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Abstract The shape and connectivity of a neuron de-

termine its function. Modern imaging methods have

proven successful at extracting such information. How-

ever, in order to analyze this type of data, neuronal

morphology needs to be encoded in a graph-theoretic

method. This encoding enables the use of high through-

put informatic methods to extract and infer brain func-

tion. The application of graph-theoretic methods to neu-

ronal morphological representation comes with certain

difficulties. Here we report a novel, effective method to

accomplish this task.

The morphology of a neuron, which consists of its

overall size, global shape, local branch patterns, and

cell-specific biophysical properties, can vary significantly

with the cell’s identity, location, as well as develop-

mental and physiological state. Various algorithms have

been developed to customize shape based statistical and

graph related features for quantitative analysis of neu-

romorphology, followed by the classification of neuron

cell types using the features. Unlike the classical fea-

ture extraction based methods from imaged or 3D re-

constructed neurons, we propose a model based on the

rooted path decomposition from the soma to the den-

drites of a neuron and extract morphological features on
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each path. We hypothesize that measuring the distance

between two neurons can be realized by minimizing the

cost of continuously morphing the set of all rooted paths

of one neuron to another. To validate this claim, we

first establish the correspondence of paths between two

neurons using a modified Munkres algorithm. Next, an

elastic deformation framework that employs the square

root velocity function is established to perform the con-

tinuous morphing, which, in addition, provides an ef-

fective visualization tool. We experimentally show the

efficacy of NeuroPath2Path, NeuroP2P, over the state

of the art.

Keywords Neuron morphology · Assignment algo-

rithm · Elastic morphing · Tree matching · Shape

classification · Biomedical image analysis.

1 Introduction

Neurons process information by transmitting electri-

cal signals via complex circuitry. The functionality of

each neuron depends on a set of intrinsic factors, such

as morphology, ionic channel density, gene expression,

including the extrinsic ones, such as connectivity to

other neurons [1, 8]. In 1899, Cajal [9], considered the

founder of modern neuroscience, put forward his pio-

neering work on neuroanatomy with detailed, accurate,

and meticulous illustrations, and posited that the shape

of a neuron determines its functionality. Experimen-

tal results strongly support this idea. Inspired by this

fundamental work, the study of neuromorphology pri-

marily aims at analyzing and quantifying the complex

shape and physiology of neurons in specific functional

regions to identify relationships.

Neurons vary significantly in size, shape, and length.

A major obstacle towards understanding the brain is
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Pyramidal neurons from (a) primary motor cortex, (b) secondary motor cortex, (c) prefrontal cortex, (d) somatosensory
cortex, (e) primary visual cortex, and (f) secondary visual cortex of the mouse. The dendritic branches in yellow are apical
dendrites, and in green are basal dendrites. The red square in each cell is the soma, used as the designated root node in our
analysis. This figure provides a glimpse of region-based arborial differences among pyramidal cells. Cells differ in size and
volume, which are scaled for visualization.

the development of efficient ways to encode these shapes.

The anatomical and geometrical features of neurons of

any cell-type, for example, pyramidal cells differ based

on the regions in which the cells reside [7, 8]. Fig. 1

shows regional variation in the structure and geometry

of dendritic arbors of pyramidal cells [31]. It is observed

that the number of branches, length, surface area, and

volume of apical dendrites is 4− 9 times larger for hip-

pocampal than for cortical regions, whereas in terms of

the same features of basal dendritic arbors, it is ap-

proximately 3 times [8]. Another source of variation

stems from technical imprecision in measurements ob-

tained while performing 3D reconstruction from image

stacks using software tracing tools, such as Neurolu-

cida [16]. Noise due to technical imprecision includes

wide variations in the number of manually or semi-

automatically traced 3D locations (approximately be-

tween 60 to 70, 000), the number of ramified branches

and bifurcations by different tracers, and deletion of

dendritic spines adversely affect the registration of neu-

rons, and thereby induce error in morphological feature

quantification. The skeletons of dendritic and axonal

branches form a tree topology with a number of bifur-

cations. The bifurcations at successive stages help in

a series of effective and unambiguous signal process-

ing modules, such as active and passive signal propa-

gation, integration, filter, attenuation, oscillation, and

backpropagation [1, 21].

From the soma to the dendritic terminals of a neu-

ron, the diameter of the dendritic shaft tapers [18, 40].

The increased diameter of a dendritic shaft near the

soma is tailored to faster signal propagation to the soma

compared to the dendritic tuft , which helps generate

action potential in the soma. Several research works
consider the branches in the proximity of soma are more

important compared to the distant dendritic tuft and

spines in the analysis of neuromorphology [10, 19, 22].

The length of dendritic branch segments shows simi-

lar behavior when propagating away from soma. For

instance, the terminal segments are longer than the in-

termediate branch segments for basal dendrites in cor-

tical pyramidal cells [7]. These observations support the

Bayesian philosophy which is geared towards the anal-

ysis of morphogenesis of neurons [22]. Functions such

as synaptic boosting [24], coadaptive local spiking [12],

and global spike amplification [41] suggest the use of

other morphometrics to describe the structural aspects

on the functions. For example, packing density of ram-

ified branches and bifurcations of neuron potentially

trigger intermittently co-adpative spiking.

The tree-type arbors of neurons and the availabil-

ity of the inventory of digitally-traced 3D reconstructed

neurons, Neuromorpho [2], provided significant momen-
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Fig. 2 (a) A retinal ganglion cell from the inner plexiform layer of a 9 month-old adult mouse. The 3D reconstructed cell has
3938 3D locations, 50 bifurcations, 106 branches, 56 rooted paths, 255.52µm height, 4499.5µm diameter, 9061.14µm3 volume,
18, 213.9µm2 surface area. (b) A 3D reconstructed (traced by Neuromantic [28]) pyramidal cell of an adult mouse having 24, 868
3D locations, 95 bifurcations, 200 branches, 106 tips, 814.05µm height, 16341.8µm diameter, 12569µm3 volume, 24, 825.9µm2

surface area. (c) A hippocampal granule cell (in the dentate gyrus) of a 9 month-old mouse is traced using Neurolucida.
The 3D reconstructed neuron contains 414 3D locations with 7 bifurcations, 15 branches, 14 rooted paths, 98.33µm height,
443.18µm diameter, 3107.27µm3 volume, and 3255.33µm2 surface area. (d) A Purkinje cell in cerebellar cortex of a 28 day-old
mouse. The reconstruction is performed by Neurolucida, containing 3187 3D locations. The neuron has 391 bifurcations, 783
branches, 393 tips, 184.35µm height, 4366.24µm diameter, 12, 794.7µm3 volume, and 31, 574.8µm2 surface area. (e) A motor
cell in the spinal cord of a 10 day-old mouse, which is reconstructed with 5868 locations using Neurolucida tracer. The 3D
traced neuron has 47 bifurcations, 103 branches, 58 tips, 415.6µm height, 784.158µm diameter, 4006.15µm3 volume, and
11, 931.8µm2 surface area. (f) A long-axon projection neuron from the thalamus of a 6 months old mouse - it is traced by
Large Volume Viewer(LVV) [27] with 2818 3D locations. The traced neuron has 169 bifurcations, 265 branches, 2731.69µm
height, 55, 742.44µm3 volume and 189979µm2 surface area. The color code is the following: yellow=apical dendrites, green =
basal dendrites, magenta = axons, red = cell body/soma/root. The quantified statistics on the number of bifurcations and
tips or rooted paths that are mentioned above are extracted from dendritic arbors of each cell-type.

tum in the last decade for the quantitative and qualita-

tive assessment of neuroanatomy via graph-based mor-

phometrics. In Neuromorpho, the sequentially-aligned

slices of microscopic images are registered and traced

using software [23], such as Neurolucida [16] and Neu-

romantic [28], and the reconstructed images can then be

processed through software, such as L-measure [34] to

extract an extensive list of morphological metrics. On

one hand, there are several research works dedicated

to analyze the neuromorphology of specific cell types,

such as basal dendrites of cortical pyramidal cells [7,

22], GABAergic interneuron cells [1] and others. These

works account for region-specific variations in the phys-

iology and anatomy of a neuron cell to establish the ef-

fect of certain functions on the structure. On the other

hand, research efforts, such as blastneuron [39], neu-

rosol [4],and TMD [19], attempt to extract model based

features, which are catered to the need for automated

classification of different neuronal cells. The motivation

behind this avenue of research is that it is impossible

to identify and categorize one trillion neuronal cells by

adopting manual or even semi-automatic methods.

