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Abstract
Recently, the early diagnosis of Alzheimer’s disease has gained major attention due to the growing prevalence of the disease 
and the resulting costs imposed on individuals and society. The main objective of this study was to propose an ensemble 
method based on deep learning for the early diagnosis of AD using MRI images. The methodology of this study consisted 
of collecting the dataset, preprocessing, creating the individual and ensemble models, evaluating the models based on ADNI 
data, and validating the trained model based on the local dataset. The proposed method was an ensemble approach selected 
through a comparative analysis of various ensemble scenarios. Finally, the six best individual CNN-based classifiers were 
selected to combine and constitute the ensemble model. The evaluation showed an accuracy rate of 98.57, 96.37, 94.22, 
99.83, 93.88, and 93.92 for NC/AD, NC/EMCI, EMCI/LMCI, LMCI/AD, four-way and three-way classification groups, 
respectively. The validation results on the local dataset revealed an accuracy of 88.46 for three-way classification. Our per-
formance results were higher than most reviewed studies and comparable with others. Although comparative analysis showed 
superior results of ensemble methods against individual architectures, there were no significant differences among various 
ensemble approaches. The validation results revealed the low performance of individual models in practice. In contrast, the 
ensemble method showed promising results. However, further studies on various and larger datasets are required to validate 
the generalizability of the model.

Keywords  Alzheimer’s disease · Mild Cognitive Impairment · Deep learning · Convolutional neural networks · Magnetic 
resonance imaging · Transfer learning

Introduction

Dementia is an umbrella term for a group of neurological 
diseases in which cognitive capabilities deteriorate over 
time. Alzheimer’s disease (AD), the most common type of 
dementia, includes 60 to 80 percent of all dementia cases 
(Jain et al., 2019; Ramzan et al., 2020). It is a progressive 

and irreversible neurodegenerative disease associated with 
symptoms such as a decline in cognitive functionality, defi-
ciency of memory, and disturbance of daily activities (Jin 
et al., 2020). Albeit there is no compelling evidence for the 
leading cause of AD, it has been reported that some patho-
physiological changes in the brain, beginning several years 
before the final stage, are responsible for the occurrence of 
AD. These changes comprise the emersion of neurofibrillary 
tangles within the neurons, which leads to the death of neu-
rons and the accumulation of amyloid plaques among nerve 
cells, disturbing the usual path of neurotransmitters (Janghel 
& Rathore, 2021; Liu et al., 2015; Menikdiwela et al., 2018).

Mild Cognitive Impairment (MCI), an intermediate stage 
between AD and normal control (NC), refers to a detect-
able decline in cognitive abilities with no disruption in the 
patient’s daily life (Sarraf et al., 2019). Although not all 
individuals with MCI progress to AD and dementia, there 
is a high rate of probability for the conversion from MCI to 
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AD. Therefore, in many studies, MCI has been recognized 
as the prodromal stage of AD (Abrol et al., 2020; Gorji & 
Kaabouch, 2019).

Due to the growing demands of global life, the preva-
lence rate of age-related diseases such as AD has increased 
in recent years (Lu et al., 2018). The death rate of heart 
disease and prostate cancer has decreased in the last two 
decades; meantime, the death rate of AD has increased by 
145 percent, making AD the sixth leading cause of death 
in the US (Association, 2019; Basheer et al., 2021; Nawaz 
et al., 2021). Although some recent studies have shown 
promising results for new drugs against AD, there is still 
no approved treatment for the disease (Hu et al., 2016). As 
mentioned above, finding a way to diagnose AD accurately 
in the early stages can have many benefits, including stop-
ping or decreasing the progression of the disease, reducing 
healthcare costs, and improving people’s quality of life.

To the authors’ best knowledge, there are three different 
approaches to diagnosing AD. In the first one, which is the 
most popular due to its ease of use and low cost, specialists 
utilize clinical information, symptoms, and other criteria like 
cognitive assessment scales and questionnaires to diagnose 
AD. However, this approach has some major drawbacks, 
such as being influenced by subjective factors and having 
undesirable performance results (Sun et al., 2021). In the 
second approach, the clinical biomarkers, including the 
level of tau and amyloid-beta proteins, are measured through 
the cerebrospinal fluid (CSF) or brain autopsy. Despite its 
acceptable performance, this approach usually requires inva-
sive procedures for measurement, making it unpopular as a 
routine method for early diagnosis of AD (Basheera & Ram, 
2021; Sun et al., 2021). In the third approach, neuroimaging 
modalities such as MRI, fMRI, and PET are used to show 
the structure and functionality of the brain. This method can 
provide large amounts of information in a short period of 
time; however, interpreting all the detailed information in 
images is relatively challenging for physicians (Basheera & 
Ram, 2021; Sun et al., 2021).

