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Abstract Hybrid circuits built by creating mono- or

bi-directional interactions among living cells and model

neurons and synapses are an effective way to study neu-

ron, synaptic and neural network dynamics. However,

hybrid circuit technology has been largely underused

in the context of neuroscience studies mainly because

of the inherent difficulty in implementing and tuning

this type of interactions. In this paper, we present a set

of algorithms for the automatic adaptation of model

neurons and connections in the creation of hybrid cir-

cuits with living neural networks. The algorithms per-

form model time and amplitude scaling, real-time drift

adaptation, goal-driven synaptic and model tuning/cal-

ibration and also automatic parameter mapping. These

algorithms have been implemented in RTHybrid, an

open-source library that works with hard real-time con-
straints. We provide validation examples by building

hybrid circuits in a central pattern generator. The re-

sults of the validation experiments show that the pro-

posed dynamic adaptation facilitates closed-loop com-

munication among living and artificial model neurons

and connections, and contributes to characterize sys-

tem dynamics, achieve control, automate experimental

protocols and extend the lifespan of the preparations.
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1 Introduction

Hybrid circuits are networks built by connecting model

neurons and synapses to living cells. Pioneering works

in building such interactions go back almost three deca-

des ago (Yarom, 1991) with many successful implemen-

tations since then, e.g. see (Szücs et al, 2000; Pinto

et al, 2000; Varona et al, 2001; Le Masson et al, 2002;

Nowotny et al, 2003; Olypher et al, 2006; Arsiero et al,

2007; Grashow et al, 2010; Brochini et al, 2011; Wang

et al, 2012; Hooper et al, 2015; Norman et al, 2016;

Broccard et al, 2017; Mishchenko et al, 2018). Hybrid

circuits are typically implemented through a dynamic

clamp protocol that injects current computed by a mo-

del from an instantaneous voltage recording (Robinson

and Kawai, 1993; Sharp et al, 1993; Prinz et al, 2004;

Destexhe and Bal, 2009; Nowotny and Varona, 2014).

The model can be a simple conductance description or

the outcome of a complex biophysical neuron or net-

work simulation. Neuron models used to build hybrid

circuits expand from simplified nonlinear equations to

Hodgkin-Huxley type paradigms. Synapse models range

from standard Ohm’s law implementations for gap junc-

tions to nonlinear graded synapse models that require

pre- and post-synaptic voltage information. Each model

has its own set of parameters and they all require spe-

cific adaptations for their use in hybrid circuit prepa-

rations.

In spite of the large applicability of hybrid circuits to

study neuron and network dynamics, including plastic-

ity and learning mechanisms, their use has been some-

how limited by the difficulty of their implementation.

Hybrid circuit construction often requires specific hard-

ware and/or soft or hard real-time software technology

to accurately implement the associated recording and

stimulation cycles (Christini et al, 1999; Pinto et al,
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Fig. 1 General closed-loop approach proposed for the assisted automatic adaptation in hybrid circuits. Living and model
systems are connected mono- or bi-directionally with the required adaptation in each direction to make interaction signals
compatible with their dynamical regime in real-time. During a test observation, the system is evaluated through the detection
of reference events that are relevant for the time and amplitude scaling, e.g. spikes, bursts, maximum and minimum voltage
amplitudes, offset, etc. Hybrid circuit efficiency measures for the system characterization are calculated and parameters are
adjusted accordingly from the reference event evaluation. Several cycles in the interaction are typically used to assess the
hybrid circuit target goal. Adaptation is done in both directions in bidirectional interactions.

2001; Muñiz et al, 2005; Arsiero et al, 2007; Muñiz et al,

2009; Kemenes et al, 2011; Nowotny and Varona, 2012;

Linaro et al, 2014, 2015; Patel et al, 2017; Amaducci

et al, 2019).

Additionally, the construction of hybrid circuits in-

volves handling the different time and amplitude scales

of living and model neurons and synapses. In the case

of electrophysiological experiments, electrode resistance

specifications are also an important issue. All ampli-

tude and time scale adjustments have to be addressed

specifically for each preparation. These tasks are time-

consuming and often a main source of frustration when

building hybrid circuits.

Furthermore, when using hand-tuned parameters in

a hybrid configuration, experimentalists frequently have

to deal with voltage drift and the natural evolution

of membrane potential oscillations during minutes or

hours of experimental work. In this paper, we present

a set of algorithms to facilitate the building of hybrid

circuits using software neurons and synapses. These al-

gorithms perform automatic calibrations and dynamic

adaptations of time, voltage amplitude/offset, and cur-

rent scales to implement open- and closed-loop inter-

actions with living neurons in real-time following the

scheme illustrated in Fig. 1. Our validation experiments

show that the use of these algorithms contributes to

better tuned and more natural interactions between liv-

ing and model neurons, to a reduction of the risk of

preparation damage and time expended on adjustments

and, thus, to expand the life expectancy of the experi-

ments. We also show that the proposed dynamic adap-

tation approach for building hybrid circuits is useful to

automate experiments, achieve goal-driven control of

neural activity, and explore and map neural dynamics.

To favor their dissemination and use, the algorithms

described in this paper have been implemented in RTHy-

brid (Amaducci et al, 2019). RTHybrid is an open-

source library that can be run over different Linux plat-

forms, with or without hard real-time constraints. The

program includes the algorithms described in this pa-

per, implemented to work under Linux based systems

(with stock Linux kernels or with the real-time patches

Xenomai and PREEMPT-RT). The library includes sev-

eral models of neurons and synapses ready to be used in

a large variety of hybrid circuit configurations. The con-

figuration of the experiment can be selected from the

user interface or through XML scripts. The program

also includes a tool to visualize the recordings of the

hybrid interaction. The software is freely available on

www.github.com/GNB-UAM/RTHybrid. The algorithms
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described in this paper (summarized in Table 1) can

also be easily migrated to other existing platforms.

