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Abstract 

Electro- and magneto-encephalography are functional neuroimaging modalities 

characterised by their ability to quantify dynamic spatiotemporal activity within the 

brain. However, the visualisation techniques currently used to illustrate these effects 

are currently limited to single- or multi-channel time series plots, topographic scalp 

maps and orthographic cross-sections of the spatiotemporal data structure. Whilst 

these methods each have their own strength and weaknesses, they are only able to 

show a subset of the data and are suboptimal at articulating one or both of the 

space-time components.  

Here, we propose Porthole and Stormcloud, a set of data visualisation tools which 

can automatically generate context appropriate graphics for both print and screen 

with the following graphical capabilities:   

1) Animated two-dimensional scalp maps with dynamic timeline annotation and 

optional user interaction;  

2) Three-dimensional construction of discrete clusters within sparse spatiotemporal 

volumes, rendered with ‘cloud-like’ appearance and augmented by cross-

sectional scalp maps indicating local maxima. 

These publicly available tools were designed specifically for visualisation of M/EEG 

spatiotemporal statistical maps, however, we also demonstrate alternate use cases of 

posterior probability maps and weight maps produced by machine learning classifiers. 

In principle, the methods employed here are transferrable to visualisation of any 

spatiotemporal image. 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1. Introduction 

 

The ability to effectively communicate experimental findings is central to any 

scientific endeavour. As the complexity of our research increases, there is an inherent 

tradeoff between the time investment necessary for the author to explain their ideas 

and for the audience to understand them (Olah and Carter, 2017). Data visualisation 

is a critical, yet often overlooked mode of communication with the potential to bridge 

this gap by accentuating or summarising the author’s key messages in a clear and 

efficient manner. However, whilst there are a number of generic visualisation tropes 

that the reader has grown accustomed to, we suggest that these are largely 

suboptimal at articulating the necessary context surrounding the data in some 

domain-specific subfields of neuroscience.  

 Electroencephalography (EEG) and magnetoencephalography (MEG) are 

functional neuroimaging modalities which measure fluctuations in electrical and 

magnetic components of the electromagnetic field, respectively, as generated by the 

brain in action. Both methods are characterised by an excellent temporal resolution 

and a high density of sensors or channels, often providing whole-scalp coverage. 

Whilst M/EEG data can be analysed on a discrete single-channel basis (Figure 1A), 

these channels can also be interpolated to create a two-dimensional map (Figure 1C) 

of brain activity over the full surface of the scalp (Koles and Paranjape, 1988). As 

such, the time series data from these recordings can be processed as a three-

dimensional volume, comprising the two spatial dimensions on the surface of the 

scalp over time. We refer to these volumes as spatiotemporal or scalp-time images. In 

terms of analysis, transforming the data in this manner is particularly useful for 

computational modelling, enabling us to obtain spatiotemporal statistical parametric 

maps (SPM; Friston et al., 2011; Litvak et al., 2011) and inquire about regionally 

specific statistical effects across the dataset as a whole, without bias or making any a 

priori assumptions or bias, i.e. pre-selecting a subset of the data, such as specific 

channels and/or time components of the event-related potential/field (ERP/ERF). 
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 Spatiotemporal images are by no means a new construct, nor specific to 

neuroscience. The generalist three-dimensional space model, representing a two-

dimensional space over time is more commonly referred to as a space-time cube, 

originally devised by Torsten Hägerstrand (1970) for analysing social interactions on 

a geographical map. This model has since been applied to many other domains, each 

with their own specific visualisation challenges and solutions, enabling the most 

important information within the volume to be easily interpretable by the intended 

audience. These challenges primarily stem from the fact that by presenting three-

dimensional data on a two-dimensional medium, whether this be in print or on 

screen, we are only able to accurately represent a subset of the data. These two-

dimensional visualisations can all be expressed in terms of the operations which are 

applied to the space-time cube to extract these data. For a comprehensive review of 

these operations, refer to Bach et al. (2016). Here, we critique the core visualisation 

methods currently being used for presenting M/EEG analysis; single- or multi-

channel plots, serial topographic scalp maps and orthographic projections, and later 

propose alternatives that we believe capture more information from the data. 