Advances in computing power and the availability of 
open-access AD-related datasets, have led to the use of 
machine learning (ML) approaches in the context of early 
diagnosis of AD (Pellegrini et al., 2018). Deep learning 
(DL) has recently received much attention due to its brilliant 
results in different fields and medical image analysis as well 
(Basaia et al., 2019). DL approaches can extract high-level 
features, shown to be more efficient than other traditional 
approaches in a number of studies (Liu et al., 2015). In par-
allel with the widespread use of DL in various fields, espe-
cially medicine, its application in AD diagnosis has recently 
emerged. In this regard, Suk et al. (Suk & Shen, 2013) con-
ducted the first study on the use of DL in AD diagnosis in 
2013. They used the stacked auto-encoder (SAE) method 
and support vector machine (SVM) classifier in the feature 

extraction and classification steps, respectively (Suk & Shen, 
2013). The following paragraphs summarize some similar 
studies. You can also see our recent systematic review on the 
current status of using DL in the early diagnosis of AD for a 
more comprehensive overview (Fathi et al., 2022).

Li et al. (2021a, b) aimed to diagnose AD through a hip-
pocampal shape and asymmetry analysis by cascaded convo-
lutional neural networks (CNN). Compared to their previous 
study (Cui & Liu, 2019), which used only hippocampal shape 
features for classification, their performance was slightly 
lower this time. Both Mehmood et al. (2021) and Kang et al. 
(2020) used a 2D-CNN-based architecture called VGG and 
transfer learning for early diagnosis of AD; however, Kang 
et al. utilized a multi-modal (MRI/DTI) approach.

ResNet, as the most popular CNN architecture in the 
literature, was used in a number of studies such as Abrol 
et al. (2020), Ramzan et al. (2020), Odusami et al. (2021), 
Shanmugam et al. (2022), Li et al. (2021b), Ji et al. (2019) 
and Jabason et al. (2019). Some of these studies used the 
ResNet and other DL methods as an ensemble method (Jaba-
son et al., 2019; Ji et al., 2019) or comparative analysis (L 
et al., 2023; Li et al., 2021a, b; Odusami et al., 2021; Shan-
mugam et al., 2022). In the study of Zhang et al. (2021), 
a 3D-ResNet with the attention mechanism, was proposed 
to create an explainable model for early AD diagnosis. A 
few other studies have also utilized the attention mechanism 
mainly aimed at adding explainability to the black box nature 
of CNN-based models (Guan et al., 2022; Ji et al., 2020; Liu 
et al., 2022; Zhang et al., 2021a, b, c, 2022). According to 
the literature, VGG and DenseNet were the second and third 
most popular CNN architectures. Most studies, using VGG, 
employed its standard versions, VGG16 or VGG19; how-
ever, some studies proposed customized versions, including 
the studies of Zhang et al. (2021a, b, c) and Yu et al. (Yu 
et al., 2019).

DenseNet, one of the most successful architectures for 
early AD diagnosis, was used in some recent studies. Li and 
Liu (2018, 2019) and Liu et al. (2020) applied 3D-DenseNet 
in their studies in order to extract high-level features and 
classify different stages of AD. The authors in Li and Liu 
(2018) extracted features from various parts of the brain 
using patch-based strategies, whereas in Li and Liu (2019) 
and Liu et al. (2020), only the hippocampus region was 
used to extract features. Several DenseNet architectures are 
combined in ensemble approaches reported in the studies of 
Wang et al. (2019), Ruiz et al. (2020), and Islam and Zhang 
(2018). Some reviewed studies have proposed customized 
CNN architectures to diagnose AD and its prodromal stages, 
MCI or its subcategories, namely the early MCI (EMCI) 
and late MCI (LMCI). Basaia et al. (2019) have proposed 
a 3D-CNN with 12 convolutional blocks, a rectified linear 
unit (ReLu) as the activation layer, a fully connected layer, 
and a logistic regression layer as the classifier for automatic 
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classification of AD and subcategories of MCI. Gorji and 
Kaabouch (2019) developed a simple 2D-CNN architec-
ture with three convolution layers, each followed by a max-
pooling, a fully-connected layer, and a sigmoid classifier for 
binary classification of prodromal stages of AD. The study 
focused on gray matter (GM) due to its proven effect on the 
early onset of AD. Pan et al. (2020) employed an ensem-
ble scheme based on different 2D-CNN classifiers for early 
detection of AD.They built various base CNN classifiers on 
single-axis slices of MR images and created an ensemble 
model based on the five best classifiers for each axis.