State-of-the-art methods [6,39] for the classification

of neurons can be broadly divided in two categories.

Research in the first category, which is supervised in

nature, employs different feature extraction algorithms

followed by suitable classifiers to obtain classification

accuracy in percentage. The validation of the methods

are performed by adopting a series of statistical tests.

However, the significant variation in the neuron skele-

tons precludes the selection of the optimal set of mor-

phometrics as features. Adoption of feature transfor-

mations, such as principal component analysis (PCA)

or kernel transformations, may improve the classifica-

tion accuracy. Nevertheless, these transformations ob-

scures the identity of discriminating features as the

transformed space is formed by linear or nonlinear com-

position of extracted features. In addition, the classifi-

cation accuracy of categorization does not quite explain
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the physiological and structural differences between two

neurons.

The second category follows mostly unsupervised

approaches and attempts to compute pairwise distances

between neurons. Authors in [33] used Fourier based

shape descriptors to encode the global shape of a neu-

ron, which however ignored the local features of the

neuron arbor. Gillette [14, 15] performed a sequence

alignment based algorithm for categorization by decom-

posing a neuron into a sequence of branches. The ap-

proach failed to consider geometric features. Blastneu-

ron [39] adopted a mixed strategy. Using a supervised

approach, the method first extracted 21 global mor-

phological features and 13 moment invariant features

to retrieve a set of targets that closely matches to each

test neuron in terms of the anatomical structures. Each

target is then RANSAC sampled [11] and aligned op-

timally to the test neuron, which outputs a distance

value. This unsupervised routine decides the output

category of the test neuron based on the minimum dis-

tance criteria. The method involved initial pruning of

branches and resampling of each neuron, which collec-

tively alters the morphology statistics. Moreover, the

retrieval accuracy of 233 projected neurons (PN) of

Drosophila drops significantly to 39% as the number of

potential candidates that are to be compared with the

target increases. NeuroSoL [4] offered a graph-theoretic

method which is free from registration and resampling.

In spite of its appeal of using graph theory, the ma-

trix alignment routine is NP-hard in nature, thereby

producing suboptimal results. The problem of compar-

ing a pair of neuron topologies can also be regarded as

a graph kernel based similarity measure problem [38].

However, the rationale behind conventional graph ker-

nels, such as the random walk kernel may be inconsis-

tent with the morphological understanding of a neuron.

Instead of modeling a neuron as a generic graph,

the neuron can be modeled as a specialized graph that

contains a collection of rooted paths, where each path

starts from the soma, called the root node, and ends

up in a dendritic terminal. It is important to note that

each path acts like an atomic neuron, as it contains the

soma and a dendritic end to complete a circuit. Most of

the synapses along a path will be nearer the soma than

at the end of the path. It is convenient to think prob-

lems, such as synaptic plasticity as the evolution of a set

of synapses over time along all the paths. During this

evolution, there are birth, death and rearrangement of

paths. Following the same logic, quantifying the prob-

lem of distinguishing two neurons can be equivalently

mapped as finding the cost of evolving a set of circuits

optimally from one neuron to the other.

Another relevant fact is that path based models [3,

5, 19] integrate both global (overall shape based ap-

proach) and local (vertex or sampled location based ap-

proach) features of neuron topology. Topological mor-

phology descriptor (TMD) [19] aimed at solving the

categorization problem, encoded the birth and death of

path segments over time in a persistence diagram used

as a barcode. The authors showed that TMD exhibits

robustness to erroneous 3D sampling and ambiguous

branching when the neuron is reconstructed using two

different tracing tools. However, the conversion of a dis-

crete 3D reconstructed neuron to the persistence image

space is irreversible and many-to-one. Based on the dis-

tance used to mark and quantify the birth and death

of a branch or component of the neuronal tree, a single

persistence image may correspond to multiple neurons.

In addition, an appropriate distance measure between

persistence diagrams is still unavailable. The work in

Path2Path [3] shows potential to address the neuron

cell categorization problem and can be extended to sev-

eral other related problems, such as synaptogenesis, de-

generation of neurons due to neurological diseases, and

synaptic plasticity which can be studied by inspecting

the path statistics. The work described in this article is

motivated by the framework of Path2Path.

1.1 What is Path2Path and its variants?

The principle of Path2Path is based on finding the opti-

mal correspondence between the paths of one neuron to

that of the other using a proposed metric. It is an intu-

itive circuit-based approach that appeals to its electri-

cal engineering inventors. In Path2Path, each sampled
location on a path is endowed with 3D coordinate val-

ues and two features, concurrence and hierarchy. The

concurrence value at each location denotes the num-

ber of paths from the soma to dendritic ends that visit

that node. The hierarchy value at a location indicates

the depth of the location from the soma in terms of the

number of bifurcations between the point and the soma.

The hierarchy value of a location counts the number

of bifurcations one has to cross while traversing from

the soma to that location. Using the 3D coordinates,

concurrence, and hierarchy values of each location on a

path, authors in Path2Path proposed an empirical met-

ric that outputs a distance value between two paths. A

path from a neuron corresponds to a path from another

neuron if the distance between the paths is minimum

over all the paths of the latter neuron.

This approach has several drawbacks. The Path2Path

algorithm is dependent on the number of sampled lo-

cations of each path and the registration. The selec-

tion of the metric is arbitrary in a sense that the met-
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Fig. 3 The figure shows a set of morphometrics that are used in our work. The metrics are numerically computed from a
neocortical pyramidal cell with its relevant anatomical information provided at the bottom of the figure. A rooted path of the
neuron (at the center) is shown (pink) with the 3D locations and bifurcation points, and the corresponding concurrence and
hierarchy values are noted on the left hand side of the figure. 18 paths are originated from the soma, indicating 18 synaptic
terminals. The immediate bifurcation point has a concurrence value of 6, because, including the current path, there are a total
of 6 paths that end up in 6 different terminals. Concurrence values of the rest of the 3D locations are computed accordingly. It
can be observed that there are four concurrence values that are marked on the chosen path, {1, 2, 6, 18}. The hierarchy values
are obtained by sorting the indices of these four values in reverse order, which in turn describe the depths of locations with
respect to the root. On the right hand side, three morphometrics on the selected paths are demonstrated, which are tortuosity,
divergence, and bifurcation angle. Quantification of the wrinkle or tangle of a segment (tortuosity) existing between either
two consecutive bifurcation points, or a bifurcation point and a following terminal is performed by measuring the curve length
s, and the Euclidean distance between the start and end locations, d. Neocortical pyramidal cells show pronounced wrinkles
in their branches. Divergence of a location entails competitive behavior. With a distance scale fixed beforehand, the number
of branch segments that are in the immediate neighborhood of a location defines its divergence. Bifurcation angle is another
important morphometric, which we measure by using the inner product between two vectors emanating from the bifurcation
point. Wide bifurcation angles connote greater exploration of extracellular environment. More branches and smaller bifurcation
angles, in general, lead to higher divergence. Neurons with higher divergence tend to have longer path lengths.

ric is null when two paths have the same set of con-

currence values but different locations and hierarchy

values. Therefore, it does not qualify the axioms of

a metric. In addition, the proposed distance measure

uses the Euclidean distance between two paths as a

part of the distance computation routine, which favors

the pair if they are aligned in proximity after regis-

tration. The algorithm of finding the correspondence

is not one-to-one and it often leads to the degener-

ate case where all paths from one neuron are matched

to only one path in the second neuron. The problem

exacerbates when the number of samples in the two

paths are unequal. One potential solution is to resam-

ple each path using a constant step [39], but may, un-

fortunately, eliminate the importance of the locations,

such as curvature of a rooted path prior to resampling.

