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Abstract
Background: Glioma is the most common primary intracranial neoplasm in adults. Radiotherapy is a
treatment approach in glioma patients, and Magnetic Resonance Imaging (MRI) is a bene�cial diagnostic
tool in treatment planning. Treatment response assessment in glioma patients is usually based on the
Response Assessment in Neuro Oncology (RANO) criteria. The limitation of assessment based on RANO
is two-dimensional (2D) manual measurements. Deep learning (DL) has great potential in neuro-oncology
to improve the accuracy of response assessment.

Method: In the current research, �rstly, the BraTS 2018 Challenge dataset included 210 HGG and 75 LGG
were applied to train a designed U-Net network for automatic tumor and intra-tumoral segmentation,
followed by training of the designed classi�er with transfer learning for determining grading HGG and
LGG. Then, designed networks were employed for the segmentation and classi�cation of local MRI
images of 49 glioma patients pre and post-radiotherapy. The results of tumor segmentation and its intra-
tumoral regions were utilized to determine the volume of different regions and treatment response
assessment.

Results: Treatment response assessment demonstrated that radiotherapy is effective on the whole tumor
and enhancing region with p-value ≤ 0.05 with a 95% con�dence level, while it did not affect necrosis and
peri-tumoral edema regions.

Conclusion: This work demonstrated the potential of using deep learning in MRI images to provide a
bene�cial tool in the automated treatment response assessment so that the patient can obtain the best
treatment.

Introduction
Gliomas are the most common types of glial-based primary tumors in adults, which are speci�ed with
several malignancy grades, namely grade I (pilocytic astrocytoma, gangliocytoma, and ganglioglioma),
grade II (astrocytoma, oligodendroglioma, and oligoastrocytoma), grade III (anaplastic astrocytoma,
anaplastic oligodendroglioma, and anaplastic ependymoma), and grade IV (glioblastoma) according to
World Health Organization (WHO) (Ahmed, Oborski, Hwang, Lieberman, & Mountz, 2014; Ranjbarzadeh et
al., 2021; Tiwari, Srivastava, & Pant, 2020). 

Grades I and II of gliomas usually are known as benign or low-grade brain tumors; however, grades III and
IV are more aggressive and speci�ed as malignant or high-grade tumors (Ghaffari, Sowmya, & Oliver,
2020). Despite the recent advances in therapeutic and diagnostic methods for malignant gliomas, the
median survival is less than �ve years for patients with anaplastic glioma (grade III)  and 15 months for
patients with glioblastoma (GBM) (Ahmed et al., 2014). Gliomas represent about 80% of all malignant
brain and central nervous system (CNS) tumors. More than 50% of these gliomas are diagnosed as
GBM (Barnholtz-Sloan, Ostrom, & Cote, 2018). In the United States, the annual incidence of all brain
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tumors, gliomas, and GBMs per 100,000 population between 2010 to 2014 were 22.64, 5.74, and 3.20,
respectively (Barnholtz-Sloan et al., 2018).  

The neuroimaging data provide precious information related to the shape, size, location, and metabolism
of brain tumors for clinicians, which can be used to assess the status of the tumor before and after
therapeutic intervention (Magadza & Viriri, 2021). Magnetic resonance imaging (MRI) sequences such as
T1-weighted (T1w), T2-weighted (T2w),  T1-contrasted (T1c), and �uid attenuation inversion recovery
(FLAIR) provide substantial contrast for various brain tissues, which can be used to discriminate the
different parts of tumor and normal tissues (Saha & Panda, 2018; Wadhwa, Bhardwaj, & Singh Verma,
2019). 

Brain tumor segmentation for locating and assessing the tumor region and tumor classi�cation for
recognizing its grade are essential steps for choosing the proper treatment plan and effectiveness of
treatment. As a result, physicians usually perform these procedures manually before starting the
treatment plan; in the meantime, manual segmentation and classi�cation of tumors are laborious and
time-consuming tasks and different specialists may have varying diagnoses, which may reduce
treatment effectiveness. (Ranjbarzadeh et al., 2021). 