2 Material and methods

2.1 Experimental setup

To validate the automatic adaptation algorithms de-

scribed in this paper, we built hybrid circuits using

the crustacean pyloric central pattern generator (CPG)

(Marder and Calabrese, 1996; Selverston, 2005). The

neurons of this circuit can be easily identified by their

waveform and are particularly resistant to long record-

ings while sustaining their characteristic spiking/burs-

ting rhythm. As we illustrate in our validation exper-

iments, these neurons generate sequential activity in

hybrid circuit experiments using bidirectional interac-

tions with a wide variety of artificial neuron models

and synapses ranging from simplified descriptions to

conductance-based paradigms.

Adult shore crabs (Carcinus maenas) were used in

all preparations. They were purchased locally and main-

tained in a tank with artificial seawater at 13-15oC.

Crabs were anesthetized by ice for 15 min before dis-

section. The procedures followed the European Com-

mission and Universidad Autónoma de Madrid animal

treatment guidelines. The stomatogastric nervous sys-

tem was dissected following standard procedures and

pinned in a Sylgard-coated dish containing Carcinus

maenas saline (in mM : 433 NaCl, 12 KCl, 12 CaCl2 ·
2H2O, 20 MgCl2 · 6H2O, 10 HEPES, adjusted to

pH 7.60 with 4 M 287 NaOH). After desheathing the

stomatognathic ganglion (STG), neurons were identi-

fied by their membrane potential waveforms and the

spikes times observed in extracellular recordings from

the corresponding motor nerves. Membrane potential

was recorded using 3 M KCl filled microelectrodes (50

MΩ) and a DC amplifier (ELC-03M, NPI). Current in-

jection to implement the hybrid connection was deliv-

ered with a second electrode on the same neuron. Data

was acquired using a A/D DAQ board (PCI-6251, Na-

tional Instruments). The DAQ sampling rate is an input

parameter in all algorithms described below, which is

chosen by the experimentalist (depending on the neuron

being recorded and the setup capability). The valida-

tion experiments shown in this paper were run with a

10 kHz acquisition/stimulation cycle. The offset in the

amplifier, as well as the DA resolution, are set a priori

for a given recording.

2.2 Neuron and synapse models

Different neuron model paradigms can be used in hy-

brid circuit experiments as long as their equations can

be integrated in real-time at the desired acquisition rate

to implement realistic interactions with living neurons.

It is important to note that each model has typically

its own time and amplitude scales, which in most cases

are quite different from their biological counterparts in

a specific experimental setup. The description of some

commonly used simplified models considers arbitrary

units both for amplitude and time. Other more realis-

tic descriptions, such as conductance-based models, use

physiological units whose amplitude ranges may differ

from that of a given recording (e.g. see bottom panels

inf Fig. 1. Independently of the original amplitude and

time units of the model, the acquisition rate determines

the time interval available for the model integration at

each interaction cycle. Thus, models need to be im-

plemented taking into account the living neuron time

scale, the acquisition frequency and the model integra-

tion time.

To validate our approach, we used different soft-

ware neuron models with intrinsic rich dynamics and

increased complexity, and thus increased computational

cost: (i) the Rulkov map, a two-dimensional iterated

map that can display spiking-bursting behavior (Rulkov,

2002); (ii) the Izhikevich model, a two-dimensional sys-

tem of ordinary differential equations with a quadratic

voltage nonlinearity and an auxiliary after-spike reset-

ting mechanism (Izhikevich, 2003); (iii) the Hindmarsh-

Rose model, a three-dimensional system of ordinary

differential equations with cubic nonlinearities (Hind-

marsh and Rose, 1984); and (iv) a conductance based

model with the characteristic sigmoid voltage depen-

dencies of Hodgkin-Huxley type descriptions (Ghigli-

azza and Holmes, 2004). In the experiments depicted

below, we employed a chemical graded synapse descrip-

tion frequently used in CPG studies (Golowasch et al,

1999), and also a bidirectional electrical synapse model

(Varona et al, 2001). For the integration of the differ-

ential equations a (6)5 Runge-Kutta (Hull et al, 1972)

numerical method was used. Our results can be general-

ized to any neuron and synapse models whose equations

can be integrated within the interaction cycle.

2.3 Real-time software technology

Living neurons are not fast computation agents, but

they can be very precise at the millisecond range. To

achieve temporally precise interactions between living

and model neurons in a hybrid circuit configuration us-

ing a general purpose operative system, real-time patches

are needed.

Following the idea of providing easy to install and

implement technology, the proposed algorithms have

been developed under a real-time operative system in

the RTHybrid (www.github.com/GNB-UAM/RTHybrid)
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software, which allows the implementation of closed-

looop interactions with millisecond hard real-time con-

straints (Amaducci et al, 2019). For all validation tests,

we used a computer with an Intel Core i7-6700 proces-

sor running Debian 9 under Linux 4.9 with PREEMPT-

RT patch to achieve hard real-time performance. The

RTHybrid real-time implementation of the algorithms

was also successfully tested in Ubuntu with a Xenomai

3 real-time patch.