 A single-channel time series (as shown in Figure 1A) can be described as a 

vector extracted from a single point on the spatial x-y plane and parallel to the t-

axis, an operation referred to as time drilling (Bach et al., 2016). The responses 

measured simultaneously from all sensors can also be overlaid onto a multi-channel 

or ‘butterfly’ plot (Figure 1B, or repeated drilling in multiple spatial locations). 

Whilst this representation of the data is useful for understanding how the signal 

recorded from one channel evolves over time, it provides no information on the 

spatial profile. 

 Another conventional way of displaying M/EEG data is through topographic 

scalp maps (Figure 1C), which typically display ERP/ERF activity spatially 

interpolated over channels at a given time point, a range of time points, or the 

average over all time points. In other words, this data representation can be obtained 

by slicing a spatiotemporal volume of data across the x-y plane for a range of time 

points, t, a process otherwise referred to as time cutting (Bach et al., 2016).  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Figure 1.  

Examples of existing M/EEG visualisation 

methods. (a) Time drilling — Single channel 

plot of grand-average brain responses evoked 

by attended standard (blue) and deviant 
(red) stimuli, recorded from central (Cz) 
channel. Standard error shown as shaded 

areas, star indicates time points of significant 
different responses (p < 0.05, paired t-test, 

FDR corrected). (b) Repeated drilling — 

Butterfly plot of grand-average response to 

attended deviant stimuli. Each line indicates 

the ERP measured at one of 64 channels. (c) 

Time cutting — Topographic scalp maps of 
grand-average response to attended deviant 

stimulus, sampled at 20 ms intervals from 0 

to 400 ms. (d) Space cutting — Orthographic 

projection of grand-average response to 
attended deviant stimulus, sectioned through 

the Cz channel at time 250 ms.
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Topographic scalp maps are often presented at specific time points of interest, or as a 

sequence at set intervals over the length of the t-axis, akin to small multiples, 

described by Tufte (2001) as a set of small figures on shared axes for direct 

comparison. However, as the amount of paper required to display the full sequence of 

scalp maps at the native sampling frequency is prohibitive, typically only a subset of 

these time points are shown. As such, presenting the data in this manner is able to 

provide high spatial resolution, but low temporal resolution. 

 An orthographic projection (Figure 1D) comprises a set of three planar cross-

sections which intersect orthogonally through a single point within the 

spatiotemporal volume, denoted here as (x,y,t). In addition to a topographic scalp 

map (i.e. cutting across the x-y plane at time t), temporal slices are made 

perpendicular to both spatial axes in the x-t and y-t planes, an operation referred to 

as space cutting (Bach et al., 2016). These projections offer high temporal resolution 

and moderate spatial resolution with respect to the point of interest but mask all 

other information as a result. Such operations may be useful when the volume can be 

navigated by moving the point of interest via user interaction, but are less than ideal 

for a static two-dimensional medium. 

 Although M/EEG modalities are able to capture spatial and temporal changes 

in brain activity, all of these visualisation techniques currently being employed are 

limited in their ability to articulate one, but not all space-time components of the 

data. Over-reliance on these methods may be due to a dearth of freely available user-

friendly tools which can be used by both programmers and non-programmers alike, 

designed specifically for these modalities and spatiotemporal data structures. 

 In this paper, we introduce Porthole and Stormcloud, a set of visualisation 

tools designed to address these shortcomings, demonstrating improvements in the 

illustration of sparse spatiotemporal data through interactive two-dimensional 

animations and three-dimensional rendering. In the Methods section, we provide a 

summary of the data structure, break down each individual component of the visual 

environment, and outline the operations we perform in generating the visualisations. 
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In the Results section, we provide examples of figures produced when applying these 

tools to outputs from three different analyses on empirical data; namely statistical 

parametric maps, posterior probability maps, and machine learning weight maps. 

Finally, we discuss the key advantages, limitations, and possible future directions for 

this work. 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2. Methods 

 

2.1 Programming language 

We chose to write these tools for MATLAB (The Mathworks Inc., Natick, 

Massachusetts), given that it is currently the primary software used by the 

neuroimaging community. In this way, the user does not need to leave their existing 

workflow or install additional software. This also avoids potential compatibility 

issues, as any operating system and hardware configuration currently running 

MATLAB should be able to use these visualisation tools. 

