framework. Boxes: Python classes (blue=core, green=interchangeable mod-
ules, grey=example specialisations). Arrows: orange=data, magenta=workflow description,
diamond=aggregated-in, triangle=subclass-of. Calling data(name) on a Study subclass con-
structs the requisite pipelines (as specified in data specs) to produce the requested data,
and sends them to the Processor to be processed. Data is selected by Input objects, pulled
to the compute environment to be processed, and then the derivatives are pushed back to
the repository. Repositories can be of plain directories, or BIDS or XNAT repositories

Analysis application: Study instances

To apply the analysis blueprint specified in a Study class to a specific dataset,
an instance of the Study class is created with details of where the data is
stored (Repository module) the computing resources available to process it
(Processor module) and the software installed in the environment it will be
processed in (Environment module). A Study object controls the construction
and execution of analysis workflows, and the flow of data to and from the
repository (Figure 6).

Each Study instance is assigned a name, which is used to differentiate
its results from alternative analyses on the same dataset (e.g. with different
parameterisations). Parameters are set on initialisation of the Study object
along with the range of subject and visit IDs to be included in the analysis
(if they are not provided then all IDs found in the repository are included).
The remaining arguments passed to the Study object initialisation are the
Repository, Processor and Environment modules to use and a list of Input

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

14 Thomas G. Close et al.

objects to select input data from the repository and match it with the Study’s
data specification table. (Figure 7).

Repository modules

In Arcana, repository access is encapsulated within modular Repository ob-
jects to enable switching between different repositories and repository types
at analysis “application time” (Figure 2). There are currently three supported
repository types, XNAT (Marcus et al., 2007), BIDS (Gorgolewski et al., 2016)
and a “basic” format, which are encapsulated by XnatRepo, BidsRepo, and Ba-
sicRepo classes respectively.

In its most basic form, a “basic” repository, is just a file system directory
containing the data to be processed for a single subject. For multi-subject stud-
ies, the root directory should contain separate subdirectories for each subject
in the study, with subject IDs taken from the subdirectory names. If data
was acquired for each subject over multiple visits, than an additional layer of
nested subdirectories is included in the subject subdirectories, with the visit
IDs taken from the subdirectory names. Note that the basic repository is sim-
ilar to the BIDS format, however, there are no naming conventions in the
basic repository, which enables prototyping and testing of analyses on loosely
structured data.

Derivatives are stored by their specification name in a study-specific names-
paces to avoid clashes with separate analyses. In basic repositories this names-
pace is a subdirectory named after the study nested within the lowest layer
of the data tree. In BIDS repositories, the namespace is a subdirectory of
the derivatives directory, again named after the study. In XNAT repositories,
derivatives for each session are stored in separate MrSession objects alongside
the primary session underneath its Subject, and are named <primary-session-
name> <study-name> (Table 1).

Derived filesets are stored with the format specified in the study’s data
specification. In plain-directory and BIDS repositories, fields are stored in a
single JSON file named ‘ fields .json’ in each derived session, and on XNAT
they are stored in custom fields of the derived session. Provenance is stored
in a ‘ prov ’ sub-directory (dataset on XNAT) of the derivatives directory
(MrSession on XNAT) in separate JSON files for each pipeline named after
the pipeline (Table 1).

Summary data (i.e. with per subject, per visit, and per study frequencies)
are stored in specially named subjects and visits (e.g. ‘group’), the names for
which are specified when the repository is initialised. For example, given in
plain-directory repository using all as the summary name for both subjects and
visits, per subject data for ‘subj1’ would be stored at <root>/subj1/ group,
per visit data for ‘visit1’ in <root>/ group/visit1, and per study data in
<root>/ group/group (Table 1).

Each study can only have one repository in which derivatives are stored.
However, a study can draw data from multiple auxiliary repositories, which
are specified in the inputs passed to the study. When using multiple input

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 15

#! / usr / bin /env python3
import os . path as op
from arcana import (

F i l e s e t Input , Fie ldInput , XnatRepo , SlurmProc , ModulesEnv)
from . example study import ExampleStudy
from banana . f i l e f o r m a t import dicom format
from myproj . requ i rements import package1 req

Create study ob j e c t that a c c e s s e s an XNAT r e p o s i t o r y
and submits jobs to a SLURM schedu l e r
study = ExampleStudy (

Give a name to t h i s a n a l y s i s to
d i f f e r e n t i a t e i t from other ana ly s e s
performed on the same data
name=’ example ’ ,
Set up connect ion to XNAT r e p o s i t o r y
r e p o s i t o r y=XnatRepo (

p r o j e c t i d=’SAMPLE PROJECT ’ ,
s e r v e r=’ https : // c e n t r a l . xnat . org ’ ,
c a c h e d i r=op . expanduser (’ ˜/xnat−cache ’)) ,