2.4 Dynamic clamp hybrid circuit implementation

To implement hybrid circuits in an electrophysiologi-

cal experiment, it is necessary to record the activity of

a presynaptic cell and deliver the corresponding stim-

ulation on a postsynaptic neuron at each step of the

acquisition cycle. Typically, this is done using a dy-

namic clamp protocol to read voltage from the presy-

naptic neuron and deliver a current into the postsynap-

tic cell by employing one or multiple electrodes (Des-

texhe and Bal, 2009). Beyond electrophysiology, a hy-

brid circuit can use real-time imaging techniques and

light (Krook-Magnuson et al, 2013; Prsa et al, 2017)

or chemical (Chamorro et al, 2009) stimulation for the

implementation of the interaction. The algorithms de-

scribed in this work aim for automatic adaptation of

the signals between living and model networks so that

during the interaction they all work in their natural

dynamical range. We will illustrate this by implement-

ing the connections with a dynamic clamp protocol in

which living neuron voltages are read and adapted to

work with synapses that deliver current with the right

range both for the living and model neurons at a speci-

fied interaction cycle. With the proposed automatic cal-

ibration and adaptation protocols, the hybrid circuit is

readily implemented in a few seconds regardless of each

particular choice for the neuron and synapse models,

experimental setup, preparation and/or electrodes.

3 Results

3.1 Closed-loop approach for automatic calibration

and adaptation

The automation of hybrid circuit implementations re-

quires online dynamic signal analysis, precise event de-

tection and real-time model integration. Figure 1 shows

our overall approach to standardize this process. A typ-

ical hybrid circuit system consists of mono and/or bidi-

rectional connections between model and living neurons

via synaptic models. Table 1 lists the set of algorithms

that we have developed for the automatic construction,

calibration and evaluation of hybrid circuits. All these

algorithms follow the scheme illustrated in Fig. 1, which

is based on real-time reference event detection, and the

dynamic characterization and evaluation of the interac-

tion goal (top left box). With this information, online

adjustments in the parameters are readily made as a

function of predefined performance measurements.

At the beginning of the experiment, the living sys-

tem dynamics are characterized for a few seconds in or-

der to define a first approximation to the needed adap-

tations. This is illustrated in the code shown in Algo-

rithm 1, which addresses the initial configuration by

setting the DAQ parameters including the interaction

cycle rate, establishing the neuron and synapse models

to use and the selection of the integration/interpolation

algorithm. With this information, the initialization pro-

cess performs an observation to run the time and am-

plitude calibration. In this initial phase, the dynamical

range of the living neuron is characterized.

After the initial calibration procedures (summarized

in Fig. 2), the interaction closed-loop algorithm im-

plements in real-time the hybrid circuit. Algorithm 2

executes the processes that involve the input/output

from/to the living neuron and the models, the associ-

ated adaptation/calibration protocols and the integra-

tion of the models. The different protocols that are used

in Algorithms 1 and 2 are explained in detail in the fol-

lowing sections.

I n i t i a l automatic adaptat ion procedures {
Read c o n f i g u r a t i o n :

DAQ setup s e t t i n g s ( )
Neuron and synapse models setup ( )

Open−loop obse rvat i on ( )
Time c a l i b r a t i o n ( ) # Alg . 3 , 4 , 5
Amplitude/ o f f s e t s c a l i n g c a l . ( ) # Alg . 6

}

Algorithm 1 Sequence flow of the initial automatic
adaptation procedures for the hybrid circuit implementation.

3.2 Time and amplitude scaling

3.2.1 Time scaling

The algorithm that performs the time calibration of the

model takes into account reference events that charac-

terize the dynamics of the living neurons under study,

such as spike/burst duration, or the neuron activity

average period (see Table 1). As illustrated in Fig. 3,

different models may describe reference events in their

dynamics with distinct time resolution, even when time

units are commonly expressed in milliseconds. It is im-

portant to note that the model integration time (Bet-

tencourt et al, 2008) and the duration of reference events

in the model neuron can be in general very different
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Fig. 2 Process required to adapt model neurons to a living neuron’s voltage amplitude and time scales. It is important to
distinguish between the original time units of the model, the associated compute time, and the use of the model in a hybrid
circuit taking into account the time scale of representative living neuron events (in this case, the burst duration) and the
acquisition sampling rate. This is illustrated in the left panel with the Rulkov map model. Once the model has been scaled in
time (see section 3.2.1 and Algorithm 5) and amplitude (see section 3.2.2 and Algorithm 6), including the assessment of the
vertical offset, it is ready for the hybrid interaction. Right panel corresponds to the resulting adaptation in the working regime
of the living neuron.

I n t e r a c t i o n c l o s e d−loop {
# I n t e r a c t i o n with l i v i n g system
# m samples rate : s e e Alg . 5
i f ( ( i module m samples rate ) = = 0) {

# Manage sampling ra t e c o n s t r a i n t s time
Sleep ( )
# Input /Output
Read & Write DAQ ( )
# Event r e f e r e n c e s
Event c h a r a c t e r i z a t i o n ( ) # Alg . 3 , 4

# Adaptation re−eva lua t i on
each N events :

# Real−time d r i f t adaptat ion
# Revaluate Alg . 6
Amplitude/ o f f s e t s c a l i n g c a l . ( )

}
# I n t e g r a t e models
Sca l e l i v i n g vo l tage ( ) # Alg . 6
Compute synapse to model neuron ( )
Compute model neuron ( )
Sca l e model vo l t age ( ) # Alg . 6
Compute synapse to l i v i n g neuron ( )
i = i+1

}

Algorithm 2 Interaction closed-loop algorithm. The
algorithm handles real-time input/output for living and
model neurons. Model samples rate (m samples rate),
calculated in Alg. 5, determines how many model integration
steps are required per each DAQ sample. The revaluation
of amplitude and offset scaling calculations correspond to
the real-time drift adaptation and is done every N events as
predefined by the experimenter. The sleeep time is calculated
by substracting the model integration time, the time taken
for the scaling algorithms and the input/output management
time from the sampling period (Amaducci et al, 2019).