In general, the findings in the literature are promising; 
several studies have demonstrated high accuracy in classi-
fying normal controls, patients with AD, and patients with 
MCI using deep learning models. This suggests that deep 
learning can be a valuable tool for early detection of AD. 
Hence, the motivation for the current study is two-fold. First, 
early diagnosis of  Alzheimer’s disease is critical for improv-
ing patient outcomes. The earlier the disease is diagnosed, 
the sooner the treatment can be initiated. This can help slow 
the progression of the disease and improve quality of life 
for patients and their families. Second, early diagnosis of 
Alzheimer’s disease can help to reduce healthcare costs.

While many reviewed studies reported promising results, 
most did not address all clinically valuable classification 
groups. In addition, there is no comprehensive compara-
tive analysis among various individual base classifiers and 
ensemble approaches. In the current study, we aimed to 
propose an ensemble method based on deep learning for 
the early diagnosis of AD using MRI images. The proposed 
method was comprised of six well-known convolutional neu-
ral networks (CNN) based on a novel approach called the 
weighted probability-based ensemble method (WPBEM). 
The main contributions of the current study are described 
as follows:

1.	 A novel ensemble method called WPBEM was used to 
enhance the performance of the individual CNN models 
for early diagnosis of AD.

2.	 A comparative analysis was utilized to find hyperpa-
rameters and the optimal scenario for combining the 
individual CNNs.

3.	 In order to enhance the performance of the models, we 
used a domain adaptation transfer learning approach 
producing superior results to any other parameter ini-
tialization methods.

4.	 The current study has addressed all the valuable binary 
and multiclass classification groups.

According to the aforementioned reasons, the main aim of 
the current study was to propose an ensemble method called 
WPBEM based on different base CNN architectures for the 
early diagnosis of AD. This is a novel approach for two 

reasons. First, many of the previous studies used individual 
CNN architectures or ensemble methods with a single type 
or less than three types of base CNN classifiers. However, 
the current study used six different types of CNN classifi-
ers. The number and types of base classifiers were selected 
through a comparative analysis of well-known CNN archi-
tectures. Secondly, instead of using simple majority voting 
or bagging in the ensemble method, we used a weight vari-
able for the outputs of each model, presenting the correct-
ness of each disease class. We also used a local dataset for 
validating the created models.

Methodology

Collecting Data and Preprocessing

In this study, we employed an end-to-end deep learning-
based scheme comprised of different predefined and modi-
fied 2D-CNN architectures called WPBEM for early AD 
diagnosis. Two independent datasets were used in this study. 
The first one was gathered from Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset (adni.​loni.​usc.​edu) for 
training and evaluation of models, and the second one was 
collected from Firoozgar hospital in Tehran, Iran and was 
used for validation of the model previously created by ADNI 
dataset. The ADNI was launched in 2003 as a public–private 
partnership, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether 
serial magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to meas-
ure the progression of mild cognitive impairment (MCI) and 
early Alzheimer’s disease (AD). For up -to-date information, 
see www.​adni-​info.​org. The data were T2-weighted MRI 
images, taken in axial view and comprised 721 subjects from 
ADNI and 26 from the local dataset (Firoozgar hospital). 
There were five groups of subjects in the ADNI data, namely 
NC, MCI, EMCI, LMCI, and AD, in which the MCI group 
was not used for binary classification but only for three-way 
classification. Meanwhile, the local dataset consisted of three 
classes: NC, MCI, and AD. The demographic details of the 
participants are shown in Table 1.