2.2 Data model 

The visualisation methods employed here were developed specifically for use with 

scalp-time images generated using Statistical Parametric Mapping (SPM; Friston et 

al., 2011), a univariate modelling technique commonly used for analysing 

neuroimaging data, as implemented within a freely available software package 

(Litvak et al., 2011). In Section 2.2.1, we provide a brief overview of the SPM  

operations and terminology, the types of images produced and the effects of interest 

within these images. Using this framework as a basis allowed us to make some 

reasonable assumptions about the data, as outlined in Section 2.2.2, and directly 

informed our design approach, detailed in Sections 2.3 and 2.4.  

2.2.1 Statistical parametric mapping 

SPM assumes that the distribution of values contained within the image voxels are 

members of a known probability density function, namely Student’s t or F 

distributions with mean zero. Any values considered unlikely to be drawn from this 

distribution are interpreted as effects resultant from the experimental conditions.  
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 To make such inferences, a mass-univariate approach is employed by 

independently estimating general linear models (GLM) at each individual voxel by 

regressing all of the experimental variables across all participants. The resulting 

coefficients, or β parameters from these models represent the proportion of signal 

that can be explained by the experimental conditions (Friston et al., 2011). To test 

hypotheses about these conditions, t- or F-statistics and their associated p-values are 

obtained for each voxel as a linear combination of the β parameters and residual 

variance, also known as a contrast (Poline et al., 2007). t- or F-contrasts differ in the 

types of questions they can answer: the SPM t-test uses a single-tail and is only able 

to test for positive effects (whether the response to one condition is greater than 

another), whereas the F-test is unsigned and can test for both positive and negative 

effects (whether the responses to conditions differ).  

 We therefore arrive at a corresponding three-dimensional map of t- or F-values 

and wish to consider the volume as a whole. However, as the spatiotemporal volume 

can comprise in the order of 100,000 voxels, it becomes increasingly likely to make 

false discoveries when performing a large number of statistical tests simultaneously. 

To determine where the effects of interest are localised, the statistic map is 

thresholded at a given level of confidence, and any groups of voxels, or clusters of 

activity above this threshold are examined. This threshold level can be computed 

using random field theory and family-wise error (FWE) correction for multiple 

comparisons over all voxels (Brett et al., 2004; Worsley, 1995, 1996), or remain 

uncorrected at the discretion of the user. We can then draw conclusions about this 

thresholded data at the cluster-level (the chance of finding another cluster containing 

this number of voxels) or at the peak-level (the chance of finding another single voxel 

of this value). Below, propose techniques to visualise these three-dimensional t-/F-

maps in a way which preserves both the higher temporal resolution of the data and 

the spatial topology of the activation clusters. 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2.2.2 Data characteristics 

Using this SPM framework as a basis, we are able to make a number of key 

reasonable assumptions about the data and use these to directly inform our design 

approach: 

1. Sparsity. By thresholding the data at high statistical significance, the volume will 

have high sparsity; the number of elements which are insignificant (NaN, or 

below threshold) will vastly outweigh those elements which contain numeric, non-

zero values.  

2. Smoothness. As each element shares a contiguous relationship with its neighbours 

in both the spatial and time dimensions, the volume as a whole, as well as the 

clusters of significant activity within the volume will have an inherent 

smoothness. 

3. Unipolarity. The statistical t- and F-tests performed on the data only result in 

positive real numbers. 

2.3 Porthole 

Porthole (porthole.m) is our toolset for visualisation of spatiotemporal statistics as 

animated scalp maps. As shown in Figure 2, the main display window comprises a 

two-dimensional cartesian grid system, overlaid with a scalp outline with nose and 

ears used to indicate head orientation. The user also has the option for a secondary 

channel coordinate overlay for interpretation in sensor space. Iterating through each 

time slice, the animation is performed by assigning variations colour to each element 

in the grid.  

2.3.1 Visual components 

The display window is also framed by a number of additional objects which provide 

the necessary contextual information to gain a full appreciation for the data. 
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 The legend (bottom left corner, ph_get_legend.m) is a general point of 

reference, summarising the contents of the dataset as a whole. This indicates the 

type of data being shown, the criteria used to threshold the data, the global maxima 

and minima within the dataset, and the colour mapping between them. Our default 

colour mapping transitions from red to yellow, which denotes an increase in 

statistical significance with a lower bound (Christen et al., 2013). 