Spec i f y the use the SLURM schedu l e r to submit
nodes as jobs us ing Nipype ’ s SlurmGraphPlugin
p r o c e s s o r=SlurmProc (

work di r=op . expanduser (’ ˜/work ’)) ,
Spec i f y the use o f environment modules to
s a t i s f y so f tware requ i rements . Non−standard
package names e x p l i c i t l y mapped to approp . r eqs .
environment=ModulesEnv (

packages map={
package1 req : ’ Package1 Para l l e l ’ }) ,

Link f i l e s and f i e l d s in the r e p o s i t o r y
to e n t r i e s in the data s p e c i f i c a t i o n
inputs={

’ a c q u i r e d 1 f i l e ’ : F i l e s e t I n p u t (pattern=’ .∗mprage .∗ ’ ,
dicom format) ,

’ a c q u i r e d f i l e 2 ’ : F i l e s e t I n p u t (’ SWI Images ’ ,
dicom format) ,

’ a c q u i r e d f i e l d 1 ’ : F i e ld Input (’YOB’ , int ,
f r equency=’ p e r s u b j e c t ’) ,

’ a c q u i r e d f i e l d 2 ’ : F i e ld Input (’ weight ’ , f loat)} ,
Spec i f y parameters s p e c i f i c to t h i s
a n a l y s i s
parameters={ ’ parameter1 ’ : 55 . 0 ,

’ p i p e l i n e t o o l ’ : ’ toolB ’ })

Generate whole bra in t r a ck s and return path to
a cached datase t
der ived5 = study . data (’ w h o l e b r a i n t r a c k s ’)
print (”The \” der ived5 \” f i l e s e t f o r the ’SECOND’ v i s i t ”

” o f s ub j e c t ’PILOT1 ’ was produced at :\n{}”
. format (der ived5 . path (s u b j e c t i d=’PILOT1 ’ ,

v i s i t i d=’SECOND’)))

Fig. 7 Example application of Study class to a dataset stored in an XNAT repository. Once
the Study object has been initialised potential derivatives of the Study can be requested,
and will be generated and stored in the repository if already present.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

16 Thomas G. Close et al.

Table 1 Storage locations of derived data for each repository type. Derivatives are stored
in separate namespaces for each Study instance to enable multiple analyses on the same
datasets with different parameterisations. Where ‘...’ is the location of the directory or
MrSession that holds the derivatives, subj = subject ID, vis = visit ID, study = name of
the Study instance, and pl = name of pipeline.

Datatype Plain-directory BIDS XNAT

Derivatives /subj /vis/study /derivatives/study/subj /vis /subj /vis study
Fields .../ fields .json .../ fields .json MrSession XML
Provenance .../ prov /pl.json .../ prov /pl.json .../ prov /pl.json

Table 2 Abstract methods in the base Repository class that need to be implemented by
platform-specific sub-classes.

Method name Function

find data() Queries repository to find all existing filesets and fields
get fileset(Fileset) Caches fileset (if necessary) and returns the path to file(s).
get field(Field) Retrieves and returns the value of the field from the repository
put fileset(Fileset) Inserts fileset into the repository and updates cache.
put field(Field) Inserts the value of the Field into the repository
connect() Opens a connection to the repository (optional).
disconnect() Closes connection to repository (optional)

repositories, subject and visit IDs will often need to be mapped from their
values in the auxiliary repositories to the “ID space” of the study, which can
be done by passing either by a dictionary or callable object (e.g. function) to
the subject id map or visit id map keyword arguments during initialisation of
a repository.

New repository modules for additional repository types can be imple-
mented by extending the Repository abstract base class and implementing
five abstract methods, find data, get fileset, get field, put fileset and put field
(Table 2).

Study inputs

While derivatives generated by a Study object are named in accordance with
the data specification of the Study class, arbitrary naming conventions can
be used for input datasets and fields. A selection stage matches input data
to entries in the data specification table of the Study class. The criteria for
these selections are passed to the the inputs argument of the Study object at
instantiation in a dictionary mapping data specification names to FilesetInput
and FieldInput objects, and are required to match exactly one fileset or field
in every session included in the study.

Matching is typically performed on file names (dataset labels for XNAT
repositories) and field names. If the names are inconsistent across the study
then regular expressions can be used instead of exact matches with the pattern
keyword argument. Additional criteria can be used to distinguish cases where

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 17

multiple filesets in the session match the pattern provided, such as DICOM
header values, or the order and ID of the dataset.

Inputs can be drawn from auxiliary repositories by providing alternative
Repository instances to the repository keyword of the Input. Care should be
taken to ensure that the subject and visit ID schemes will map correctly to that
of the primary repository (see Repository modules). If the primary repository is
empty (i.e. all inputs come from auxiliary repositories) then explicit subject ids,
visit ids need to be provided and the fill tree flag set when initialising the
Study.

