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Abstract

Changes in cognitive performance due to neurodegenerative diseases such as Alzheimer’s disease 

(AD) are closely correlated to the brain structure alteration. A univariate and personalized 

neurodegenerative biomarker with strong statistical power based on magnetic resonance imaging 

(MRI) will benefit clinical diagnosis and prognosis of neurodegenerative diseases. However, few 

biomarkers of this type have been developed, especially those that are robust to image noise and 

applicable to clinical analyses. In this paper, we introduce a variational framework to compute 

optimal transportation (OT) on brain structural MRI volumes and develop a univariate 

neuroimaging index based on OT to quantify neurodegenerative alterations. Specifically, we 

compute the OT from each image to a template and measure the Wasserstein distance between 

them. The obtained Wasserstein distance, Wasserstein Index (WI) for short to specify the distance 

to a template, is concise, informative and robust to random noise. Comparing to the popular linear 

programming-based OT computation method, our framework makes use of Newton’s method, 
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which makes it possible to compute WI in large-scale datasets. Experimental results, on 314 

subjects (140 Aβ+ AD and 174 Aβ- normal controls) from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) baseline dataset, provide preliminary evidence that the proposed WI is 

correlated with a clinical cognitive measure (the Mini-Mental State Examination (MMSE) score), 

and it is able to identify group difference and achieve a good classification accuracy, 

outperforming two other popular univariate indices including hippocampal volume and entorhinal 

cortex thickness. The current pilot work suggests the application of WI as a potential univariate 

neurodegenerative biomarker.

1. Introduction

Brain morphometry studies the measurement of brain structures and changes during 

development, aging, learning, disease, and evolution (Daniel et al. 2009). Modern techniques 

analyze noninvasive neuroimaging data typically obtained from Magnetic Resonance 

Imaging (MRI) using mathematical and statistical methods. A ubiquitous approach for brain 

morphometry is population-based analysis, e.g. Volume or Voxel-based morphometry 

(VBM) (Abell et al. 1999; Ashburner and Friston 2000; Woermann et al. 1999; Worsley et 

al. 2004; Wright et al. 1995) and tensor-based morphometry (Chung et al. 2007; Davatzikos 

1997; Thompson et al. 2000; Wang et al. 2010; Woods 2003). These methods are used to 

identify differences in the local composition of brain tissues, while discounting large-scale 

differences in gross anatomy and position (Mechelli et al. 2005), in order to discover the 

general trend of disease burden and progression. Some efforts have been made to develop 

new techniques to automatically quantify the abnormality of brain structure, especially for 

studies of neurodegenerative diseases such as Alzheimer’s disease (AD). In the past decade, 

an increasing number of methods have focused on extracting biomarkers and generating 

statistical models to characterize brain shape differences in the group level e.g., (Ahmed et 

al. 2015; Redlich et al. 2014; Schmitter et al. 2015).

A univariate and personalized neurodegeneration measure based on an individual’s brain 

scans with high diagnostic accuracy would be highly desirable for clinical use (Sabuncu et 

al. 2016). For example, single-valued MRI-based atrophy is used as a neurodegeneration 

marker in the recently proposed AD descriptive “A/T/N” (amyloid, tau, neurodegeneration) 

system (Jack et al. 2016) to define AD clinically. This descriptive system allows categorizing 

multidomain biomarker findings at the individualized level in a format that is easy to 

understand and use. Rather than conceptualizing AD primarily as a clinicopathological 

entity, in this system AD is diagnosed using biomarkers such as brain imaging or by 

measuring substances in the cerebral spinal fluid. This change may allow preclinical AD 

diagnosis on presymptomatic patients (Knopman et al. 2018). However, in a recent report 

(Illán-Gala et al. 2018), it was reported that the currently available neurodegeneration 

biomarkers, including hippocampal volume and cortical signature of AD (Dickerson et al. 

2009), were poorly correlated both in the whole sample and along the AD continuum. On 

the other hand, for randomized clinical trials (RCT), regulatory agencies, including the Food 

and Drug Administration (FDA), requires conventional univariate hypothesis testing and its 

associated statistical power analysis (Langbaum et al. 2013). It may avoid statistical 

correction for multiple comparisons and reduce overfitting. For this purpose, a univariate 
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neuroimaging biomarker is also important. Therefore, to advance computational 

neuroanatomy to clinical usage, a robust method to quantify global brain image difference 

using a statistically powerful univariate neurodegeneration imaging biomarker will be highly 

advantageous for clinical diagnosis and prognosis.

A variety of univariate structural MRI biomarker software and algorithms have been 

developed in the past decade (Cardenas et al. 2011; CortechsLabs 2018; Racine et al. 2018; 

Vemuri and Others 2008), Meanwhile, a few multivariate analysis frameworks (Gutman et 

al. 2013; Hua et al. 2011) took statistics or machine learning approaches to optimize the 

minimum sample size estimation for clinical trials. Most of these algorithms are based on 

region-of-interest (ROI) analysis, obtaining a univariate imaging biomarker by summarizing 

image information from some ROIs. In general, existing univariate brain structural MRI 

biomarker research can be divided into two categories: (1) techniques that focus on 

morphometry changes of several structural measures including grey matter (Dickerson et al. 

2009; Fox et al. 1999; Racine et al. 2018), and entorhinal cortex (Cardenas et al. 2011; 

Dickerson et al. 2001; Tapiola et al. 2008); and (2) imaging scores relying on image analysis 

of some ROIs selected by a machine learning-based feature selection (Gutman et al. 2013, 

2015b; Vemuri et al. 2008) or statistical p-map analysis (Dickerson et al. 2009; Hua et al. 