After collecting the images from mentioned datasets, 
the preprocessing steps, including normalization, resizing, 
removing non-brain slices, selecting slices with the most 
information, and converting 3D images into 2D slices, were 
conducted on collected images. During preprocessing, the 
intensities of each slice were rescaled to 0–1 by Eq. (1) to 
achieve intensity normalization. Since most slices had a 
dimension of 256 × 256 by default, all slices were resized 
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to this dimension to preserve maximum information during 
feature extraction.

Next, some of the first and last slices of each 3D image 
were ignored by consulting a neurologist if they were not 
valuable for AD detection. For example, in the case of 
images in the ADNI dataset, 17 initial and seven last slices 
were removed. Among the remaining volume, 20 slices with 
highest entropy, the most informative slices, were selected 
for the final dataset. The procedure for selecting slices for the 
final dataset is shown in Fig. 1. All the preprocessing steps 
were written in Python 3.7 and some of its libraries, includ-
ing Numpy, Pydicom, Globe, Opencv, and Scikit-image.

The Proposed Model

After preprocessing the images and providing the final 
dataset, a deep learning-based ensemble approach was 
employed for the early detection of AD. Slice-based strat-
egy, the most popular feature extraction strategy in the 

(1)X̂ =
(X − Xmin)

Xmax − Xmin

literature, was used in this study due to its straightforward-
ness, low complexity, and no need for complex preprocess-
ing, which is more consistent with the end-to-end nature 
of our approach. Moreover, converting 3D images into 2D 
slices led to a dataset with more samples, which is essential 
for deep learning to prevent overfitting and maintain the 
generalizability of models.

As mentioned before, the proposed method was based on 
CNN architectures. Given that combining multiple classi-
fiers offers superior results for AD detection, six different 
base classifiers were combined in this study. These classifi-
ers were inspired by well-known CNN architectures, namely 
DenseNet201, DenseNet169, DenseNet121, ResNet50, 
Inception-Resnet V2, and VGG19, chosen because of 
their promising results in the previous studies reviewed by 
authors. By modifying the latest layers of architecture, each 
was adapted to the current research situation.

DenseNets utilize a base structure named dense block 
in which each preceding layer of this block is connected 
simply to all the next layers. This structure improves infor-
mation flow throughout the network and solves the gradi-
ent vanishing problem. The standard version of DenseNet 
architectures consisted of four dense blocks, five transform 

Table 1   The demographic 
details of participants and the 
number of slices extracted from 
each image

Dataset Diagnostic type Number Gender (M/F) Age (Avg) Number 
of Slices

ADNI NC 132 72/60 77.18 2610
MCI 157 79/78 75.92 3130
EMCI 135 70/65 73.33 2625
LMCI 131 69/62 74.09 2565
AD 166 81/85 75.87 3311

Local dataset NC 4 1/3 65.37 36
MCI 11 4/7 71.36 101
AD 11 4/7 84.82 101

Fig. 1   The process of selecting 
the most informative slices from 
the raw MRI image of each sub-
ject for creating the final dataset
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layers, one fully connected layer, and one softmax layer as 
a classifier. In different versions of predefined DenseNets, 
such as DenseNet201, DenseNet,169, etc., the structure and 
number of inner layers of dense blocks are different. You can 
see our proposed DenseNet architectures in Fig. 2.

As shown in Fig. 2, we have replaced the last layer of the 
standard version of DenseNets with a batch normalization 
layer followed by a fully connected layer with 32 neurons, a 
dropout layer with a value of 0.3 and a softmax layer.

Similar to DenseNet, ResNet was also employed to speed 
up the convergence of the model and address the vanish-
ing gradient problem. This is done by making shortcut con-
nections between layers. Our modified ResNet architecture 
was inspired by ResNet50 and consisted of four stages with 
three, four, six, and three residual blocks, followed by layers 

similar to DenseNets’ latest layers added at the end (see 
Fig. 3).

As shown in Fig. 3, the structure of residual blocks in 
various stages is similar in relation to the number of lay-
ers but different with regard to the number of kernels. Just 
like the previously proposed architectures, we have modi-
fied the standard version of Inception-ResNet V2 as another 
individual architecture participating in the ensemble model. 
You can see the simplified structure of Inception-ResNet in 
Fig. 4.