Rulkov Map model

Hindmarsh-Rose model

Time steps (x104)

Fig. 3 Illustration of different time scales in two neuron mod-
els. In this case, the amplitude range is nearly the same but
one of the models (the Rulkov map) produces 35 bursts while
the other (a Hindmarsh-Rose model) produces just one with
the same amount of time steps for accurate integration and
a default parameter choice.

from the characteristic time scale of the living neu-

ron. A good initial choice of the model parameters or a

global re-scaling of the model temporal dynamics con-

tributes to the success of the hybrid circuit adaptations

explained below. Additionally, biophysical models often

require many integration steps per acquisition sample

to guarantee a precise simulation as compared to the

sampling rate. Thus, the time scaling algorithm per-

forms a time calibration by determining the resolution

needed to accurately represent reference events in the

dynamics of the living neuron, taking into account the

model precise integration and the chosen acquisition

sampling rate. Reference events that the user can define

are, for example, action potentials or bursts (Arroyo

et al, 2013; Varona et al, 2016). The sampling rate de-

termines the required discretization of the signals from

the living neuron and the model.
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To address this non-trivial task, we adapt the time

scale of model neurons and synapses taking into ac-

count the characteristic time range of the events de-

fined in the living neuron (see Algorithm 3) together

with the chosen DAQ sampling rate, which determines

the resolution of the discretization. To define character-

istic events, e.g. bursts, subevents building the events

need to be detected, e.g. single spikes (see Algorithms 3

and 4). Thus, in our automatic time scaling algorithm,

corresponding events (e.g. a burst) are detected both

in the signals from the living and model neurons to set

the time scale factors. In parallel, information about

the DAQ sampling rate and the valid model integration

steps are taken into account. With this information two

distinct cases can arise (Algorithm 5):
– If the model has less temporal resolution for an

event than the discretization of the living neuron

signal set by the sampling rate, the algorithm per-

forms interpolation to provide the required model

values for the interaction. This is typically the case

of a map model description.

– If the integration of the model generates more points

per interaction than needed, the integration step is

selected to fulfill two conditions: (i) the time step of

the integration has to be smaller than the maximum

established for an accurate integration of the model;

(ii) the number of points for the reference event in

the model must be equal or larger than the sampling

rate discretization of the event in the living neurons.
The system also subsamples if the number of model

voltage values provided by the model integration is larger

than those required for the interaction at a particular

acquisition rate. It is important to note that an accu-

rate integration may require a small time step. How-

ever, the interaction with the living system only re-

quires the value of the model voltage at the chosen in-

teraction sampling rate. This is calculated in Algorithm

5 (ref event t) and used in the interaction closed-loop

(Algorithm 2). Also, Table 2 shows examples of differ-

ent models and the selected accurate integration step to

match bursts lasting one second with a 10 kHz adquisi-

tion rate. The time scaling algorithm uses the real-time

detection of predefined reference events (Algorithms 3

and 4) from the living neuron signal, such spikes and

bursts, to perform the assessments described above. Al-

gorithm 5 optimizes model compute time while keep-

ing integration accuracy, taking also into account the

large variety of models, including their parametrization,

which can be used to implement hybrid circuits.

3.2.2 Amplitude and offset scaling

Once the time scale has been established, voltage am-

plitude differences between the living and the model

neurons have to be adapted, when the synaptic model

requires it. Dynamic-clamp protocols are particularly

sensible to this procedure as in many cases both pre-

and post-synaptic membrane potential values are in-

volved in the calculation of synaptic currents from/to

Event c h a r a c t e r i z a t i o n {
# Anotate new subevent ( vo l tage and time )
i++
i f ( d e t e c t f u n c ( s i g n a l [ time ] ) = = False )

# No event detec ted
re turn

e l s e {
subevent [ i ] . t = cur r en t t ime ( )
. . .

}

# Subevent c h a r a c t e r i z a t i o n
t i n t e r v a l = subevent [ i ] . t−subevent [ i −1] . t
subevent [ i ] . t i n t e r v a l = t i n t e r v a l
. . .

# Evaluate subevents chain
# se index : subevent counter
i f ( t i n t e r v a l = = t c h a i n [ s e i ndex ] ) {

# Current subevent index update
s e i ndex = se index+1
. . .

} e l s e {
# This was not an event , e . g . t imeout
i f ( t i n t e r v a l > t ime th [ s e i ndex ] ) {

# Event r e s e t
s e i ndex = 0

}
. . .

}

# Subevents are grouped in one event
# t o t a l s e : number o f subevents
# conta ined in the cur rent event
i f ( s e i ndex = = t o t a l s e ) {

# n i s the number o f subevents per event
event [ j ] = subevents [ from i−n to i ]
# Event c h a r a c t e r i z a t i o n
event [ j ] . s t a r t = subevent [ i−n ]
event [ j ] . end = subevent [ i ]
event [ j ] . durat ion =

subevent [ i ] − subevent [ i−n ]
. . .

# Event r e s e t
s e i ndex = 0
j++
. . .

}
}

Algorithm 3 Event characterization algorithm. Events are
characterized as a sequence of subevents using a detection
function (detect func). These subevents are evaluated using
a chain approximation. When a subevent chain is completed,
the associated sequence of subevents is classified as an event.
The algorithm evaluates the duration and other metrics over
the event (indicated by ellipsis dots), which is used for
the time calibration. A detect func example for neuronal
bursting activity is described in Algorithm 4.
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the neurons. The parameters for this adaptation are

typically calculated manually and offline, but this is a

slow and tedious process, often taking precious time

from the experiment. It is important to note that, even

within the same experiment, phenomena like drift or in-

trinsic changes in the preparation can also produce am-

plitude and offset changes, which make dynamic voltage

adaptation necessary.