 The timeline (right, ph_get_timeline.m) gives the user a sense of the 

overall response and distribution of data along the t-axis. The length of the timeline 

is coloured by extracting the local maxima within each time bin (non-planar drilling 

in Bach et al., 2016). This also serves a similar purpose as the single channel asterisk 

annotation as shown in Figure 1A, indicating the time windows of statistical 

significance and associated level of confidence. An arrowhead (ph_get_arrow.m)is 

translated along the timeline with the animation, indicating the current position 

within the volume and forms a key navigational tool when using the interactive 

mode. 

 The information readout (top left corner) displays the numerical data relating 

to the current time slice. Parameters listed are the image index, peri-stimulus time, 

the local maxima and the size and spatial location of peak local significance, shown 

in cartesian coordinates. For example, in Figure 2, we show image number 100 of the 

total 101 images referring to time t = 395 ms, with peak significance of t-value = 

6.0576 spatially located at voxel (18,21) on the x-y plane. 

2.3.2 Importing data 

For the visualisations to run independently of the SPM environment, we import these 

datasets from the universal NIfTI-1 format (.nii) into generic three-dimensional 

arrays and save in MATLAB format (.mat) via the nii2ph function.  

 Page !  of !11 29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 30, 2019. ; https://doi.org/10.1101/534784doi: bioRxiv preprint 

https://doi.org/10.1101/534784


 

Figure 2. Example frame from Porthole visualisation. Scalp map animation is performed by iteratively 

assigning colours to each element in the display window. The timeline summarises the overall response 
and indicates current temporal position within the volume. The display window is framed by 

contextual metadata in the legend and information readout. Animation can also be controlled 
manually via user interaction. Data shown is a statistical parametric map, illustrating the main effect 
of surprise, contrasting standard and deviant evoked responses to an auditory oddball paradigm. 

2.3.3 Initialising the visual environment 

Each dataset also requires specification of metadata and user preferences via 

graphical user interface (ph_gui.m, shown in Appendix A), which are appended to 

the data structure. 
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 The data type, the p-value and correction associated with the SPM 

thresholding are shown in the legend. By default, the colour mapping is autofit to 

the global minimum and maximum values within the dataset. The user can also 

specify their preferred thresholds, which may be useful in defining a common legend 

to be shared by a series of visualisations, enabling direct comparison between them, 

or lowering the precision of these extrema. 

 In order to annotate the timeline and readout, the epoch timing is defined by 

the sampling frequency and pre-stimulus interval. As the effects of interest may occur 

late within the epoch, the bounds of the animation loop can be controlled by 

specifying the desired start and finish time. 

 The display window can be customised by setting the scalp shape to be 

circular or oval (0.8 width × 1 height voxel dimensions), with options to overlay 

channel locations and/or channel labels (ph_channel_plot.m) using the 10-10 or 

10-20 international standard template for EEG electrode placement (Oostenveld and 

Praamstra, 2001).   

2.3.4 Animating the display window 

To perform the animation process, the face colours of each element in the display 

grid are reset according to the changes in data values read across time slices. The 

range of colours able to be displayed on-screen are defined in a three-dimensional 

RGB (or red, green and blue additive) colourspace, packaged as a three element 

vector or triplet. As such, we are able to perform standard linear algebra operations 

on this colour space. Should the user wish to display the image sequences at slower 

speeds, additional frames can be generated by performing a sinusoidal interpolation 

between the colour triplets assigned to elements (x,y,t) and (x,y,t+1) through vector 

calculus. 
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 Two different modes are provided for the user to display their datasets in the 

desired manner; animation mode and interactive mode. In animation mode, the 

image sequences are played automatically. Interactive mode pauses the animation 

and enables the user to iterate between images manually, without interpolation, using 

the arrow keys. Animation mode is the default setting upon startup and the display 

mode can be toggled at any time by pressing the space bar. 

2.4 Stormcloud 

Stormcloud (stormcloud.m) is an extension of the Porthole framework used for 

rendering the full spatiotemporal data as a volume, containing discrete cloud-like 

clusters with scalp map annotations referring to peaks within those clusters and are 

intended for publishing in print. Stormcloud uses a shared data structure with 

Porthole (Section 2.3.2) and a similar graphical user interface (sc_gui.m, shown in 

Appendix B). 