If the data to select has been derived from an alternative Arcana Study in-
stance, then the name of the alternative study can be passed to the from study
keyword argument provided to the selector. There are no restrictions on select-
ing any data, derived or otherwise, to match input or derived specifications.
For example, it is possible to deliberately skip analysis steps by selecting an
output of an early step in a previous run as a match for a later derived spec
although this is not recommended as standard practice.

Specific files and fields that are not stored within a repository can be passed
as inputs in FilesetCollection and FieldCollection objects. Collection objects
reference an entry in the data specification table and contain a single Fileset
or Field for every session (or subject/visit/study depending on the frequency
of the corresponding data specifcation). Collection objects can be used to
pass reference atlases and templates as inputs to analyses. They can also be
set as the default for a data specification via the default keyword argument.
However, for the sake of portability, default inputs should be restricted to
data in publically accessible repositories or those included in standard software
packages (e.g. FSL).

When using BIDS repositories, the selection stage is typically already in-
cluded in the data specification (see Data and parameter specifications) so
inputs do not need to be provided to the initialisation of the Study. However,
BidsInput and BidsAssocInput objects can be provided to override the default
selections if required.

Processor modules

Processor modules control how pipelines generated by a Study are executed.
There currently three Processor modules implemented in Arcana: SingleProc,
MultiProc, SlurmProc, which wrap the LinearPlugin, MultiProcPlugin and
SlurmPlugin Nipype execution plugins, respectively. The main task performed
by the processor, as separate from the Nipype execution plugin it wraps, is to
determine which pipelines need to be run and link them into a single workflow.
Since this logic is implemented in the Processor abstract base class, wrapping
additional Nipype plugins as required is trivial.

A Processor is used internally by a Study instance to execute pipelines to
derive derivatives requested from the data specification by the data(name[,
name,...]) method (Figure 2). The first step in this procedure is to query the
repository tree for all data and provenance associated with the study. Sessions

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

18 Thomas G. Close et al.

for which the requested outputs of the pipeline are already present in the
repository, and the stored provenance matches the current parameters of the
study, excluded from the list to process. For the remaining sessions to process,
inputs of the pipeline that are derivatives themselves are added to the stack
of requested derivatives. This procedure is repeated recursively until there are
no sessions to process or all inputs to the pipeline are study inputs at a given
depth.

When a pipeline is processed it is connected to source and sink nodes, which
get and put the pipeline inputs and outputs from and to a repository, respec-
tively. Separate source and sink nodes are used for each data frequency (i.e.
per-session, per-subject, per-visit, per-study). If implicit file format conversion
is required (i.e. the input or output format differs from the data specification)
then additional format converter nodes are inserted after the source nodes or
before the sink nodes. Iterator nodes that iterate over the required subjects
and visits are connected to the sources, and “deiterator” nodes that join over
subjects and visits are connected to the sink nodes. Final nodes of upstream
pipelines are connected to downstream iterator nodes in order to create a single
workflow, which is then executed using the Nipype execution plugin.

Provenance is stored for each pipeline run alongside the generated deriva-
tives and consists of parameter values used by the pipeline, software versions
used by the pipeline, interface parameters, a graph representation of the under-
lying Nipype workflow, checksums of inputs, version of Arcana used, version
of Nipype used, and any subject and visit IDs that were joined over in the
workflow.

For subsequent analyses, changes with respect to any of the stored prove-
nance values will be flagged as a mismatch, with the exception of interface
package versions (e.g. Nipype or Banana versions). How mismatches are han-
dled depends on the reprocess flag passed to the Processor. If reprocess is true
then the sessions with mismatching provenance will be reprocessed, otherwise
if reprocess is false (the default) an exception will be raised. Changes with
respect to any element in the provenance JSON document can be ignored by
providing a list of JSONPath queries to the prov ignore keyword argument.

Environment modules

The software packages installed on the system that are required by a study’s
workflows (e.g. FSL, SPM) are detected and managed by the Environment
object passed to the study at initialisation. There are currently two types of
Environment class implemented in Arcana: StaticEnv and ModulesEnv.

ModulesEnv objects can be used if environment modules (Furlani, 1991)
are installed on the system (typical on many HPC systems). In this case,
environment modules are loaded before a workflow node is run, based on the
requirements specified for the node during construction of the pipeline (see
Pipeline constructors), and then unloaded afterwards. Mappings from non-
standard module names installed on the system to those expected by the Study
can be can be passed as a dictionary to the packages map keyword argument

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 19

at initialisation. Likewise non-standard versions for packages can be mapped
onto the versioning system of a requirement using the versions map keyword
argument.

StaticEnv objects don’t actively manage the environment, and instead only
check the current environment for appropriate software versions before running
requested workflows.