Considering the reasons mentioned above, automatic brain tumor segmentation could prepare valuable
morphological information for clinicians about different tumor parts, including core, enhanced, and whole
tumor regions, leading to timely and proper diagnosis and treatment of brain tumors (Ranjbarzadeh et al.,
2021; Saman & Jamjala Narayanan, 2019). In recent decades, machine learning (ML) advances have led
to increasing interest in automatic medical image analysis. However, traditional ML approaches mainly
require prior knowledge and a manual feature extraction process, which can be time-consuming. As a
new subcategory of ML, deep learning recently showed major bene�ts in overcoming the limitations of
traditional ML approaches (Fathi, Ahmadi, & Dehnad, 2022). More complex and high-level features can be
extracted automatically and then given to a deep learning-based classi�cation or segmentation
algorithm, which means that the feature extraction and classi�cation/segmentation steps are merged in
deep learning (Fathi et al., 2022; Havaei et al., 2017). Among various deep learning approaches,
convolutional neural network (CNN) architectures have shown superior results, especially in detecting and
analyzing neurological diseases (Fathi et al., 2022; Valliani, Ranti, & Oermann, 2019).

In this study, a CNN-based architecture called U-Net has �rst applied to the BraTS 2018 dataset for
automatic brain tumor segmentation to determine the different parts of the tumor, namely core,
enhanced, and whole tumor regions. Then, another CNN architecture called VGG16 was trained to classify
the images into low and high grades (LGG/HGG) tumors. The  transfer learning parameter initialization
method was used to decrease the learning time and enhance the performance of the model. Evaluating
the applicability of the model was done by gathering and using a local dataset to assess the trained
models. During the �nal step, the volume of the tumor regions before and after radiotherapy on cases in
the local dataset was measured and statistically compared to assess the e�ciency of the treatment.



Page 5/16

To the authors' best knowledge,  the assessment of treatment responses pre and post-radiotherapy in
glioma patients has been mentioned in none of the reviewed studies. Hence, due to the importance of
assessing treatment response in these patients, we evaluated that in glioma patients who underwent 3D
conformal radiotherapy about 3 to 8 months after. Hence main contributions of this study are described
as follows:

1. A multimodal approach including four primary MRI sequences, namely T1w, T2w, T1c, and FLAIR,
was utilized to enhance the accuracy of segmentation and classi�cation procedures.

2. The segmentation process was done on both LGG and HGG cases.

3. The �nal segmentation and classi�cation models were applied to a local dataset to assess their
practical applicability.

4. The proposed models have been conducted on the local dataset before and after radiotherapy
intervention aiming to measure the effectiveness of treatment statistically.

1.1 Related works

In this section, we glance at similar studies and brie�y review their automatic brain segmentation method.
Brain tumor segmentation (BraTS) challenges, which have been held annually since 2012, have inspired
the application of ML approaches in this �eld. The most popular methods used in the early years of the
BraTS challenge were based on traditional ML approaches such as Random Forest (RF), logistic
regression, Markov Random Field (MRF), and Conditional Random Field (CRF) (Ghaffari et al., 2020).
Despite the unsatisfying performance of the traditional methods, they opened new ways for automatic
brain tumor segmentation. Later advances in the computational power of computers and the ML
approaches made deep learning-based methods more popular in this �eld. Concerning this, convolutional
neural networks (CNN) were used in brain tumor segmentation for the �rst time in 2014. 

Urban et al. in 2014 used a simple 3D-CNN architecture with three convolutional layers as a voxel-based
classi�cation method to classify edema, non-enhancing tumor, enhancing tumor, necrosis, air, and normal
tissue in the multimodal images and obtained fair results for whole, core and enhancing tumor
segmentation (Urban, Bendszus, Hamprecht, & Kleesiek, 2014). In 2015, Havaei et al. proposed a 2D-CNN
architecture called InputCascadeCNN model for brain tumor segmentation. They achieved Dice scores of
0.88, 0.79, and 0.73 for the whole tumor, tumor core, and enhancing tumor, respectively (Havaei, Dutil, Pal,
Larochelle, & Jodoin, 2015). In 2016, a new CNN-based architecture called DeepMedic was introduced by
Kamnitsas et al., which comprised 11 3D convolution layers with residual connections to obtain a more
e�cient model. They reported Dice scores of 0.89, 0.76, and 0.72 for whole, core, and enhancing tumor
regions, respectively (Kamnitsas et al., 2016).