ElasticPath2Path [5] attempted to address the previ-

ously mentioned problems. It introduced a mid-point

based resampling routine as opposed to constant-length

resampling. To ensure one-to-one correspondence be-

tween a pair of paths from two different neurons, the

Munkres algorithm [26] is employed. Most importantly,

elasticPath2Path envisaged the problem of distinguish-

ing two neurons as a continuous deformation between

the corresponding paths of the neurons. Such home-

omorphism is computed by applying the square root

velocity function (SRVF) [36] to the Euclidean coordi-

nates of each sample on a path. The visual deformation

of the corresponding paths has an enormous impact in

the validation of the path based on customized features

and the proposed distance measure. On the flip side,

elasticPath2Path failed to address the problem where

there is a significant difference in the number of paths

between two neurons. As the correspondence is one-

to-one, it asserts that elasticPath2Path performs sub-

graph matching. Both Path2Path and elasticPath2Path

did not consider important anatomical morphometrics,

such as bifurcation angles and partition asymmetry.

1.2 Key aspects of NeuroPath2Path

1) The inception of NeuroPath2Path comes from the

realization of neuromorphogenesis and the self-similar
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Fig. 4 The figure presents a schematic representation of our proposed method and work flow. [Top Left]: An SWC [37] file
encoding the 3D reconstruction of a neuron is read, and later the neuron is decomposed into an assembly of rooted paths.
Each rooted path, spanning from the soma to a synaptic terminal, contains the 3D coordinates of each location traced on the
path. [Top Right]: Each rooted path is subjected to feature extraction from each location on the path. The exhaustive list
of the features that are used in our approach is given in the bottom left (blue box). We extract 7 features, implying that the
path descriptor is a matrix of dimension (number-of-samples× 7).

phenotype of neuronal arbor. Since its birth from the

soma, a path of a neuron has an exploratory attribute to

collect external resources by the minimal-length-maximal-

routing [35] strategy. Due to the parsimonious exploita-

tion of intrinsic resources (ion density, ATP and other

electrophysiological items), the path, which fails to pro-
cure external resources, retracts. The exploratory at-

tribute of a path can be expressed by the concurrence

values at each sample point of a path. More paths imply

more exploration. As the path matures, it has a com-

petitive attribute [13, 22, 25] with respect to the other

paths in its neighborhood in order to form a synapse.

To account for competition, we count the number of

paths in the proximity of each sampled location on a

path and assign the count to that location.

2) The fractal dimension [8, 30] of a neuronal ar-

bor is considered one of the key morphometrics because

the fan-out branches of a neuron bear self-similarity. In

Path2Path and elasticPath2Path, the notion of match-

ing the paths ignores this important feature. We extend

the use of Munkres algorithm to perform one-to-one

matching in a sequential fashion, which replicates the

self-similar behavior.

3) As path features, we consider the bifurcation an-

gle, partition asymmetry, and fragmentation score to

each 3D location on a path. It is shown that the dis-

tribution of bifurcation angles in the basal dendrites of

cortical pyramidal cells follows a Von Mises distribu-

tion [7]. An experimentally observed fact is that the

mean bifurcation angle of branches ordered in a re-

versed fashion is discriminative for pyramidal cells in

different cortical regions. However, the mean bifurca-

tion angle of branches in standard order remains similar

for the pyramidal cells. We take the standard ordering

of branches, instead of the reverse order, to discrim-

inate different neuronal cell types. Partition asymme-

try [8, 29,32] is another visually-significant morphome-

tric. We use the caulescence measure as defined in [8]

to account for the tree asymmetry.

4) We provide visualization of the continuous de-

formation between a pair of neurons and enumerate

path similarity statistics to justify the correspondences

between the paths. In contrast, conventional methods

perform feature customization and extraction, and the

classification, in supervised or unsupervised settings,

depends on the abstract feature space and the strength

of the classifier. In those methods, the mapping between

the space of 3D reconstructed neurons and the feature

space is irreversible and abstract. Therefore, apart from

the statistical quantification and analysis, it is ambigu-

ous whether improved accuracy of the categorization

stems from the trained classifier or the discriminat-
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Fig. 5 A schematic representation of the square root velocity
function (q), which is computed at locations on an open curve.
This function endows the curve with elasticity so that it can
continuously deform (bend, stretch, shrink) to another curve.
In a neuron, each rooted path can be modeled as an elastic
open curve.

ing strength of the extracted features or both. In Neu-

roPath2Path, the classification problem is modeled as a

variant of the transport problem. First, the correspon-

dence of paths between a pair of neurons are decided in

the feature space. Next, the correspondence is utilized

to deform one neuron to the other. The distances com-

puted between the paths and the deformation together

justify the validity of the correspondence.

5) With suitable feature selection, NeuroP2P frame-

work can be applied to perform morphological analysis

of any cell type with ramified branching arbors, such as

microglia and astrocytes. The continuum that is present

in the evolution from one cell type to the other can be

utilized in the analysis of cell differentiation. As an ex-

ample, under certain constraints, the strategy of contin-

uous morphing with branch splitting (explained later)

can retrieve the intermediate states of a neuron cell

while it evolves from a neural progenitor cell to its fully

developed state. In short, NeuroP2P can serve as an

effective tool for cell-specific informatics, which is not

restricted to classification only.

2 Path modeling of a neuron

As mentioned in the introduction, a digitally-traced 3D

sampled neuron can be modeled as a graph. Let the

graph be represented by G =
(
V, E ,W

)
, where V is

the number of 3D locations as vertices and E is the set

of edges connecting the vertices with the corresponding

weightsW [17]. G is said to be simple if it does not con-

tain multiple edges between any two vertices. A graph

is called undirected if there is no preferred direction as-

sociated to an edge. A sequence of contiguous edges is

called a path if no vertex and edge are repeated in that

sequence. A path of length k has k number of edges or

equivalently (k + 1) vertices. A sequence of contiguous

edges is called a trail if no edge is repeated. If all the

vertices except the start and the end of a trail are dis-

tinct, it is called a loop. A simple graph without a loop

is termed as a tree. If the degree of each vertex is fixed,

tree has the fastest growth by volume, hence smallest

curvature [20]. A graph is said to be single-connected if

there exists at least one path between a pair of vertices.

In case of a neuron, G is a simple, undirected, weighted,

and single-connected tree.

A path can be considered as an open curve, fi(t), t ∈
[0, 1], as defined in differential geometry. The cardinal-

ity of the set of vertices, or ,equivalently, the total num-

ber of 3D locations, is given by |V| = N . Here, there

are n dendritic terminals, which implies that the total

number of paths rooted at the soma is n. Let Γ be the

set containing all the paths fi, i ∈ {1, 2, .., n}, which

is a linear subspace of the classical Wiener space. Each

path is sampled with the number of samples as φ with

the sampled path denoted by f̃i. We extract K features

for each sample on f̃i, which can be compactly given

by the feature matrix for fi as Θi ∈ Rφ×K . Let Θ be

the ordered set containing the feature matrix for all the

paths, Θ = {Θ1, Θ2, ..., Θn}, where Θi corresponds to

the ith path f̃i. The path model of a neuron G can be

mathematically represented as H = {Γ,Θ, µ}, where µ

is a measure that we define in the next section. Note

that we use the set of paths, Γ , as an ordered set which

has a one-to-one correspondence with the elements in

Θ. The standard branch order of a path, fi, is defined

as the order in which the locations of bifurcation on a

path are visited from the root to the end of the path.

Similarly, the reverse branch order is defined when the

direction of traversal is reversed. For interclass compar-

ison of neurons, we use the standard order. Whereas,

for intraclass comparison, we follow the reverse order.

3 Proposed methodology

Our proposed method, which is sequential, scalable and

modular, consists of four key stages as depicted in Fig. 4.

In the first stage, centrally curated files of 3D-traced

neurons in SWC format (or equivalent formats) are read

and then preprocessed to extract only the dendritic ar-

bors, including the soma. Several preprocessing mod-

ules, such as range-wise calibration, bifurcation location

determination, and synaptic tip identification are em-

ployed to aid in preparing an assembly of rooted (soma)

paths.