2011; Racine et al. 2018). However, issues with these techniques remain. First, although AD 

is typically associated with an amnestic clinical presentation and disruption of the medial 

temporal lobe, it has become increasingly clear that heterogeneity exists within this disease 

and a variety of regions are altered during the AD development course. For example, it was 

reported that the temporal atrophy factor and cortical atrophy factor showed different 

association with memory and executive function (Zhang et al. 2016). Therefore, ROI-based 

analyses may focus on one ROI while overlooking other important ROIs. Second, these 

approaches strongly depend on ROI segmentation results. It is challenging to obtain accurate 

segmentation results from noisy brain images, which are common in clinical analyses.

After normalization by a global factor, brain images can be regarded as a 3D probability 

distribution in the Euclidean domain, where (1) the intensity of each voxel is non-negative, 

(2) the total intensity is one, and (3) the distance between two voxels is their Euclidean 

distance. Therefore, the problem of comparing brain images voxel by voxel can be converted 

to the problem of comparing corresponding distributions. The Wasserstein shape space 

theory (Villani 2008), which measures the similarity between two probability distributions 

on a given metric space, can be adapted to compute a stable and accurate brain imaging 

morphometry index. Manifold shape space theory has been applied to brain atlas estimation 

(Fletcher 2013; Fletcher et al. 2009), shape space analysis (Gutman et al. 2015a; Kurtek et 

al. 2011) and morphometry study (Shi et al. 2017; Younes et al. 2009). Thus far, the optimal 

transportation-base study has been used to explain the regression of clinical variables 

(Gerber et al. 2018), neonatal cortical surface atlas construction (Chen et al. 2019), and 

functional brain template estimation (Bazeille et al. 2019). However, the Wasserstein shape 

space theory, metric defined on the Optimal Transport, has not been frequently studied for 

imaging index research (Shi and Wang 2019; Zhang et al. 2017). An advantage of 

Wasserstein distance (WD) for imaging morphometry index research is the geodesic 

distance between shape space points gives a continuous and refined shape difference 

measure, which is particularly useful for computing a personalized imaging index. As well, 
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WD studies the transportation between two probability measures on a given manifold. Thus 

it is robust to image noise (Engquist and Foroese 2013).

In this paper, by generalizing our prior work on volumetric Wasserstein distance 

computation (Mi et al. 2017, 2018), we propose a framework to compute the volumetric 

Wasserstein distance of structural MR images and explore its application as a potential 

univariate neurodegenerative biomarker. With the proposed framework, a volumetric 

Wasserstein distance will be computed for each MR image from its optimal transportation 

(OT) map to the template image. We hypothesize that the computed Wasserstein distance 

may be used as a robust and efficient univariate structural MRI index. We validate the 

proposed method on brain structural MR images from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) cohort, including 140 Aβ positive AD patients and 174 Aβ 
negative healthy control subjects. Here, we set out to test whether our new system can 

compute a reliable univariate neurodegenerative index and whether the new single index is 

able to capture AD-induced brain morphometry abnormalities.

2. Method and Materials

2.1 Theoretical Background

2.1.1 Optimal Transportation—Suppose M is a metric space and P(M) is the space of 

all Borel probability measures on M. Without losing generality, suppose X(x, μ) and Y(y, v) 

are two such measures, i.e. X ∈ P(M), Y ∈ P(M). Then, we have 1 = ∫M μ(x)dx = ∫M 

v(y)dy, with the supports ΩX = {m ∈ M |μ(m) > 0} and ΩY = {m ∈ M |v(m) > 0}. We call a 

mapping π : X(x, μ) → Y(y, v) a measure-preserving one if the measure of any subset B of 

Y is equal to the measure of the origin of subset B in X, which means μ(π−1(B)) = v(B), ∀B 

⊂ Y. Given a transportation cost function c:M × M ℝ0
+, the problem of optimal 

transportation (OT) is to find the measure-preserving mapping πoptimal : X → Y that 

minimizes the total cost,

πoptimal(X, Y ) = argπmin∫
M

c(x, π(x))μ(x)dx (1)

For simplicity, we refer to π as the optimal transportation plan.

2.1.2 Wasserstein Distance—Suppose X(x, μ) and Y(y, v) are two probability 

measures with the supports ΩX on M ⊂ Rn, respectively. We define the transportation cost as 

the distance to the exponent of p: c(x, π(x)) = d(x, π(x))p. The minimum cost between X 
and Y is called the Wasserstein distance:

W p(X, Y ) = def  inf ∑
x

d(x, π(x))pμ(x)
1
p

(2)

The Wasserstein distance is equipped with metric properties and is thus often adopted for 

measuring the similarity between probability distributions. The details of the optimal 
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transportation problem and the properties of the Wasserstein distance can be found in Villani 

(Villani 2003). In this work, we focus on W2, the 2-Wasserstein distance.

To obtain the 2-Wasserstein distance between X(x, μ) and Y(y, v), we first computed the 

volumetric harmonic map from each domain to a unit hypersphere, φ1:M Sn and 

φ2:N Sn. If n = 3, we call it a unit ball. We then parameterized this canonical space, Sn, 

with Cartesian coordinates and obtained the empirical measures X′(x, μ) and Y′(y, v) on the 

new supports φ1(ΩX) and φ2(ΩY). Next, we computed the OT-Map, T : X′ → Y′ which 

induces the Wasserstein distance W2 (X′, Y′). To make the data eligible for discrete OT, we 

discretized y′ into a relatively sparse point set P(p, v). With the abuse of notation, we use v 
for both Y′ and P. We formulated the Wasserstein distance as follows:

W (M, P) = ∑
i = 1

k
d2 mi, pi μi (3)

where d2(mi, pj) =‖ mi − pj ‖2 and pj = π(mi).