Acquisition of test dataset

A healthy volunteer was scanned using a 3T Siemens Skyra with a 32-channel
head and neck coil to demonstrate the application of analyses implemented
in Arcana. The protocol was a T1-weighted MPRAGE (1mm contiguous,
matrix size 256x240x192, FOV 256x240x192, TE = 2.13ms, TR, = 2300ms,
TI = 900ms, bandwidth = 230Hz/pixel), GRE (1.8 mm contiguous, matrix
size 256x232x72, FOV 230x208x130, TE = 20ms, TR, = 30ms, bandwidth =
120Hz/pixel), and diffusion MRI (2 mm contiguous, matrix size 110x100x60,
FOV 256x240x192, TE = 95ms, TR, = 8200ms, 33 diffusion directions with b
= 1500 mm2/s and 3 b=0, bandwidth = 781Hz/pixel).

Results

The Arcana framework is distributed as a publicly available software pack-
age via GitHub (github.com/MonashBI/arcana) and the Python Package
Index (PyPI) (pypi.org/project/arcana/). Study classes for T1, T2* and
diffusion weighted MRI data have been implemented as part of the Biomed-
ical imging ANAlysis iN Arcana (Banana) package (github.com/MonashBI/
banana; pypi.org./project/banana). All three classes, T1Study, T2starStudy
and DwiStudy, inherit generic image analysis methods, such as registration and
brain extraction, from the base class MriStudy.

The DwiStudy class implements the extraction of diffusion tensor metrics,
FA and ADC, as well as whole-brain tractography using streamlines tracking
from the MRtrix toolbox (Tournier et al., 2010, 2012) (Figure 8).

The T2starStudy class implements an algorithm to generate composite vein
images (Ward et al., 2018) and vein masks (Ward et al., 2017) from the com-
bination of vein atlases derived from manual tracings with Quantitative Sus-
ceptibility Mapping (QSM) and Susceptible Weighted Imaging (SWI) images
derived from the T2*-weighted acquisition (Figure 9).

The T1Study, T2starStudy and DwiStudy classes are aggregated into a
single MultiStudy class, ArcanaPaper (Supplementary material), which is spe-
cialised to produce the figures in the Results section of this manuscript. In
order to warp the vein atlases to the subject space for comparison with the
SWI and QSM images, nonlinear registration to Montreal Neurological In-
stitute templates (Grabner et al., 2006) is performed in the T1Study. The
transform and warp field from this registration are then mapped onto the

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

github.com/MonashBI/arcana
pypi.org/project/arcana/
github.com/MonashBI/banana
github.com/MonashBI/banana
pypi.org./project/banana
https://doi.org/10.1101/447649

20 Thomas G. Close et al.

DWI Study

Magnitude

Bias corrected

FA

Preprocess

Respons. est.

Tens. metrics

Reverse P.E.

Preprocessed

b-values

Encoding grad.

Extract grad.

Brain extract.

Brain

Bias correct.Brain mask

Tensor

Tensor

ADC

WM response

Fibre ODF

CSD

Global tract.

W.B. tracks

Fig. 8 Example diffusion-weighted MRI (DWI) study, which can derive tensor metrics,
fractional anisotropy (FA) and apparent diffusion coefficient (ADC) as well as streamlines
fibre tracking. Blue boxes: acquired (input) data (filesets or fields). Green boxes: derivatives.
Orange ovals: pipelines. Blue and green arrows: acquired and derived inputs to pipelines,
respectively. Orange arrows: outputs of pipelines. The DWI magnitude image is preprocessed
for motion correction and EPI distortions masked and bias corrected. From the bias corrected
image two branches of analysis can be performed using the same intermediate derivatives:
FA and ADC and/or streamlines fibre tracking.

‘coreg to atlas mat‘ and ‘coreg to atlas warp’ specifications in the T2starStudy,
as the registration of T2*-weighted images to the MNI template is typically
poor. These transforms are combined with the linear transform from the brain-
extracted T2*-weighted magnitude image to the brain extracted T1-weighted
image, which requires the ‘brain’ specification in the T1Study to be mapped
to the ‘coreg ref brain‘ specification in the T2starStudy.

The SWI image reconstructed on the scanner console is substituted for the
SWI derivative produced by the SWI pipeline of the T2starStudy. For ease of

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 21

Fig. 9 Combined T2*/T1-weighted studies within ArcanaPaper MultiStudy class, which
can derive vein masks by combining Quantitative Susceptibility Mapping (QSM) and Sus-
ceptible Weighted Imaging (SWI) contrasts with a manual atlas. Blue boxes: input data
(filesets or fields). Green boxes: derivatives. Orange ovals: pipelines. Blue and green arrows:
inputs to pipelines from input and derived data, respectively. Orange arrows: outputs of
pipelines. Dashed boxes represent data specifications in a sub-study that are present in the
global namespace and mapped into the sub-study space, and dotted arrows the mappings.
The acquired T1-weighted image is mapped to both the magnitude spec of the T1-weighted
sub-study and the registration reference spec of the T2*-weighted sub-study. The nonlinear
transformation from subject to atlas space are mapped from the T1-weighted sub-study and
combined with the linear registration between T1-weighted and T2*-weighted images, QSM
and SWI images are combined to produce the composite-vein image. In this instance, the
SWI acquired from the scanner console is passed as an input to the derived SWI specifica-
tion, overriding the SWI pipeline that would otherwise generate it (dashed oval).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

22 Thomas G. Close et al.

comparison with the QSM and vein images produced by T2starStudy, this SWI
image is brain extracted in a separate MriStudy sub-study of ArcanaPaper.