# This func t i on i s c a l l e d from :
# Algorithm 3 , l i n e 4
Burst d e t e c t i o n ( v value ,

up th ,
lw th )

{
# Def ine i n i t i a l s t a t e
i f ( s earch i s not de f ined ) {

search = True
i f ( v va lue > up th )

search = False
}
i f ( s earch = = True && v value>up th ) {

# Burst beg inning detec ted
search = False
re turn True

} e l s e i f
( s earch = = False && v value<low th ) {

# Burst end detec ted
search = True

}
r e turn Fa l se

}

Algorithm 4 Example of a simple detect func to detect
neuronal bursts which can be used in Algorithm 3. Upper
threshold (up th) is used to detect the first spike in the burst.
Lower threshold (lw th) is used to detect when the burst ends.
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Model neuron - Rulkov map

Living neuron - LP

Fig. 4 Illustration of the need for voltage amplitude scaling
between a model neuron and a living neuron. In this case, the
model neuron is a Rulkov map whose bursting amplitude is
in the range between -2 and 2 a.u. The living neuron in this
example displays bursting activity in the range between -55
to -35 mV. The bursting frequency has already been adapted
in the model to match that of the living neuron using the
time scaling algorithm.

At any time, each entity of the circuit (living or ar-

tificial) must work on its own dynamical range. The

adapted voltage value has to be calculated in both di-

rections (model to living and living to model neuron)

and used in the synapses to calculate the current to

the target neuron. This dynamic adaptation also pro-

tects the preparation from excessive current injection,

a common issue in manual adaptations that put at risk

the living neuron. The differences consist both on am-

plitude absolute range and vertical offset (see fig. 4).

The scale is done in both directions, as each neuron

continues working on its own dynamical range during

the hybrid circuit experiment.

Time c a l i b r a t i o n ( daq freq ,
r e f e v e n t t ,
dt max pts ,
d t ve c t [ ] )

{
# Determine event r e s o l u t i o n
l e v e n t s a m p l e s = daq f r eq ∗ r e f e v e n t t
aux = l e v e n t s a m p l e s
m samples rate = 1
whi l e aux < dt max pts {

aux = l e v e n t s a m p l e s ∗ m samples rate
m samples rate = m samples rate + 1
# Search the maximum v a l i d dt
f o r each dt in d t vec t [ ]{

i f dt . samples > aux{
f a c t o r =

dt . samples / l e v e n t s a m p l e s
# The dt i s not accurate
i f f a c to r−m samples rate <= t o l {

# End
return m samples rate , dt

}
}

}
}

}

Algorithm 5 Model time calibration algorithm. This
algorithm is used to adjust the resolution of the model
(determined by its integration step) which, in combination
with the DAQ sampling rate (daq freq), determines the
duration of a reference event, e.g. a burst. To match
the duration of the reference event in the living neuron
(ref event t), the most suitable integration step (dt) is
chosen from a list (dt vect[ ]) of valid values. This
integration step is the one that provides the most similar
resolution (dt.samples) for the reference event in comparison
to the living neuron sampling rate. In some cases, the model
needs to produce many more integration steps than the
sampling rate of the living neuron activity to accurately
generate the corresponding reference event in the model.
In that scenario, the interaction closed-loop (Algorithm 2)
will discard some of the generated points with the best rate
(m samples rate) as evaluated by a tolerance (tol) to match
the required resolution.
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For this task, before the online bidirectional interac-

tion, a first adaptation is done using data at the obser-

vation phase taken from recording and the model. The

approach used to calculate both amplitude and offset

scaling factors is shown in Algorithm 6. Figure 4 shows

an example of the need for amplitude adaptation in two

neurons that have different voltage scales.

Amplitude/ o f f s e t s c a l i n g c a l c u l a t i o n s ( ) {
# S i g n a l s range
model range = modelv max − modelv min
l i v i n g r a n g e = l iv ingv max − l i v i ngv min

# Amplitude f a c t o r
f a c t o r t o l i v i n g =

l i v i n g r a n g e / model range

f a c t o r t o m o d e l =
model range / l i v i n g r a n g e

# V e r t i c a l o f f s e t
o f f s e t t o l i v i n g =
l i v ingv min − ( modelv min ∗ v t o l i v i n g )

o f f s e t t o m o d e l =
modelv min − ( l i v i ngv min ∗ v to model )

}

Sca l e model vo l t age ( v ) {
s c a l e d v =

( v ∗ f a c t o r t o l i v i n g ) + o f f s e t t o l i v i n g
}

Sca l e l i v i n g vo l tage ( v ) {
s c a l e d v =

( v ∗ f a c t o r t o m o d e l ) + o f f s e t t o m o d e l
}

Algorithm 6 Amplitude and offset scaling calculations.
This algorithm uses signal ranges (livingv max, modelv min,
...) of the living and model neurons to calculate adaptation
factors for both living and model neurons (v to living,
offset to model, ...). During the closed-loop process
(Algorithm 2) this calculations are periodically reevaluated
with the updated recordings values to deal with signal drift.

3.2.3 Range-compatible neurons

The joint time and amplitude scaling process is illus-

trated in Fig. 2 and Fig. 5. The specific values of the

scaling factors automatically obtained for different mod-

els when building a hybrid circuit with a pyloric neuron

are shown in Table 2.