2.2 Wasserstein Index Computation Framework

Researchers have produced useful results for image and shape analysis with the Wasserstein 

distance, including retrieval (Rubner et al. 2000) and interpolation (Solomon et al. 2015). 

These results demonstrate that similar objects share a smaller Wasserstein distance, i.e. 

similar objects are closer in Wasserstein space (see Appendix for definition). We raised the 

question whether similar brain images will also be close to each other in the Wasserstein 

space and, more importantly, whether this is also true for brain images from normal controls 

and images from other clinical groups.

In the context of brain mapping in discrete settings, we treated brain images as the empirical 

measures of brain tissues. Given two brain images X(x, μ) and Y(y, v), the goal was to find 

the OT, π : X → Y, such that the total transportation cost is the minimum. Figure 1 shows 

our overall computation framework from a brain image to its Wasserstein index, i.e. the 

Wasserstein distance between brain images to the MNI152 template.

In the following sections, we describe pre-processing, resampling, harmonic mapping, 

optimal transportation, and the Wasserstein index.

2.2.1 Pre-processing—The structural MRI scans used for each subject were T1-

weighted acquired at 1.5T (Jack et al. 2008). We used FreeSurfer (Fischl 2012) to extract 

cortical surfaces, brain volumes, and several imaging statistics (e.g., hippocampal volumes).

2.2.2 Resampling—Brain images were resampled into their tetrahedral representations. 

Starting with cortical surfaces as boundaries, TetGen (Si 2015) was used to generate 

tetrahedral meshes. Because surfaces and images are in the same space, each voxel intensity 

was directly projected to its nearest four vertices using KNN (Friedman et al. 1977). The 

value each vertex received was inversely proportional to the distance between the vertex and 

the voxel. Specifically, suppose the image and the mesh are aligned together, and a voxel v is 
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surrounded by 4 vertices xai, ai = 1, …, 4, ai = 1, …, 4. Then, we have 

μ xai + = di
−1/∑i = 1

4 di
−1I(v), where di denotes Euclidean distance between each image 

voxel and its neighboring vertices, I(v) presents the voxel intensity, and μ xai  is the vertex 

value which was treated as the empirical measure of the brain MRI for computing optimal 

transportation. The mesh values were then normalized by a global factor.

2.2.3 Volumetric Harmonic Mapping—Volumetric harmonic mapping was employed 

(Wang et al. 2004) to compute a common, convex, canonical space in order to compute OT. 

The volumetric harmonic mapping can deform an arbitrary tetrahedral mesh into a unit ball. 

We regarded a tetrahedral mesh X as a simplicial complex K under embedding 

f: K X ⊂ ℝ3. Suppose xi and xj are two adjacent vertices, and f(xi) and (xj) are their 

coordinates in ℝ3. Then, our goal was to find the f′ that minimizes the minimizes the 

harmonic string energy,

E(f) =def ∑
xi, xj ∈ K

kxi, xj f xi − f xj
2

(4)

k is called the harmonic string constant. Suppose an edge (xixj) is shared by T tetrahedra. 

Then, we defined kxixj as the famous cotangent formula,

kxixj = def  1
12 ∑

t = 1

T
ltcot θt (5)

where lt is the length of the edge to which edge (xi, xj) is against and cot(θt) denotes the 

cotangent of the dihedral angle on that edge (Wang et al. 2004). Figure 2 depicts the 

geometric relations. The red line represents the edge (xi, xj) shared by several tetrahedra 

(two in Figure 2), two of which (one blue, one green) are shown in the figure.

Following (Wang et al. 2004), we first computed a spherical conformal mapping of the brain 

surface (Gu et al. 2004) by gradient descent to reach f′. After the mapping, an arbitrary 

tetrahedral mesh was uniquely mapped to a unit ball. Figure 3 shows a brain mesh before 

and after the mapping. Colors indicate the intensities projected from the original images as 

the result of resampling. By using the boundary constraint, we preserved the orientation of 

all the meshes such that all the mesh values remained in the same space after mapping.

2.2.4 Discrete Variational Optimal Transportation—Having introduced continuous 

OT in Section 2.1.1, it is desired to define the discrete OT to fit the discrete brain image 

situations. Given a metric space M(m, g) with a Riemannian metric g its empirical measure 

X(x, μ), the continuous measure can be approximated by a discrete point set with Dirac 

measures, P(p, v) = {(pi, vi)|vi = vδ(pi), Σi vi = 1}, i = 1, …, n. Our goal was to find a 

discrete optimal transportation π : X(x, μ) → P(p, v) with the push-forward π#μ = v. We 

introduce a vector h = (h1, …, hn)T, a hyperplane on M, πi(h) : 〈m, pi〉 + hi = 0, and the 

piecewise linear function formed by all hyperplanes:
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uℎ(m) = max m, pi − ℎi , i = 1, …, n (6)

Theorem 1.: (Alexandrov 2005) Suppose Ω is a compact convex polytope with non-empty 

interior in ℝn and y1, …, yn ⊂ ℝn are n distinct points and v1, …, vn > 0 so that 

∑i = 1
n vi = vol(Ω). There exists a unique vector h = ℎ1, …, ℎn

T ∈ ℝn up to a translation 

factor (c, …, c)T such that the piecewise linear convex function θh(x) = max{〈x, yj〉 + hj} 

satisfies vol(x ∈ Ω| ∇θh(x) = yj) = vj.