The vein fig, fa adc fig and tractography fig methods implemented in the
ArcanaPaper class were applied to the test dataset to produce Figure 10,
11, and 12, respectively. Figure 10 displays composite vein images and vein
masks for the healthy volunteer along with the SWI and QSM intermediate
derivatives. The derived vein images are comparable to those generated by the
original implementation (Ward et al., 2018).

Figure 11 displays the FA and ADC maps derived from the diffusion MRI
acquisition. The FA map shows high intensity in known white matter tracts
and low intensities in known grey matter regions. The ADC map shows high
intensity in cortical spinal fluid and low intensity through the rest of the brain.
Figure 12 displays the global tractography derived from the DWI acquisition.
The streamlines follow well known white matter tracts such as the cortico-
spinal, fasciculus and corpus callosum. Intermediate derivatives derived for
the FA and ADC analysis, including the preprocessed and bias-corrected DWI
image and a whole brain mask, were reused in the generation of the streamlines.

Discussion

We present Arcana, a software framework to facilitate the development of
comprehensive analysis suites for neuroimaging data that implement complete
workflows from repository data to publication results. The encapsulation of
repository data and workflow generation in Arcana enables researchers to cre-
ate robust workflows while focussing on the core logic of their analysis. Ar-
cana’s modular pipeline and OO architecture promotes code reuse between
different workflows by facilitating the sharing of common segments (e.g. reg-
istration, segmentation). The clear separation of analysis design from its ap-
plication leads to portable workflows, which can be applied to datasets stored
in a number of storage systems. In addition, the management of intermediate
derivatives, provenance and software versioning, coupled with ability to sub-
mit jobs to HPC clusters, enables workflows implemented in Arcana to scale
to large datasets. Arcana thereby enables researchers to quickly prototype
analysis suites on local workstations that can be deployed on enterprise-scale
infrastructure without modification.

Software frameworks (Yacoub and Ammar, 2004) have been successful in
improving code quality and efficiency of development in a variety of contexts
(Moore et al., 2008; White, 2012; Abadi et al., 2016). By factoring out common
elements, only features that are specific to the given application need to be
implemented by the analysis designer, and the common elements become battle
hardened through repeated use. Arcana handles many of the menial tasks
involved with workflow implementation, such as data retrieval and storage,
format conversions, and provenance, reducing the time and effort required to
implement robust workflows from acquired data to publication results.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 23

Fig. 10 Composite vein image (third row) constructed by combining susceptibility weighted
imaging (SWI) (top row), quantitative susceptibility mapping (QSM) (second row) and a
vein atlas from manual tracings. A vein mask was then generated (bottom row) from the
composite vein image. left column: axial slices. centre column: coronal slices. right column:
sagittal slices.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

24 Thomas G. Close et al.

Fig. 11 Fractional Anisotropy (FA) (top row) and Apparent Diffusion Coefficient (ADC)
(bottom rowI) derived from diffusion MRI data. Left column: axial midline slices. Middle
column: coronal midline slices. Left column: sagittal midline slices.

Fig. 12 Global tractography performed using the MRtrix toolbox. Probabilistic streamlines
generated with the iFOD2 algorithm from fibre Orientation Distribution Function (fODF)
estimated from diffusion MRI datasets using Constrained Spherical Deconvolution (CSD).
Streamlines are colour-encoded by orientation: green=anterior-posterior, blue=inferior-
superior, red=left-right. Left panel: axial midline slice. Middle panel: coronal midline slice.
Left panel : sagittal midline slice.

An oft-repeated mantra in the open-source software movement dubbed
Linus’ Law is that “given a large enough beta-tester and co-developer base,
almost every problem will be characterized quickly and the fix obvious to
someone” or more compactly, “given enough eyeballs, all bugs are shallow”
(Raymond, 1999). Given the size of the neuroimaging research community,
there are a large number of potential beta-testers and co-developers. However,
it has been difficult for researchers to collaborate on the same code-base due

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://en.wikipedia.org/wiki/Software_bug
https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 25

to slight differences in acquisition protocols, storage conventions, researcher
preferences, and study requirements.