In the second stage, a set of features are extracted

from each path, forming a feature descriptor of the

path, Θi∀i. An exhaustive list of the features that are

used in our method is provided in Section 3.1, and the

systematic quantification of the features is provided in

the Appendix. Notice that each path descriptor can be
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populated with additional structural and geometric fea-

tures in order to perform fine-grained analysis.

The central aspect of the third stage is finding an

appropriate cost function, as illustrated in Section 3.2.

The cost function assimilates several anatomical fea-

tures (such as segment length and bifurcation angle)

and physiologically relevant factors (such as the com-

petitive behavior, decaying anatomical importance of a

path from the soma to synapse). A rigorous optimiza-

tion framework is also formulated to find the relative

contributions of such factors. In short, this stage deliv-

ers a distance measure between a pair of paths to the

last stage.

With a distance measure between neuron paths in

hand, this measure is augmented in the final stage as

elucidated in section 3.3. We theoretically establish the

correspondence of paths of a pair of neurons by repeat-

edly applying the Munkres algorithm. In contrast to the

conventional approaches where the distance between

neurons inherently accounts for sub-graph matching, we

propose a full-tree matching algorithm. The repeated

application of the Munkres algorithm reveals the frac-

tal or self-similar nature of a pair of neurons. Equiva-

lently, the following question may be posed: how many

identical copies, taken together, of the first neuron can

match with the second neuron, assuming the second

neuron is much larger than the first one? Once the

correspondence is found, neurons are diffeomorphically

transformed to each other by morphing corresponding

paths. This visual representation aids in justifying the

correspondence of paths.

3.1 Feature extraction on a path

We extract a set of discriminating features from each

path fi ∈ Γ of H, which are bifurcation angle (bi),

concurrence (Ci), hierarchy (ξi), divergence (λi), seg-

ment length (βi), tortuosity (κi), and partition asym-

metry (αi). Therefore, Θi = [bi, Ci, ξi, λi, βi, κi, αi] ∈
Rφ×7. Each feature encodes a specific structural prop-

erty of a neuronal arbor, as described in the Appendix.

A schematic of different features along with the system-

atic quantification is shown in Fig.3.

3.2 Path alignment and path distance measure, µ

Given an unequal number of samples in a pair of paths,

finding the appropriate distance between two paths or

open curves is challenging. Due to the resampling bias

imposed by a given tracer, in general, a path contains

erroneous sampled locations which could alter the path

statistics. For example, adding an extra leaf vertex changes

the concurrence values of all the locations on a path.

Unlike conventional approaches that used different re-

sampling procedures, such as mid-point based resam-

pling, RANSAC sampling, and spectral sampling, we

use the help of the branch order as mentioned in sec-

tion 2 for suboptimal alignment.

Consider two neurons, G1 and G2, with the cor-

responding path models given as H1 and H2, respec-

tively. Let f and g be the two paths that are arbitrar-

ily selected from Γ1 and Γ2, respectively. Without loss

of generality, let us assume that f and g contain φb1
and φb2, the number of locations from which the current

paths bifurcate. In the case, where φb1 < φb2, we append

(φb2 − φb1) zeros at the end (standard branch order) or

at the front (reverse branch order) of a feature vector

on f .

Experimental evidence [7] suggests that the impor-

tance of a bifurcation location on a path decays as one

travels the path from the soma to the synaptic end.

We utilize this relative importance by way of hierarchy

values of the bifurcation locations on a path. Let the se-

quential order of hierarchy values from the root to the

terminal on f be ξf = [ξ1, ξ2, ..., ξφb
1
]. Using ξf , the kth

importance weight is given by wk = 1
ξk+ε

/
∑φb

1
j=1

1
ξj+ε

. ε

is introduced to avoid the indeterminate case. Accord-

ing to the hierarchy, it is obvious that ξ1 < ξ2 < ... <

ξφb
1
. Thus, w1 > w2 > ... > wφb

1
.

Let us consider a feature υ ∈ {b, C, λ, κ, β, α}. The

values of the feature on the paths, f and g, are defined

by

υf = [υf1 , υ
f
2 , ..., υ

f

φb
1
, 0, .., 0︸ ︷︷ ︸
φb
2−φb

1

] (1)

υg = [υg1 , υ
g
2 , ..., υ

g

φb
1
]

The distance between υf and υg, weighted by the im-

portance factor, is given by

d(υfg) =

√√√√ 1

φb2

φb
2∑

k=1

wk(υfk − υ
g
k)2 (2)

This distance is computed for each υ ∈ {b, C, λ, β, κ, α}.
The overall distance between the paths f and g can be

expressed as a weighted average of individual distances.

µfg = δ1d(bfg) + δ2d(Cfg) + δ3d(λfg)

+δ4d(κfg) + δ5d(βfg) + δ6d(αfg). (3)

For simplicity, we take δi = 1
6∀i and consider the final

distance as the intrinsic distance between the neurons.

For classification, we determine δ through optimiza-

tion using maximizing − interclass − minimizing −
intraclass distance strategy (See algorithm 2 in the

Appendix). We term δ as the relative importance of

features.
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Fig. 6 The figure depicts the evolution of 15 paths of one pyramidal neuron to 11 paths of another pyramidal neuron. Both
the neurons are procured and curated from the neocortex (occipital, secondary visual and lateral visual) brain regions of 2
month-old mice. On the leftmost column, the top figure corresponds to the candidate neuron 1; the bottom figure is the target
neuron 2. The evolution is represented in multiple arrays such that the ODD rows are read left-to-right and the EVEN rows
are read right-to-left. The color associated with each path acts as a marker for the correspondence. At each intermediate step,
the morphing of each path is calculated in the SRVF space [36] and then the path is projected back in the real 3D domain.
In accordance with known properties of the SRVF, the SRVF takes care of the translation between paths. However for visual
clarity, we intentionally allow the rotation of each path with respect to the root (soma) while the path advances towards
merging with the target path. Prior to applying the SRVF, we reorganize the coordinates of each neuron in decreasing order
of the ranges along the X, Y , and Z axes, implementing an in-place rotation of each neuron.

3.3 Path assignment and self-similarity

Let the number of paths in H1 be |Γ1| = n1. Simi-

larly, for H2, this value is |Γ2| = n2. Without loss of

generality, let us assume n1 ≤ n2. Using eq. 3, the

cost matrix of paths between G1 and G2 becomes D
(Dij = µij , i ∈ Γ1, j ∈ Γ2). By applying an analogy

for the path assignment as a job assignment problem

with n1 workers and n2 jobs, we adopt the Munkres

algorithm to find the optimal assignment of jobs to

the workers from D. In most cases, including inter-

and intra-cellular neurons, the job assignment prob-

lem is an unbalanced n1 < n2. We append (n2 − n1)

zero rows to D to serve as dummy workers. Elastic-

Path2Path [5] employed this technique and resulted in

an output of n1 optimally matched paths between G1

and G2. However, this is essentially subgraph match-

ing, which may lead to misclassification while dealing

with two structurally similar, but different, cell types.

For example, hippocampal CA3 pyramidal and cere-

bellar Purkinje cells have similar dendritic branch pat-

terns, but significantly different number of paths. To

resolve this problem we devise an algorithm, given in

the Appendix, by applying Munkres algorithm repeat-

edly to obtain a full-tree matching. To meet such cri-

terion, the algorithm gives n2 pair of paths. Let the

pair be (γ11, γ21), ..., (γ1n2
, γ2n2

), where γ1i ∈ Γ1 and

γ2j ∈ Γ2. Recall that n1 < n2, which implies that some

of the γ1i are repeated while forming the pair. Finally,

the distance between G1 an G2 is given by

χG1G2
=

n2∑
k=1

µγ1kγ2k (4)

Let bn2n1c = T . Then, this procedure to find the cor-

respondence is termed as T−regular matching, which in

turn can be thought of T nearly self-similar structures

akin to a fractal system. The detailed algorithm is pro-

vided in the Appendix. There are four modules that are

sequentially executed in the algorithm. The first mod-

ule mathematically deciphers the relatively self-similar

anatomy of a larger neuron compared to a smaller one,

yielding the number of copies of the smaller one needed

to stitch together to approximately obtain the larger

one. The routine runs for bn2

n1
c times, which indicates

that each path in neuron 1 (containing n1 paths), is

matched with bn2

n1
c paths of neuron 2 (containing n2

paths). Here n2 > n1.