Furthermore, (Brenier 1991) proved that the gradient map ∇θ provides the solution to 

Monge’s OT problem, that is, ∇θh minimizes the transportation cost ∫Ω ‖ x − θh(x) ‖2. 

Therefore, given X and Y, h by itself induces OT.

From Aurenhammer (Aurenhammer 1987), we know that a convex subdivision associated 

with a piecewise-linear convex function uℎ(x) on ℝn equals a power Voronoi diagram. A 

typical power cell of the power diagram on M ⊂ ℝn is defined as:

V i = def  m ∈ M | m − pi
2 − wi ≤ m − pj

2 − wj , ∀j ≠ i .

Accordingly, the power cell induced by the hyperplane πi(h) is

Ui = def  m ∈ X | m, pi − ℎi ≤ m, pi − ℎj , ∀j ≠ i,  where ℎi =
−|pi|2 − wi

2 .

In our formulation, Brenier’s gradient map ∇uh : Vi(h) → pi “transports” each Vi(h) to a 

specific point pi. The total mass of Vi(h) to the specific point pi is denoted as: 

wi(ℎ) = ∑x ∈ V i(h)μ(x). Now, we define an energy function,

E(h) = def  ∫
0

h(ℎ)
∑
i = 1

n
wi(ξ)dξ − ∑

i = 1

n
viℎi + C, (7)

with the constraint of ∑i = 0
n ℎi = 0. Eq. 7 is convex with respect to h (Gu et al. 2016), which 

makes its optimization tractable via Newton’s method. The gradient of the energy is

∇E(h) = w1(h) − v1, …, wn(h) − vn
T . (8)

The Hessian matrix of E(h) can be geometrically formulated by using the power Voronoi 

diagram. It has the form of

H = def  ∂2E(h)
∂ℎi ∂ℎj

. (9)
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Specifically, suppose two cells Vi(h) and Vj(h) intersect at a hyperplane fij = Vi(h) ∩ Vj(h), 

as shown in Figure 4. Then, the second-order derivatives can be expressed as:

∂2E(h)
∂ℎi ∂ℎj

=

∑k
∫fikμ(x)dx
‖pk − pi‖

, ∀k, if fik ≠ ∅ ,  and i = j

−
∫fijμ(x)dx
‖pj − pi‖

, fij ≠ ∅ ,  and i ≠ j

0  otℎerwise.

(10)

where ‖·‖ is the Euclidean norm and ∫fikμ(x)dx = vol fij . By Newton’s method, at each step, 

we solve a linear system,

Hδh = ∇E(h), (11)

and update the height vector h ← h − λδh until δh is below a pre-defined threshold. The 

step λ is an empirical value. The initial value of h is set to (0, 0, …, 0)T. Letting π denote 

the OT-Map π : X(x, μ) → (p, v), we showed the complete algorithm for computing π in 

Algorithm 1. Figure 5 illustrates an extreme example of discrete optimal transportation.

Algorithm 1

Discrete variational optimal transportation

Data: A convex set X(x,μ) = {(x1,μ1),…,(xk,μk)}, Dirac measures P(p,v) = {(p1,v1),…, (pl,vl)}, a threshold ∈, and a step 
λ.

Result: Discrete optimal transportation map π: X(x, μ) → P(p, v), represented as (V, h).

1: h ← (0,0,…,0).

2: repeat

3:   Compute V with current p, h.

4:   Compute ω(h) = ωi = Σx ∈ V iv(x) .

5:   Compute ∇E(h) using Eq. 8.

6:   Compute H using Eq. 9, 10.

7:   h ← h – λH−1∇E(h).

  while ∃ωi vanished

   h ← h + λH−1∇E(h).

   λ ← λ/2

   h ← h – λH−1∇E(h).

8: until |∇E(h)| < ∈

9:  return π.

2.2.5 Volumetric Wasserstein Distance—An unweighted Voronoi diagram with a 

unit ball boundary was initialized. Then, the diagram was used to cluster the MNI152 

template using k-means (Arthur and Vassilvitskii 2007). The total vertex values inside a 

particular cell were assigned to the corresponding Dirac point, i.e. vj ∑xi ∈ V jμi. Figure 6 

(left) shows the initial diagram with 56 cells. We treated the resulting Dirac measures as our 
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template for computing the Wasserstein distance. From here, using Algorithm 2, we 

obtained the volumetric Wasserstein distance between a brain image and the Dirac measures. 

Figure 6 (right) shows the resulting diagram. After the OT mapping, the size of each Voronoi 

cell was adjusted so that each cell enclosed the vertices with measures whose total value 

approximates the Dirac measure of the cell.

2.2.6 Wasserstein Index—This study used the volumetric Wasserstein distance as a 

similarity measure for brain images. To use the Wasserstein distance as an index of an 

individual structural MR image, we selected the MNI152 Brain Template (Grabner et al. 

2006) as the target. We used a relatively sparse uniform distribution to create an unweighted 

Voronoi diagram and used this diagram to cluster the image voxels of MNI152, regarding 

the resulting centroids as the template for indexing brain images such that each Voronoi 

diagram volume is proportional to the total measure within its Voronoi cell. Then, using 

Algorithm 2, we computed the Wasserstein index (WI) for each of the images.

Algorithm 2:

Computing the Wasserstein distance.

Data: Two normalized domains M(m, μ), N(n, v) ⊂ ℝn.

Result: The volumetric Wasserstein distance W between M and N.

1: Compute harmonic maps M′ = ψ(M), N′ = ψ(N).

2: Discretize N′ into point set P(p, v).

3: Compute the OT-Map π: M′ (m, μ) → P (p, v) according to Algorithm 1.