2.4.1 Rendering the volume 

To model the data volumetrically (as illustrated in Figure 3), we first create a set of 

small cubic objects with unitary vertices for each voxel above threshold within the 

dataset. Rather than mapping colours to the data points using RGB components as 

in Porthole, the voxel face colour is here set to a constant mid-grey and the 

appearance is instead controlled by manipulating transparency (or opacity) using a 

fourth component, alpha. These alpha values control whether a surface appears fully 

transparent (α = 0), opaque (α = 1), or at infinitely many levels of semi-

transparency (0 < α < 1). By normalising the dataset, we can therefore perform a 

direct mapping such that the significance level for each voxel is proportional to its 

transparency. When the collective set of voxels are rendered in this manner, the 

clusters have a cloud-like appearance, where highly significant elements appear 

darker, less significant elements are lighter and insignificant voxels are invisible. 
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 The volume is presented in isometric perspective, defined in spherical 

coordinates as azimuth angle of 45° (rotated in the x-y plane around the z-axis), and 

elevation angle of 35.264° (i.e. arctan(1/√2), rotated from the x-y plane toward the 

z-axis). In isometric perspective, the angles between the x, y and z-axes appear equal 

(120°), providing a level of spatial accuracy which is more directly interpretable than 

other methods of 3D projection — parallel lines appear parallel, lines of the same 

length appear to have the same length, and surfaces with the same area appear to 

have the same area.  

 However, although we are rendering the volume in three-dimensions, through 

the printing process we are ultimately presenting the volume on a two-dimension 

surface from a single viewpoint. As many datasets contain irregular shapes, a single 

viewpoint can obfuscate some of the data in the background. There are four possible 

isometric viewing angle to choose from, which we describe in terms of the scalp 

orientation and which quadrant is closest to the observer; right-posterior, right-

anterior, left-anterior, and left-posterior. We recommend rendering the volume from 

all four of these different viewpoints and selecting those which best articulate the 

effects to be conveyed. 

2.4.2 Annotating the volume 

Whilst loading the dataset, Stormcloud automatically identifies the discrete clusters 

of activity within the volume, as well as the number of voxels and points of peak 

significance within these clusters. Using these criteria as a guide, the author can then 

specify which clusters they wish to annotate, such that they can be explicitly referred 

to within the text. Using the ph_draw_scalp function, scalp outlines are drawn 

around the volume at the time points when these peaks occur and a companion two-

dimensional scalp map can be displayed next to these points of interest.   

 The set of scalp maps is obtained from given time indices using the 

ph_export_maps function, which generates high-resolution images akin to the 

Porthole display window and saves them in the working directory. Like the Porthole 
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customisation options, scalp shape can be specified as a circle or oval, and custom 

colour map thresholds can also be adjusted. 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3. Results 

In this section, we present three examples which highlight the strengths of these 

visualisation tools and possible applications. The experimental effect being analysed 

is known as Mismatch Negativity (MMN; Näätänen, 1990), which can be simply 

described as sensory prediction error, the difference between responses to predictable 

and unpredictable stimuli, or the brain’s response to surprise. The dataset used was 

provided by Harris et al. (2018) and is freely available at https://figshare.com/s/

1ef6dd4bbdd4059e3891. Porthole video screen captures corresponding to each of these 

examples are available in the supplementary materials. Pre-alpha versions of the 

Stormcloud toolset have also been used previously by Garrido et al. (2016), 

Timmermann et al. (2017), Larsen et al. (2018) and Garrido et al. (2018). 

3.1 Dataset 

3.1.1 Experimental design 

EEG was recorded whilst participants listened to auditory stimuli with two overlaid 

components; Gaussian white noise, which was played binaurally, and an auditory 

oddball paradigm that used pure tones, played monaurally. The oddball paradigm 

comprised a sequence of pure sinusoidal tones, 50 ms in duration, presented at 500 

ms intervals and occasionally deviating in frequency in 15% of trials (500 or 550 Hz, 

counter-balanced between blocks). Silent intervals or ‘gaps’ were also embedded 

within the white noise, which could be singular (90 ms) or repeated (two 90 ms gaps, 

separated by 30 ms of noise). In a given block, participants were asked to pay 

attention to these gap stimuli in one ear, ignoring those in the other ear. On a 

numbered keyboard, they then pressed the number ‘1’ in response to the single gap 

stimulus and ‘2’ for the double gap. For more information regarding the task, refer to 

Garrido et al. (2018).  
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Figure 3. 