The second module runs for the remaining unpaired

paths of neuron 2. The assigned correspondence is added

to the list of paired paths from the first module. How-

ever, not all the pairs are anatomically consistent. This

is dictated by an internal constraint of Munkres algo-

rithm, in which the assignment is carried out without

replacement. In the Munkres algorithm, if one ‘worker’(a

path from neuron 1) is assigned a ‘job’ (a path from neu-

ron 2), then the ’job’ is not available for further assign-

ment. Therefore, if the distance between two paths is

significantly large, it demands further inspection whether

the pair of paths is morphologically different to each

other or the algorithmic constraint induces the large

distance value. This motivates us to introduce the third

module.

In the third module, we inspect the pair of paths

having distances more than a threshold. The threshold

is selected based on the skewness, median and standard
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Fig. 7 The figure shows the distribution of paths in each
pyramidal cell category from Dataset 1. By glancing at the
distribution profiles, a set of inferences can be drawn. The
distribution of paths in primary motor is fairly uniform. For
neurons from the somatosensory cortex and primary visual
cortex, the histogram is right-skewed, indicating a major-
ity of neurons with the number of paths lying in the range
[10, 40]. The probability distribution of somatosensory pyra-
midal neurons resembles a right-skewed gamma distribution,
and that of primary visual neurons closely follows an expo-
nential distribution. The profiles of secondary visual and pre-
limbic neurons are poorly understood due to scarcity of sam-
ples. Most importantly, their distributions are entirely over-
lapped (within [10, 40]) in the region where the majority of
primary visual and somatosensory neurons can be sampled.
From the figure, it is evident that the number of paths alone
is not sufficiently discriminatory.

deviation of the distance values. As mentioned earlier,

in order to find the distance of a feature on two paths

(eq. 2), we append zeros to the path having relatively

fewer number of locations than the other. The choice of

traversal order dictates to which side the zeros are ap-

pended. Notice that more zeros lead to higher distance

value between paths, and this happens only when there

is significant mismatch in the highest level of hierar-

chy. This fact can be interpreted from the morpholog-

ical viewpoint. A path with a large number of bifur-

cation locations (so, large maximum hierarchy value),

called a central path of a neuron, exploits the environ-

ment of the neuron extensively when compared to path

with fewer number of bifurcations. Unless otherwise re-

quired, a path with large hierarchy values should not

be compared with a path with much smaller maximum

hierarchy value. The highest level of hierarchy values of

two paths are given by h1 and h2 with h1 < h2. We

set a criteria that if |h1 − h2| > max[h1,h2]
2 , we do not

consider the distance between the pair, and opt for the

best match in terms of minimum distance for each path

of the pair separately. This is outlined in the reassign-

ment module. The reassigned pairs are added to the list

of paired paths serving as the list of correspondence.

3.4 Path morphing

Once the correspondence of paths between neurons is

established, it is imperative to know the structural sim-

ilarity between the paths - whether a pair of paths are

structurally similar to each other, or the pair is struc-

turally incoherent but the algorithm outputs such a pair

due to its internal constraints. This is achieved in two

ways: with a visual representation by morphing the
paths of one neuron to that of the other using an elastic

framework, and by extracting path statistics. A rooted

path of a neuron can be considered as an open curve as

shown in Fig. 5 [5, 36]. Each location on the path can

be considered as a function of a parameter,t ∈ [0, 1].

The square root velocity function (SRVF) that is ap-

plied on a location f(t) is defined as q(t) = ḟ(t)√
||ḟ(t)||

.

For a pair of paths i and j, we obtain qi and qj , which

assists in retrieving the intermediate deformations as

linear combinations of qi and qj given by qnij = qi(1 −
n) + nqj ; n ∈ [0, 1]. n denotes the intermediate algo-

rithmic time steps. Although the deformations are ex-

hibited using the 3D coordinates of the locations of a

path, the deformations can also be computed in the fea-

ture domain. An example of the continuous morphing

process between two pyramidal neurons from the sec-

ondary visual cortex of the mouse is shown in Fig. 6.

The 15 paths of the former neuron merge with 11 paths

of the latter upon termination of the morphing pro-

cess. This implies that more than one path of the first

neuron have the same final destination path of the sec-

ond neuron. It is noted that our algorithm does not

consider the costs that are incurred by the merging or

splitting of paths during progression. The assessment

of such costs requires biophysical measurements of neu-

rons, such as metabolic cost of merging or splitting of

branches. Therefore, the cost between paths in eq. 3 is

proportional to the cost of structural disparity instead

of biophysical costs.

The prime question is: why do we need to inspect in-

termediate deformations? Statistical assessment of anatom-

ical similarities between paths is sufficient to validate

the correspondence that is obtained from the Munkres

algorithm. However, to make the correspondence neces-
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Fig. 8 Relative importance δ for subsets of classes of Dataset 1. Each color corresponds to a specific feature and the area,
subtended by the color in a pie chart, indicates its relative importance. By property,

∑
δ = 1, which implies a probability

distribution. The color codes are as follows. green-divergence, orange-bifurcation angle, gray-partition asymmetry, yellow-
concurrence, deep blue-tortuosity, sky blue-segment length. The pie charts taken together asserts a set of inferences. (1)
The relative importance of features δ of all the classes (marked ‘overall’) somewhat follows a uniform distribution. (2) Segment
length and concurrence are two predominant features when the pyramidal neurons from primary motor cortex (motor-1) are
compared to the rest of the classes. (3) For the prelimbic class, divergence, tortuosity, and segment length appear to be
most important. (4) δ for the somatosensory class toggles between two distributions with comparatively smaller and larger
importance of concurrence.

sary, the intermediate deformations should comply with

key cell-type characteristics [36]. So we use the SRVF

framework to show the deformations so that any notice-

able incoherence can be attributed to the feature selec-

tion, distance measurement, or both algorithms even

though we might obtain improved classification accu-

racy in the end.

4 Datasets and results

We validate the approach on two datasets that are col-

lected from a centrally curated on-line repository of 3D

reconstructed neurons, Neuromorpho.org [2]. To demon-

strate the strength of our approach, one dataset is com-

piled for intraclass and the other one for interclass anal-

ysis and comparison.

4.1 Dataset-1 (Intraclass)

This dataset contains 3D-traced neurons from 6 distinct

regions of the mouse neocortex. The regions with their

cortical locations are visual-1 or primary visual (occip-

ital), visual-2 or secondary visual (occipital), prelimbic

(prefrontal), somato-1 or primary somatosensory (so-

matosensory), motor-1 or primary motor (frontal), and

motor-2 or secondary motor (frontal).

We experiment with 62 neurons of motor-1, 68 neu-

rons of motor-2, 24 neurons of prelimbic, 204 neurons

of somato-1, 237 neurons of visual-1, and 30 visual-2

neurons with 625 neurons in total. The neurons vary

widely in their morphological characteristics, such as

the number of paths in each neuron. The histogram of

paths corresponding to each category is shown in Fig. 7.

Next, we investigate the relative importance of each

feature (mentioned in section 3.1) in terms of δ when

comparing a set of classes. For space constraint, we pro-

vide δ values separately for each pair of classes and

all the classes taken together. The relative importance

is listed in Fig. 8 by a pool of pie charts. A set of
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Fig. 9 This gallery of images captures the progressive evolution of paths from a granule neuron to a pyramidal one. The
granule neuron is procured from the hippocampus (dentate gyrus) of a 5 month-old mouse, containing 6 rooted paths. The
pyramidal neuron is sampled from the neocortex (occipital lobe, secondary visual, lateral visual) of a 2 months old mouse,
containing 22 paths. The evolution is represented in multiple arrays such that the ODD rows are read left-to-right and the
EVEN rows are read right-to-left. In the first column, the top image is the granule cell and at the bottom is the pyramidal one.
Structurally, the pyramidal neuron is larger than the granule one. However, they are properly scaled to fit for visualization.

class-specific inferences regarding the relative impor-

tance is enlisted in the figure description. Whereas the

pie charts present a comprehensive view of feature strength.