4: Compute the Wasserstein distance W(M, P) according to Eq. 3.

5: return W.

To compute the 3D Voronoi diagram, the algorithm was implemented in C/C++ and Voro++ 

was adopted (Rycroft 2009). We solved the linear system (Eq.11) using the least squares 

conjugate gradient solver from the Eigen library (Guennebaud et al. 2010). Our pipeline was 

published on http://gsl.lab.asu.edu/3dvot.

2.3 Experiments and Validation

2.3.1 Subjects—Data used in this paper were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) (Jack et al. 2008; Jagust et al. 

2010). The ADNI was launched in 2003 as a public-private partnership led by Principal 

Investigator Michael W. Weiner, M.D. The primary goal of ADNI has been to test whether 

serial MRI, other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of mild cognitive impairment (MCI) and early AD.

In this study, a total of 314 baseline structural MR images from the ADNI cohort were 

analyzed. Within this population, there are 140 Aβ positive AD patients and 174 Aβ 
negative normal control (NC) subjects. The Aβ positivity was determined using mean-

cortical SUVR (standard uptake value ratio) with cerebellum as reference region. The 

threshold of 1.18 was determined by comparing the mean-cortical SUVR of 

neuropathologically confirmed Aβ positive AD patients with age matched cognitively 
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unimpaired individuals. All subjects had a thorough clinical and cognitive assessment at the 

time of the acquisition, including the Mini-Mental State Examination (MMSE) score 

(Folstein et al. 1975), Clinical Dementia Rating (CDR) (Berg 1988), and Delayed Logical 

Memory Test (Wechsler 1987). The demographic information of studied subjects within 

groups in ADNI baseline dataset is shown in Table 1.

2.3.2 Experimental Design—In our experiments, we first studied the running time and 

numerical accuracy under different Dirac measure resolutions and empirically optimized the 

trade-off between accuracy loss and the time cost. To authenticate the robustness of our 

proposed Wasserstein index to noises, we evaluated the change of the index upon different 

Rician noise levels. We studied the correlation between the Wasserstein index and the Mini-

Mental State Examination (MMSE) score (Folstein et al. 1975) to verify the correlation 

between our proposed index and cognitive measures.

We applied the Student’s t test on univariate imaging biomarkers to study the statistical 

group difference. Specifically, we measured the difference between the mean biomarkers of 

two different groups (AD vs. control) by

t = 1
n/2

U − V
SUV

(12)

where U and V  are the univariate biomarker means of the two groups, n is the total subject 

number and SUV is the standard deviation. The denominator of t is the standard error of the 

difference between two means.

A comparison of the accuracy with which the two groups could be distinguished from one 

another was evaluated for five measures: (1) the proposed WI, (2) Normalized Average 

Entorhinal Cortex Thickness, (2) Normalized Hippocampal Volume (n-HPV) segmented 

with FreeSurfer, (3) Normalized hippocampal Volume (n-HPV) segmented with volBrain 

(Manjón and Coupé 2016), Average Cortical Thickness, and (4) overall Brain Volume. With 

these univariate biomarkers, we performed 5-fold cross-validation on classification using the 

linear SVM (Cortes and Vapnik 1995). Accuracy rate and F1 scores (Powers 2011) were 

computed as the rate of accurate predictions and harmonic mean of precision and recall, 

respectively.

To remove the effect of brain size, hippocampal volume was normalized by the left-brain 

volume, and the entorhinal cortex thickness was normalized by the average cortical 

thickness. We denote the normalized hippocampal volume as n-HPV and the normalized 

entorhinal cortex thickness as n-ECT in the rest of sections.

3. Results

3.1 Timing and Dirac Approximation Offset

For the computation consideration, we resampled MNI152 into sparse points. We wish to 

keep the majority features of MNI152 template. Inevitably, the accuracy of resampling is 

depended on the number of sampling points. We evaluated the error of down-sampling with 

respect to the number of samples. Specifically, we tested the running time and this error 
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under different resolutions ranging from 0.4 to 0.07, corresponding to a number of points 

from 171 to 12020. We report the results in Table 2 and Figure 7. All tests were run on a 

3.40 GHz Intel i7–4770 CPU (single core) with 8.00 GB RAM.

Table 2 shows that the error between the original template and our template decreased as the 

number of samples increased, while the time cost was the opposite. When the resampling 

resolution dropped from 0.3 to 0.1, the offset distance to the original measure also 

significantly decreased. After the resolution reached 0.1, there was no significant 

improvement in the error while the computational cost boosted to thousands of seconds. As 

a trade-off between effectiveness and efficiency, we choose to use the resolution of 0.1, 

throughout the study, if we perform down-sampling.

3.2 Robustness to Imaging Noises

We randomly pick a structural MR image from our dataset to test the robustness of our 

proposed index to noises. Specifically, we added noises to the image, producing several 

noisy samples and computing their WIs. We expected the WIs to indicate the noisy samples 

were very close to the original sample. The same process is conducted to the measure of the 

entorhinal cortex thickness and hippocampal volume for comparison. To remove the effect 

of brain size, hippocampal volume was normalized by the left-brain volume, and the 

entorhinal cortex thickness was normalized by the average cortical thickness. We denote the 

normalized hippocampal volume as n-HPV and the normalized entorhinal cortex thickness 

as n-ECT in the rest of sections.

Gudbjartsson and Patz suggested that the noise existing in MR images follows a Rician 

distribution (Gudbjartsson and Patz 1995). We followed Ridgway and added Rician noises to 

the structural MR image (Gudbjartsson and Patz 1995). Assuming the normalized image 

with no noise is I0 ∈ [0, 255], the image In with Rician noise is generated by the following 

formula, where s is the noise level, and r1, r2 N(0, 1).