The automatic processes illustrated in Figs. 3 and

4 occur at the same time and are independently but si-

multaneously addressed by the calibration algorithms.

The time series of both the living cell and the model

neuron are plotted together in Fig. 5 to illustrate that

they are in the same time and amplitude scale as in

the living neuron control regime (see also Fig. 2). In

this example, the synapses of the hybrid circuit are

not connected yet but currents in any direction can al-

ready use the scaling factors automatically calculated at

this point. With both time and amplitude adaptations

working at the same time, model neurons are ready to

be connected to specific living neurons in a hybrid cir-

cuit.

Model neuron - Izhikevich

Living neuron - LP

2
0
 m

V

1 s

8
5
 m

V

320 ms

Fig. 5 This example illustrates the time and amplitude
adaptation of a Izhikevich neuron model to work in the dy-
namical regime of a pyloric LP neuron. Top panel shows the
initial scale values of the neuron model. Bottom panel shows
both neurons with the same scale after the adaptation pro-
cess. At this point there are no synapses between the model
and the living neuron, but time and amplitude scale factors
are already set and ready to be used in the synapse models.

3.3 Synapse tuning/calibration

Once amplitude and time scales are compatible between

living and model neurons, the connectivity required for

the hybrid circuit can be established. Figure 6 shows

an example of a hybrid circuit built with a bidirec-

tional connection between the LP neuron of the py-

loric CPG and a Izhikevich neuron model (Izhikevich,

2003). The connection models consider one fast and

one slow graded synapses to/from the LP, respectively

(Golowasch et al, 1999). Despite the previous adapta-

tions, synapses might also require to adjust parame-

ters such as maximum conductances, time scales and

kinetic parameters to achieve the connection goal. For

example, a desired behavior for the hybrid circuit can

be anti-phase rhythmic activity between the living and

the model neuron. This process is not trivial, as synapse

parameters may play a key role to establish the tar-

get goal. For this goal the synaptic conductances can

be increased from a low value until anti-phase bursting

behavior is reached.

Thus, to determine the right values of synaptic pa-

rameters during the hybrid circuit interaction, a set of

goal-driven closed-loop protocols have been designed.
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Table 2 Example of scaling factors for different neuron models to match the time and amplitude of a pyloric neuron that
fires approximately one burst per second. Initial values use an online characterization of the living cell dynamics as reference
and are re-calculated dynamically during each experiment. The event was a burst and the DAQ frecuency was set to 10 kHz.
The neuron model parameters used in the validation examples correspond to the default parameters of the RTHybrid library.

Model
Time
step

Points
per

cycle

Initial
voltage range

Amplitude
factor

Offset
(Model
to cell)

Offset
(Cell to
model)

Final
voltage range

Rulkov map
(Rulkov, 2002)

(Interpolation
to match

sampling rate)
10000 (-1.97; 2.11) a.u. 4.91 -41.04 mV 8.35 a.u. (-50.68; -30.68) mV

Izhikevich
(Izhikevich, 2003)

0.0029 20457 (-74.23; 30.24) mV 0.19 -36.43 mV 191.71 mV (-50.68; -30.68) mV

Hindmarsh–Rose
(Hindmarsh and Rose, 1984)

0.0283 10001 (-1.61; 1.80) a.u. 5.86 -41.23 mV 7.04 a.u. (-50.68; -30.68) mV

Conductance-based model
(Ghigliazza and Holmes, 2004)

0.0062 10153 (-40; 3.5) mV 0.46 -32.29 mV 70.2 mV (-50.68; -30.68) mV

The general and common structure of these closed-loop

protocols consists on three parts (repeated until the

connection fulfills the pre-established goal):

(i) The first part establishes a continuous event detec-

tion during the closed-loop interaction, as described

above (see also fig. 1).

(ii) Secondly, information is used to characterize and

evaluate the performance of the established goal for

the interaction with a given metric.

(iii) Finally, parameters are changed according to the

performance and the goal.

4
 n

A

0.5 s

2
0
 m

V

Model neuron - Izhikevich

Living neuron - LP

Current from real to model neuron

Current from model to real neuron

Fig. 6 Hybrid circuit between a pyloric LP neuron and a
neuron model (Izhikevich, 2003) built with inhibitory graded
synapses (Golowasch et al, 1999) that leads to antiphase
bursting behavior. Automatic calibration and adaptation of
the model and living neuron time and amplitude scales lead to
an effective interaction in the hybrid circuit. Top panel shows
the living and model neuron voltage signals in the working
space of an LP neuron. The bottom panel shows the injected
currents. In this example, the synapse to the model neuron is
implemented by a fast graded model and the synapse to the
living neuron corresponds to a slow graded synapse model.

The events for the characterization of the activity,

the performance measures for the interaction goal, and

the model and synapse parameters must be chosen for

of each specific experiment. In this context, characteri-

zation measures like frequency, phase, level of activity,

etc. can be used for multiple goals, just adjusting the

target interaction evaluation. As an example of this pro-

cess, Fig. 7 shows an experiment where the goal set for

the hybrid circuit was the in phase synchronization of a

living and a model neuron via a bidirectional electrical

synapse. Synchronization is a convenient measurement

to assess the effectiveness of any synaptic connection in

a hybrid-circuit. Thus, as a performance measure, the

Mean Square Error (MSE) of the two voltage signals

was calculated over a time window of three bursts. In

this example, the synchronization goal was met when

the MSE reached the minimum defined goal. The MSE

was measured during five seconds before connecting

the two neurons with the electrical synapse. The tar-

get MSE was fixed at 40% of the initial MSE value.