In recent years, the number of studies using CNN-based models, especially U-Net architecture, has
increased dramatically. Chen et al. applied a novel separable 3D U-Net architecture on BraTS2018 and
reached the Dice scores of 0.69, 0.84, and 0.78 for enhancing tumor, whole tumor, and tumor core,
respectively (Chen, Liu, Peng, Sun, & Qiao, 2019). In another submitted study to BraTS2018, Feng et
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al. (Fang & He, 2018) used three 3D U-Nets with different hyperparameters and combined them via simple
averaging of the probability of all classes obtained by each model. They reported Dice scores of 0.9, 0.83,
and 0.78 for the whole tumor, tumor core, and enhancing tumor, respectively (Fang & He, 2018). Similar to
the previous study, Caver et al. also used three different U-Nets to segment brain tumors, with the
difference that each model has been employed for segmenting one region of interest. The Dice scores for
the whole tumor, tumor core, and enhancing tumor were 0.87, 0.76, and 0.72, respectively (Caver, Chang,
Zong, Dai, & Wen, 2018).

Kermi et al. proposed a 2D U-Net architecture to segment the whole and other intra-tumor regions. In order
to address the class imbalance issue, they have used novel loss functions called Weighted Cross Entropy
(WCE) and Generalized Dice Loss (GDL). They achieved the Dice scores of 0.86, 0.80, and 0.76 on
validation data for the whole tumor, tumor core, and enhancing tumor, respectively (Kermi, Mahmoudi, &
Khadir, 2018). In Naser et al.'s study, the closest one to our study, a multi-task deep learning-based
method has been proposed to segment and classify grades II and III of gliomas. The segmentation and
classi�cation tasks were carried out by U-Net and VGG16 architectures, respectively. The reported Dice
score and tumor detection accuracy were 0.84 and 0.92, respectively (Naser & Deen, 2020). 

Materials And Methods
The proposed model for segmentation and classi�cation procedures is fully automated and is based on
two different 2D-CNNs. The main steps of the proposed model are described as follows: preprocessing of
the 3D-MRI data, training, and creation of the segmentation model by using a U-net architecture, and
using a VGG16 architecture along with transfer learning to classify the images into HGG and LGG tumors.
Next, the images of the local dataset from pre and post-radiotherapy were preprocessed. The automatic
segmentation was applied to the local dataset to measure the volume of the tumor and its regions.
Finally, the effectiveness of treatment was statistically evaluated by comparing the volume of the tumor
before and after radiotherapy. The �owchart of the current study process is shown in Figure 1.

2.1 BraTS datasets

The brain tumor segmentation (BraTS) challenge, which contains a multimodal MRI image dataset, has
been held since 2012 annually. The BraTS 2018 training dataset consists of 210 HGG and 75 LGG scans.
These image sets consist of four MRI sequences, namely T1w, T1c, T2w, and FLAIR. All images have a
volume dimension of 240× 240 × 155 and have been manually annotated by expert neuro-radiologists
into four types of intra-tumoral regions, namely necrotic core, non-enhancing (1), edema (2), and
active/enhancing (4) tumor.

2.2 Segmentation

2.2.1. Preprocessing 
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In the �rst step, the background of all images with unimportant information was removed; hence, the size
of the images was reduced to 190×190×135. Next, data normalization have applied to each sequence of
the MRI images by subtracting the mean and dividing by the standard deviation of the intensities within
the slices. Ground truth and four MRI scanning sequences (T1W, T2W, T1c, and FLAIR) were saved in a 4-
dimensional matrix as input.

2.2.2. Data Augmentation

Data augmentation is the process of creating synthetic data from original data aiming to increase the
amount of training set and improve the generalizability of the �nal model. To this end, the patch-based
method was performed so that four patches with a size of 160 ×160 were randomly extracted from each
slice of images.

2.2.3. Network Architecture and Training

The proposed segmentation model was based on U-Net architecture. As shown in Figure 2, it consists of
an encoding (left side) and decoding path (right side). The contracting path consists of �ve convolutional
blocks, each containing two 3×3 convolutional layers with a stride of one and a 2×2 max pooling layer
after each block except the last one. Hence, the size of feature maps reduces from 160×160 to 10×10.
The utilized activation function was rectified linear unit (ReLU).  