In = s r1 + I0
2 + s r2

2 (13)

We added the noise of a different level ranging from 10 to 100 with an interval of 10 each 

time to the normalized image, producing 10 noisy images. To get a brief idea of how much 

different noise levels influence the image quality, we add noise to the same MRI slice under 

different noise levels, as shown in Figure 8. We observe that for large noise, (noise level 

larger than 50), the image has been very vague. For most MRI scans, the images can be 

considered with small noise (noise level less than 30).

Our proposed method was applied to these images, and the WIs of all the noisy images were 

obtained. In addition, the changes of the average entorhinal cortex thickness (ECT) and 

hippocampal volume (HPV) were captured using FreeSurfer. To create indices comparable 

to each other, we calculated the percentage change between each noisy image and the 

original one in terms of WI, ECT, and HPV, respectively. The relative changes under 

different levels of noise were then compared. Experiments were repeated five times, taking 

the average of the outcomes.
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Figure 9 depicts a comparison of the results. The Wasserstein index surpassed both HPV and 

ECT with the change staying closer to zero. However, HPV suffered from a vibration of 

around 1%, while ECT had a more significant change of around 2%. The upward trend of 

the WI suggests that our proposed index was sensitive to the global brain volume changes 

when the noise became strong enough to impact the original image substantially. Compared 

with HPV under different levels of noises, the trajectory of the WD was smoother and 

steadier. As shown in Figure 9, we found the WI was more robust than ECT and HPV when 

the noise level is low. Under strong noises, ECT and HPV did not show major changes 

compared with under mild noises while WI starts to diverge from the ground truth. As strong 

noises are rare, the current results show that our proposed WI is robust to normal image 

noises.

3.3 Correlation with Clinical Cognitive Measures

We tested the correlation between the Wasserstein index and a clinical cognitive measure, 

i.e., the Mini-Mental State Examination (MMSE) score (Folstein et al. 1975). As shown in 

Figure 10(a), the linear regression result suggests a negative correlation between WI and 

MMSE. It means that subjects diagnosed as AD tend to have smaller MMSEs and larger 

WIs. This result accords with other research (Jack et al. 2003). The model is significant at 

the 5% significance level with p-value < 10−5. The root mean squared error is 4.01. To 

excerpt the influence of age, we also regress MMSE relative to WI and age, i.e. MMSE = 

k1WI + k2Age + c, the regression result is k1 = −8.96, k1 = −0.03 and b = 41.05 as shown in 

Figure 10(b). The result indicates the age influence on the correlation study is small.

For comparison, we also plot the correlation between MMSE and two frequently used single 

indices—normalized n-ECT, normalized n-HPV (Cuingnet et al. 2011) in Figure 11 (a) and 

(b), respectively. ECT and HPV were measured by FreeSurfer (Fischl 2012). All the indices 

were calculated on the left cerebral hemisphere. Hippocampus volume was been normalized 

by the left-brain volume, and average entorhinal thickness was normalized by the average 

cortical thickness. Both models are significant at the 5% significance level with p-value < 1 

× 10−6. The significance level is consistent with ours while they have slightly better root 

mean squared errors (3.65 and 3.79, respectively). The results verified several prior 

researches (e.g. (Jack et al. 1999)) which proposed to use them as univariate neuroimaging 

biomarkers.

3.4 Group Difference Analysis

To determine the practicality of our framework for structural MR images as well as the 

robustness over large brain image datasets, we applied the framework to images from the 

ADNI cohort, including those from 140 Aβ positive AD patients and 174 Aβ negative NC 

subjects. We compared the WI with two frequently used single indices—average normalized 

n-ECT, normalized n-HPV—in terms of their statistical power (Cuingnet et al. 2011). ECT 

and HPV were measured by FreeSurfer (Fischl 2012). We also used another online 

hippocampus segmentation software package, volBrain (Manjón and Coupé 2016). All the 

indices were calculated on the left cerebral hemisphere. Hippocampal volume was been 

normalized by the left-brain volume, and average entorhinal thickness was normalized by 

the average cortical thickness.
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We first show the box-plots of these indices in Figure 12. The figure reveals that all four 

single indices have the statistical power to distinguish between AD and NC. We conducted t-
tests on three indices to evaluate their statistical power in differentiating AD and NC. The p-

values for these indices are 1.0 × 10−6 (with 1 million random permutations), showing that 

all the indices work equally well to differentiate these two groups.

3.5. Classification Study

We also tested the classification accuracy of the proposed WI along with other four indices 

obtained from FreeSurfer, including normalized entorhinal cortex thickness (n-ECT), 

normalized hippocampal volume (n-HPV), cortical thickness (CT), and brain volume (BV). 

Besides the n-HPV extracted from FreeSurfer, we also test the accuracy of n-HPV from 

VolBrain (Manjón and Coupé 2016). The classification accuracy may help illustrate the 

statistical power of different univariate neurodegenerative biomarkers. We trained a support 

vector machine with RBF kernel (Vapnik 1998) as the classifier and conducted 5-fold cross-

validation on the same image dataset, which includes 140 Aβ positive AD patients and 174 

Aβ negative CN subjects. Table 3 summarizes the classification accuracies of different 

indices. Among all the indices, WI achieved the highest accuracy of 82.2%, while n-ECT 

and n-HPV from FreeSurfer obtained 79.6% and 80.7% accuracy, respectively. The slightly 

better classification accuracy of our proposed Wasserstein index authenticates the feasibility 

of our method. We also report the F1 scores (Powers 2011) in Table 3, which shows that our 

proposed index achieves relatively balanced results than other MRI measures. One possible 

reason for the WI achieves better results is that it takes the full MRI distribution of the whole 

scan robustly, rather than specific regions of the compared indices.