The conductance of the connection was increased 0.5

mS every three burst cycles until the MSE target value

was reached. As can be seen in the figure, this sim-

ple protocol leads to the desired synchronization goal.

Model parameters can be adjusted analogously, allow-

ing to match the living neuron behaviour, such as the

number of spikes in a burst or their temporal structure

(Nowotny et al, 2003).

3.4 Real-time drift and ongoing adaptation

Amplitude and time adaptations performed by the pre-

vious algorithms might need to be reevaluated period-

ically during the experiments. This is the case when

dealing with voltage drift in the electrodes or a nat-

ural evolution of the membrane potential. Continuous
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Hybrid circuit

Model neuron voltage

Living neuron model
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1.0

Mean Square Error (MSE)
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Fig. 7 Illustration of the closed-loop synapse calibration process. In this example, a synchronization goal is set to evaluate
the efficiency of a hybrid circuit connection. As a performance measurement, the mean square error of the living and model
neuron signals is calculated every three bursts. The parameter chosen for the calibration is the conductance of the bidirectional
electrical synapse. The top panel shows the evolution of neurons’ membrane potential, middle panel shows the mean square
error of the signals and the bottom panel shows the conductance value. This real-time process is also shown in a video included
as supplementary material (Online Resource 1).

monitoring of calibrated ranges is highly relevant, as a

change in amplitude or offset can lead to a large current

injection into the living neuron or to a malfunction of

the hybrid-circuit. Thus, real-time evaluation of voltage

ranges and a dynamic adaptation of the drift offset is

also addressed (Algorithm 6). Figure 8 illustrates this.

A time window is defined to set the reevaluation pe-

riod and the predefined neuron events are again eval-

uated. Scale factors are thus adjusted as can be seen

by the green traces in the figure. In this particular ex-

periment, information was reevaluated every two burst

periods and the amplitude factor and vertical offsets

were re-calculated accordingly. We chose to adapt the

drift offset on the model side.

3.5 Characterization and control of neural dynamics

The event characterization algorithm (Algorithm 3) can

also be used to monitor, quantify and control neural dy-

namics. For example, interactions with the living sys-

tem can be used to assess the functional role of the sys-

tem elements, replace damaged elements of the living

system while characterizing or sustaining a given dy-

namics (Szücs et al, 2000; Chamorro et al, 2012; Sakurai

and Katz, 2017), or to calculate activity metrics (Couto

et al, 2015). A common goal for many experiments in

this context is to reach a certain level of activity, for ex-

ample a specific regular rhythmic regime (Varona et al,

2001; Hooper et al, 2015).

We illustrate this in Fig. 9 with a simple stimula-

tion experiment. In this example current is injected into

a living LP neuron from the CPG to achieve rhythm

regularization. Real-time burst detection is performed

by Algorithm 4. Figure 9 shows how the instantaneous

value of the period and its variance is measured within

a time window of 5 bursts. This is used as the perfor-

mance measure for the regularization goal.

In control conditions, the living neuron had irregu-

lar spiking-bursting activity. The figure shows that once

a certain regularization level was reached, further in-

creasing of the current did not lead to a decrease in the

variance (green region), and thus to further regulariza-

tion. This example illustrates how the event character-

ization algorithm can be used to track events and deal

with measure evaluations to achieve the desired neural

behavior with minimal disturbance to the living circuit.
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Fig. 8 Real-time drift adaptation during the experiment. Green lines show the maximum and minimum values of voltage
amplitude. These values were reevaluated every two cycles of the hybrid circuit interaction based on the activity observed in
the living neuron. Adaptation is done in model side. Currents: blue line input to model neuron and orange line input to living
neuron.
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Fig. 9 Example of the event characterization algorithm for activity control: rhythm regularization of a LP neuron. The
recording was monitored in real-time, as the system instantaneously measured the period from a predefined event –the burst
beginning– and calculated its variance within a time window of 5 bursts. Red lines indicates the start and the end of the
current injection. The region where the regularization target goal was reached is indicated in green.

3.6 Automatic mapping

The same approach discussed in the previous sections

can be used to perform automatic parametric searches,

and thus to achieve automatic mapping of the hybrid

circuit dynamics in relation to a predefined goal. To

illustrate the concept of automatic mapping, we devel-

oped a protocol to look for a dynamical invariant in

a hybrid circuit. A dynamical invariant is defined as a

preserved relationship between time intervals that de-

fine a sequence in a neural rhythm (Elices et al, 2019).

Dynamical invariants are preserved cycle-by-cycle, even

during transients. In our validation example we mapped

the presence of a linear relationship, i.e. the invariant,

between the interval defined by the beginning of the

bursting activity of the two neurons (first to first spike
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Fig. 10 Automatic mapping of the synaptic parameters that lead to a dynamical invariant between a living LP neuron and an
Izhikevich model. Panel A illustrates the time intervals that build the invariant and the meaning of the %V th parameter (see
Eqns. 1 and 2). The dynamical invariant in this case is a linear relationship between the interval defined by the beginning of the
bursting activity of the two neurons (living and artificial) and the instantaneous period of the sequence in a hybrid circuit. The
map in Panel B represents the R2 of the linear regression for each explored combination of the the maximum conductance of
the synapse gsyn and the presynaptic voltage threshold Vth. Red regions correspond to the presence of a dynamical invariant
between the living and model neuron. Grey regions represent configurations where antiphase behaviour is not achieved. For
the second parameter the values were calculated using a percentage %V th as show in section 3.6 and formula 2. Panel C shows
a representative example of the dynamical invariant.

interval between the living and model neurons) and the

instantaneous period of their sequence in the hybrid

circuit (see Panel A in Fig. 10). The invariant can only

occur when both neurons are firing in antiphase. The

presence of the invariant was evaluated with the R2 val-

ues of the linear regression between the considered time

intervals.