The expanding path includes �ve convolution blocks, in which every block starts with an up convolutional
layer with a filter size of 2×2 and stride value of two, aiming to double the size of feature maps in both
directions and decrease the number of feature maps by two. So the size of feature maps increased from
10 × 10 to 160 ×160. The number of feature maps was reduced by half from each block to the next, in
order to maintain symmetry. The decoding path is followed by a concatenation layer and two
convolutional layers with a �lter size of 3×3. At the end of expanding path, a 1×1 convolution with a
softmax activation function is used to map the multi-channel feature maps to the desired four classes. A
dropout with the value of 0.2 was utilized between all two convolutional layers to prevent over�tting in all
blocks. Unlike the original U-Net architecture, we used zero padding to keep the output dimension for all
the convolutional layers of both the down-sampling and up-sampling paths. 

Selecting the proper loss function in multi-class segmentation problems with class imbalance in the
foreground and background brain tumor data is essential. This also improved model accuracy.
Accordingly, we used a hybrid loss function that combines Weighted Cross Entropy (WCE) and
Generalized Dice Loss (GDL). Four patches with the size of 160×160×4 are extracted randomly from each
subject and used for training the model. The stochastic gradient-based (SGD) algorithm was used as a
parameter optimization algorithm. Other hyperparameters such as momentum, initial learning rate, and
epoch numbers were 0.9, 0.01, and 5, respectively, in which the learning rate exponentially decayed with
the factor of 0.0001. The proposed method was tested and evaluated quantitatively on both BraTS 2018
and local datasets. 
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2.3. Classi�cation

2.3.1. preprocessing

 The preprocessing steps for the classi�cation phase are described as follows: Considering the different
number of slices with tumor regions in images of each patient, 32 slices around the slice with the largest
tumor region were extracted to increase the accuracy and reduce the computational costs in each
modality. The proposed automated segmentation model was conducted on images to reduce the effect
of background pixels in the non-tumor area. Next, the intensity of non-tumor pixels was multiplied by 0.2
to reduce the effect of background pixels. The size of images was reduced to 224×224, and the
normalization process was accomplished by subtracting the mean intensity of pixels divided by the
standard deviation as well. Three MRI sequences, namely T2W, T1c, and FLAIR, were used as three-
channel input images so that the size of each image was 224×224×3. A data augmentation technique
has been applied on LGG samples with horizontal rotation in favor of balancing classes in the training
set. Generally, the training and test set comprised 6890 and 1824 slices, respectively.

 2.3.2. Network Architecture and Training

 In this study, a VGG16 architecture and transfer learning method were used to classify HGG and LGG.
The VGG16 is a prede�ned 2D-CNN-based architecture with 16 layers comprising �ve convolutional
blocks with ReLu activation function, max-pooling layers at the end of each block, and three fully
connected layers (see Figure 3). Lower layers in the pre-trained CNNs contain the generic and low-level
features, while the top layers contain the more speci�c and rich features. Hence, the parameters of earlier
layers can be frozen due to low-level features. In the current study, only the last three layers were left
trainable in favor of classi�cation. The optimization algorithm and loss function used in the current study
were SGD and categorical cross entropy, respectively. Other hyperparameters such as learning rate, batch
size, and epochs number were 0.001, 16, and 8, respectively. The model was built-up using Keras and
Tensor �ow as the backend. The data was split into training, validation, and test sets with a ratio of
60:20:20. 

2.4. Local dataset

In the current study, a local dataset of MRI scans obtained from 49 patients with HGG and LGG glioma
tumors (30 males with median age 46 (28-63) years old, and 19 females with median age 49 (31-66)
years old) were retrospectively collected in order to validate of proposed segmentation and classi�cation
models. Patients were longitudinally scanned as part of their routine clinical follow-up. The time interval
between pre and post-therapy scans varied from 3 to 8 months, and the dataset was collected from 2018-
2020 from Isfahan Milad Hospital and General Hospital. 46.9% of patients were diagnosed with HGG, and
53.1% with LGG. The patients who died or were unable to participate in the study and patients with
pilocytic astrocytoma (grade I) due to its high prevalence in children were excluded from the study as
exclusion criteria. While LGG (grade II) and HGG (grade III, IV) were included in this study because of their
high prevalence in adults.
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2.4.1. Data labeling

The gold standards for proposed segmentation and classi�cation models in the local dataset were the
radiologist's diagnosis and histopathological results. The ground truth for the MRI images of patients
was based on manual segmentation, initially performed by an MRI expert and rechecked by a radiologist.
The manual segmentation was performed at the slice (2D) level using ITK-SNAP commercial software.  