The last individual architecture in the proposed ensemble 
model was VGG19. As shown in Fig. 5, only six initial lay-
ers of the standard version are used in the modified archi-
tecture due to speeding up the converging time, reducing the 
number of parameters, computational cost, and probability 

Fig. 2   The structure of the proposed DenseNet architectures
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of overfitting. Additionally, we added two batch normaliza-
tion layers, two fully connected layers, two dropout layers, 
and one softmax layer to the model.

Ensemble Learning

The proposed ensemble method consisted of two phases. 
In the first one, all base classifiers mentioned above were 
individually trained and evaluated on the same training and 
test datasets. Then in the second phase, the weighted prob-
ability-based ensemble method was utilized to combine the 
base classifiers. The overall scheme of the proposed model 
is shown in Fig. 6.

The accuracy of each classifier in the first phase was used 
as the weight of that classifier in the final model; in other 
words, the more accurate the classifier, the greater its effect 
in the final ensemble model. Next, the probabilistic value 
of each class in individual classifiers was multiplied by the 
weight value of the related classifier. The model output was 
obtained by applying a final softmax function to the sum of 
weighted probabilities. Hence, the output was the class with 
the highest probability in the final softmax function. The 
procedures are defined as follows:

where i is the index of each classifier, j is the index of each 
class, wi indicates the weight (accuracy) of ith classifier, �i

j
 

indicates the probability value of jth class in the ith classi-
fier, and Oj is the sum of weighted probabilities for jth class. 
The model output obtains from:

where P is the output of the softmax function, and R is the 
final output of the ensemble method.

Transfer Learning and Fine‑Tuning

In order to enhance the performance of the proposed model 
and speed up the training time, a domain adaption-based 
transfer learning methofd and fine-tuning were used in 
this study. In the domain adaption approach, although the 
source (initial) and target (original) datasets are different, 

(2)
Oj =

∑6

i=1
wi × �i

j
where j = 1,… , 4 and i = 1,… , 6

(3)P = softmax
(

Oj

)

where j = 1,… , 4

(4)R = argMax
(

Pj

)

where j = 1,… , 4

Fig. 3   The structure of the proposed ResNet architecture

Fig. 4   The structure of the proposed Inception-ResNet architecture
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they are in the same domain. Hence, in this study, firstly, 
the deep model was trained by NC/AD binary classifica-
tion group with a random initialization method, then the 
parameters of this trained model were used for other clas-
sification groups. Transferring and fine-tuning parameters 
were deployed in two stages described below:

In transferring phase, the initial convolutional blocks 
and layers of the pre-trained model (NC/AD classifica-
tion model) for each of the individual classifiers were 
frozen (got untrainable), and only the latest custom lay-
ers remained trainable. The model was re-trained by the 
new classification group with a learning rate of 0.001. So 
the transferred version of the model was obtained. In the 
second stage, called tuning, all layers and convolutional 
blocks of the transferred version were unfrozen, the learn-
ing rate decreased to 0.0001, and the model was re-trained 
again to obtain the final fine-tuned version of model.

Evaluation

After the training step, the models were evaluated by perfor-
mance metrics, namely accuracy, sensitivity, and specificity, 
the calculation of which is given in Eqs. (5)–(7). A split ratio 
of 80:20 was used for the training and test sets in this study, 
with 10% of the training set being utilized as validation.

where true positive (TP) is the number of patients diagnosed 
correctly by the deep model, also, true negative (TN) indi-
cates how many non-patients were correctly diagnosed, false 
positive (FP) indicates how many non-patients were misdi-
agnosed, and false negative (FN) implies how many patients 
were misdiagnosed. Besides the performance metrics men-
tioned above, we used the receiver operating characteristic 
(ROC) curve to compare the performance of the proposed 
ensemble model with individual models.

Experimental Results

The performance of ensemble model and its constituent 
models was evaluated and compared on various binary and 
multiclass classification groups, including NC/AD, NC/
EMCI, EMCI/LMCI, LMCI/AD, 4-way (NC/EMCI/LMCI/
AD), and 3-way classification groups (NC/MCI/AD).

(5)Accuracy = (TP + TN)∕(TP + TN + FN + FP)

(6)Sensitivity = TP∕(TP + FN)

(7)Specificity = TN∕TN + FP

Fig. 5   The structure of the proposed VGG architecture
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Selecting Hyperparameters

By conducting exploratory analysis and reviewing previous 
literature, we were able to select appropriate hyperparameter 
values. In Table 2, some of the selected hyperparameters 
are shown.