To construct the map, we built a hybrid circuit by

connecting the LP neuron of the pyloric CPG to a

Izhikevich model neuron (Izhikevich, 2003) with a fast

graded chemical synapse (Golowasch et al, 1999) by in-

jecting the following current into the model:

Isyn =
gsyn (VModelN − Esyn)

1 + exp(s(Vth − VLivingN ))
(1)

Note that this graded synaptic current depends on

both the presynaptic and the postsynaptic potentials.

Here, the presynaptic potential VLivingN is scaled to the

neuron model range and the presynaptic parameters s

and Vth are adjusted accordingly.

The two parameters used to build the map and ex-
plore the presence of a dynamical invariant in this cir-

cuit were the maximum conductance of the synapse

gsyn and the voltage threshold for the release of the

graded synapse Vth. The presynaptic voltage threshold

Vth values were expressed in percentage as illustrated

in Fig. 10A and defined as follows:

Vth = VModelMin + %V th · VModelRange (2)

The values of the synaptic parameters s and Esyn

were adjusted as a function of the model voltage range

as follows:

s = a · VModelRange (3)

Esyn = VModelMin − b · VModelRange (4)

where a is a parameter to scale the contribution of the

model range to set the s value, and b is a parameter

to scale the contribution of the model voltage range to

the synaptic reversal potential Esyn. To built the map

shown Fig. 10B we used a = 0.05 and b = 0.15.
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The protocol automatically explored gsyn and %V th

and built the map for the presence of the invariant

show in Fig. 10C. Algorithm 6 was used to measure

VModelMin and VModelRange as illustrated in Fig. 10A.

Panel B in Fig. 10 illustrates the result of this pro-

cess. For all pairs of parameters shown in the map, the

desired antiphase regime was reached when the color

is not grey in this figure. The dynamical invariant was

only present for high correlation values represented in

red (R2 > 85%). To generate the map, time events were

detected with the tools described in the time scaling

subsection (Alg. 3 and 4 for event characterization and

detection) in order to determine the duration of the

intervals defined by the beginning of the burst of the

living and the artificial neuron and the instantaneous

period of the living neuron. Finally, each R2 value was

calculated with the obtained intervals for each combi-

nation of the explored synaptic parameters. Panel C

shows the linear invariant for a representative case in

the map.

4 Discussion

Hybrid circuits are built by connecting living and model

neurons. These circuits have a lot of potential in neuro-

science research, but require complex experiment-speci-

fic adaptations during their construction to work prop-

erly. In particular, parameters related to time and am-

plitude scaling of the models and of synaptic currents

involved in the implementation must be evaluated for

each preparation and setup. Typically, these adapta-

tions are performed manually by the researcher and,

thus, they are time consuming and often sub-optimal.

Difficulties associated with the calibration procedures,

together with those related to the real-time neuron and

synapse model implementation are a major factor pre-

venting the dissemination of hybrid circuit technology.

In this work, we have developed a set of algorithms

that address these issues and facilitate the automatic

building of hybrid circuits.

The proposed algorithms have a wide range of ap-

plications to tune and control the behavior of the liv-

ing circuit in an automated manner, but also to au-

tonomously map the parameter space to achieve a pre-

defined goal, and in general to explore circuit dynamics.

It is important to emphasize that in many experiments

hard real-time constraints are needed for an artifact-

free implementation of hybrid circuits. The algorithms

described in this paper have been implemented and val-

idated in RTHybrid, an open-source platform, and can

be easily generalized for other closed-loop interactions

with the nervous system. Some of the algorithms can

also be employed in model simulations alone to evalu-

ate model candidates to be used in hybrid circuits, see

also (Elices and Varona, 2015, 2017).

Although the current version of the proposed algo-

rithms are not meant to modify online the DAQ board

parameters or the amplifier DC offset, they can be adap-

ted to take into account any automation by both de-

vices. They could also be implemented together with

electrode compensation or artifact removal software so-

lutions (Brette et al, 2008; Samu et al, 2012; Gomez-

Gonzalez et al, 2014).

Beyond electrophyology configurations, hybrid cir-

cuits can also be implemented using other alternatives

such as optical recording and stimulation protocols, e.g.

the ones used in optogenetics (Krook-Magnuson et al,

2013) and in neurotransmitter/neuromodulator microin-

jection protocols (Chamorro et al, 2012). Our algorithms

for time and amplitude scaling of the models and, in

general, the automation and calibration of goal-driven

close-interactions also apply in any context regarding

hybrid-circuits. Only the algorithm related to the am-

plitude scaling in the direction to the living neurons is

specific of dynamic-clamp protocols.

Overall, the algorithms described in this paper and

the associated standardized strategy to build hybrid-

circuits can lead to the dissemination of the use of this

technology, contribute to expand the life expectancy of

the preparations and favor a new trend in automation

of experimental work in neuroscience research.

5 Information Sharing Statement

The presented algorithms are implemented in RTHy-

brid. The source code is released under the GNU Gen-

eral Public License 3 and is freely available at www.

github.com/GNB-UAM/RTHybrid. Experimental data is

available under request.
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Pinto R, Elson R, Szücs A, Rabinovich M, Selverston

A, Abarbanel H (2001) Extended dynamic clamp:

controlling up to four neurons using a single desk-

top computer and interface. Journal of Neuroscience

Methods 108(1):39 – 48, DOI https://doi.org/10.

1016/S0165-0270(01)00368-5

Pinto RD, Varona P, Volkovskii AR, Szücs A, Abar-
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