In practice, however, the values are required to report

the distance between a pair of neurons. The values are

reported in Table 1.

It is worthwhile to note that although there is signif-

icant variance in feature strength when all pairs are con-

sidered, the distribution approximates a uniform distri-

bution when all classes are taken. This result endorses

the selection of our features for all-class classification

tasks. It is also important to mention that this frame-

work can incorporate any set of path-specific features,

not restricted to our selected features only.

In order to verify the consistency of the path corre-

spondence obtained from Munkres algorithm (provided

in section 3.3), we statistically evaluate each pair of

paths in the correspondence list using pyramidal neu-

rons from two different regions (the somatosensory cor-

tex and secondary visual cortex.) The neuron from the

somatosensory cortex (neuron-2) contains 28 rooted paths,

while the other (neuron-1) has 11 rooted paths. Ta-

ble 2 provides the exhaustive list of path correspon-

dences, distances between corresponding paths, corre-

spondences obtained by a competitive approach named

ElasticPath2Path [5], and the best correspondences of

the paths of neuron-2 with that of neuron-1. Notice

that the best correspondence of a path f of neuron-2 is

the path g of neuron-1, which yields minimum distance

with f . Whereas, the Munkres algorithm works on the

criteria where the sum of path distances (in our case 11

paths at a time) is minimized.

In Table 2, the two columns on the left enumerate

the pair that consists of the path number of neuron-1

and that of neuron-2. A subset of paths of neuron-1 is

repeated because neuron-2 (with 28) has more paths

than neuron-1 (with 11). So from neuron-1 to neuron-

2, the correspondence is a surjective mapping. This is

in contrast with ElasticPath2Path, where the mapping

is bijective and, as result of that, the algorithm out-

puts only 11 pairs in the correspondence list. The rest

of the 28 − 11 = 17 paths are left unmatched, yield-

ing a solution of the subgraph matching problem. The

unmatched paths are marked with ‘NA’ in the fourth

column.
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Table 1 Importance weight δ values for dataset-1. For space constraint, we provide feature-specific importance weight for
classification in case of pairwise classes and all classes separately.

Tortuo(κ) Bifur-angle(b) Part-aym(α) Concur(C) Seg-len(β) Diverg(λ)

Motor1-Motor2 0.0729 0.1072 0.0876 0.2644 0.3794 0.0955

Motor1-Prelimbic 0.0820 0.0737 0.0631 0.2262 0.4483 0.1067

Motor1-Somato 0.0706 0.0929 0.0646 0.2328 0.4175 0.1218

Motor1-Visual1 0.0689 0.1230 0.0659 0.3317 0.2878 0.1227

Motor1-Visual2 0.0499 0.1212 0.0812 0.2612 0.3952 0.0912

Motor2-Prelimbic 0.2719 0.0737 0.0703 0.0899 0.5367 0.0484

Motor2-Somato 0.0452 0.0256 0.0328 0.4008 0.3730 0.1266

Motor2-Visual1 0.0167 0.0773 0.1041 0.2996 0.2969 0.2055

Motor2-Visual2 0.0545 0.0411 0.0564 0.2235 0.5489 0.0756

Prelimbic-Somato 0.1314 0.1168 0.1121 0.0568 0.4621 0.1187

Prelimbic-Visual1 0.2091 0.0821 0.0617 0.1012 0.4615 0.0795

Prelimbic-Visual2 0.2311 0.0551 0.0453 0.0790 0.3556 0.2339

Somato-Visual1 0.0693 0.0598 0.0584 0.1319 0.5816 0.0941

Somato-Visual2 0.0144 0.0310 0.2043 0.6963 0.0159 0.0382

Visual1-Visual2 0.0075 0.0880 0.1482 0.3551 0.3558 0.0473

Overall 0.0785 0.0807 0.1736 0.1956 0.2600 0.2076

The last column, tagged as the best match, identifies

only {4, 5, 8, 9} path indices out of 11 paths of neuron-1.

Nevertheless, this best matching algorithm also elicits

a potential solution for subgraph matching. There are

certain extreme cases where all paths of one neuron are

matched with only one path of the other neuron, posing

degenerate solutions of the neuron matching problem.

We mark the correspondences in yellow, where the re-

sults of our algorithm and best match coincide.

Recall that neuron-1 has 11 paths and neuron-2 con-

tains 28 paths. Careful observation of the first column of

the table suggests that the set of numbers {1, 2, ..., 11}
is repeated twice in the serial order followed by 6 path

indices which are {9, 4, 10, 8, 2, 5}. Here, Munkres algo-

rithm is applied thrice. Each time Munkres algorithm

outputs 11 pairs of paths for correspondence. Therefore,

the first two passes encompass 11 ∗ 2 = 22 pairs leav-

ing 28 − 22 = 6 paths of neuron-2 unassigned. Before

applying the third pass, the cost matrix D is cropped

with a dimension R11×6. The cropped cost matrix is

then transposed (R6×11), zero-appended (R11×11) and

subjected to Munkres. The above observation also indi-

cates that 2 self-similar copies of neuron-1 approximates

neuron-2 in the sense of minimum path to path dis-

tance. Therefore, the relative fractal index of neuron-2

with respect to neuron-1 is 2 6
11 or 2.545.

The question is: can the arithmetic average (which

is 0.92) of the ‘Distance’ column of Table 2 be regarded

as the final distance between the neuron-1 and neuron-

2? Unfortunately, it is not. The reason is explained in

section 3.3 and reiterated briefly in the following sen-

tences. After computing the correspondences (column-

1 and column-2), we identify the defective sets of pairs

for which there are significant differences in the hier-

archy levels. The larger the difference, the larger the

number of zeros that are appended to each feature on

the path, raising the chances of technical error in the

final distance value. In the table, the defective pairs

are emboldened with blue color. We delete these pairs

and replace the correspondences of path indices 18 and

9 (neuron-2) with their best matches from neuron-1.

Note that path indices 7 and 4 of neuron-1 have already

been matched with other paths of neuron-2, which are

7−−28, 4−−11, and 4−−12. Therefore, those paths are

not subjected to re-assignment. After inserting the best

matches for the path indices 18 and 9 (which are 9 and 5

from neuron-1 respectively), the corresponding distance

values are noted. This is described in the fourth routine,

‘Reassignment’ of algorithm 2. The final distance be-

tween the two neurons turns out as 0.90 (rounded off).

The competitive approach, ElasticP2P produces a dis-

tance value of 0.67, which implies that the two neurons

are more similar. This is discordant with the fact that

the two neurons are sampled from two different regions

and have two distinct arbor types. This disagreement

can be explained due to subgraph matching nature of

ElasticP2P. Neuron-1 with 11 paths is well-matched

with a part of neuron-2. However, the rest 17 paths of

neuron-2 are structurally dissimilar with neuron-1. In

this case, our method, NeuroPath2Path performs sig-

nificantly better in distinguishing two neurons in terms

of distance owing to its full-graph matching property.

For classification, we compute the importance val-

ues δ from (3) and show them in Table 1. The impor-
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Table 2 Distance and correspondence between paths. The correspondences between the paths of neuron-1 and neuron-2 are
enlisted in the first two columns. The numbers in yellow indicate that the correspondence obtained by NeuroP2P matches with
the candidates of best correspondence in the sense of minimum distance. The pairs in blue are subjected for further verification
because of large differences in the hierarchy values (Routine 4 in Algorithm 2).