4 Discussion

We present a framework to compute volumetric Wasserstein distances and Wasserstein index 

for structural MR images. The proposed framework leverages the ability of the Wasserstein 

distance as a shape metric and develops a robust and efficient univariate neurodegenerative 

biomarker. Preliminary results demonstrate that the Wasserstein index, a numerical number, 

has its potential for the analysis of neurodegenerative diseases such as AD. Our study has 

two main findings. First, we introduced a numerically efficient algorithm to compute the 3D 

optimal transportation with Newton’s method. Despite the convenience of using the 

Wasserstein distance to measure distributions, a limiting factor of Wasserstein distance is its 

computational complexity when solving the optimal transportation problem. This is 

especially true when dealing with high dimensional distributions. It is due to the fact that the 

optimal transport problem is to find πoptimal according to Equ. (1). i.e., from the image 

intensity distribution μ = ∑iaiδxi to v = ∑jbjδyj. For a transport plan between two 

100×100×100 resolution MRI, the discrete transport matrix π can be as large as 106 × 106, 

let alone to search the best π which minimizes the transport cost. This is the reason that ur 

Rehman (ur Rehman et al. 2009) adopted GPU to improve efficiency. In practice, various 

methods approximate the optimal transportation in order to avoid heavy computation (Cuturi 

2013; Solomon et al. 2015). With the proposed variational framework (Su et al. 2015a), we 

can efficiently compute volumetric Wasserstein distance with brain MR volume images. 

Further, mapping imaging data to a common space is a widely used approach for registration 
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and matching of brain surfaces (Fischl et al. 1999; Thompson et al. 2004). Our prior work 

adopted sphere (Su et al. 2015b) and Poincaré disk (Shi et al. 2016) to compute Wasserstein 

distance on surfaces. However, few attempts have been made to directly map the whole brain 

MRI voxels to a 3D common space. With a volumetric harmonic map (Wang et al. 2004), 

our work computes harmonic maps between brain images and a solid sphere. The reason to 

choose harmonic maps is threefold. (1) In general, volumetric metric preserving mapping 

does not exist while the harmonic mapping minimizes the shape distortion. (2) Harmonic 

mapping, which measures the elastic energy of the deformation, is physically natural with a 

clear interpretation. (3) Harmonic mapping is numerically stable and efficient by solving an 

elliptic partial differential equation (Eck et al. 1995). This approach may provide new ideas 

into 3D brain imaging analysis research. Our second finding demonstrates the feasibility of 

the shape space, particularly Wasserstein shape space, for univariate neurodegenerative 

imaging biomarker development. Our experimental results demonstrate the potential that the 

proposed WI is robust to imaging noise, correlated with cognitive measures, and may be 

used in discriminating clinical groups.

Recently, a variety of multivariate brain imaging biomarkers together with advanced 

machine learning algorithms were developed to study AD diagnosis and prognosis (as 

reviewed in (Rathore et al. 2017)). In the current work, the classification experiment of AD 

and NC is mainly used as an illustration. We think the main applications of univariate 

neuroimaging biomarkers will be to improve the N measure in the newly proposed “A/T/N” 

AD diagnosis system (Jack et al. 2016) and facilitate the AD clinical trials by reducing the 

minimum sample size (Lewis 1999). We agree that HV is a convenient and intuitive clinical 

measure. However, we argue that there are certain difficulties to select and extract these 

region-of-interest (ROI) so we hypothesize that a global image measure with strong 

theoretical guarantee would be also useful. Whether or not our approach provides more 

relevant information about neuroanatomical change than those afforded by other 

measurements (grey matter thickness (Dickerson et al. 2009), ROI such as hippocampal 

volume (Jack et al. 1999)) requires careful validation for each application. More importantly, 

we anticipate that our optimal transportation-based features may provide new measurements 

on structural MRI and will be complementary to these other features.

In Figure 10, it is noticeable that there are subjects whose MMSE scores are very low 

(MMSE<15). There is a possibility that these outlier MMSE scores helped achieve the linear 

relationship between our WI measure and MMSE. We further test the linear correlation by 

keeping subjects whose MMSE scores are bigger than 15. The new fitting is shown in Figure 

13. We see that the new fitting slope (k=−9.03) does not change too much, compare to the 

original slope (k=−8.947). It supported that in the current dataset, with or without these five 

subjects with extremely low MMSE scores, our WI measure is linearly correlated with 

MMSE scores.

Despite the promising initial results, three caveats remain. First, the dataset size, although 

well characterized in this study, is relatively small in our experiments. The OT is 

computational heavy even we provided an efficient computational framework. Similarly, the 

compared univariate biomarkers are limited. Although we have compared the performance 

with biomarkers like entorhinal cortex thickness, hippocampal volume, cortical thickness, 
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and brain volume, the other brain features performance remains unknown. Second, as the WI 

is obtained by comparing the global image difference, there is a possibility that changes 

related to normal aging or other types of dementias become dominant in the resulting 

imaging index. Future studies may leverage the flexibility of the OT definition by taking 

different canonical space as the parameter domain. As shown in our prior work (Su et al. 

2015a), we could give more/fewer weights μ to the important anatomical areas shown in Eq. 