The flexibility and portability of the Arcana framework increases the fea-
sibility of community collaborations on workflow implementations. The im-
provement of code quality in larger community efforts, due to more eyeballs
to detect and fix errors, has the potential to form a reinforcing cycle where
more developers are attracted to the project. To these ends, the Banana code
repository on GitHub (github.com/MonashBI/banana.git) is proposed as a
code base for communal development of biomedical imaging workflows using
Arcana.

A level of proficiency in Python OO design is required to design new anal-
yses in Arcana, which may preclude inexperienced programmers. However,
only a basic knowledge of Python is required to apply existing analyses to
new datasets. Furthermore, a number of example Study classes have been im-
plemented, which can guide the hand of analysis designers. Arcana imposes
a consistent structure on workflows implemented within it, making the code
easier to understand for developers who are familiar with the framework. In
addition, class inheritance provides a manageable way to adapt and extend to
existing analyses and highlights where modified analyses differ from standard
procedures.

MR contrast-specific analyses are implemented in Banana via a chain of
successively specialised Study sub-classes (e.g. MRI>EPI>DWI) to enable
generic processing steps (e.g. registration) to be shared between classes. While
not necessary, it is recommended to create a subclass specific to the research
study in question and aggregate all related analysis within it, since such classes
can be applied to alternate datasets in order to reproduce the exact analysis.
The ArcanaPaper class (Supplementary material), which contains methods to
generate all figures in the Results section of this manuscript, is an example of
this approach.

The abstraction of data and repositories in Arcana enables the same work-
flow implementation to be applied to datasets stored in BIDS format or XNAT
repositories. A single code-base can therefore be containerized into BIDS apps
or XNAT pipelines without adaptation, helping to form a bridge between the
two communities of users and developers. Alternative data storage systems
(Scott et al., 2011; Das et al., 2012; Book et al., 2013), can be integrated into
Arcana by overriding a small number of methods from the Repository abstract
base class. Repository modules could also be created for data portals such as
DataLad (Halchenko et al., 2018) in order to take advantage of the range of
platforms they support. Implementing analyses in Arcana therefore enables
researchers and research groups to easily migrate their workflows between
storage platforms, and not risk being locked in to a particular technology.

While Arcana was primarily developed for neuroimaging datasets, it is a
general framework that could be applied to data from other fields. However, in
other contexts, the subject and visit hierarchy may no longer make sense. In
many cases it may be sufficient to map subjects and/or visits onto alternative
concepts (e.g. for meteorological data subjects = weather stations, visits =

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

github.com/MonashBI/banana.git
https://doi.org/10.1101/447649

26 Thomas G. Close et al.

observation times). But some cases may require a deeper data hierarchy (i.e.
greater than two), which is not currently possible in Arcana.

Ensuring that the consistent versions of external tools are used through-
out the analysis is important to avoid introducing biases due to algorithm
updates. In systems with environment modules (Furlani, 1991) installed, Ar-
cana can load and unload the required modules before and after each node
is executed. When running Arcana within a container, environment modules
and software versions can be installed inside the container giving exact con-
trol over the versions used. To these ends, a Docker container is available on
Docker Hub, (hub.docker.com/r/monashbi/banana), which can be used as a
base for biomedical imaging analysis containers. In future versions of Arcana,
additional Environment modules could be implemented to run each pipeline
node within its own container to take advantage of containers maintained by
tool developers (e.g. hub.docker.com/r/vistalab/freesurfer/).

While the same tools and versions should be applied across an analysis
to avoid bias, there are cases where it is desirable to rerun the same analysis
with different tools substituted at various points in the workflow. In particular,
when introducing new tools or upgrades to existing tools, it is important to
show the effect on the final results in comparison with existing methods. Fur-
thermore, it is typically not clear what variability between results produced
by comparable tools is due to. Therefore, in the absence of a priori reason
to favour a particular tool, perhaps the most rigorous approach is to rerun
analyses with different combinations of available tools and only present re-
sults that are robust to the “analytic noise” (Maumet, 2018) they introduce.
Switch parameters make it straightforward to rerun analyses in Arcana with
substituted tools while controlling all other aspects of the workflow.

Arcana’s management of intermediate derivatives and provenance guaran-
tees that the same analysis is applied across the dataset without necessarily
requiring a complete rerun of the analysis. This guarantee makes it feasible to
process data as it is acquired over the course of long studies, and therefore help
detect any problems that might arise with the acquisition protocol when they
occur. In addition, by reusing shared intermediate derivatives between analy-
ses, such as the preprocessed DWI shared between tensor and fibre tracking
workflows (Figure 11 and 12), processing time as well as time required for
manual QC is minimised. Given analyses implemented in Arcana are also able
to be processed on HPC clusters, they scale well to large studies.