Although various optimization algorithms such as sto-
chastic gradient descent (SGD), Adam, Adadelta, Adag-
rad, and root mean squared propagation (RMSProp) have 
been used in deep models, Adam and SGD are the most 

popular algorithms in the literature (Ebrahimighahnavieh 
et al., 2020). In this study, we utilized Adam due to its 
lower computational cost than other algorithms. The most 
popular loss functions used in the reviewed studies were 
mean square error (MSE) and cross-entropy. However, in 
classification models with a softmax output layer, cross-
entropy has been found to perform better than MSE (Sad-
owski, 2016). The default learning rate value of Keras 
framework (0.001) was used in the initial training phase 
and then decayed to 0.0001 for fine-tuning the parameters. 
For batch size, we chose 64 as an initial value to speed up 
training time, but it was reduced to 32 when encountering 
an out-of-memory (OOM) error. The number of epochs 
was chosen exploratively according to the challenging 
level of the classification groups in the initial training 
phase. Thus, more epochs were required when the clas-
sification group was more challenging. For example, the 
model usually converged to an optimal solution in much 
less time in fine-tuning than in initial training; therefore, 

Fig. 6   The scheme of the proposed WPBEM model

Table 2   Selected values for some of the hyperparameters

Hyperparameter Value

Optimization algorithm Adam
Loss function Cross-entropy
Learning rate 0.001, 0.0001
Batch size 32, 64
The number of epochs 50,100,200,300,350
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fewer epochs were needed. You can see the explorative 
investigation into the required number of epochs for model 
training in Fig. 7. We utilized the DenseNet-121 as the 
base architecture for the exploratory investigation. The 
proper values obtained were then generalized to other 
architectures.

As shown in Fig. 7, the random strategy for parameter 
initialization requires more time to converge (200 to 350 
epochs) compared to fine-tuned models that converges in 
less than 100 epochs. Regarding the classification groups, 
as it can be observed, some of the classification groups, such 
as EMCI/LMCI and 4-way classification, converge later than 

Fig. 7   Explorative analysis of the number of epochs based on DenseNet121 architecture – a The accuracy obtained for different numbers of 
epochs in random parameters initialization method – b The accuracy obtained for different numbers of epochs in fine-tuned models

Fig. 8   Explorative analysis on hyperparameters – a Checking the 
model accuracy in using different numbers of dropout layers – b 
Checking the model accuracy in using different values for dropout 

layer – c The effect of using batch normalization layer on model accu-
racy – d Comparing the accuracy of various well-known CNN archi-
tectures
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others because of their challenging nature, thus requiring 
more epochs.

We performed more deep explorative analysis for select-
ing other hyperparameters, such as the number and value of 
dropout layers, the number of batch normalization layers, 
and selecting the type and number of base classifiers for the 
ensemble model. To this end, we used NC/AD classification 
group and DenseNet121 as the base group and classifier to 
check the different states of hyperparameters (See Fig. 8).

As shown in Fig. 8, the model with one dropout layer, a 
value of 0.3, and one batch normalization layer performs 
better than other states. We also compared popular CNN 
architectures, and as shown in Fig. 8d, the DenseNet-based 
models outperformed other architectures. The following sce-
narios for combining individual CNN classifiers, according 

to results shown in Fig. 8d, were defined and assessed to 
obtain the best ensemble model. You can see the scenarios 
and their performances in Fig. 9.

As shown in Fig. 9, the fifth and sixth scenarios (E6 and 
E7) has the highest performance (acc = 98.57) among the 
seven defined scenarios. Hence, we chose the E6 scenario 
(ensemble of DenseNet201, DenseNet169, DenseNet121, 
ResNet50, VGG, and Inception-ResNet) as the final ensem-
ble model due to its lower computational cost against E7.