Examples of Stormcloud visualisations. 

3D spatiotemporal clusters rendered from 
dual isometric perspectives with spatial 

dimensions on x-y plane, time domain 
along z-axis, and voxel transparency 
mapped to level of statistical significance. 

Peaks within clusters of interest are 
annotated by cross-sectional 2D scalp 

maps. (a) Statistical parametric map — 

main effect of surprise, computed via t-

contrast between standard and deviant 
responses, thresholded at p < 0.001 

(uncorrected). (b) Posterior probability 

map — evidence that attention boosts 

the evoked responses to both standard 
and deviant stimuli, computed via 

Bayesian model selection and thresholded 

at 90% posterior probability. (c) Machine 

learning feature importance map — 
weights obtained from binary support 

vector machine classification between 
unattended standard and attended 

deviant responses, multiplied by grand 
mean image and thresholded at top 5% 
highest contribution to model predictions. 
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3.1.2 Participants 

A group of 21 healthy adults with no reported history of head injury resulting in 

unconsciousness, and no mental or neurological disorders (age 19 to 64 years, mean = 

25.00 years, SD = 9.83, 12 males) participated in the study. All participants provided 

written and verbal informed consent and were compensated for their time in 

accordance with guidelines set by the University of Queensland Human Research 

Ethics committee. 

3.1.3 Data collection and pre-processing 

Continuous EEG data were recorded using a 64 channel BioSemi ActiveTwo system 

(Amsterdam, Netherlands) with electrode placement in accordance with the 

international 10-10 standard at a sampling frequency of 1024 Hz. Offline signal 

processing was performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). Data 

were re-referenced to the scalp average, high-pass filtered using a Butterworth filter 

with cutoff frequency at 0.5 Hz, downsampled to 200 Hz and low-pass filtered at 40 

Hz. Experimental trials were epoched with −100 to 400 ms peri-stimulus window and 

baseline corrected to the −100 to 0 ms pre-stimulus interval. Trials with signal 

amplitudes exceeding a ±80 µV threshold were excluded from the analysis and ERPs 

for each condition were obtained by averaging across trials. Across participants, the 

mean stimulus count following artefact rejection was 1026.8 standards and 186.0 

deviants for the attended condition (15.3% deviants), 1127.3 standards and 200.8 

deviants for the unattended condition (15.1% deviants). ERPs were converted to a 

set of four spatiotemporal NIfTI images per subject, interpolating scalp data into a 

spatial 32 × 32 matrix for each time bin (101 samples from −100 to 400 ms, 5 ms 

increments), then smoothed using a Gaussian filter with FWHM 8 × 8 × 8 voxels.  
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3.2 Statistical parametric maps 

Using the mass-univariate general linear modelling approach outlined in Section 

2.2.1, we analysed these spatiotemporal images using a 2 × 2 design with surprise 

and attention as factors, specifying four regressors: standard and deviant under 

attended and unattended conditions. We then computed t-contrasts across the group 

with a cluster forming threshold at p < 0.001 (uncorrected). As illustrated in Figure 

3A, we found two large clusters for the main effect of surprise, peaking at 160 ms 

(cluster-level p = 8.76 × 10−4, FWE corrected) and 400 ms (cluster-level p = 6.99 × 

10−4, peak-level p = 6.51 × 10−5, FWE corrected), both located in fronto-central scalp 

regions. There were no significant main effects of attention or interactions between 

surprise and attention.  

3.3 Posterior probability maps 

Another means of analysing spatiotemporal images is through probabilistic Bayesian 

inference. By placing a prior assumption on the general effects we expect to see in 

the data, we can then update the likelihood of this assumption being true, given the 

data we actually observe. Such testable assumptions can range from a simple null 

effect (or null model that is reminiscent of the frequentist approach in used SPMs), 

to more sophisticated alternative assumptions (or models) about what has generated 

the data. This is formally known as Bayesian model selection (BMS) and is 

particularly useful for comparing computational models at the group level. In this 

example, we focus on one model in particular, which proposes that attention boosts 

the evoked responses to both standard and deviant stimuli. This implies that, across 

the four conditions, activity evoked by unattended standard stimuli has the lowest 

amplitude, attended deviant is greatest, with attended standard and unattended 

deviant approximately equivalent (Garrido et al., 2018). The probability map 

supporting this model, shown in Figure 3B (also described in Harris et al., 2018) was 

thresholded at 90% posterior probability.  
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 At each voxel, we can compute the model evidence, or the likelihood of the 

observed data from individual participants under the assumption that the model is 

true. The evidence for the model can then be converted to a posterior probability 

map at the group level. For more detail on this methodology behind these 

computations, refer to Harris et al. (2018) and Rosa et al. (2010).   