2.4.2. Data preprocessing Measuring the volume of different tumor regions

Data preprocessing steps for the local dataset describe as follow: 1) Realignment of T2WI, T1WI, and
FLAIR to T1c images performed using CaPTK for longitudinal scans. 2) All images from different time
points were registered to the baseline scan. 3) Bias �eld correction performed using intensity
inhomogeneity correction algorithm implemented in CaPTK and signal intensity normalization images. 4)
Intensity normalization was performed in order to overcome the high heterogeneity in the images. 

The automatic segmentation process was applied to the local dataset, pre and post-radiation therapy to
determine the whole tumor volume and its different regions. The total number of pixels in each tumor
region with dimensions of 1 mm3 was considered to determine the volume.

Results
3.1. Segmentation results

As mentioned before, a multimodal approach based on four MRI sequences has been used for automatic
segmentation in this study. You can see the result of the segmentation model on two sample subjects
and compare the results with ground truth in Figure 4.

As shown in Figure 4, four left columns display four sequences of MR images, and the following two
columns show the manual annotation of neuro-radiologists and the proposed model results, respectively.
The split ratio used in this study was 80:20 for the training and validation dataset, respectively.
Performance metrics were used to evaluate segmentation results, including mean dice similarity
coe�cient (DSC), sensitivity, speci�city, and Hausdorff distance. The result of which for enhanced tumor
(ET), whole tumor (WT), and necrotic tumor (NT) regions are given in Table 1. The DSC was the main
parameter for evaluating the segmentation accuracy on the clinical dataset. The performance results of
0.76, 0.71, and 0.70 for DSC in the WT, NT, and ET   respectively. 

Table 1. Quantitative evaluation of segmentation results
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Performance metrics Necrotic tumor (NT) Whole tumor (WT) Enhanced tumor (ET)

Hausdorff distance 7.20 8.82 4.43

Dice 0.71 0.76 0.70

Speci�city 0.998 0.996 0.999

Sensitivity 0.86 0.91 0.80

3.2. Classi�cation results 

The classi�cation performance of the proposed model is assessed based on both BraTS 2018 and local
datasets. Figure 5 shows the results of the confusion matrix for the two mentioned datasets. Table 2 also
reports the performance of classifying the tumor grades (LGG vs. HGG). 

Table 2. Results of classi�cation

dataset Accuracy (%) Sensitivity (%) Speci�city (%) PPV (%) NPV (%)

BraTS  99.1 98.93 99.91 99.69 99.71

Clinical  89.8 91.30 88.46 87.5 92

 3.3. Tumor volume results

In order to evaluate the effectiveness of radiotherapy treatment, we have measured and compared the
tumor region volumes before and after therapy. The results were statistically analyzed with SPSS v25
software. The paired sample t-test and Wilcoxon signed ranks were used as statistical tests with a
signi�cance level of 0.05 in this study.

The results of paired t-test showed that the radiotherapy had been signi�cantly effective in decreasing the
volume of the whole tumor. However, the volume differences of other tumor regions (NT and edema) were
not statistically signi�cant pre and post-radiotherapy. Meanwhile, the non-parametric Wilcoxon's test was
signi�cant, with a 95% con�dence level for evaluating the mean difference between  ET volumes pre and
post-therapy. 

Discussion
In this study a deep learning-based model has been introduced to segment glioma tumors and their
intratumoral regions via U-Net automatically, then we classi�ed HGG and LGG using the results of the
tumor segmentation phase. The volume of different tumor regions was determined using the
segmentation results from pre and post-radiotherapy. The most critical �nding was the positive effect of
radiation therapy in glioma patients on the WT and the ET volumes; however, it had no signi�cant effect
on the peritumoral edema and NT volume.
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A patch-based data augmentation method was performed in the segmentation stage, in which four
random areas from each image slice were extracted for both LGG and HGG data. In the classi�cation
stage, the data augmentation was performed only by rotating the LGG data. The use of data
augmentation methods has increased the variety of data for training, reducing prediction errors in the test
data and improving the model's generalizability. However, using extra data augmentation methods would
lead to increase training time and computational cost. 