Performance Metrics

After selecting the proper hyperparameters, the base classifi-
ers and ensemble method were trained and evaluated. In order 
to address the early diagnosis of AD, we developed various 
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Fig. 9   The assessment of different scenarios of the ensemble model

Table 3   Binary and four-way classification performance on the test set (ADNI)

Bold values represent the maximum value in each column
MVEM majority-voting ensemble method, PBEM probability-based ensemble method, WPBEM weighted probability-based ensemble method 
(Proposed method)

Method NC vs. AD NC vs. EMCI EMCI vs. LMCI LMCI vs. AD 4-way

Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc

DenseNet201 97.38 96.59 98.43 94.94 96.26 93.55 88.15 86.83 89.49 99.83 99.79 100 90.87
DenseNet169 96.96 97.19 96.67 95.7 98.32 92.97 90.75 89.89 91.63 99.74 99.55 100 89.29
DenseNet121 96.88 97.78 95.68 96.08 98.13 93.95 89.79 88.74 90.56 99.57 99.7 99.4 88.48
ResNet50 94.94 94.67 95.29 94.08 97.94 90.04 84.2 80.34 88.13 98.98 98.96 99 86.55
VGG 94.51 93.19 96.27 94.94 99.07 90.63 88.15 89.89 86.38 98.98 98.22 100 87.99
Inception-ResNet 95.61 95.11 96.27 94.17 96.63 91.60 84.68 84.16 85.21 98.89 98.96 98.8 88.80
MVEM 98.31 97.63 99.22 96.37 99.63 92.97 93.74 91.6 95.91 99.66 99.4 100 93.93
PBEM 98.5 98.72 98.35 96.37 99.63 92.97 94.03 93.7 94.36 99.83 99.7 100 93.83
WPBEM 98.57 98.81 98.24 96.37 99.63 92.97 94.22 94.08 94.36 99.83 99.7 100 93.88
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binary and multiclass classification groups: Table 3 reports 
the binary and four-way classification performance of models.

Based on Table 3, the performance results of all ensemble 
methods (the last three rows) were superior to individual 
models. Comparative analysis of ensemble approaches 
revealed no significant differences in classification 

performance; however, the proposed model (WPBEM) 
performed slightly better than other common ensemble 
approaches in most classification groups. Figure 10 shows 
the ROC plot for all the individual models and the proposed 
ensemble model in every classification group.

Fig. 10   ROC plot for a NC/AD classification group – b NC/EMCI classification group – c EMCI/LMCI classification group – d LMCI/AD clas-
sification group – e Four-way classification group
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As shown in Fig. 10, the most challenging group for 
classification is EMCI/LMCI, in which the ensemble model 
significantly outperforms the individual classifiers. Note 
that the ROC curve cannot be drawn directly for multiclass 
classification models; therefore, in the 4-way classification 
model, ROC curves were drawn individually for each class. 
The proposed ensemble method demonstrated acceptable 
performance in detecting all disease classes in the 4-way 
classification group; however, it proved to be more appropri-
ate for detecting AD and NC (See Fig. 10e).

Validating on Local Dataset

The local dataset consisted of three disease classes (NC, 
MCI, AD), so we first trained and evaluated a three-way 
classification model based on ADNI data and then validated 
it using the local dataset. Table 4 and Fig. 11 report the per-
formance results for evaluating and validating the propsed 
model based on ADNI and local datasets.

Although validation results on the local dataset in 
individual models were not promising, the ensemble 
model (WPBEM) could enhance the accuracy by at least 
15 percent. Even though WPBEM improved the valida-
tion results on the local dataset, the accuracy was nearly 
five percent lower than the evaluation results on ADNI, 
suggesting that models should be considered further for 

generalizability. Based on Fig. 10, the WPBEM has per-
formed almost similarly in detecting NC and AD cases 
in the local and ADNI datasets, but MCI cases in the 
local dataset appeared more challenging for the model 
to detect.

Discussion

This study sought to introduce an ensemble model using 
deep learning for early diagnosis of AD. It comprised of 
collecting the dataset, preprocessing, creating the individual 
and ensemble models, evaluating the models based on ADNI 
data, and validating the trained model based on the local 
dataset. The proposed method is a novel ensemble approach 
selected through a comparative analysis of various ensemble 
scenarios. Finally, the six best individual CNN-based classi-
fiers were selected to combine and constitute the ensemble 
model. As mentioned before, the performance metrics used 
in the current study were accuracy, sensitivity, and specific-
ity. Therefore, these metrics were used to compare the model 
with state-of-art works. Table 4 summarizes the comparative 
analysis of the proposed model and some similar studies 
according to the evaluation of ADNI data.