3.4 Machine learning weight maps 

Machine learning methods are being increasingly applied to neuroimaging data as a 

means of decoding multivariate patterns of neural activity associated with a given 

experimental condition. In this example, spatiotemporal images obtained from each 

subject were used as inputs for a machine learning model using the Pattern 

Recognition for Neuroimaging Toolbox (PRoNTo; Schrouff et al., 2013), such that 

each individual voxel was considered a learning feature. In contrast with the mass-

univariate approach, these multivariate techniques instead jointly consider pairwise 

similarities between all voxels in the image (kernel method; Schölkopf and Smola, 

2000). 

 Using the Support Vector Machine algorithm (SVM; Burges, 1998), we trained 

a model to classify images according to the labels ‘unattended standard’ and 

‘attended deviant’ as a proof of concept, noting that the differences in ERP were 

maximised between these two conditions. Considering each image as a datapoint in a 

high-dimensional space, SVM generates a hyperplane which best separates the two 

conditions by maximising the margin between them (we use the default soft-margin 

hyper-parameter, C = 1). This hyperplane then serves as a binary decision boundary. 

As part of this training process, each voxel within the image is assigned a weighting, 

which represents the relative contribution of that voxel toward classification. 

Predictions for new test images are then made via multiplication with the weight 

map, returning a signed scalar value indicating which side of the hyperplane the 

image lies (in this instance, positive and negative values are classified as ‘standard’ 

and ‘deviant’, respectively). 
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 To assess the overall performance of the model, we employed a 10-fold cross-

validation scheme (Hastie et al., 2001), which partitions the images into 10 subsets, 

then iteratively assigns 90% of the images for training and the remaining 10% for 

testing the model. Overall, this model was able to discriminate between the two 

experimental conditions with 80.95% total accuracy (p = 0.001, permutation test), 

85.71% (p = 0.002) class accuracy for ‘standard’ and 76.19% (p = 0.025) for ‘deviant’ 

responses.  

 Although it is commonplace to inspect the resulting weight maps and intuit 

which points in space and time are driving the model performance, direct 

interpretation is not straightforward (Haufe et al., 2014). As all voxels contribute to 

the predictions, we cannot fully comprehend the interactions between them on face 

value. For example, given that the original images and the weight map both contain 

signed values, a negative weight applied to a negative feature has a net positive 

influence on the model prediction. Similarly, a large weight can also be applied to a 

small feature, or vice versa, although when the data has adequate signal-to-noise 

ratio, a large weight assignment is unlikely to be a false positive (Schrouff and 

Mourão-Miranda, 2018).  

 To better understand which features informed ‘standard’ predictions, we 

computed the element-wise multiplication between the mean weight map (averaged 

across folds) and the grand mean image (averaged across participants). We refer to 

the resulting as an ‘importance map’. When thresholded at the top 5% largest 

values, as shown in Figure 3C, this importance map summarises 88.79% of the total 

contributions toward a ‘standard’ classification, with the remaining voxels likely 

suppressing noisy or irrelevant information. It is worth noting that the mass 

univariate and multivariate approaches, displayed in Figure 3A and 3C, respectively, 

are remarkably consistent both in terms of the temporal and spatial extent of the 

significant clusters. However, as expected, the multivariate approach is much more 

sensitive than the univariate approach, thereby revealing a greater number and 

extent of clusters. 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4. Discussion 

M/EEG data can be represented volumetrically as a three-dimensional space-time 

construction. Using computational modelling techniques such as statistical 

parametric mapping, we are able to analyse the rich spatiotemporal data as a whole, 

rather than selecting subsets of channels and/or time windows by a priori assumption 

regarding the effects we expect to see. The resulting images output from this 

modelling contain a set of discrete internal clusters with an inherent smoothness. 