Considering the expected effect of radiation therapy on the treatment of brain tumors and the effects of
stopping the growth and death of the cells, the results of this study, which indicate the reduction of WT
volume, as well as the reduction absorptionof contrast agent in the ET region, are consistent with the
radiology principles. The effects of radiotherapy on tumor cells, which grow faster than healthy cells,
leading to single-stranded and double-stranded DNA breaks, accelerating apoptosis. Consequently, the
removal of malignant cells leads to the reduction of the WT volume (Kim et al., 2019).

Results obtained in this study using DL approach represent no signi�cant difference in the NT and edema
volume between pre and post-radiotherapy, which was not unexpected. However, in general, the
peritumoral edema is expected to decrease due to the treatment response and the reduced number of
malignant cells. It is noteworthy that a variety of mechanisms in�uence the origin and persistence of
peritumoral edema. Both vasogenic and cytotoxic edema is involved in tumor-induced edema.
Considering the unique characteristics of the brain and central nervous system (CNS), it should be kept in
mind that the elimination of peritumoral edema caused by the tumor may require a long time. At the
same time, the patient's MRI images were performed 3-8 months after radiotherapy. Although the
peritumoral edema induced by malignant cells can be diminished by radiotherapy, it can trigger
peritumoral edema due to different mechanisms observed post-radiotherapy on MRI. 

Necrotic regions are clearly visible, especially in grade IV post-radiotherapy, and the presence of necrotic
areas can lead to misdiagnosis. Necrotic areas can be caused by cancer cell destruction post-
radiotherapy, especially in hypoxic areas. On the other hand, radiation-induced necrosis is a potential long
term CNS complication and also distinguishing radiation-induced necrosis from tumor recurrence is
especially challenging in neuro-oncology.

Reviews of studies revealed that recently proposed CNN-based architectures, especially the U-net, could
obtain desirable results. Chen et al. (Chen et al., 2019), Fang et al. (Fang & He, 2018), Caver et al. (Caver et
al., 2018), and Kermi et al. (Kermi et al., 2018), in their studies, applied U-net-based architectures on
BraTS2018 for automatic brain tumor segmentation and obtained promising results. Although their
results were slightly better than ours, their analysis was only limited to tumor segmentation. None of the
abovementioned studies reported using tumor segmentation and classi�cation to perform a treatment
response assessment. 

Mazaheri et al. (Mazaheri et al., 2022) recently reviewed studies that used DL to assess treatment
responses in different cancers, including brain cancers. A combination of hand-crafted features and MRI
images (or fMRI) has been used in most brain cancer-related studies to predict survival time and quantify
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tumor response (Han et al., 2020; Lao et al., 2017; Nie et al., 2019). Similarly to our study, Kickingereder et
al. (Kickingereder et al., 2019) deployed a DL-based model to segment the brain tumor into enhanced and
non-enhanced regions and to quantify tumor response. However, unlike our study, they did not use the
BraTS dataset to create the model. The review done by Tandel et al. (Tandel et al., 2019) concluded that
most of the studies focused on tumor segmentation and tissue classi�cation, while there is a great deal
of potential for further research into tumor grading. Furthermore, the overall training time of our proposed
model was almost 12 hours, which is much lower than studies that reported the training time.

Conclusion
Using automatic segmentation and classi�cation methods from medical images has an important role in
helping physicians to diagnose medical lesions. Automatic methods of tumor segmentation and
intramural as well as tumor classi�cation to determine the grade of glioma tumor can help physicians in
accurate diagnosis and optimal treatment planning. Different methods of deep learning can be helpful in
the treatment response assessment in order to more accurately determine the criteria of treatment
response, including RNAO and determining the 3D volume of different tumor regions.
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Figure 1

Flowchart of our study process

Figure 2
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The proposed U-Net architecture used for automatic segmentation

Figure 3

The proposed VGG16 architecture used for the classi�cation

Figure 4

The results of the segmentation model on two random samples

Figure 5

Confusion matrix for classi�cation of the tumor grade (HGG vs. LGG) in - a) BraTS dataset - b) local
dataset