Conclusion

By managing the complete flow of data from/to a repository with modu-
lar components, Arcana enables complex analyses of large-scale neuroimaging
studies that are portable across a wide range of research sites. The extensi-
bility of analyses implemented in Arcana, coupled with the flexibility afforded
by programmatic constructuction of pipelines, facilitates the design of com-
prehensive analyses by larger communities. Larger communities of developers

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

hub.docker.com/r/monashbi/banana
hub.docker.com/r/vistalab/freesurfer/
https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 27

working on the same code-base should make it feasible to capture the arcana
of neuroimaging analysis in templates that can be applied to a wide range of
relevant datasets.

Acknowledgements The authors acknowledge the facilities and scientific and technical
assistance of the National Imaging Facility, a National Collaborative Research Infrastruc-
ture Strategy (NCRIS) capability, at Monash Biomedical Imaging, Monash University. The
“transparent repository” feature of Arcana was inspired by in-house software written by
Parnesh Raniga while he was employed at Monash University prior to 2016.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat
S, Irving G, Isard M, et al. (2016) TensorFlow: A system for large-scale
machine learning. Savannah, GA, USA, p 21

Achterberg HC, Koek M, Niessen WJ (2016) Fastr: A Workflow Engine for
Advanced Data Flows in Medical Image Analysis. Frontiers in ICT 3, DOI
10.3389/fict.2016.00015

Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J, Heuer M,
Kartashov A, Leehr D, Ménager H, Nedeljkovich M, Scales M, Soiland-
Reyes S, Stojanovic L (2016) Common Workflow Language, v1.0. DOI
10.6084/m9.figshare.3115156.v2

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A re-
producible evaluation of ANTs similarity metric performance in brain image
registration. NeuroImage 54(3):2033–2044, DOI 10.1016/j.neuroimage.2010.
09.025

Book GA, Anderson BM, Stevens MC, Glahn DC, Assaf M, Pearlson GD
(2013) Neuroinformatics Database (NiDB)–a modular, portable database for
the storage, analysis, and sharing of neuroimaging data. Neuroinformatics
11(4):495–505, DOI 10.1007/s12021-013-9194-1

Cox RW (1996) AFNI: software for analysis and visualization of functional
magnetic resonance neuroimages. Computers and Biomedical Research, an
International Journal 29(3):162–173

Cusack R, Vicente-Grabovetsky A, Mitchell DJ, Wild CJ, Auer T, Linke AC,
Peelle JE (2015) Automatic analysis (aa): efficient neuroimaging workflows
and parallel processing using Matlab and XML. Frontiers in Neuroinformat-
ics 8, DOI 10.3389/fninf.2014.00090

Das S, Zijdenbos AP, Harlap J, Vins D, Evans AC (2012) LORIS: a web-based
data management system for multi-center studies. Frontiers in Neuroinfor-
matics 5(January):1–11, DOI 10.3389/fninf.2011.00037, iSBN: 1662-5196

Esteban O, Markiewicz C, Blair RW, Moodie C, Isik AI, Erramuzpe Aliaga
A, Kent J, Goncalves M, DuPre E, Snyder M, Oya H, Ghosh S, Wright J,
Durnez J, Poldrack R, Gorgolewski KJ (2018) FMRIPrep: a robust prepro-
cessing pipeline for functional MRI. bioRxiv DOI 10.1101/306951

Friston K (2007) Statistical Parametric Mapping. Elsevier, DOI 10.1016/
B978-0-12-372560-8.X5000-1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

28 Thomas G. Close et al.

Furlani JL (1991) Modules: Providing a flexible user environment. In: Proceed-
ings of the fifth large installation systems administration conference (LISA
V), pp 141–152

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML,
Ghosh SS (2011) Nipype: a flexible, lightweight and extensible neuroimaging
data processing framework in python. Frontiers in Neuroinformatics 5:13,
DOI 10.3389/fninf.2011.00013

Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin
G, Ghosh SS, Glatard T, Halchenko YO, Handwerker DA, Hanke M, Keator
D, Li X, Michael Z, Maumet C, Nichols BN, Nichols TE, Pellman J, Poline
JB, Rokem A, Schaefer G, Sochat V, Triplett W, Turner JA, Varoquaux
G, Poldrack RA (2016) The brain imaging data structure, a format for
organizing and describing outputs of neuroimaging experiments. Scientific
Data 3:160044, DOI 10.1038/sdata.2016.44

Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL (2006)
Symmetric Atlasing and Model Based Segmentation: An Application to the
Hippocampus in Older Adults. In: Larsen R, Nielsen M, Sporring J (eds)
Medical Image Computing and Computer-Assisted Intervention – MICCAI
2006, Springer Berlin Heidelberg, Lecture Notes in Computer Science, pp
58–66