All valuable classification groups, including binary and 
multiclass classifications, were addressed in this study. Only 

Table 4   Performance results of evaluating and validating the model

a Accuracy of the model based on ADNI dataset
b Accuracy of the model based on local dataset

DenseNet201 DenseNet169 DenseNet121 ResNet50 VGG Inception-ResNet WPBEM

Evaluationa 93.08 92.89 92.78 92.05 90.34 87.85 93.92
Validationb 73.08 69.23 76.92 65.38 69.23 61.54 88.46

Fig. 11   ROC plot for three-way classification – a Evaluating the model based on ADNI data – b Validating the model based on local dataset
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two binary classification groups, NC/LMCI and EMCI/AD, 
were not addressed because they are less clinically valuable 
than other groups for early AD diagnosis. We only included 
studies in Table 5 using MRI images as input data and 
addressed subcategories of MCI (EMCI and LMCI) to com-
pare with our study. None of the reviewed studies addressed 
all classification groups. Although Mehmood et al. (2021), 
Basaia et al. (2019), and Yue et al. (2019) have reported all 
the binary classification groups, they have not addressed the 
multiclass classification in their studies which is one of the 
most important classification groups.

As shown in Table 5, our performance results are higher 
than most of the reviewed papers and comparable with others. 
Especially in the four-way classification, the proposed model 
outperformed other studies. Although Yue et al. reported bril-
liant performance results in most binary classification groups, 
their study did not address the multiclass classification.

Regarding the utilized ensemble approach, majority-
voting (MVEM) and probability-based ensemble meth-
ods (PBEM) have been used in reviewed studies, in which 
MVEM is more common in the literature (Islam & Zhang, 
2018; Jabason et al., 2019; Lu et al., 2018; Sarraf et al., 
2019; Zheng et al., 2018). The use of PBEM has also been 
reported in the studies of Ruiz et al. (2020) and Wang et al. 
(2019). Using PBEM as an inspiration, a new method 
called WPBEM has been introduced and compared to 
other approaches in the current study. Although compara-
tive analysis shows superior results of ensemble methods 
against individual architectures, which is in line with other 
studies, there are no significant differences among various 
ensemble approaches (Mujahid et al., 2023). WPBEM has 
performed equally well or slightly better in most binary 
classification groups than other approaches, but MVEM has 
performed slightly better in four-way classifications (See 
Table 3). A recent study by Ma et al. (2023) has introduced 
a novel ensemble approach known as deep-broad ensemble. 
This method combines 3D-residual convolutional blocks 
with a broad learning system, demonstrating superior per-
formance compared to individual methods. A significant 
benefit of the proposed approach is the elimination of the 
requirement for expensive hardware resources and extended 
training durations.

Conclusion and Future Work

With the growing elderly population in recent decades and 
its consequences, such as increasing age-related diseases, 
including Alzheimer’s, researchers are concerned about 
improving and developing new ways to diagnose these dis-
eases at an early stage. Machine learning and deep learn-
ing approaches have revealed great potential in diagnosing 
such diseases. Although deep learning methods, including 

the proposed model, have achieved competitive perfor-
mance in diagnostic results, important issues still need to 
be addressed.

Most studies have deployed and evaluated their DL 
frameworks based on standard datasets such as ADNI and 
OASIS, which are beneficial in terms of research value, 
but using these frameworks practically as a computer-aided 
diagnosis (CAD) system, requires more investigations. To 
address this issue, we performed a validation procedure by 
measuring the accuracy of trained models on a local dataset. 
The validation results have revealed that individual mod-
els show low performance in practice. In contrast, the pro-
posed ensemble method shows promising diagnostic results. 
However, due to the accuracy difference between ADNI 
evaluation and local data validation, this model should be 
used cautiously in practice. Hence, further experiments on 
various and larger datasets are required to validate the gen-
eralizability of the model.

This study focused on introducing a DL framework 
based on MRI images. However, it could be re-designed 
and re-trained on the basis of other neuroimaging data, 
including PET and fMRI. Also, further experiments on 
developing multi-modal and modality-independent frame-
works could be taken into consideration. It is also neces-
sary to investigate the effectiveness of other deep learning 
methods, such as recently introduced CNN architectures, 
in the early AD diagnosis.
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