1 to achieve enlarged/decreased mapping results. Similar to (Racine et al. 2018), we may 

improve its statistical power by emphasizing those AD-related regions and deemphasizing 

those normal aging or other dementia-related regions (Racine et al. 2018). It is worth noting 

that our approach still does not demand a highly accurate ROI segmentation due to the OT 

probability distribution-based computation nature (Engquist and Foroese 2013). The third 

caveat is that optimal transportation research remains a fast-growing research field in both 

engineering (Arjovsky et al. 2017; Baumgartner et al. 2018; Shi et al. 2017; Younes 2010) 

and pure mathematics (Figalli et al. 2010; Villani 2008). The current work presents our 

initial efforts to study the possibility of the Wasserstein distance as a valid univariate 

neurodegenerative imaging biomarker. We hope the current pilot study could inspire new 

ideas on this topic and further advance brain morphometry research.

5 Conclusion and Future Work

We propose a framework to compute the volumetric Wasserstein distance on 3D images and 

explore its application as a univariate neurodegenerative imaging biomarker. Our work 

provides a tool for efficiently solving the OT problem in high-dimensional spaces and 

explores its application to characterizing AD on MR images. We have demonstrated that a 

shape space-based index, i.e., the WI, may be applied on MR images for brain morphometry. 

Our work may provide a new perspective for brain imaging analysis. Future work could 

include solving the OT problem for even higher-dimensional data, e.g., tensor images. Our 

general framework may be applied to study other brain imaging modalities, such as 

fluorodeoxyglucose positron emission tomography (FDG-PET) and functional MRI (fMRI). 

Our prior work (Mi et al. 2017) studied the feasibility of using 3D Wasserstein distance to 

study brain metabolism via FDG-PET image analysis. In future, we will continue to study 

whether other modality analyses or some cerebral region-based Wasserstein distance may 

improve presymptomatic diagnosis and treatment of neurodegenerative diseases.
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Appendix

Definition: (Wasserstein Space) Recall M(m) is a metric space and P(M) is the space of all 

Borel probability measures on M, B(M). Formally, we named P(M) the Wasserstein space 

P(M) = {B(M)}. Suppose we compute the quadratic transportation distance between M and 

its image π(m), d(m, π(m))2. Then we have the 2-Wasserstein space, P2(M).
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Figure 1. 
The pipeline to compute the Wasserstein index (WI).
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Figure 2. 
Edge (xi, xj) (red) is shared by two tetrahedra (blue and green). Each has an edge and a 

dihedral angle against (xi, xj). Length lt and dihedral angle θt define the harmonic string 

constant.
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Figure 3. 
Volumetric harmonic map from a brain mesh to a unit ball. The feature (e.g. intensity) of 

each vertex remains the same.
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Figure 4. 
The intersection (blue) of Voronoi cells in 2D (left) and 3D (right) cases. The Hessian matrix 

is derived from the geometric relation between adjacent Voronoi cells.
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Figure 5. 
Discrete optimal transportation map. Gray points are empirical measure; red points are 

initial Dirac measures. Our method adjusts the size of each cell to enclose the empirical 

measures whose summation equals the corresponding Dirac.
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Figure 6. 
During optimal transportation, the 3D power Voronoi diagram adjusts the size of each cell to 

enclose sample points whose measures add up to its centroid’s Dirac measure.
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Figure 7. 
The Wasserstein distance between the Dirac measure template and the original image and 

the time to compute it under the different number of Dirac measures.
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Figure 8. 
Noisy images under different noise levels. For noise level larger than 50, the images have 

been relatively vague.
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Figure 9. 
The vibration of three structural MRI indices under Rician noises. Wasserstein index 

(orange) is more robust than entorhinal cortex thickness (blue) and hippocampal volume 

(green).
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Figure 10. 
(a) The scatter plot from the linear regression of n-ECT and the mini-mental state 

examination (MMSE). (b)The scatter plot from the linear regression of n-HPV and the mini-

mental state examination (MMSE).
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Figure 11. 
(a)The scatter plot from the linear regression of WI and the mini-mental state examination 

(MMSE). The plot suggests a mild negative correlation between WI and MMSE. The root 

mean squared error from the linear regression model is 4.17. (b) The regression line with the 

consideration of age influence. The root mean squared error from the linear regression 

model is 4.13.
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Figure 12. 
An illustration of boxplots of the distributions of different indices for NC subjects and AD 

patients.
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Figure 13. 
Compare of fittings with/without subjects whose MMSE <15.
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Table 1.

Demographic information. (AD: Alzheimer’s disease, NC: Normal Control, F: Female, M: for male, and 

MMSE for mini-mental state examination)

Group Number of Subjects Gender (F/M) Age MMSE score

Aβ+ AD 140 68/72 74.11±7.86 21.95±4.06

Aβ− NC 174 94/80 74.19±6.76 29.01±1.19
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Table 2.

Time to compute offset Wasserstein distance (WD) under different resolutions

Resolution 0.3 0.25 0.2 0.15 0.12 0.1 0.09 0.08 0.07

Number of Points 171 257 515 1237 2401 4100 5695 8063 12020

Time/s 17 29 60 76 120 364 765 3071 9880

Offset WD 28.2 15.6 5.92 1.71 0.651 0.321 0.202 0.131 0.074
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Table 3.

Classification results from Alzheimer’s disease vs. normal control on structural MRI

Measure Accuracy F1 Score

Wasserstein Index (WI) 82.2 85.4

Normalized Average Entorhinal Cortex Thickness (n-ECT) from FreeSurfer 79.6 83.0

Normalized Hippocampal Volume (n-HPV) from FreeSurfer 80.7 82.9

Normalized Hippocampal Volume (n-HPV) from VolBrain 78.3 81.3

Average Corticle Thickness from FreeSurfer 79.6 83.0

Brain Volume from Free Surfer 64.0 69.1
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