Halchenko Y, Hanke M, Poldrack B, Meyer K, Debanjum, Alteva G, jason
gors, MacFarlane D, Häusler CO, Olson T, Waite A, de la Vega A, Keshavan
A, bhanuprasad14, yetanothertestuser, yarikoptic private, Lau VC, tstoeter,
Hardcastle N, di Oleggio Castello MV, Skytén K, Poelen J, Christian H, Ma
F (2018) datalad/datalad 0.10.3.1. DOI 10.5281/zenodo.1418485

Kennedy DN (2018) Neuroimaging Neuroinformatics: Sample Size and
Other Evolutionary Topics. Neuroinformatics 16(2):149–150, DOI 10.1007/
s12021-018-9379-8

Marcus DS, Olsen TR, Ramaratnam M, Buckner RL (2007) The extensible
neuroimaging archive toolkit. Neuroinformatics 5(1):11–33, DOI 10.1385/
NI:5:1:11

Maumet C (2018) Tools and standards to make neuroimaging derived data
reusable. In: Neuroinformatics 2018, Montreal, Canada, URL http://www.

hal.inserm.fr/inserm-01886089

Moore D, Budd R, Wright W (2008) Professional Python Frameworks: Web
2.0 Programming with Django and Turbogears. John Wiley & Sons

Raymond ES (1999) The Cathedral and the Bazaar. O’Reilly Media, p 30
Schreiber J, Hoffstaedter F, Deepu R, Orth B, Lippert T, Amunts K, Eick-

hoff S, Caspers S (2018) Using a Multi-Petaflop Supercomputer for Pushing
Neuroimaging Analytics to the Next Level. In: Proceedings of Organisation
for Human Brain Mapping 2018, Singapore, Singapore

Scott A, Courtney W, Wood D, de la Garza R, Lane S, King M, Wang R,
Roberts J, Turner JA, Calhoun VD (2011) COINS: An Innovative Informat-
ics and Neuroimaging Tool Suite Built for Large Heterogeneous Datasets.
Frontiers in Neuroinformatics 5:33, DOI 10.3389/fninf.2011.00033

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

http://www.hal.inserm.fr/inserm-01886089
http://www.hal.inserm.fr/inserm-01886089
https://doi.org/10.1101/447649

A comprehensive framework to capture the arcana of neuroimaging analysis 29

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ,
Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE,
Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM,
Matthews PM (2004) Advances in functional and structural MR image anal-
ysis and implementation as FSL. NeuroImage 23 Suppl 1:S208–219, DOI
10.1016/j.neuroimage.2004.07.051

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P,
Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A,
Young A, Sprosen T, Peakman T, Collins R (2015) UK Biobank: An Open
Access Resource for Identifying the Causes of a Wide Range of Complex
Diseases of Middle and Old Age. PLoS Medicine 12(3), DOI 10.1371/journal.
pmed.1001779

Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Rente-
ria ME, Toro R, Jahanshad N, Schumann G, Franke B, et al. (2014)
The ENIGMA Consortium: large-scale collaborative analyses of neuroimag-
ing and genetic data. Brain Imaging and Behavior 8(2):153–182, DOI
10.1007/s11682-013-9269-5

Tournier JD, Calamante F, Connelly A (2010) Improved probabilistic stream-
lines tractography by 2nd order integration over fibre orientation distribu-
tions. In: Proceedings of the international society for magnetic resonance in
medicine, vol 18, p 1670

Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractogra-
phy in crossing fiber regions. International Journal of Imaging Systems and
Technology 22(1):53–66, DOI 10.1002/ima.22005

Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R,
Chang A, Chen L, Corbetta M, Curtiss SW, Della Penna S, Feinberg D,
Glasser MF, Harel N, Heath AC, Larson-Prior L, Marcus D, Michalareas
G, Moeller S, Oostenveld R, Petersen SE, Prior F, Schlaggar BL, Smith
SM, Snyder AZ, Xu J, Yacoub E, WU-Minn HCP Consortium (2012) The
Human Connectome Project: a data acquisition perspective. NeuroImage
62(4):2222–2231, DOI 10.1016/j.neuroimage.2012.02.018

Ward PG, Ferris NJ, Raniga P, Ng AC, Barnes DG, Dowe DL, Egan GF
(2017) Vein segmentation using shape-based Markov Random Fields. In:
Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium
on, IEEE, pp 1133–1136

Ward PGD, Ferris NJ, Raniga P, Dowe DL, Ng ACL, Barnes DG, Egan
GF (2018) Combining images and anatomical knowledge to improve auto-
mated vein segmentation in MRI. NeuroImage 165:294–305, DOI 10.1016/
j.neuroimage.2017.10.049

White T (2012) Hadoop: The definitive guide. O’Reilly Media, Inc.
Yacoub SM, Ammar HH (2004) Pattern-oriented Analysis and Design: Com-

posing Patterns to Design Software Systems. Addison-Wesley Professional,
google-Books-ID: dbU4ggCbqd4C

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/447649doi: bioRxiv preprint

https://doi.org/10.1101/447649