Index (Neuron-1) Index (Neuron-2) Distance ElasticP2P [5] Best match

1 25 1.0595 1 9

2 2 0.8031 2 5

3 27 0.4530 3 5

4 12 0.7910 4 4

5 3 0.5571 5 5

6 26 0.6165 6 5

7 28 0.5690 7 5

8 5 0.5606 8 8

9 23 0.6271 9 9

10 13 0.7904 10 4

11 24 0.6096 11 5

1 7 1.4997 NA 8

2 1 0.9902 NA 9

3 15 1.1052 NA 5

4 11 0.9223 NA 9

5 6 0.5932 NA 5

6 17 1.7108 NA 9

7 18 1.2869 NA 9

8 20 0.8704 NA 9

9 4 0.7708 NA 5

10 14 0.9186 NA 5

11 10 1.1796 NA 9

9 8 0.8504 NA 5

4 9 1.2279 NA 5

10 16 1.1810 NA 5

8 19 1.1658 NA 9

2 21 1.1522 NA 5

5 22 0.8931 NA 5

tance values are applied to compute the distance be-

tween a pair of neurons. Using our distance function,

we resort to the K nearest neighborhood classifier. We

randomly partition the dataset into our training and

test set using a constant ratio and rerun the experi-

ment 5 times. The ratio that we maintain is 0.1 and

0.2 as train and test datasets. As the number of paths

that a neuron has is a distinguishable feature for certain

classes, we devise a strategy to test each neuron from

the testing dataset. For a neuron with number of paths

as nP , we seek candidate neurons from the training set

with the number of paths ranging in [nP − L, nP + L].

Overall, NeuroPath2Path contains two hyperparame-

ters, K (number of nearest neighbors) and L. THis step

is followed by the identical testing procedure while con-

sidering the interclass dataset. We fixed L = 50 for our

experiments. As noted before, we adopt the reverse and

standard branch orders for dataset-1 and dataset-2, re-

spectively.

With the ratio of train and test as 8 : 2, the confu-

sion matrix of NeuroPath2Path for an instance of ran-

dom partition of data is shown in Fig. 14. It can be

seen that, while NeuroPath2Path distinguishes Motor-

1, Visual-1, and Visual-2 quite well, the class of Somato-

1 is significantly misclassified with Motor-1, Motor-2,

and Visual-1, leading to a decline in the classification

score.

Next, in Fig. 11, we illustrate the comparative per-

formance of NeuroPath2Path against TMD and Neu-

roSoL. The train to test ratio is set at 8 : 2. NeuroSoL

shows an erratic behavior as K increases. TMD offers

a consistent margin of classification accuracy per K.

Here, at a given value of K, margin implies the dif-

ference between the maximum and minimum scores of

5 experiments which are independently instantiated by
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Fig. 10 Confusion matrix of an instance of classification
using dataset-1. The overall accuracy is 66%. Here, we set
L = 50 and K = 3.

randomly partitioning the dataset with 8 : 2 train:test

ratio. Fig. 11 suggests that NeuroPath2Path achieves

peak performance when K is set as 7, but with a no-

ticeable margin. To scrutinize the performance of TMD

Fig. 11 The figure shows comparative performance of Neu-
roPath2Path against TMD and NeuroSoL using different val-
ues of K in K-NN classifier. At each K, we perform 5 experi-
ments for each of these methods and the associated scores are
shown with the mean (colored square) and associated range
of values.

Fig. 12 This figure shows one typical instance of class-
wise retrieval accuracy of NeuroPath2Path and TMD. Neu-
roPath2Path maintains almost consistent classwise perfor-
mance.

and NeuroPath2Path, we routinely inspect the class-

wise retrieval accuracy, a crucial metric which is ob-

scured in Fig. 11 due to the averaging effect. The result

is shown in Fig. 12. In a majority of cases, despite com-

parable overall classification scores, TMD tends to be

affected by class imbalance, leading to significantly poor

accuracy for few classes.

4.2 Dataset-2 (Interclass)

The second dataset consists of 3D-reconstructed neu-

rons that are traced from five major cell types of the

mouse: ganglion, granule, motor, Purkinje, and pyrami-

dal. We experiment with an imbalanced pool of 500 gan-

glion cells, 490 granule cells, 95 motor cells, 208 purkinje

cells, and 499 pyramidal cells, where the corresponding

SWC files are obtained from the neuromorpho reposi-

tory. The cell-specific distribution of paths is shown in

Fig 13.

Fig. 13 The figure shows the cell-specific distribution of the
number of paths. It is observed that the distribution of paths
in the case of Purkinje cells is approximately uniform. The
remainder of the distributions are left-skewed.
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Fig. 14 Confusion matrix of an instance of classification us-
ing Dataset-2. The overall accuracy is 85.02%. Here, we set
L = 50 and K = 9. It can be seen from the matrix that one-
fifth of ganglion cells are misclassified as pyramidal, leading
to a decline in accuracy. However, granule cells are perfectly
classified.

For classification, we compute the important weights

δ of each features, and due to space constraints, the δ

values are enumerated in Table 3 for pairwise classes

and the case with all the classes taken together. The

importance-weighted distance value, µfg in (3) is used

to compute the distance of a pair of neurons. We em-

pirically find that the nonlinear transformation of µfg,

given by 1
1+exp(−µfg)

, yields an improved classification

performance.

With a train:test ratio as 8 : 2, one instance of the

confusion matrix, obtained by NeuroPath2Path is pro-

vided in Fig.14. We demonstrate the effectiveness of

NeuroPath2Path over two state-of-the-art approaches -

Topological Morphological Descriptor (TMD) [19] and

NeuroSoL [4]. For each value of K, we randomly par-

tition the dataset 5 times maintaining a constant 9 : 1

ratio between the train and test datasets. In short, for

every K, we obtain 5 accuracy scores, which are plotted

in Fig. 15.

TMD appears to be very consistent in accuracy and

range scores, achieving an accuracy of 85.02% when

K = 5. However, while computing the confusion ma-

trices of the classification scores obtained by TMD, we

notice that in the majority of instances, the correct

classification of motor cells is abnormally low and ap-

proaches 0% in some cases. It is important to notice

that Dataset-2 has an imbalance in terms of the num-

ber of examples in each cell category, with motor cells

containing the lowest (95) and ganglion cells contain-

ing the highest (500) number of examples. This fact is

unobserved in Fig. 15 due to the averaging effect. We

adopt the metric, class-wise accuracy of retrieval, and

present the results in Fig. 16. It is evident that Neu-

roPath2Path exhibits strong resilience against the class

imbalance problem.

Similar to the train and test ratio of Dataset-1, we

conduct experiments using the ratio of 0.1 and 0.2 sep-

arately. The classification scores are given in Fig. 17.

Fig. 15 The figure shows comparative performance of Neu-
roPath2Path against TMD and NeuroSoL using different val-
ues of K in K-NN classifier. At each K, we perform 5 exper-
iments for each of these methods and the associated scores
are shown with the mean (colored square) and the range val-
ues. The profiles of TMD and NeuroPath2Path surprisingly
appear to have opposite trends over K. NeuroPathPath hits
the top accuracy of 86.2% when K = 9.

Fig. 16 This figure shown the classwise retrieval accuracy of
different methods including NeuroPath2Path. It is observed
that by using TMD the retrieval accuracy of Motor cells
shows minimal improvement when SVM is used. The im-
balance in class adversely affects the classification accuracy.
NeuroPath2Path maintains consistent class performance.

Fig. 17 The performance of NeuroPath2Path on two differ-
ent partitions, which are 9 : 1 and 8 : 2, of Dataset-2 is shown.
K = 9 is found to be a suitable candidate of K-NN classifier.