Although the conventional methods of M/EEG visualisation each have their own 

strengths, they are only able to present a subset of the data, focusing primarily on 

articulating one of the space-time components. These visualisation techniques can be 

categorised as single channel time series, topographic scalp maps and orthographic 

cross-sections. Single channel plots, obtained from a given point in space on the x-y 

plane, have a high temporal resolution, but little to no spatial information. 

Conversely, topographic scalp maps extracted from a given time point t, have very 

high spatial resolution, but do not capture temporal information. Although a 

sequence of scalp maps can be presented in grid format, these are often grossly 

downsampled, hence dramatically comprising the temporal resolution. Orthogonal 

cross-sections are able to provide high spatiotemporal resolution with respect to a 

given point (x,y,t), but are unable to provide a full appreciation of the cluster shape 

and extent without interactive user navigation.  

 In this paper, we introduced Porthole and Stormcloud, a set of visualisation 

tools which enable in print and on screen visualisation of M/EEG statistics across 

the whole spatiotemporal topography in a more comprehensive, informative and 

efficient manner using a combination of two-dimensional scalp animation and three-

dimensional rendering techniques. In addition, we suggest that these methods offer 

improved resolution of all three space-time components and also demonstrate their 

intended application in the context of our own empirical work.  
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 Porthole centres around two-dimensional topographic scalp animation, which 

can be described as an iterative slicing operation across the spatiotemporal volume 

at each individual time point. However, passively watching an animation necessitates 

that the viewer retains information in working memory, which may not suffice in 

gaining a full appreciation of the data — they must be aware of the current time 

point within the epoch, the spatial effects that have occurred previously, and 

potentially anticipate the spatial effects that will occur in the future. As a 

countermeasure, we frame the display window with a dynamic timeline, colour coded 

by the local maxima extracted from each scalp map. This is akin to the asterisk 

annotation from the single channel plots shown in Figure 1A, indicating the time 

windows of statistical significance and associated level of confidence. We also provide 

the option for user interaction to pause the animation sequence and navigate the 

volume manually. Collectively, these methods provide high resolution in both spatial 

and temporal components of the data.  

 Kristensson et al. (2009) suggest that space-time cube visualisation systems 

similar to those presented here are more effective at communicating complex 

spatiotemporal information. In that study, users answered a series of questions by 

interpreting spatiotemporal data from either a static two-dimensional map with time-

related annotations, or a three-dimensional space-time cube representation which 

could be navigated interactively. Whilst the two-dimensional map provided 

significantly lower error rate for questions involving interpretation of the whole space 

at a single time point, the space-time cube resulted in halved response time (down 

from 121 to 60 seconds) for more complex questions involving the integration of 

information across all space and time. 

 Stormcloud presents the spatiotemporal data volumetrically, rendering clusters 

of statistical significance with a cloud-like effect by scaling the opacity of individual 

voxels according to the level of significance. As these clusters may have irregular 

shapes and distributions, rendering the topography in three dimensions may present 

problems when depicting the volume from a singular viewpoint, as some portion of 

the data can be obfuscated in the background. As such, we depict the volume in four 

 Page !  of !24 29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 30, 2019. ; https://doi.org/10.1101/534784doi: bioRxiv preprint 

https://doi.org/10.1101/534784


orthogonal views using common axes and select the pair which best articulates the 

overall topography. We also annotate the main clusters of interest using companion 

topographic scalp maps at time points of peak statistical significance. As noted by 

Fuchs and Hauser (2009), a hybrid of multiple visualisation methods applied to 

different subregions of the volume can be especially useful in providing the necessary 

context for correct understanding. Stormcloud has moderate spatial and temporal 

resolution for the volume as a whole, and high spatial resolution at the specified time 

points.  

 Whilst these tools were optimised for use with statistical parametric maps 

(SPM) and our design process was informed by the underlying properties of M/EEG 

neuroimaging data, we also demonstrated alternate applications with Bayesian 

posterior probability maps and feature importance maps derived from machine 

learning weights. In principle, we envision that many, if not all of these methods are 

transferrable to essentially any spatiotemporal image.  
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Appendices 
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Appendix A. Graphical user interface for specifying Porthole 

animation parameters and metadata for annotating the display.

Appendix B. Graphical user interface for specifying Stormcloud 

preferences for volume orientation and cluster annotation.
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