5 Conclusion

NeuroPath2Path follows a graph-theoretic approach that

utilizes path-based modeling of neuron anatomy and

provides a visualization tool by way of a geometric

model that aids in performing continuous deformation

between two neurons. NeuroPath2Path offers several

advantages. The decomposition of a neuron into paths

can be viewed as an assembly of individual circuits from

the terminals to the soma, integrating semi-local fea-

tures that act as path descriptors. Next, instead of sub-
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Table 3 Importance weight δ values for dataset-2

Tortuo(κ) Bifur-angle(b) Part-aym(α) Concur(C) Seg-len(β) Diverg(λ)

Ganglion-Granule 0.0278 0.0138 0.0241 0.2102 0.6727 0.0533

Ganglion-Motor 0.0464 0.0797 0.0918 0.1865 0.4730 0.1226

Ganglion-Purkinje 0.27 0.032 0.1437 0.1905 0.2270 0.1368

Ganglion-Pyramidal 0.0433 0.0001 0.0553 0.5121 0.3156 0.0809

Granule-Motor 0.0356 0.0491 0.0372 0.1449 0.6697 0.0636

Granule-Purkinje 0.0147 0.1218 0.1875 0.1073 0.5285 0.0402

Granule-Pyramidal 0.0453 0.0305 0.0372 0.2231 0.5390 0.1248

Motor-Purkinje 0.0094 0.4046 0.0556 0.0007 0.5167 0.0130

Motor-Pyramidal 0.0223 0.0737 0.0465 0.1275 0.6650 0.0650

Purkinje-Pyramidal 0.0219 0.2201 0.1088 0.1528 0.4223 0.0740

Overall 0.1304 0.0372 0.0417 0.1786 0.4489 0.1633

graph matching, NeuroPath2Path does not leave a sin-

gle path unassigned, culminating in a full-graph match-

ing algorithm. The matching algorithm presents the

notion of relative fractality and path correspondence,

and incorporates physiological factors, such as decaying

importance of features along the path and exploratory

/competitive behavior for resource exploitation.

NeuroPath2Path also precisely investigates the fea-

sibility of algorithmic constraints (such as on Munkres

algorithm) on the structural repertoire of neuronal ar-

bors, and thereby enforcing criteria, such as hierarchy

mismatch. During classification, NeuroPath2Path de-

livers resilience to the class imbalance problem. In the

future, in order to explore the full potential of the ap-

proach beyond classification, we aim to augment Neu-

roPath2Path in two major domains - morphological anal-

ysis and structural transformation of microglia cells,

and in progressive degradation of neuronal paths in neu-

rodegenerative diseases.

Appendix

Description of features

We extract a set of discriminating features on each path

fi ∈ Γ of H, which are bifurcation angle (bi), con-

currence (Ci), hierarchy (ξi), divergence (λi), segment

length (βi), tortuosity (κi), and partition asymmetry

(αi). • Bifurcation angle is a key morphometric that

dictates the span and the spatial volume of an arbor. It

is hypothesized that the span of an arbor at each level

of bifurcation depends on the bifurcation of its previous

level [6,7,22], suggesting the influence of Bayesian phi-

losophy. This organizational principle is utilized in sev-

eral stochastic generative models [22] for the synthesis

of specific neuron cell types. The sequence of bifurcation

angles at bifurcation vertices located on a path of a neu-

ron captures local geometry. For example, a sequence of

non-increasing bifurcation angles from the root to the

dendritic terminal of a path indicates the pyramidal

shape geometry of the neuron. For a location with mul-

tifurcation, we use the maximum of the bifurcation an-

gles computed using pairwise branches originated from

that location towards the dendritic terminals.

• Concurrence, hierarchy and divergence encode the ef-

fect of phenomenological factors, which are exploration

(ex. Purkinje fanning out rostrocaudally) and competi-

tion (ex. retinal ganglion cells), that contribute in the

growth of a neuron. The definition of concurrence and

hierarchy are already given in section 1.1. The diver-

gence of a location on a path, fi is proportional to the

repulsive force that the location experiences from its

neighborhood path segments. Let Cfi be the sequence

of concurrence values of the path fi ∈ Γ when one vis-

its the locations from the root to the dendritic termi-

nal. As an open curve, each path can be parameterized

with the parameter t ∈ [0, 1]. Cfi(ts) = k; ts ∈ [0, 1]

indicates that k(≤ |Γ |) paths share the location ts on

fi. The divergence λ of a location fi(ts) is defined as

λ(fi(ts)) =1{fj | |fj(t)−fi(ts)|≤ε,fj 6=fi,fj�fi}. Here, 1 is

the indicator function computing the number of such

fjs which follow the conditions |fj(t)−fi(ts)| ≤ δ, fj 6=
fi and fj � fi. The first condition implies that a loca-

tion of fj has to be in the ε neighborhood of fi. fj � fi
indicates that the location of bifurcation at which fj
deviates from fi does not appear after fi(ts) on the

path fi.

• Tortuosity and partition asymmetry are two impor-

tant anatomical features of a neuron. Tortuosity refers

to the amount of ‘zig-zag’ or bending of a path. Let us

take a segment on a path fi as fi([t1, t2]); 0 ≤ t1 < t2 ≤
1. Let there be m−1 locations in [t1, t2]. The tortuosity

of the segment is defined as κ =
∑m

j=1 ||fi(tj+1)−fi(tj)||2
||fi(t2)−fi(t1)||2

with tm+1 = t2. Partition asymmetry accounts for how

the size of a neuron tree varies within the neuron. We

use a variant of caulescence, proposed in [8], as a mea-
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sure of tree asymmetry. Caulescence at a bifurcation

location is evaluated by way of α = |l−r|
l+r , where l is the

size of the left tree and r of the right tree of the bifurca-

tion vertex. We define the size of a tree by the number

of paths or equivalently the number of dendritic termi-

nals. Note that the quantity (l+r)+1 is the concurrence

value of the bifurcation vertex.

Weight determination

Let the combined distance vector containing the indi-

vidual feature distances beDfg = [d(bfg) d(Cfg) d(λfg)

d(κfg) d(βfg) d(αfg)]T . The corresponding unknown

weight vector is δ = [δ1, ...δ6]. While comparing two

neurons of sizes N and M with N <= M , the distance

computation after applying the Munkres algorithm re-

peatedly will produce M pairs of paths, indicating M

such Dfgs. The desired characteristic of each compo-

nent of δ is positivity. In addition, we enforce
∑
δi = 1,

implying a probability estimate. δi thus indicates the

relative importance of the feature υi.

We adopt the constrained maximizing-interclass -

minimizing-intraclass distances strategy to find our de-

sired δ. Mathematically,

δopt = − arg min
δ

1

2
δT
( S∑
i,j=1
i<j

Ni∑
k=1

Nj∑
l=1

Mkl∑
z=1

Dz(Dz)T
)
δ

+δT
( S∑
i=1

τi

Ni∑
k,l=1
k 6=l

Mkl∑
z

Dz(Dz)T
)
δ

−ω1logδ + ω2

( 6∑
i=1

δi − 1
)

(5)

The first term in the above equation encompasses all

the distances between neurons from pairwise classes.

The second term encodes the intraclass distances, im-

plying the distances between neurons for each class. The

third term enforces positivity of each weight δi. This is

a logarithmic barrier penalty term that restricts the

evolution of δ at intermediate iterations to the region

where δ > 0̄. The last term accounts for the probabilis-

tic interpretation of δ. S is the number of classes.

Eq. 5 is solved by using gradient descent. The equa-

tion and its derivative can be simply written as,

L(δ) = −δ
TΠδ

2
+ δT

S∑
i=1

τiΠi

2
δ − ω1logδ + ω2

(
δ1− 1

)
dL

dδ
= −Πδ +

S∑
i=1

τiΠiδ −
ω1

δ
+ ω2 (6)

We use this derivative term in the following algorithm 1

to obtain optimal δ.

Algorithm 1: Find δ

Data: Π,Π1, Π2, ...,ΠS (for all classes);

Initialization: δcur, δtmp, τ1, τ2, ..., τS , ω1, ω2, Iter,

tol, η;

while iter < Iter do

while ||δcur − δtmp||2 < tol do

D ←−
∑S
k=1 τkΠk;

Der ←− −Πδ +Dδ − ω1

δ + ω2;

δcurr ←− δtmp;
δcurr ←− δcurr/(δcurr1);

δtmp ←− δtmp − ηDer;
iter ←− iter + 1;

ω1 ←− ω1/2;

ω2 ←− 2ω2;

τi ←− 1.1τi∀i(more intraclass compaction);

Distance between neurons

The algorithm to find distance between a pair of neu-

rons consists of four stages - finding self-similarity (routine-

1), remaining path assignment (routine-2), finding pairs

with hierarchy mismatch (routine-3) and reassignment

of the defective pairs (routine-4).
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30. Puškaš, N., Zaletel, I., Stefanović, B.D., Ristanović, D.:
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